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ABSTRACT 

We systematically study the design of image recognition 
CAPTCHAs (IRCs) in this paper. We first review and examine all 
IRCs schemes known to us and evaluate each scheme against the 
practical requirements in CAPTCHA applications, particularly in 
large-scale real-life applications such as Gmail and Hotmail. Then 
we present a security analysis of the representative schemes we 
have identified. For the schemes that remain unbroken, we present 
our novel attacks. For the schemes for which known attacks are 
available, we propose a theoretical explanation why those schemes 
have failed. Next, we provide a simple but novel framework for 
guiding the design of robust IRCs. Then we propose an innovative 
IRC called Cortcha that is scalable to meet the requirements of 
large-scale applications. Cortcha relies on recognizing an object by 
exploiting its surrounding context, a task that humans can perform 
well but computers cannot. An infinite number of types of objects 
can be used to generate challenges, which can effectively disable 
the learning process in machine learning attacks. Cortcha does not 
require the images in its image database to be labeled. Image 
collection and CAPTCHA generation can be fully automated. Our 
usability studies indicate that, compared with Google’s text 
CAPTCHA, Cortcha yields a slightly higher human accuracy rate 
but on average takes more time to solve a challenge.  

Categories and Subject Descriptors 

K.6.5 [Management of Computing and Information Systems]: 
Security and Protection – authentication, unauthorized access; 
I.4.8 [Image Processing and Computer Vision]: Scene Analysis 
– object recognition.  

General Terms 

Security, Human Factors. 

Keywords 

CAPTCHA, Human Interactive Proof, HIP, security, robustness, 
Cortcha, image recognition CAPTCHA, IRC, object recognition. 

1. INTRODUCTION 
CAPTCHA (Completely Automated Public Turing test to tell 
Computers and Humans Apart) [1][2][3], also known as Human 
Interactive Proof (HIP), is an automated Turing test in which both 
generation of challenges and grading of responses are performed 
by computer programs. CAPTCHAs are based on Artificial 
Intelligence (AI) problems that cannot be solved by current 
computer programs or bots, but are easily solvable by humans. A 
client who provides a correct response to a challenge is presumed 
to be a human; otherwise a bot. CAPTCHAs have been widely 
used as a security measure to restrict access from bots. 1 

Text CAPTCHAs are almost exclusively used in real applications. 
In a text CAPTCHA, characters are deliberately distorted and 
connected to prevent recognition by bots. Most of the proposed or 
deployed text CAPTCHAs have been broken [4][5][6][7][8][9]. It 
is possible to enhance the security of an existing text CAPTCHA 
by systematically adding noise and distortion, and arranging 
characters more tightly. These measures, however, would also 
make the characters harder for humans to recognize, resulting in a 
higher error rate and an increased level of frustration. There is a 
limit to the distortion and noise that humans can tolerate in a 
challenge of a text CAPTCHA. Usability is always an important 
issue in designing a CAPTCHA [10]. With advances of 
segmentation and Optical Character Recognition (OCR) 
technologies, the capability gap between humans and bots in 
recognizing distorted and connected characters becomes 
increasingly smaller. This trend would likely render text 
CAPTCHAs eventually ineffective. Finding alternative approaches 
in designing CAPTCHAs to replace text CAPTCHAs has become 
increasingly important. A major effort has been directed to 
developing CAPTCHAs based on image or object recognition 
[11][12][13][15][16][17]. Images are rich in information, intuitive 
to humans, and of a large variation. More importantly, there are 
still many unsolved AI problems in image perception and 
interpretation. Images seem to be a better medium than characters 
for designing CAPTCHAs.  

The research of text CAPTCHAs has roughly proceeded in the 
following way. The earliest inspiration was a clever but rough 
idea: although recognizing printed fonts was a solved problem, it is 
hard for OCR to recognize distorted fonts. Therefore early 
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schemes were designed to make them hard for OCR to recognize. 
Attacks on the early designs were studied, and the principle of 
segmentation resistance emerged: computers turn out to perform 
better than humans in recognizing individual characters, even 
under severe distortion [18]. However, segmentation, which is to 
locate individual characters in the right order, is a computationally 
expensive and combinatorially hard problem. Thus text 
CAPTCHAs should be designed to be segmentation-resistant [19]. 
The attack by Yan and El Ahmad [9] further enhanced our 
understanding of various segmentation resistance mechanisms. 
Such an iterative process of designs and attacks has led to a better 
CAPTCHA design. In the meanwhile, failure modes of and some 
design principles for CAPTCHAs have also started to emerge.  

We believe that such an evolutionary process for studying text 
CAPTCHAs is applicable to the domain of image recognition 
CAPTCHAs (IRCs). In this paper, we systematically study the 
design of IRCs. Similar to text CAPTCHAs, the earliest inspiration 
for the design of IRCs was also a rough, high-level idea: it’s 
difficult for current computers to recognize certain content of an 
image. However, compared to the extensive security study of text 
CAPTCHAs, the current collective understanding of failure modes 
for IRCs is limited. There are few established insights or principles 
on how to make use of the difficulty of image recognition in a 
sound way to design secure IRCs. For example, it is well known 
that a strong IRC should rely on image semantics. However, there 
is no deep understanding of how to properly make use of image 
semantics. It is unclear what use of image semantics would fail a 
CAPTCHA or lead to a more secure design. We will show that by 
attacking representative IRC schemes and by providing a 
theoretical explanation to existing attacks, we can derive useful 
lessons and fundamental principles for guiding the design of IRCs. 
Our work advances the current collective understanding of the 
design of such CAPTCHAs.  

This paper is organized as follows. We provide in Section 2 a brief 
yet rather comprehensive review of existing IRCs, and evaluate 
each scheme against the practical requirements in CAPTCHA 
applications, particularly in large-scale real-life applications such 
as Gmail and Hotmail. In Sections 3 and 4 we present attacks on 
the representative schemes identified in the previous section. For 
the representative schemes that remain unbroken, we present our 
novel attacks in Section 3. For the schemes that known attacks are 
available, we describe the attacks briefly in Section 4. In Section 5, 
we propose a theoretical explanation why all these schemes have 
failed. We also define a framework to summarize the lessons we 
have learned, as well as to provide guidelines for designing robust 
IRCs. Section 6 presents the design of a novel IRC called Cortcha, 
along with a study of its security, usability, and potential issues. 
Section 7 concludes the paper and discusses some future work. 

2. EXISTING IRC SCHEMES: HOW GOOD 

ARE THEY? 

2.1 Desired Properties of CAPTCHAs 
Early research has summarized some requirements and desirable 
properties for a CAPTCHA [1][3][12]. We, however, add one 
additional desirable property that comes from large-scale real-life 
applications such as Gmail and Hotmail: 

• Scalability. Scalability measures the range (number) of 
challenges a CAPTCHA scheme can generate without 
sacrificing the scheme’s the robustness and usability. A 
scheme is scalable if it can scale up its output (the number of 

generated challenges) with acceptable robustness and usability. 
A scalable scheme can meet the demand of large-scale 
applications such as Gmail and Hotmail, but an un-scalable 
one cannot. While it is easy for text CAPTCHAs to achieve 
scalability, many existing IRCs cannot generate a large number 
of challenges without sacrificing robustness or usability.  

It is worth mentioning a fundamental requirement of CAPTCHAs 
under the context of IRCs: both challenge generation and the 
response grading should be automated without human 
involvement. This requirement ensures that the whole system 
operates in an automatic manner. This requirement is feasible 
since it is possible that a task and its reversal have asymmetric 
complexity. Such a difference in complexity is the base for modern 
public key cryptosystems. This requirement is easily met by text 
CAPTCHAs, but has proven to be difficult for many IRCs for the 
following simple reason. Typically, an IRC builds its security on 
the difficulty for computers to understand the semantic content of 
images or visual objects. That is, computers used for generating 
challenges do not really understand the images or visual objects. 
As such, many IRCs require human involvement, in which images 
are manually labeled or selected. 

2.2 Metrics for Attack Effectiveness 
The first metric in evaluating the effectiveness of an attack is the 
success rate of the attack. The tolerable success rate of an attack on 
a CAPTCHA depends on the cost of the attack. A rule of thumb is 
given in [20]: bots should not have a success rate higher than 
0.01%. This is a very challenging number in designing a 
CAPTCHA. By using IP monitoring such as the token bucket 
scheme proposed in [15] together with a CAPTCHA, the tolerable 
success rate of attacks can be relaxed to 0.6% (assuming that TB-

Refill is 3 for the token bucket scheme). We adopt this threshold in 
this paper: bots should not have a success rate higher than 0.6%.  

