

187

Attacks and Design of Image Recognition CAPTCHAs
Bin B. Zhu*1, Jeff Yan2, Qiujie Li3, Chao Yang4, Jia Liu5, Ning Xu1, Meng Yi6, Kaiwei Cai7

1
Microsoft Research Asia, Beijing, China

2
Newcastle University, United Kingdom

3
Nanjing University of Science and Technology, China

4
University of Science and Technology of China, Hefei, China

5
iCare Vision Tech.CO., LTD, Beijing R&D Center

6
Computer and Information Science, Temple University, USA

7
Beijing University, Beijing, China

{binzhu, ningx}@microsoft.com, jeff.yan@ncl.ac.uk, jliu@icarevision.cn, mengyi@temple.edu

ABSTRACT

We systematically study the design of image recognition
CAPTCHAs (IRCs) in this paper. We first review and examine all
IRCs schemes known to us and evaluate each scheme against the
practical requirements in CAPTCHA applications, particularly in
large-scale real-life applications such as Gmail and Hotmail. Then
we present a security analysis of the representative schemes we
have identified. For the schemes that remain unbroken, we present
our novel attacks. For the schemes for which known attacks are
available, we propose a theoretical explanation why those schemes
have failed. Next, we provide a simple but novel framework for
guiding the design of robust IRCs. Then we propose an innovative
IRC called Cortcha that is scalable to meet the requirements of
large-scale applications. Cortcha relies on recognizing an object by
exploiting its surrounding context, a task that humans can perform
well but computers cannot. An infinite number of types of objects
can be used to generate challenges, which can effectively disable
the learning process in machine learning attacks. Cortcha does not
require the images in its image database to be labeled. Image
collection and CAPTCHA generation can be fully automated. Our
usability studies indicate that, compared with Google’s text
CAPTCHA, Cortcha yields a slightly higher human accuracy rate
but on average takes more time to solve a challenge.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection – authentication, unauthorized access;
I.4.8 [Image Processing and Computer Vision]: Scene Analysis
– object recognition.

General Terms

Security, Human Factors.

Keywords

CAPTCHA, Human Interactive Proof, HIP, security, robustness,
Cortcha, image recognition CAPTCHA, IRC, object recognition.

1. INTRODUCTION
CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart) [1][2][3], also known as Human
Interactive Proof (HIP), is an automated Turing test in which both
generation of challenges and grading of responses are performed
by computer programs. CAPTCHAs are based on Artificial
Intelligence (AI) problems that cannot be solved by current
computer programs or bots, but are easily solvable by humans. A
client who provides a correct response to a challenge is presumed
to be a human; otherwise a bot. CAPTCHAs have been widely
used as a security measure to restrict access from bots. 1

Text CAPTCHAs are almost exclusively used in real applications.
In a text CAPTCHA, characters are deliberately distorted and
connected to prevent recognition by bots. Most of the proposed or
deployed text CAPTCHAs have been broken [4][5][6][7][8][9]. It
is possible to enhance the security of an existing text CAPTCHA
by systematically adding noise and distortion, and arranging
characters more tightly. These measures, however, would also
make the characters harder for humans to recognize, resulting in a
higher error rate and an increased level of frustration. There is a
limit to the distortion and noise that humans can tolerate in a
challenge of a text CAPTCHA. Usability is always an important
issue in designing a CAPTCHA [10]. With advances of
segmentation and Optical Character Recognition (OCR)
technologies, the capability gap between humans and bots in
recognizing distorted and connected characters becomes
increasingly smaller. This trend would likely render text
CAPTCHAs eventually ineffective. Finding alternative approaches
in designing CAPTCHAs to replace text CAPTCHAs has become
increasingly important. A major effort has been directed to
developing CAPTCHAs based on image or object recognition
[11][12][13][15][16][17]. Images are rich in information, intuitive
to humans, and of a large variation. More importantly, there are
still many unsolved AI problems in image perception and
interpretation. Images seem to be a better medium than characters
for designing CAPTCHAs.

The research of text CAPTCHAs has roughly proceeded in the
following way. The earliest inspiration was a clever but rough
idea: although recognizing printed fonts was a solved problem, it is
hard for OCR to recognize distorted fonts. Therefore early

1*This work was done when Qiujie Li, Chao Yang, Meng Yi, and
Kaiwei Cai worked as interns and Jia Liu worked as staff at
Microsoft Research Asia. The contact author is: Bin B. Zhu
(binzhu@microsoft.com or binzhu@ieee.org).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CCS’10, October 4-8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 …$10.00.

188

schemes were designed to make them hard for OCR to recognize.
Attacks on the early designs were studied, and the principle of
segmentation resistance emerged: computers turn out to perform
better than humans in recognizing individual characters, even
under severe distortion [18]. However, segmentation, which is to
locate individual characters in the right order, is a computationally
expensive and combinatorially hard problem. Thus text
CAPTCHAs should be designed to be segmentation-resistant [19].
The attack by Yan and El Ahmad [9] further enhanced our
understanding of various segmentation resistance mechanisms.
Such an iterative process of designs and attacks has led to a better
CAPTCHA design. In the meanwhile, failure modes of and some
design principles for CAPTCHAs have also started to emerge.

We believe that such an evolutionary process for studying text
CAPTCHAs is applicable to the domain of image recognition
CAPTCHAs (IRCs). In this paper, we systematically study the
design of IRCs. Similar to text CAPTCHAs, the earliest inspiration
for the design of IRCs was also a rough, high-level idea: it’s
difficult for current computers to recognize certain content of an
image. However, compared to the extensive security study of text
CAPTCHAs, the current collective understanding of failure modes
for IRCs is limited. There are few established insights or principles
on how to make use of the difficulty of image recognition in a
sound way to design secure IRCs. For example, it is well known
that a strong IRC should rely on image semantics. However, there
is no deep understanding of how to properly make use of image
semantics. It is unclear what use of image semantics would fail a
CAPTCHA or lead to a more secure design. We will show that by
attacking representative IRC schemes and by providing a
theoretical explanation to existing attacks, we can derive useful
lessons and fundamental principles for guiding the design of IRCs.
Our work advances the current collective understanding of the
design of such CAPTCHAs.

This paper is organized as follows. We provide in Section 2 a brief
yet rather comprehensive review of existing IRCs, and evaluate
each scheme against the practical requirements in CAPTCHA
applications, particularly in large-scale real-life applications such
as Gmail and Hotmail. In Sections 3 and 4 we present attacks on
the representative schemes identified in the previous section. For
the representative schemes that remain unbroken, we present our
novel attacks in Section 3. For the schemes that known attacks are
available, we describe the attacks briefly in Section 4. In Section 5,
we propose a theoretical explanation why all these schemes have
failed. We also define a framework to summarize the lessons we
have learned, as well as to provide guidelines for designing robust
IRCs. Section 6 presents the design of a novel IRC called Cortcha,
along with a study of its security, usability, and potential issues.
Section 7 concludes the paper and discusses some future work.

2. EXISTING IRC SCHEMES: HOW GOOD

ARE THEY?

2.1 Desired Properties of CAPTCHAs
Early research has summarized some requirements and desirable
properties for a CAPTCHA [1][3][12]. We, however, add one
additional desirable property that comes from large-scale real-life
applications such as Gmail and Hotmail:

• Scalability. Scalability measures the range (number) of
challenges a CAPTCHA scheme can generate without
sacrificing the scheme’s the robustness and usability. A
scheme is scalable if it can scale up its output (the number of

generated challenges) with acceptable robustness and usability.
A scalable scheme can meet the demand of large-scale
applications such as Gmail and Hotmail, but an un-scalable
one cannot. While it is easy for text CAPTCHAs to achieve
scalability, many existing IRCs cannot generate a large number
of challenges without sacrificing robustness or usability.