The average time needed for an attack to produce a response to a 
challenge, referred to as the attack response time in this paper, is 
another metric to evaluate the effectiveness of the attack. An attack 
should produce a response within the time frame that humans 
respond to a challenge. Otherwise it is easy to tell if a response is 
from a bot or human. According to [12], a CAPTCHA should be 
designed such that humans can respond within 30s. As a result, an 
effective attack should also respond within 30s.  

The following criterion is adopted in this paper: if on average an 
attack produces a response within 30s with a success rate of 0.6% 
or higher, the attack is claimed to be effective; otherwise 
ineffective.  

2.3 Existing IRC Schemes 
Existing IRCs are all based on the assumption that computers 
cannot perform well a certain type of task on images. As we shall 
see later in this paper, many of these assumptions were actually 
incorrect, and thus the IRC schemes can be successfully attacked. 
Early IRCs include Bongo [21] in which two groups of visual 
blocks (e.g., lines, circles, and squares) that humans can find some 
characteristics to separate them are displayed. A user is asked to 
classify a visual block into the right group. A random guess results 
in a success rate of 50%. Pix [21] is another early IRC that uses a 
large database of labeled images which are pictures of concrete 
objects (horses, tables, houses, flowers, etc.). It first picks an 
object label at random and finds six images of that object from the 
database, randomly distorts them, and then presents to a user to 
label the object. Labeling an object may be ambiguous. Different 
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users may label the same object differently. It is also difficult to 
evaluate an answer automatically. In addition, Pix depends on the 
language that users use. These problems are addressed in Animal 
Pix [21] which differs from Pix in the following ways: 1) it uses 12 
animals instead of generic objects as the labeled objects; and 2) it 
asks a user to select from the set of predefined 12 animals instead 
of entering the object label. The cost is reduced security: a random 
guess of Animal Pix results in a success rate of 8.3%. 

Chew and Tygar [11] proposed three CAPTCHA algorithms based 
on a database of labeled images generated by collecting the first 20 
hits from Google’s image search on inputting each word from a list 
of easily-illustrated words. The first CAPTCHA algorithm (CT_L) 
presents six images of the same subject, and asks a user to 
correctly describe the common term associated with the six images 
to pass the test. The second CAPTCHA algorithm (CT_S) presents 
two sets of images, with each set containing three images of the 
same subject, and asks a user to determine if the two sets have the 
same subject or not. The third CAPTCHA algorithm (CT_A) 
presents six images, five of the same subject and one of a different 
subject, and asks a user to identify the image of the different 
subject. Like Pix and Animal Pix, it is difficult to grade responses 
automatically for the first CAPTCHA algorithm, and a random 
guess would result in a sufficiently high success rate, 50% and 
16.67%, respectively, for the second and third algorithms. In 
addition, Google’s image search may return inaccurate or 
irrelevant images. Manual selection may be required to remove 
bad images. The image database would be too small to meet the 
scalability requirement. 

Asirra [15] relies on the capability gap between humans and bots 
in distinguishing cats and dogs. It asks a user to identify cats out of 
a set of 12 photos of both cats and dogs. A large database of 
labeled images of cats and dogs is needed to generate Asirra 
challenges. Photos of cats and dogs from Petfinder.com are used in 
generating challenges. Asirra is not scalable. Petfinder.com has 
only a limited number of photos of cats and dogs. New photos are 
added slowly. With a high volume application such as Hotmail, the 
database is quickly exhausted and photos would have to be 
repeated, allowing adversaries to use previously used photos of 
cats and dogs to solve a new challenge. 

Website HotCaptcha.com applies a CAPTCHA based on a large 
database of labeled photos from HotOrNot.com, a popular Website 
that invites users to post their photos and rate others’ photos as 
“hot” or “not hot”. The CAPTCHA asks a user to pick three hot 
people from nine photos of people presented to the user. Whether a 
person is hot or not is subjective and culture-dependent. Different 
people may give different answers. In addition, the success rate by 

a random guess, which is at least 1 in 843
9 =C or 1.19%, may be 

sufficiently high that renders the CAPTCHA not suitable for many 
applications such as anti-spam for a free Web email service. 

A recent proposal [16] (Orientation) is to exploit the capability gap 
between bots and humans to identify the orientation of an image. 
A user is asked to adjust a randomly rotated image to its upright 
orientation. A large database of candidate images is needed in this 
CAPTCHA. To generate such a database, images returned from a 
Web search are first obtained; a suite of automated orientation 
detectors is then applied to remove those images that can be set 
upright by a computer; and finally a social feedback mechanism is 
employed to remove those images hard for humans to set 
orientation. The quality of this CAPTCHA depends critically on 
the quality of the image labeling result from the social feedback 

mechanism. It is unclear whether there exists an efficient social 
feedback system that can label a large number of images to meet 
the demand of a large scale application such as Gmail or Hotmail. 
In addition, a random guess may result in a sufficiently high 
success rate. In a challenge, a user is asked to move a scroll bar to 
adjust the orientation of an image, and the position of the scroll bar 
is returned for evaluation. The success rate of a random guess 
depends on the tolerance of variations in setting the upright 
orientation by different people. The data reported in [16] indicate 
that the success rate of a random guess when one image is used in 

a challenge is 4.48% (= √0.009%�
), which is high enough for 

many applications that several images are needed in a challenge.  

A new CAPTCHA based on 3D object models is recently 
employed by Yuniti.com [22]. This CAPTCHA presents in a 
challenge three objects generated from a set of 3D object models, 
and asks a user to select the matching object from a list of objects 
for each of the three displayed objects. A major problem for this 
CAPTCHA is that it is costly to generate a large number of 3D 
objects for a large scale application. It is also possible for 
adversaries to reversely build the 3D models from the objects in 
used challenges, and then to use these models to find the matching 
objects in the list for the three objects in a new challenge.   

A video CAPTCHA using labeled video clips from YouTube is 
proposed in [17]. A user is asked to label the content of a video 
clip in a challenge. However, labeling content is subjective; 
different users may label the same content differently.   

In the following subsections, we'll discuss Asirra, ARTiFACIAL, 
and IMAGINATION. These are the IRCs that we shall examine in 
more details to learn the lesson why they are successfully attacked.  

 

Figure 1. (a) 3D wire model. (b) Cylindrical head texture. (c) 

Challenge image. 

ARTiFACIAL [12] relies on the capability gap between humans 
and machines in recognizing a human face. Humans can easily 
recognize a human face even if the face is distorted, partially 
occluded, or under poorly illumination. A face detector, however, 
still suffers from head orientation, face asymmetry, lighting and 
shading, and cluttered background [12]. In ARTiFACIAL, a 3D 
head model (Figure 1(a)) and a 512 × 512  pixel cylindrical 
texture map of an arbitrary person (Figure 1(b)) are used to 
generate a unique human face with random global head rotation, 
scaling, translation, and local facial feature deformations to take 
advantage of the head orientation and face symmetry limitations. 
The intensity of the face region is perturbed to break the face 
symmetry and to simulate illumination variances. Finally, a 
cluttered background is generated by randomly putting confusion 
heads and facial features on the image. A challenge image is 
shown in Figure 1(c). A user is required to identify the single 
human face in a challenge and click the six facial corners (four eye 
corners and two mouth corners) on the face to pass a test. It is 
claimed that the success rate for a bot to pass an ARTiFACIAL 
test is at most 0.0006% [12]. A worth-mentioning feature of 
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ARTiFACIAL is that in theory an infinite number of challenges 
can be generated [12].   

 

Figure 2. Challenge images in IMAGINATION: (a) click test, 

(b) annotate test.  

IMAGINATION [13] actually consists of two separate tests: a 
click test and an annotation test. The two tests are shown in Figure 
2. In the click test, a distorted composite image tiled with 8 images 
is presented. A user has to click a position close enough to the 
geometric center of any one of the 8 constituent images to pass the 
test. In the annotate test, a distorted image containing a meaningful 
object and cluttering curves is presented. To pass a test, a user has 
to choose the correct label for the image from a list of 15 candidate 
words. Candidate labels used in this test are generated by adopting 
a WordNet-based method to avoid ambiguity and to thwart odd-
one-out attacks when the correct choice is semantically different 
from all the others. A random guess of the annotation test results in 
a success rate of 6.67%. 

In generating a challenge image of the click test, the region of the 
challenge image is randomly partitioned into 8 non-overlapping 
rectangles. Each rectangle is filled with an image randomly 

selected from a database, scaled if necessary. The following 
dithering step is then applied twice: the composite image is 
randomly divided into another 8 rectangular regions and the Floyd-
Steinberg error-diffusion algorithm is applied to each region with 
independent dithering parameters including base colors (18, 
randomly chosen in RGB space). To further enhance the security, 
a factor α chosen randomly in the range of [0.5, 1.5] is used to 
multiply the spreading quantization error during the dithering. The 
intuition behind this step is to introduce false image boundaries in 
the composite image and to blur the true boundaries in hopes of 
making the image region detection intractable by machines. The 
resulting composite image is used in the click test. It is claimed 
that IMAGINATION is resistant to attacks and friendly to humans 
[13].  