It is worth mentioning a fundamental requirement of CAPTCHAs
under the context of IRCs: both challenge generation and the
response grading should be automated without human
involvement. This requirement ensures that the whole system
operates in an automatic manner. This requirement is feasible
since it is possible that a task and its reversal have asymmetric
complexity. Such a difference in complexity is the base for modern
public key cryptosystems. This requirement is easily met by text
CAPTCHAs, but has proven to be difficult for many IRCs for the
following simple reason. Typically, an IRC builds its security on
the difficulty for computers to understand the semantic content of
images or visual objects. That is, computers used for generating
challenges do not really understand the images or visual objects.
As such, many IRCs require human involvement, in which images
are manually labeled or selected.

2.2 Metrics for Attack Effectiveness
The first metric in evaluating the effectiveness of an attack is the
success rate of the attack. The tolerable success rate of an attack on
a CAPTCHA depends on the cost of the attack. A rule of thumb is
given in [20]: bots should not have a success rate higher than
0.01%. This is a very challenging number in designing a
CAPTCHA. By using IP monitoring such as the token bucket
scheme proposed in [15] together with a CAPTCHA, the tolerable
success rate of attacks can be relaxed to 0.6% (assuming that TB-

Refill is 3 for the token bucket scheme). We adopt this threshold in
this paper: bots should not have a success rate higher than 0.6%.

The average time needed for an attack to produce a response to a
challenge, referred to as the attack response time in this paper, is
another metric to evaluate the effectiveness of the attack. An attack
should produce a response within the time frame that humans
respond to a challenge. Otherwise it is easy to tell if a response is
from a bot or human. According to [12], a CAPTCHA should be
designed such that humans can respond within 30s. As a result, an
effective attack should also respond within 30s.

The following criterion is adopted in this paper: if on average an
attack produces a response within 30s with a success rate of 0.6%
or higher, the attack is claimed to be effective; otherwise
ineffective.

2.3 Existing IRC Schemes
Existing IRCs are all based on the assumption that computers
cannot perform well a certain type of task on images. As we shall
see later in this paper, many of these assumptions were actually
incorrect, and thus the IRC schemes can be successfully attacked.
Early IRCs include Bongo [21] in which two groups of visual
blocks (e.g., lines, circles, and squares) that humans can find some
characteristics to separate them are displayed. A user is asked to
classify a visual block into the right group. A random guess results
in a success rate of 50%. Pix [21] is another early IRC that uses a
large database of labeled images which are pictures of concrete
objects (horses, tables, houses, flowers, etc.). It first picks an
object label at random and finds six images of that object from the
database, randomly distorts them, and then presents to a user to
label the object. Labeling an object may be ambiguous. Different

189

users may label the same object differently. It is also difficult to
evaluate an answer automatically. In addition, Pix depends on the
language that users use. These problems are addressed in Animal
Pix [21] which differs from Pix in the following ways: 1) it uses 12
animals instead of generic objects as the labeled objects; and 2) it
asks a user to select from the set of predefined 12 animals instead
of entering the object label. The cost is reduced security: a random
guess of Animal Pix results in a success rate of 8.3%.

Chew and Tygar [11] proposed three CAPTCHA algorithms based
on a database of labeled images generated by collecting the first 20
hits from Google’s image search on inputting each word from a list
of easily-illustrated words. The first CAPTCHA algorithm (CT_L)
presents six images of the same subject, and asks a user to
correctly describe the common term associated with the six images
to pass the test. The second CAPTCHA algorithm (CT_S) presents
two sets of images, with each set containing three images of the
same subject, and asks a user to determine if the two sets have the
same subject or not. The third CAPTCHA algorithm (CT_A)
presents six images, five of the same subject and one of a different
subject, and asks a user to identify the image of the different
subject. Like Pix and Animal Pix, it is difficult to grade responses
automatically for the first CAPTCHA algorithm, and a random
guess would result in a sufficiently high success rate, 50% and
16.67%, respectively, for the second and third algorithms. In
addition, Google’s image search may return inaccurate or
irrelevant images. Manual selection may be required to remove
bad images. The image database would be too small to meet the
scalability requirement.