The IRCs discussed above, together with Cortcha (our novel IRC 
to be presented in Section 6) are compared in Table 1 against the 
CAPTCHA requirements listed in [12] as well as scalability and if 
manual work is needed for the images to be used to generate 
challenges. The accuracy rate and solving time in the column 
“Easy to human” of the table, if presented, are from the original 
paper that proposes the CAPTCHA. The success rate of no-effort 
attacks (random guess), if presented, is either from the original 
paper or calculated previously in this section.   

Based on Table 1, we determine that IMAGINATION, 
ARTiFACIAL and Asirra are representative IRCs that worth a 
close examination. 

 

Table 1. Evaluation of existing IRCs and Cortcha 

IRC 
Manual 

work 

Easy to 

grade 
Easy to human 

Hard to 

machine 

Univer-

sality 

Resistance to no-

effort attacks 
Scalability 

Secret 

database 

Bongo No  Yes Yes No Yes No (50%) No No 

Pix Labeling No Subjective Yes No Yes No Yes 

Animal Pix Labeling Yes Yes No No2 No (8.3%) No Yes 

CT_L No No 
Accuracy:76.5% 

Time: 24s 
Yes No Yes No Yes 

CT_S No Yes Yes No Yes No (50%) No Yes 

CT_A No Yes 
Accuracy: 91% 

Time: 51s 
No Yes No (16.6%) No Yes 

ARTiFACIAL No Yes 
Accuracy:99.7%Ti

me: 14s 
Yes Yes Yes (3.5E-17) Yes No 

IMAGINA-TION 
Click: No 

Annotation: 

Labeling 

Yes Accuracy: 85% Yes Yes Yes (6.2E-7) 

Click: Yes 

Annotation: 

No 

Yes 

HotCaptcha Labeling No Very subjective No No No (1.19%) No Yes 

Asirra Labeling Yes 
Accuracy:83.4%Ti

me: 15s 
Broken Yes Yes (0.024%) No Yes 

Orientation (with 
3 images) 

Removing 

bad images 
Yes Accuracy: 84% Yes Yes Yes (0.009%) No Yes 

Video Labeling No 
Accuracy: 90% 

Time: 22s 
No No No (>2% ) No Yes 

Cortcha No Yes 
Accuracy:86.2% 

Time: 18.3s 
Yes Yes Yes (≤0.125%) Yes Yes 

                                                                 
2 Some animals are popular only in a few countries [12]. 
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3. OUR ATTACK ON IMAGINATION 

3.1 Basic Ideas on Our Attack 
The dithering process during the generation of a click challenge in 
IMAGINATION produces many false boundaries. To be a good 
CAPTCHA, some true boundaries should be still readily visible so 
that humans can easily determine at least one constituent image’s 
location. Let’s look how humans would deduce such a location. A 
candidate region is first located. Then the two sides along the 
boundary of the candidate are compared. If both sides are very 
similar, the boundary is likely false, and another candidate should 
be examined. This process is iteratively applied until a confident 
image location is found. This image location should agree with the 
likely locations of the neighboring constituent images. This process 
is also applied in our attack on the click test of IMAGINATION.  

Our attack consists of the following three steps: 

• Detect all possible rectangular regions. Each rectangular 
region represents a candidate image location. These 
rectangular regions can be ranked according to the likelihood 
of being a rectangular region.  

• Compare objects and textures on both sides along the 
boundary of each candidate rectangle. An object that crosses a 
boundary is called a traversing object of the boundary. A 
boundary with traversing objects is likely a false image 
boundary. A boundary with very different textures on both 
sides is likely to be a true image boundary. Any rectangular 
region with a false boundary is removed from the set of 
candidates. The likelihood to be a true image location is then 
adjusted for each survived rectangle.  

• Check each candidate’s consistency with its neighboring 
rectangles. The rectangle with the highest likelihood is 
selected and its geometric center is sent back as the response 
to the test.  

These steps will be described in detail in the following subsections.  

3.2 Details of Our Attack 

3.2.1 Detection of Candidate Rectangles 
To detect all the possible rectangular regions in a composite image, 
color edge detection is first applied, and vertical and horizontal line 
segments are then detected. By enumerating possible combinations 
of these line segments, candidate rectangular regions are generated.  

3.2.1.1 Color Edge and Line Segment Detection 
Region-based color edge detection is used to detect significant 
vertical and horizontal color edges in a composite image. This is 
because a dithered composite image is quite noisy that a local 
gradient based method would lead to a lot of false edge responses. 
Before the edge detection, an input composite image is smoothed 
by a 5 × 5  Gaussian filter in order to reduce noise. For each 
location in the image, we draw a circle of radius R  and divide it 

along the diameter at four different directions: 0° , 45° , 90° , and 135°. The radius R should be selected carefully. A value that is too 
large would result in imprecise edge localization. A value that is 
too small would generate many noisy fragments. The color model 
in each semi-circle is represented as the histogram in a jointly 
partitioned region by the color components in the Lab color space. 
The color edge intensity in each different direction is estimated by 

calculating the χ�distance between the models of the two resulting 
disc halves: 

���ℎ�, ℎ�� = �
�∑ �����������������#!"#$#%�  ,                        (1) 

where 1h  and 2h  are the color histograms of the two disc halves. 

The direction with the maximum color edge intensity is considered 
as the edge direction, and the maximum value as the edge intensity 
at the current location. The resulting edge candidate map &'  is 
shown in Figure 3(b) along with the challenge image shown in 
Figure 3(a). Non-maxima suppression is then applied to &'  to 

generate a total edge map &()*( , shown in Figure 3(c). A binary 

edge image vhbinI
−

is obtained by removing all the non-

vertical/horizontal edge points after applying a threshold.  
 

 
Figure 3. (a) Original challenge image. (b) Edge candidate map +,. (c) Total edge map +-./-. (d) Horizontal and vertical line 

segments after the line segment detection is applied. 

The horizontal and vertical edge points found above may be 
slightly off the actual positions by up to a couple of pixels, which 
makes a boundary not a straight line. We can refine the accuracy of 
these edge points by applying local gradient based edge detection 
around the found edge points and adjust the edge point positions if 
necessary. The two-step procedure described in Appendix 9.1 is 

applied to the binary image vhbinI
−

 to detect all the potential 

vertical and horizontal line segments. The resulting vertical and 
horizontals line segments are shown in Figure 3(d). 

3.2.1.2 Generating Candidate Rectangles 
Candidate rectangles are generated by enumerate all the possible 
rectangles from the horizontal and vertical line segments obtained 
from the last step. A priori knowledge is then applied to remove 
unlikely image rectangles: a rectangle that is too small or too large 
is removed.  A very small rectangle is unlikely used to fill with an 
image since it is too hard for humans to recognize. A very large 
rectangle makes other images too small. The rectangles that are too 
close to the boundary of the composite image are also removed for 
the same reason.  

In the next step, the candidate rectangles are processed and ranked 
according to the edge intensity, traversing objects, and edge density 
variation cues. The detail is described in Appendix 9.2.  

3.2.2 Consistency Inference 
The a priori knowledge that constituent images cover the whole 
composite image and that there is no overlapping between any two 
constituent images is used to check consistency of the survived 
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rectangles in order to select one as the response to the click test. 
Two rectangles are said to be neighbors if one contains at least one 
pixel in the neighborhood of some pixel(s) in the other rectangle. 
Two neighboring rectangles are said to agree with each other if they 
share at least one boundary or one boundary of a rectangle is on the 
extension of a boundary of the other rectangle. Two distinct 
rectangles are said to be inconsistent with each other if they overlap 
each other or they are close enough to each other such that the gap 
between them is too small to hold a constituent image.   

The following steps are applied to determine a rectangle with its 
geometric center as the response to the click test:  

1) All the rectangles with a confidence value of 1, if any, are 
selected. Each selected rectangle is then checked against all 
the other rectangles in the set of candidates. If any 
inconsistency is detected, the rectangle is dropped from the 
selected rectangles. If there is any selected rectangle that 
survives the inconsistency checking, the one with the largest 
number of agreed neighboring rectangles is located and its 
geometric center is returned. Then the attack ends. 

2) Each rectangle in the set of candidates is checked against the 
other rectangles in the set of candidates. If no inconsistency is 
detected, the rectangle is selected. At the end of this process, if 
there is any rectangle selected, the one with the largest number 
of agreed neighboring rectangles and, if there are still multiple 
choices, with the highest confidence value is located and its 
geometric center is returned. Then the attack ends.   

3) If all the candidate rectangles are inconsistent with some 
candidate rectangle, the rectangle with the highest confidence 
is located and its geometric center is returned. 

 
Figure 4. Two challenge images and the image regions (enclosed 

by red lines) returned by our attack. 

3.3 Attacking Results 
We have used both our own implementation of IMAGINATION’s 
click test and IMAGINATION’s online service [14] to evaluate our 
attack algorithm. Using our own implementation, the evaluation 
process was automated and fast, but our implementation might be 
different from the actual IMAGINATION. Therefore we collected 
109 click test images from IMAGINATION’s online service, and 
attacked them to compare with the result from our own 
implementation. Unlike our own implementation, the evaluation 
using IMAGINATION’s online service could not be automated 
since the service applied an annotation test after a click test, denied 
access if failing either test more than a small threshold number. 
Each collected image was first manually labeled to locate 
perceivable image boundaries. The output of our attack algorithm 
was then compared with the labeled result to determine if the attack 
was successful or not. For the 109 collected click test images, our 
attack solved 81 test images correctly, resulting in a success rate of 
74.31%. Figure 4 shows the image regions (enclosed by the red 
lines) returned by our attack algorithm for two collected challenge 
images. This success rate agrees with the result evaluated with our 
own implementation of IMAGINATION’s click test where 2000 
click test images were used. Our average attack speed was 0.962s 

per image when running on a PC with 3.2GHz Intel P4 and 2GB 
memory. 

If we use a random guess for the annotate test of IMAGINATION, 
the success rate will be 1 in 15, or 6.67%. By combining the attack 
results of IMAGINATION’s two tests, our attack algorithm can 
achieve an overall success rate of 74.31%	 × 	6.67%,	 or 4.95%. 
This number can be increased if a technique better than a random 
guess is used for the annotate test. In fact, this annotate test has 
several shortcomings, e.g., difficult to build an image database 
large enough to meet the demand of a large scale application, 
language-dependent, and poor rejection of a random guess.      

 

4. OTHER ATTACKS 

4.1 Low-level Features and Semantics 
A typical image contains rich information which can be classified 
roughly into two types: low-level features and high-level semantics. 
Low-level features are the information that can be extracted from 
an image with little or nothing to do with perception or 
understanding of the image. Many low-level features have been 
developed for various tasks. Commonly used low-level features 
include color, shape, texture, color layout, among others. Color is a 
widely used feature. A color feature can be represented by the color 
histogram which is a distribution of the colors in an image. Texture 
refers to repeated patterns with varying intensities or colors such as 
grassland. Contrast is a simple representation of texture.  Shape 
represents a visual object, represented by the outer boundary of the 
shape or the entire region of the shape. Color layout includes both 
the color feature and the spatial relations. More low-level features 
can be found in [23]. Computers are typically good at extracting 
low-level features from an image.  

High-level semantics, on the other hand, is associated with 
perception or interpretation of an image such as identifying 
semantically meaningful objects contained in an image, and 
relationships of these objects. Low-level features are typically 
deterministic, i.e., the same or similar result is produced when a 
low-level feature is extracted from the same image by any 
computer or most humans at any time. High-level semantics, on the 
other hand, may be subjective and user-dependent, especially when 
interpretation is applied during extraction. Different semantic 
meanings may be generated when the same image is perceived by 
different people or by the same person at different times. There is 
still a large gap between low-level features and high-level 
semantics. Image understanding or general object recognition aims 
to reduce such a gap but still remains a hard AI problem in 
computer vision.  

4.2 Attack on Asirra 
Golle [24] designed a machine learning attack on Asirra. In this 
attack, an image is partitioned and divided into uniform blocks. The 
discriminative features used in the attack are the block's color 
patterns and 5x5 texture tiles. Machine learning on the labeled 
training data produces a classifier that has achieved a success rate 
of 82.7% in distinguishing a cat from a dog used by Asirra, much 
higher than a random guess does. For a 12-image Asirra, the 
success rate is 10.3%. However, no insightful explanation was 
given on why a seemingly hard object recognition problem can be 
readily solved by a machine learning attack.   

4.3 Attack on ARTiFACIAL 
We have developed a machine learning attack on ARTiFACIAL 
[25]. There are two stages in the attack: detect the face in a 
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challenge and then locate the six facial corner points on the face. 
Based on the observation that the intensity perturbation introduced 
by ARTiFACIAL could be largely removed in the gradient domain 
which represents spatial variations of the image's intensities, we 
have designed a gradient-domain based face detector that learns the 
structural shapes of facial components to detect the face in a 
challenge image. Figure 5(a) shows the gradient domain 
representation of the challenge image shown in Figure 1(c). Then 
the intensity perturbation which manifests as horizontal and vertical 
lines in the gradient domain is neutralized (Figure 5(b)), thanks to 
their very different patterns from the gradient of a human face. 

 

Figure 5. (a) Gradient image of the challenge image shown in 

Figure 1(c). (b) After line filtering. (c) Face detection result. 

The discriminative facial structural features obtained by machine 
learning are applied to detect location and orientation of the face. 
Figure 6 shows the top 5 features produced by the machine learning 
process. They represent structure features on the eyes and nose of a 
face. When tested on 800 challenge images, the face detection rate 
was 42.0%. The red tilted rectangle in Figure 5(c) shows the 
detected face for the challenge shown in Figure 1(c). After the face 
detection, a facial component-based discriminative algorithm and a 
refinement algorithm is then applied to the detected face to locate 
the six corner points. The success rate to correctly identify the six 
corner points on a face detected at the first stage was 42.9%. The 
overall success rate to pass an ARTiFACIAL test is therefore 42.0%	 × 42.9% , or 18.0%. The average time to produce a 
response was 1.47s when tested with the 800 challenges on a PC 
with 3.2GHz Intel P4 and 2GB memory.   

 
Figure 6. First 5 features produced by the learning procedure. 

5. A SIMPLE FRAMEWORK 
In this section, we propose a simple framework for understanding 
the design of a good IRC. We first examine the design flaws in the 
three reprehensive IRCs that led to successful attacks. We then 
propose three guidelines in designing robust IRCs.  

5.1 Lessons from Successful Attacks 
The task in the click test of IMAGINATION [13] is to distinguish 
authentic image boundaries from false image boundaries such that 
at least the boundary of one constituent image is identified. Humans 
decide that a boundary is likely false if the two sides of the 
boundary are correlated since two randomly selected images are 
unlikely correlated. This eliminating process is iteratively applied 
until an image's boundary is confidently identified. This iterative 
process can be readily performed by machines through computing 
low-level features of the image. That is, a cognitive decision about 
whether both sides of a boundary are correlated or not can be 
approximated by detecting similarity of textures and continuity of 

traversing objects. No image recognition or semantics is necessarily 
used. This explains why the click test of IMAGINATION fails.  

• Lesson #1. An IRC that does not rely on image semantics is 

doomed to be vulnerable to automated machine attacks. For 
such an IRC, the human’s natural cognitive “algorithm” for 
passing the CAPTCHA test can be imitated or approximated 
by machines automatically computing certain low-level 
discriminative features – such a task can be readily performed 
by a computer, and sometimes done even more accurately by a 
computer than by humans. Instead, image recognition task 
must be introduced in an IRC.  

The task to solve an Asirra challenge is a binary classification 
problem, as the image is of either a dog or a cat. It is still an open 
problem how human beings exactly carry out such classification 
tasks, but it is believed that cognitive capability of image 
recognition is needed to perform the tasks. Although computers do 
not have such a capability, Asirra was broken by computers for a 
simple reason: often it is sufficient to compute low-level features to 
achieve binary classification.  

A common method for binary classification is to identify a set of 
discriminative low-level features and use machine learning on 
empirical training data to automatically learn both the common 
patterns among the individual objects of each type, and the most 
effective discriminative patterns to distinguish objects of one type 
from objects of the other type. The training data contain positive 
samples which are objects of the type that the classifier wants to 
identify (cats in Asirra's case) and also negative samples which are 
objects of the other type. Golle's attack [24] used two simple yet 
highly discriminative low-level features: texture and color patterns. 
Texture patterns are highly discriminative in this case. For example, 
cats usually have patterns of furs and whiskers, which are very 
different from those of dogs. Although not used in Golle’s attack, 
shapes would be another highly discriminative low-level feature 
since cats and dogs typically have very distinctive ear shapes. In 
fact, a recent study [26] on cat detection using machine learning on 
texture and shape patterns claimed a success rate of above 90% for 
cat detection. Note that cat detection is harder than identifying cats 
from a collection of cats and dogs since detection faces much more 
variations in the background or cluttering objects.  