Asirra [15] relies on the capability gap between humans and bots
in distinguishing cats and dogs. It asks a user to identify cats out of
a set of 12 photos of both cats and dogs. A large database of
labeled images of cats and dogs is needed to generate Asirra
challenges. Photos of cats and dogs from Petfinder.com are used in
generating challenges. Asirra is not scalable. Petfinder.com has
only a limited number of photos of cats and dogs. New photos are
added slowly. With a high volume application such as Hotmail, the
database is quickly exhausted and photos would have to be
repeated, allowing adversaries to use previously used photos of
cats and dogs to solve a new challenge.

Website HotCaptcha.com applies a CAPTCHA based on a large
database of labeled photos from HotOrNot.com, a popular Website
that invites users to post their photos and rate others’ photos as
“hot” or “not hot”. The CAPTCHA asks a user to pick three hot
people from nine photos of people presented to the user. Whether a
person is hot or not is subjective and culture-dependent. Different
people may give different answers. In addition, the success rate by

a random guess, which is at least 1 in 843
9 =C or 1.19%, may be

sufficiently high that renders the CAPTCHA not suitable for many
applications such as anti-spam for a free Web email service.

A recent proposal [16] (Orientation) is to exploit the capability gap
between bots and humans to identify the orientation of an image.
A user is asked to adjust a randomly rotated image to its upright
orientation. A large database of candidate images is needed in this
CAPTCHA. To generate such a database, images returned from a
Web search are first obtained; a suite of automated orientation
detectors is then applied to remove those images that can be set
upright by a computer; and finally a social feedback mechanism is
employed to remove those images hard for humans to set
orientation. The quality of this CAPTCHA depends critically on
the quality of the image labeling result from the social feedback

mechanism. It is unclear whether there exists an efficient social
feedback system that can label a large number of images to meet
the demand of a large scale application such as Gmail or Hotmail.
In addition, a random guess may result in a sufficiently high
success rate. In a challenge, a user is asked to move a scroll bar to
adjust the orientation of an image, and the position of the scroll bar
is returned for evaluation. The success rate of a random guess
depends on the tolerance of variations in setting the upright
orientation by different people. The data reported in [16] indicate
that the success rate of a random guess when one image is used in

a challenge is 4.48% (= √0.009%�
), which is high enough for

many applications that several images are needed in a challenge.

A new CAPTCHA based on 3D object models is recently
employed by Yuniti.com [22]. This CAPTCHA presents in a
challenge three objects generated from a set of 3D object models,
and asks a user to select the matching object from a list of objects
for each of the three displayed objects. A major problem for this
CAPTCHA is that it is costly to generate a large number of 3D
objects for a large scale application. It is also possible for
adversaries to reversely build the 3D models from the objects in
used challenges, and then to use these models to find the matching
objects in the list for the three objects in a new challenge.

A video CAPTCHA using labeled video clips from YouTube is
proposed in [17]. A user is asked to label the content of a video
clip in a challenge. However, labeling content is subjective;
different users may label the same content differently.

In the following subsections, we'll discuss Asirra, ARTiFACIAL,
and IMAGINATION. These are the IRCs that we shall examine in
more details to learn the lesson why they are successfully attacked.

Figure 1. (a) 3D wire model. (b) Cylindrical head texture. (c)

Challenge image.

ARTiFACIAL [12] relies on the capability gap between humans
and machines in recognizing a human face. Humans can easily
recognize a human face even if the face is distorted, partially
occluded, or under poorly illumination. A face detector, however,
still suffers from head orientation, face asymmetry, lighting and
shading, and cluttered background [12]. In ARTiFACIAL, a 3D
head model (Figure 1(a)) and a 512 × 512 pixel cylindrical
texture map of an arbitrary person (Figure 1(b)) are used to
generate a unique human face with random global head rotation,
scaling, translation, and local facial feature deformations to take
advantage of the head orientation and face symmetry limitations.
The intensity of the face region is perturbed to break the face
symmetry and to simulate illumination variances. Finally, a
cluttered background is generated by randomly putting confusion
heads and facial features on the image. A challenge image is
shown in Figure 1(c). A user is required to identify the single
human face in a challenge and click the six facial corners (four eye
corners and two mouth corners) on the face to pass a test. It is
claimed that the success rate for a bot to pass an ARTiFACIAL
test is at most 0.0006% [12]. A worth-mentioning feature of

190

ARTiFACIAL is that in theory an infinite number of challenges
can be generated [12].