Although it is unclear how much semantic discrimination humans 
use in solving Asirra's binary classification problem, we have 
experienced that in many cases, substantial low-level features in the 
images aided humans to distinguish cat images from dog images. 
On the other hand, rather than an IQ test, a CAPTCHA is designed 
to let most humans easily pass in a short time. To be user friendly, 
an IRC based on a binary classification problem needs to use 
images of objects that can be easily and unambiguously identified 
by most humans. This implies that the objects of each type share 
easily perceived common features, some of which are highly 
discriminative that humans can readily apply to distinguish between 
the two types. Some of these perceivable discriminative features 
should be associated with or reflect in low-level features; otherwise 
it is unlikely for most humans to produce the same result for a 
challenge, as required by the usability of an IRC, since high-level 
semantics tends to be subjective and use-dependent. Low-level 
features, on the other hand, are typically deterministic, and can lead 
to a consistent and unambiguous result by most humans. By 
identifying and selecting a set of highly discriminative low-level 
features, adversaries can apply machine learning on empirical data 
to find effective decision criteria to distinguish between the two 
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types, resulting in an automated effective attack. Therefore, we 
have the following lesson.  

• Lesson #2. A user-friendly IRC based on a binary 

classification problem to classify an object into one of two 

fixed types a priori of concrete objects 3  is highly likely 

vulnerable to machine learning attacks.  

ARTiFACIAL [12] relies on face detection. In general, an object 
detection problem is harder than a binary classification problem 
since the negative samples for the latter case have much less 
variations, making the classification problem easier. In our attack 
on ARTiFACIAL, the spatial patterns of facial features are learned 
by machines as the discriminative features to identify the face in a 
challenge image with cluttering background. The a priori 
information that there exists one and only one face in a challenge 
image is also exploited to improve the detection rate. As such, an 
IRC based on object detection does not appear to be able to provide 
a significantly more secure design than a binary classification based 
IRC.   

• Lesson #3. A user-friendly IRC based on detecting a concrete 

object of a fixed type a priori is very likely to be vulnerable to 

machine learning attacks.  

5.2 Guidelines for Designing Robust IRCs 
From the lessons we learned in Section 5.1, we would summarize 
three guidelines to shed light on the design of a robust IRC.  

• Guideline #1. Rely on unambiguous high-level semantics. 

This guideline is directly derived from the first lesson. One problem 
associated with using semantics is that the retrieved semantic 
information from an image tends to be subjective and user-
dependent. A good example is image labeling, where different 
people may give the same image different labels. This intrinsic 
ambiguity in semantics makes it difficult to generate CAPTCHA 
challenges using image semantics.  

However, there are still some ways to use semantics without 
ambiguity in the answer and thus they can likely be used in IRC 
design. An example is spatial relationships of objects. Humans can 
understand relative sizes, shape changes and occlusion relationships 
of different objects, and can deduce spatial relationships of 
different objects. This cognitive process involves recognition of 
objects, and thus is still hard for computers to perform. Another 
example is logical relationships of objects. Like spatial 
relationships of objects, deducing logical relationships of objects 
also involves recognition of objects, a hard AI problem.   

• Guideline #2. Boost robustness with more variations such as 

relying on recognition of multi-type objects for either 

detection or classification. 

Based on the second and third lessons, the task of either binary 
classification of objects from two types a priori or detecting an 
object of one type a priori may leave sufficient low-level features 
that can be efficiently exploited by machine learning methods, 
resulting in a seemingly image recognition problem solved by 
computers. We can make an IRC more secure by making machine 

                                                                 
3  A concrete object means an object that is unambiguously and 

easily defined and identified. IRCs usually rely on concrete 
objects, since for these objects human users can generate 
consistent answers that can be easily verified by a machine.    

learning attacks much harder than before. This can be achieved, for 
example, by increasing the number of concrete object types used in 
an IRC. Multi-label classification is much harder for computers 
than binary classification.  

It appears that Guideline #2 is a general principle which is 
applicable to all CAPTCHAs including text schemes. For example, 
by increasing variations of segmentation-resistant mechanisms, text 
distortion methods and fonts, and then randomly selecting one or 
more fonts, a segmentation-resistance mechanism and a text 
distortion method in generating the current challenge, we can have 
a text CAPTCHA that is more robust than the state-of-the-art, 
making an attacker’s life much harder.   

• Guideline #3. Disable machine learning by eliminating the 

possibility of using empirical data or a priori knowledge such 

as the types of objects. This means that a current challenge is 

independent of the past challenges in terms of computable 

features such as low-level image features.   

An intrinsic feature for all machine learning attacks is that they 
typically rely on empirical data to learn effective discriminative 
features and decision criteria before becoming effective. The most 
fundamental solution to deal with these attacks is therefore to 
disable machine learning by making the past challenges 
uncorrelated with the current or future challenges. In this way, the 
discriminative features or decision criteria learned from the past 
challenges would be ineffective to solve the current or a future 
challenge. This can be achieved by randomly selecting a type and 
an object of the type to generate a challenge, with both the number 
of types and the number of individual objects of each type being 
sufficiently large, infinite ideally, so that it is intractable for the 
current computing capability. This is the ultimate goal, although 
hard to achieve.  

In principle, Guideline #3 is applicable to all CAPTCHAs. For text 
CAPTCHAs, however, it is still an open problem whether we can 
create an unlimited number of segmentation-resistant mechanisms, 
or an unlimited number of combinations of segmentation-resistant 
mechanisms and text-distortion methods.  

6. A NOVEL IMAGE BASED CAPTCHA 
A novel IRC, Cortcha (Context-based Object Recognition to Tell 
Computers and Humans Apart), is presented in this section. 

Intuitive ideas. Based on the third guideline, an IRC should use an 
unlimited number of different types of objects. This can be easily 
achieved by crawling images in the Internet. But how do we 
generate challenges? In general, computers do not understand the 
semantics of an image, but we want to avoid labeling images in 
generating challenges. Computers do a poor job in segmenting an 
image into semantically meaningful objects. Objects that are 
automatically segmented by computers were considered not 
suitable for an IRC. Instead, semantically meaningful objects were 
considered necessary in generating IRC challenges in order for 
human users to produce consistent answers. This explains why 
many existing IRCs require manual labor such as labeling or 
selecting images. It is a dilemma seemingly hard to solve.  

Our insight is that although an object that is segmented by a 
computer might be poor cognitively, but if the object is surrounded 
by its original context in the image, then the object is readily 
recognizable by humans. By exploiting the context, objects 
segmented by computer can be used in an IRC. The magic of 
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context solves the dilemma, and an IRC can be designed without 
labeling any image.  

To use context for humans to recognize a computer-segmented 
object, we can crop the object and detach it from its original image, 
and then ask a user to use the image as a context cue to identify the 
detached object from a set of decoy objects. The hole left by 
cropping in the original image must be filled. Otherwise the 
detached object can be easily deduced by comparing the contour of 
a candidate object with the shape of the hole. The filling should not 
allow bots to locate the cropped region but should leave some 
semantic hints such as unnaturalness to enable humans to quickly 
locate the region. Image inpainting [27], which is to incrementally 
fill a hole with the best matching blocks, can be modified to 
achieve the goal.  

These intuitive ideas led to the development of Cortcha. In Cortcha, 
a user is asked to identify, among a set of candidate objects, an 
object detached from an image, and then place it back to its original 
position in the image. 

Advantages. The major innovation in Cortcha is to exploit the 
surrounding context to recognize an inaccurately segmented and 
thus often semantically meaningless object. Compared with 
existing IRCs, Cortcha has the following advantages: 

• No need to manually label any image. Context-based object 
recognition makes it possible to use semantically 
meaningless objects in our design. Therefore object 
segmentation can be done by computers and the whole 
challenge generation process can be fully automated. 

• An unlimited number of types of objects can be used in 

Cortcha. This can effectively disable the learning process in 
machine learning attacks.  

• Cortcha is scalable. In Cortcha, the tasks of source image 
collection and challenge generation can both be automated. 
By crawling the Internet, a large number of images can be 
quickly and continuously added to Cortcha's image database. 
Cortcha can therefore meet the demanding requirement of a 
large scale application such as Hotmail. 

6.1 Detailed Description 
Cortcha consists of the following stages: collecting images into the 
database, generating challenges, displaying challenges, and grading 
responses.  

6.1.1 Image Database  
Cortcha relies on a secret database of images. The huge number of 
images in the Internet combined with the fact that the content-based 
image retrieval at the Internet scale is still in its infancy makes it 
feasible to convert these public images into Cortcha’s secret 
database. It is highly unlikely for adversaries to find out the original 
Internet image used in a Cortcha challenge before the current 
CAPTCHA session expires.  

Not all images are suitable for Cortcha. We discard small-sized 
images as well as noisy ones which have a large ratio of high 
frequency energy to low frequency energy. We also discard 
monotonic images, whose absolute gradient values are on average 
small or whose histogram entropy is small. However, instead of 
discarding large images, we crop them into suitable sizes.  