Figure 2. Challenge images in IMAGINATION: (a) click test,

(b) annotate test.

IMAGINATION [13] actually consists of two separate tests: a
click test and an annotation test. The two tests are shown in Figure
2. In the click test, a distorted composite image tiled with 8 images
is presented. A user has to click a position close enough to the
geometric center of any one of the 8 constituent images to pass the
test. In the annotate test, a distorted image containing a meaningful
object and cluttering curves is presented. To pass a test, a user has
to choose the correct label for the image from a list of 15 candidate
words. Candidate labels used in this test are generated by adopting
a WordNet-based method to avoid ambiguity and to thwart odd-
one-out attacks when the correct choice is semantically different
from all the others. A random guess of the annotation test results in
a success rate of 6.67%.

In generating a challenge image of the click test, the region of the
challenge image is randomly partitioned into 8 non-overlapping
rectangles. Each rectangle is filled with an image randomly

selected from a database, scaled if necessary. The following
dithering step is then applied twice: the composite image is
randomly divided into another 8 rectangular regions and the Floyd-
Steinberg error-diffusion algorithm is applied to each region with
independent dithering parameters including base colors (18,
randomly chosen in RGB space). To further enhance the security,
a factor α chosen randomly in the range of [0.5, 1.5] is used to
multiply the spreading quantization error during the dithering. The
intuition behind this step is to introduce false image boundaries in
the composite image and to blur the true boundaries in hopes of
making the image region detection intractable by machines. The
resulting composite image is used in the click test. It is claimed
that IMAGINATION is resistant to attacks and friendly to humans
[13].

The IRCs discussed above, together with Cortcha (our novel IRC
to be presented in Section 6) are compared in Table 1 against the
CAPTCHA requirements listed in [12] as well as scalability and if
manual work is needed for the images to be used to generate
challenges. The accuracy rate and solving time in the column
“Easy to human” of the table, if presented, are from the original
paper that proposes the CAPTCHA. The success rate of no-effort
attacks (random guess), if presented, is either from the original
paper or calculated previously in this section.

Based on Table 1, we determine that IMAGINATION,
ARTiFACIAL and Asirra are representative IRCs that worth a
close examination.

Table 1. Evaluation of existing IRCs and Cortcha

IRC
Manual

work

Easy to

grade
Easy to human

Hard to

machine

Univer-

sality

Resistance to no-

effort attacks
Scalability

Secret

database

Bongo No Yes Yes No Yes No (50%) No No

Pix Labeling No Subjective Yes No Yes No Yes

Animal Pix Labeling Yes Yes No No2 No (8.3%) No Yes

CT_L No No
Accuracy:76.5%

Time: 24s
Yes No Yes No Yes

CT_S No Yes Yes No Yes No (50%) No Yes

CT_A No Yes
Accuracy: 91%

Time: 51s
No Yes No (16.6%) No Yes

ARTiFACIAL No Yes
Accuracy:99.7%Ti

me: 14s
Yes Yes Yes (3.5E-17) Yes No

IMAGINA-TION
Click: No

Annotation:

Labeling

Yes Accuracy: 85% Yes Yes Yes (6.2E-7)

Click: Yes

Annotation:

No

Yes

HotCaptcha Labeling No Very subjective No No No (1.19%) No Yes

Asirra Labeling Yes
Accuracy:83.4%Ti

me: 15s
Broken Yes Yes (0.024%) No Yes

Orientation (with
3 images)