6.1.2 Image Segmentation and Object Selection  
An image is first processed to identify its salient objects. We apply 
the JSEG [28] method to segment the image into objects. The 

boundary of each object is refined to align with the gradient edges. 
Small-sized objects are merged with their best matched neighbors.   
We then assign each object a perceptual significance value, which 
is calculated with the saliency detection scheme proposed in [29].  

Not all the resulting objects are suitable as the object to be cropped 
from the image for generating a challenge. We have observed 
improved usability when both the object to be cropped and its 
surrounding context in the image are semantically meaningful. 
Humans can correlate the semantics of an object with that of the 
surrounding context in solving a challenge. Such semantic 
correlation cannot be exploited by computers. This observation 
leads us to discard objects with a small significance value and those 
that are thin, monotonic, or overly large-sized. An object’s 
thickness is measured by the maximum value of its distance 
transform. A thin or monotonic object tends to carry little semantic 
information. A large object tends to make its surrounding context of 
little semantic meaning.  

We also discard objects which share local or global similarity with 
the remaining image. Such similarity may be exploited by attackers 
to deduce a correct answer to a challenge. Local similarity is 
calculated by comparing the local color histogram and texture on 
both sides of the object’s boundary. Global similarity is calculated 
by using SIFT [30] to extract scale-invariant local features. The 
features from the objects are compared with those from the 
remaining image to detect any similar object in the remaining 
image.  

If there exists any survived object at the end of the above process, 
the image, along with the survived objects, is inserted into 
Cortcha’s database for future use. With all the measures adopted 
above, it is still possible that a survived object is segmented 
incorrectly in terms of cognition, carrying little semantic 
information. Cortcha allows such a case since the context in the 
inpainted image can be leveraged by humans in recognizing the 
object. This is a key advantage over other IRCs such as Pix [21], 
Chew and Tygar [11], Asirra [15], and the orientation CPATCHA 
[16], which all require semantically meaningful objects, and thus 
have to involve human labors to label or select suitable images. On 
the contrary, the image segmentation and object selection process 
in Cortcha can be fully automated. 

6.1.3 Image Inpainting 
To generate a challenge, an image is randomly selected from the 
database. Then, an object is randomly selected from the objects 
stored along with the image. The image and its objects are then all 
deleted from the database. A buffer region of n-pixels surrounding 
the object is created in the image. The object and the buffer region 
are then cropped from the image. The buffer region is used to 
remove possible traces of local similarity between the object and 
the remaining image. The cropped region is then filled with an 
inpainting algorithm modified from [27], as described next. 

We first locate a region surrounding the cropped region and 
calculate its color histogram. The database is then searched to find 
an image that matches the color histogram best. The found image is 
used as the primary source while the remaining image as the 
secondary source in inpainting. The hole to be filled is divided into 
blocks. These blocks are filled sequentially. In filling a block, a 
matching block from the source is needed. The primary source is 
searched first for a matching block. If no matching block is found, 
the secondary source is searched to find a set of matching blocks. 
We then randomly select a block from the set as the source block. It 
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is possible to use several images from the database as the primary 
source for the inpainting process.  

Two scheduling schemes are used to determine which block to be 
filled next. The first scheme places a block with a large curvature 
and a shorter distance to the cropped boundary at a higher priority. 
The second scheme treats a block with structured neighboring 
blocks at higher priority. The first schedule is applied to boundary 
blocks of the cropped region while the second schedule is applied 
to internal blocks. For the blocks lying between the two types of 
blocks, either schedule can be applied, depending on a random 
selection process. The first schedule ensures smooth transition at 
the boundary while the second schedule maintains structured filling. 
Sharp changes at the boundary might be correlated with the contour 
of the detached object. Lack of structures may indicate a filling 
region. They both can help an attacker solve a challenge.   

If any part of the detached object’s boundary lies in the boundary of 
the image, that part may indicate the block’s location in the image. 
This leaking information exploitable by attackers can be effectively 
removed by applying outpainting, an inpainting process for the 
reversal direction, to grow the object beyond its boundary at the 
part that lies in the image’s boundary. As described later in Section 
6.2, the extra pixels “filled” by the outpainting process are invisible 
when the detached object is aligned correctly with the inpainted 
image in solving a Cortcha challenge.  

6.1.4 Generating a Challenge 
The detached object, outpainted if necessary, is used to search the 
database to find the best matched L-1 objects in the image database. 
These objects are from distinct images. The search is based on the 
color histogram and the complexity, measured as the averaged 
absolute values of the object’s gradient. More advanced 
technologies such as SIFT [30] can also be applied. These L-1 
objects are optionally further processed by warping, rotating, or, if 
lacking of structures, randomly embedding with a similarly colored 
visual object. The resulting objects are used as decoy objects. These 
optional distortions make a decoy object look odd to humans so that 
the authentic object can be easily identified by human eyes. If the 
detached object can be detected by a computer, e.g., a human or a 
cat face, similar computer-detectable objects are retrieved from the 
database as decoy objects. None of the optional distortions is 
applied in this case. The reason to treat generic objects and 
computer-detectable objects differently is to prevent attacks from 
“recognizing” an object or detecting the distortion applied to decoy 
objects to solve a challenge. 

The detached object and its L-1 decoys form L candidate objects. 
They, as well as the inpainted image, are scaled in size by a factor 
that is empirically chosen. We use the bicubic interpolation for 
image scaling. A random noise is then added to the scaled image 
and candidate objects. The purpose of both image scaling and 
random noise is to remove any quantization or other patterns in an 
image that can be exploited to deduce the inpainted region or the 
detached object.   

6.2 Solving Cortcha Challenges 
A Cortcha challenge displays an inpainted image along with L 

candidate objects. Figure 7 shows an actual challenge from our 
current implementation, in which eight candidate objects were used. 
A user selects a candidate object, and drags it to move around or 
drop to a position of the inpainted image. Wherever the object is on 
top of the inpainted image, surrounding the object, a buffer region 
(of the same width as we use in the challenge generation process) is 

created. The buffer region is cropped and then filled by an image 
smoothing method. Effectively, a composite image is created by 
combining the inpainted image and the candidate object on the spot. 
The resulting composite image is presented to the user, but only the 
pixels within the inpainted image’s boundary are visible. As a result, 
when the detached object is corrected aligned with the inpainted 
image, the outpainted portion, if exists, is invisible. At each trial 
location, if the composite image looks natural and semantically 
meaningful, the detached object and its due position are found. The 
challenge is thus solved. Figure 8 shows the result when the 
detached object is correctly placed back. 

 
Figure 7: A Cortcha challenge with 8 candidate objects on  

the left and the inpainted image on the right. 

 

Figure 8. A successfully solved Cortcha challenge: the right 

panel shows the composite image when the detached  

object was placed at the correct position. 

6.3 Usability 

6.3.1 Experimental Settings 
Our database included 30,000 images that we crawled from the 
Internet. The longest side of each image was 500 pixels. 350 
Cortcha challenges were then generated from this database. All the 
thresholds needed in generating these challenges were empirically 
determined from a small set of representative samples, and then 
applied to all the images. The average time for generating a 
challenge (following the whole process as described in Section 6.1) 
was 122s on a PC with 3.2GHz Intel P4 and 2GB memory. Note 
that many steps in this process can be performed offline. Therefore, 
offline preprocessing will significantly reduce the average time 
required for online generation of challenges.  

A website was used in our usability study. A participant browsed 
the website to start a test. Each test consisted of 20 randomly 
selected Cortcha challenges presented sequentially. The responses 
and solving times were recorded by our web server. After the test, 
each participant was asked to answer a questionnaire as an exit 
survey. We invited a group of interns who had never exposed to 
Cortcha to participate in our study. Most of them were graduate 
students in their twenties. 84 volunteers participated and completed 
the study. In our experiment, the position tolerance for a response 
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was set to be 10.0% of the inpainted image’s height and width. The 
buffer region was set to have a width of n=3 pixels. 

6.3.2 Results 
We examine Cortcha based on the following three components, 
partially quoted from [31]: 

1. Learnability. Figure 9 shows the average solving time for each 
of the 20 sequentially presented challenges. Note that different 
participants received different challenges even for the same 
index of challenge since each challenge in the usability 
experiments was randomly selected from the 350 generated 
challenges. We can see from the figure that the participants 
improved the solving time significantly as their experiences 
built up. They spent 25.6s on average to solve the first 
challenge, and the solving time dropped quickly to 20s or below 
after the first two challenges. This indicates that Cortcha is 
fairly easy and quick to learn. 

 

Figure 9.  Average solving time vs. the challenge index. 

2. Errors and efficiency. The overall accuracy rate was 86.2%, 
and the average solving time among all the 84 participants and 
20 challenge indexes was 18.3s. As compared in Table 1, 
Cortcha has a human accuracy rate that is slightly higher than 
Asirra, Orientation and IMAGINATION, significantly higher 
than CT_L, but lower than ARTiFACIAL, Video and CT_A. 
On average, Cortcha takes slightly more time to solve than 
Asirra and ARTiFACIAL, but less than other IRCs with a 
solving time reported.  

We have also conducted a usability study of Google’s text 
CAPTCHA with the same group of people. The text challenges 
from Google’s Gmail site were used in the experiments. Each 
participant was asked to solve 20 text challenges sequentially. 
105 volunteers participated and completed the test. The average 
accuracy rate was 82.8% and the average solving time was 7.9s. 
Compared with Google’s text CAPTCHA, Cortcha has a 
slightly higher human accuracy rate but takes more than double 
the time to solve a challenge.  

It is worth mentioning that in the Cortcha’s usability study, 
more than half (43 out of 84) of the participants had an 
accuracy rate higher than 90%, and the participants with a 
higher accuracy rate (>80%) spent a significantly more time (3s 
more on average) than those who performed poorly (with an 
accuracy rate lower than 80%). Since the challenges were 
randomly selected in the experiment, this may indicate that the 
participants with a lower accuracy rate might not have paid 
sufficient attention.  

We observed that 51% of the tested challenges were solved in 
less than 15 seconds, but we also got a long tail for the 
distribution of the solving time, up to 40 seconds or even more. 
In Cortcha, some challenges are easier to solve than others. For 
example, if a detached object is semantically meaningful and 

the unnaturalness of the inpainted region is apparent to human 
eyes, this challenge will be easy to solve. Otherwise it can take 
a longer time to solve, or lead to more erroneous responses.  

3. Satisfaction. We collected 72 valid responses in the exit survey. 

About 78% (≈56/72) of the responses indicated a difficulty 
level of either medium/acceptable or easy for them to learn how 
to solve Cortcha. About 1/3 of the responses preferred Cortcha 
to traditional text-based CAPTCHAs. Many of them liked 
Cortcha because it was interesting, secure, and keyboard-free. 
Complaints were mainly on the difficulty of some Cortcha 
challenges. Specifically, for some challenges, it was hard to 
either determine where the inpainted region was or differentiate 
between candidate objects with similar color patterns. 

6.3.3 Discussions 
After examining each challenge and its responses, we concluded 
that most of the “difficult” images had the following common 
characteristics: the detached object lay inside a repeated texture. An 
almost seamless inpainting result was produced: although different 
from the original image, the inpainted image looked natural. There 
was no unnaturalness in the inpainted region that the participants 
could leverage to locate the original position of the detached object. 
The surrounding context was mainly textures, almost irrelevant 
semantically to the detached object. This inspires us to add a 
posteriori check: if the inpainted region has a similar pattern as its 
neighborhood, the challenge might be hard to solve and should not 
be used. We will implement this posteriori check to further improve 
Cortcha’s usability. 

Another inspiring finding is: easy challenges were dominant in our 
randomly generated challenges. 294 out of the 350 challenges have 
been tested more than three times. 173 out of the 294 challenges 
(58.8%) were found to be very easy to solve, and the participants 
did not make any mistake on them. Less than 10% (24) of the 294 
challenges were found difficult. Their accuracy rates were below 
50%. This observation inspires us to explore a heuristic approach 
towards image filtering to remove difficult images. This approach 
can improve the human accuracy rate and reduce the solving time. 

6.4 Robustness 

6.4.1 Random Guess Attacks 
When 8 candidate objects are used in a Cortcha challenge, a 
random selection has a chance of 1/8 or 12.5% to be correct. A 
random search for the correct alignment position results in a 
probability of 10%*10% or 1.0% to be correct. Therefore a random 
guess attack could have a success rate of 0.125%, which is however 
much smaller than the design criterion (0.6% success for bots, see 
Section 2.2).  

A random guess attack can be made even harder by using a larger 
number of candidate objects. For example when L=12, the success 
rate of a random guess attack will be 0.083%. This rate can be 
further reduced. For example, when a larger inpainted image is 
used, the tolerance of alignment position variations can be 
tightened from the current 10% to, say 5%, reducing the success of 
a random guess attack to 0.021%.  

6.4.2 Other Possible Attacks 
Using machine learning to classify or recognize objects was an 
effective attack on Asirra and ARTiFACIAL, but it will not work 
on Cortcha since the objects used in a current challenge are 
uncorrelated with those used in other challenges. However, object 
segmentation and image inpainting used in generating Cortcha 
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challenges may leave traces or characteristics, which can be 
exploited to tell the detached object or its position in the image. 
Possible attacks that we can think of are as follows.  

An image may show a specific noise or quantization pattern such as 
an imaging sensor noise pattern or a JPEG quantization pattern. 
These patterns have been used in image forensics to detect image 
forgery and identify image source [32]. A correlation of such a 
pattern in the detached object and in the remaining image may help 
identify the detached object. The inpainted region may show a 
distinct pattern that helps locate the inpainted region. However, 
these patterns can be destroyed by scaling the image’s size with a 
nonlinear bicubic interpolation and by adding noise to the image. In 
Cortcha, both inpainted images and candidate objects are scaled in 
size using a bicubic interpolation, and then random noise is added, 
as described in Section 6.1.4. Therefore noise or quantization 
patterns cannot be exploited to attack Cortcha. More sophisticated 
measures such as those in [33] can also be adopted by Cortcha to 
thwart attacks based on other image forensic technologies.   

There might exist some local similarity between an object and its 
surrounding region due to light reflection, shadowing, inaccurate 
segmentation, or other issues. Such local similarity, calculated with 
computable features such as color or texture patterns, can be 
exploited to solve a challenge. This issue is addressed in Cortcha by 
aligning an object’s boundary with its gradient edges, cropping an 
object which contains little or no local similarities (currently based 
on color and texture) with its surrounding region, and using a buffer 
region to separate a detached object and the remaining image. From 
our observation on the 350 Cortcha challenges used in our study, a 
buffer region with a width of n=3 pixels can effectively remove 
color-based local similarity between a detached object and the 
remaining image. Such a buffer region does not have a significant 
perceptual impact on the composite image when a human user is 
solving a challenge.   

Low-level features might be used to detect possible correlations 
between a detached object and the remaining image. Such a 
correlation would increase the chance to identify the detached 
object. To address this threat, we make sure that all the candidates 
have a similar correlation with the inpainted image. For example, 
readily computable low-level features such as color histogram and 
complexity are used to find decoy objects. When the image 
database is sufficiently large, decoy objects are all similar to the 
detached object in terms of the applied low-level features. In 
addition, SIFT [30] is used in Cortcha to prevent the existence of a 
similar object in the remaining image. It is possible that attackers 
apply other low-level features or better algorithms to calculate 
correlations or detect similar objects. However, these low-level 
features or algorithms can also be adopted by Cortcha to thwart this 
type of attack. 

A possible brute force attack is to use the same object segmentation 
method as used in Cortcha to solve a challenge. In such an attack, 
each candidate object is tested at all the possible positions. At each 
trial, the same object segmentation procedure is applied to the 
composite image. If the segmentation result agrees with the object 
under test and the trial location, the detached object and its location 
are deduced. However, this brute force attack will not be effective. 
At a trial position, the object under test is unlikely to have a smooth 
transition with the image at its boundary, thus leading to an 
agreeing segmentation result. Therefore this attack will produce 
many false alarms, as confirmed by our preliminary experimental 
results.  

Artifacts produced by the image inpainting might be exploited to 
deduce an inpainted region. Wu et al. proposed an attack to identify 
an inpainted region [34]. Their attack compares different parts of an 
image to detect abnormal similarity between destination blocks and 
their source blocks in the inpainting process, and then deduces the 
inpainted region. In Cortcha’s inpainting, the source blocks are 
mainly from the primary source, a secret image in the database. 
When the database is large and contains a large variation of 
different images, the cropped image is unlikely to contribute many 
blocks during inpainting. In addition, when filling a block, our 
method applies a smoothing operation to smooth the pixels from 
the source block and those in the destination blocks. Such a 
smoothing operation removes most of the similarity between a 
destination block and its source block. Therefore the attack 
proposed in [34] is ineffective on Cortcha.  

A lousy inpainting method may leave some artifacts to indicate 
where inpainting starts. This location information can be correlated 
with the contour of the detached object, leading to a possible attack. 
It is also possible that an inpainting method produces a smoothed 
region that lacks of structures as compared to the remaining image. 
Therefore, detecting structureless regions may help locate the 
inpainted region. Our inpainting method applies different schemes 
to decide which block is filled next. It ensures that an inpainted 
region is still rich in structures. It also prevents inpainting artifacts 
from forming a long edge in parallel with the detached object’s 
contour. We have conducted an experiment to find all the edges in 
an inpainted image that are in parallel with some portions of the 
detached object’s contour. The preliminary result showed that most 
of the found edges were irrelevant to the detached object’s contour. 
Therefore correlating inpainting artifacts with a candidate object’s 
contour does not lead to locating the inpainted region. 

Another possible brute force attack is the following. Each candidate 
object is tested at all the possible locations. At each trial, the region 
covered by the candidate is taken as an object and cropped from the 
image. The same inpainting procedure as that used in generating 
Cortcha challenges is then applied to fill the cropped region. The 
inpainted result is then compared with the region covered by the 
candidate. If they are similar, the candidate is presumed to be 
cropped from that position. The original inpainting algorithm 
proposed in [27] would suffer from this attack, since the inpainting 
procedure is deterministic and all the source blocks used in 
inpainting are publically available. Our inpainting algorithm selects 
source blocks from a secret image whenever possible, and 
introduces randomness in selecting blocks from the public 
remaining image. These measures prevent the above attack from 
producing an inpainting result similar to ours. On the other hand, 
this brutal force attack in general would hardly be practical, since it 
requires applying the inpainting process, which is slow, many times. 

6.5 Legal Issues for Deployment 
Copyrights of images used by Cortcha might cause legal issues that 
prevent Cortcha from being deployed in the real world. This is a 
common issue for all the IRCs that use crawled images, such as the 
CAPTCHAs proposed by Chew and Tygar [11] and the orientation 
CAPTCHA [16] introduced by Google. Cortcha likely faces even 
more copyright issues since it modifies images to generate 
challenges, and some of the resulting images may appear 
unpleasantly. We leave these issues for lawyers to deal with in near 
term, and for future technology innovations in the longer term. 
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7. CONCLUSIONS 
We have attempted a systematic study of image recognition 
CAPTCHAs. We provided a thorough review of the state-of-the-
art, presented a novel attack on a representative scheme, and 
analyzed successful attacks on the other representative schemes. 
Learned from these attacks, we defined for the first time a simple 
but novel framework for guiding the design of robust image 
recognition CAPTCHAs. The framework led to our design of 
Cortcha, a novel CAPTCHA that exploits semantic contexts for 
image object recognition. Our usability study showed that Cortcha 
yielded a slightly better human accuracy rate than Google’s text 
CAPTCHA. Cortcha offers the following novel features. Image 
labeling is entirely avoided. The source image collection and 
challenge generation are fully automated. An infinite number of 
object types are used to generate Cortcha challenges. Objects used 
in the current challenge are independent of the objects used in 
previous challenges. This independence makes powerful machine 
learning attacks useless in attacking Cortcha. Being scalable, 
Cortcha is a stride forward for image recognition CAPTCHAs 
towards practical applications. Our future work includes improving 
Cortcha’s speed, a large-scale usability study, and a thorough 
evaluation of Cortcha’s robustness.   
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9. APPENDIX 

9.1 Line Segment Detection 
The following two-step procedure is applied to the binary edge image 

vhbinI
−

 obtained in Section 3.2.1.1 to find all the potential vertical and 

horizontal line segments.  

• Tracing step. For the horizontal direction, we scan each row from left 
to right to search connected edge points. A line segment tracing ends 
when a gap occurs or the edge point drifts away from the current line 
segment’s row index estimated by averaging the traced points. A 
similar operation is applied for the vertical direction. The result of this 
step is a collection of short horizontal and vertical line segments. 

• Clustering step. In this step, the line segments from the previous step 
are divided into different subsets with an online clustering algorithm 
according to adjacency. The online clustering algorithm for horizontal 
line segments works as follows. 

Online Segments Clustering Algorithm 
Input: A set of short horizontal line segments 
1. For each new arrived line segment, find its nearest cluster in the 

current cluster set 3 = {3�, 3�, … , 36} . If 3  is empty or the nearest 
distance exceeds a threshold σ, a new cluster 36��  is generated. 
Otherwise the line segment is added to the nearest cluster 3#. 

2. Update the row index for each 3#. The row index of 3# is calculated 
by averaging the row index weighted by the line length on all the 
members in 3#. 

3. For each cluster in 3, sort its line segments by their left end points. 
Merge two line segments if their horizontal gap is within a tolerance 
threshold 8*. 

4. Recalculate the row index for each line segment by minimizing the 
average distance to adjacent binary horizontal edge points. 

Output: Final horizontal line segments 

9.2 Cleansing and Ranking Rectangles 
Candidate rectangles are processed and ranked according to the following 
visual cues executed in the order of their presentation in this section.  

9.2.1 Edge Intensity Cue 
The first cue is the edge intensity on each side of a rectangle, which 
indicates how visible the rectangle is. This cue is useful to find a true image 
rectangle since at least one constituent image should be easily perceived by 
humans. It is worth noting that false boundaries generated by the dithering 
process tend to be weak enough to avoid confusing humans.  

Given a boundary 9 of : points, the edge intensity cue along 9 is defined as 
follows: 

;"#<(#$"<=�9� = >�
6∑ &�?@AB�C�?�6D%� ; 				? ∈ 9,             (2) 

where &�?@AB� is the edge intensity of the nearest local maxima ?@AB  to 
location ? along the perpendicular direction. This intensity is capped by a 
maximum value &<� . The weight function C�?�  takes into account the 
distance G between ? and ?@AB: 

C�?� = H1 − J)�D,	DKLM�)KLM N� ; 			G�?, ?@AB� < G@AB0,																	PQℎRSCTUR  ,             (3) 

Where G@AB  is the maximum distance to search for the nearest local 
maxima, and G�V, W� is the distance between two points V and W. Rectangles 
with at least one side whose ;"#<(#$"<=  is smaller than a threshold are 

removed from the list of candidate rectangles.  

9.2.2 Traversing Object Cue 
A true image region boundary does not have any traversing object while a 
false one may have since dithering may not make a traversing object 
disappear. The following steps are applied to find traversing objects. 

The canny edge detection [35] with an adaptive threshold is applied to each 
color channel, and the results from the color channels are properly aligned 
and merged. Vertical and horizontal line segments are not considered as part 
of an object to avoid interference from the true or false image boundaries. 
Then the edge density on each side of a rectangle boundary is calculated in 
the same way as that described next in Appendix 9.2.3. No traversing object 
cue is applied to the boundary if the edge density on either side is too large 
to avoid mismatched objects across the boundary, or if there is no contour 
long enough on either side. Otherwise contour segments along the boundary 
are searched and matched in the following way: for each contour segment 
long enough along the boundary, contour segments on the other side of the 
boundary are searched, and a matched contour is found if 1) both contour 
segments have adjacent ending points; 2) the contour segment to be 
matched is also long enough; 3) the two contour segments are smooth 
enough across the boundary. If two matched contour segments across the 
boundary are found, they form a traversing object. 

If a traversing object is detected along a boundary, the boundary is 
presumed to be false, and all the associated rectangles are removed from the 
set of candidates.  

9.2.3 Edge Density Variation Cue 
If the textures on both sides of a boundary are very different and the change 
of texture aligns with the boundary, the boundary is likely to be a true image 
region boundary. We use edge density as a measure of texture. Edge density 
variation across the boundary is our third cue. The edge density in a 
rectangle area X is defined as follows: 

	Y�X; 8� = ∑ Z[\�]L^^�B,=;_�M\�`MaM\�,b\�`bab\��B\��B\���=\��=\�� ,                      (4) 

CℎRSR	&!"#�Acc is the binary edge map after applying a threshold 8 on the 
total edge image &()*( . Dithering may cause edges on one side less visible 

than the other side. A uniform threshold may result in significantly fewer 
edges on one side. This problem can be addressed by applying a different 
threshold	on each side of the boundary, 8�on one side and 8� on the other. 
The edge density variation is calculated as follows: 

;dAe"A<"f#�9� = |h�i�;	_����i�;	_��|h�i�;	_���h�i�;	_��                                (5) 

Thresholds 8�and 8� are chosen to minimize Eq. (5) under the following 
conditions:  

1) Both 8�and 8�  are larger than a minimal threshold value 8@"#  and 
their difference is within a range: |8� − 8�| ≤ Δ;  

2) At least one side has its edge density larger than a minimum edge 
density unless 8@"# is reached.  

If the minimum edge density variation across a boundary ;@"#is large than a 
threshold ;<�, the boundary is presumed to be a true image region boundary 
and is assigned a confidence value of 1. A boundary that is a part of the 
boundary of the composite image is also assigned a confidence value of 1. 

Other boundaries are each assigned a confidence value of  
kK\�klm ∗ 0.9, where 

;@"# ≤ ;<�. The confidence of a rectangle is the average of the confidences 
of its four side boundaries.  

 