Removing

bad images
Yes Accuracy: 84% Yes Yes Yes (0.009%) No Yes

Video Labeling No
Accuracy: 90%

Time: 22s
No No No (>2%) No Yes

Cortcha No Yes
Accuracy:86.2%

Time: 18.3s
Yes Yes Yes (≤0.125%) Yes Yes

2 Some animals are popular only in a few countries [12].

191

3. OUR ATTACK ON IMAGINATION

3.1 Basic Ideas on Our Attack
The dithering process during the generation of a click challenge in
IMAGINATION produces many false boundaries. To be a good
CAPTCHA, some true boundaries should be still readily visible so
that humans can easily determine at least one constituent image’s
location. Let’s look how humans would deduce such a location. A
candidate region is first located. Then the two sides along the
boundary of the candidate are compared. If both sides are very
similar, the boundary is likely false, and another candidate should
be examined. This process is iteratively applied until a confident
image location is found. This image location should agree with the
likely locations of the neighboring constituent images. This process
is also applied in our attack on the click test of IMAGINATION.

Our attack consists of the following three steps:

• Detect all possible rectangular regions. Each rectangular
region represents a candidate image location. These
rectangular regions can be ranked according to the likelihood
of being a rectangular region.

• Compare objects and textures on both sides along the
boundary of each candidate rectangle. An object that crosses a
boundary is called a traversing object of the boundary. A
boundary with traversing objects is likely a false image
boundary. A boundary with very different textures on both
sides is likely to be a true image boundary. Any rectangular
region with a false boundary is removed from the set of
candidates. The likelihood to be a true image location is then
adjusted for each survived rectangle.

• Check each candidate’s consistency with its neighboring
rectangles. The rectangle with the highest likelihood is
selected and its geometric center is sent back as the response
to the test.

These steps will be described in detail in the following subsections.

3.2 Details of Our Attack

3.2.1 Detection of Candidate Rectangles
To detect all the possible rectangular regions in a composite image,
color edge detection is first applied, and vertical and horizontal line
segments are then detected. By enumerating possible combinations
of these line segments, candidate rectangular regions are generated.

3.2.1.1 Color Edge and Line Segment Detection
Region-based color edge detection is used to detect significant
vertical and horizontal color edges in a composite image. This is
because a dithered composite image is quite noisy that a local
gradient based method would lead to a lot of false edge responses.
Before the edge detection, an input composite image is smoothed
by a 5 × 5 Gaussian filter in order to reduce noise. For each
location in the image, we draw a circle of radius R and divide it

along the diameter at four different directions: 0° , 45° , 90° , and 135°. The radius R should be selected carefully. A value that is too
large would result in imprecise edge localization. A value that is
too small would generate many noisy fragments. The color model
in each semi-circle is represented as the histogram in a jointly
partitioned region by the color components in the Lab color space.
The color edge intensity in each different direction is estimated by

calculating the χ�distance between the models of the two resulting
disc halves:

���ℎ�, ℎ�� = �
�∑ �����������������#!"#$#%� , (1)

where 1h and 2h are the color histograms of the two disc halves.

The direction with the maximum color edge intensity is considered
as the edge direction, and the maximum value as the edge intensity
at the current location. The resulting edge candidate map &' is
shown in Figure 3(b) along with the challenge image shown in
Figure 3(a). Non-maxima suppression is then applied to &' to

generate a total edge map &()*(, shown in Figure 3(c). A binary

edge image vhbinI
−

is obtained by removing all the non-

vertical/horizontal edge points after applying a threshold.

Figure 3. (a) Original challenge image. (b) Edge candidate map +,. (c) Total edge map +-./-. (d) Horizontal and vertical line

segments after the line segment detection is applied.

The horizontal and vertical edge points found above may be
slightly off the actual positions by up to a couple of pixels, which
makes a boundary not a straight line. We can refine the accuracy of
these edge points by applying local gradient based edge detection
around the found edge points and adjust the edge point positions if
necessary. The two-step procedure described in Appendix 9.1 is

applied to the binary image vhbinI
−

 to detect all the potential

vertical and horizontal line segments. The resulting vertical and
horizontals line segments are shown in Figure 3(d).

3.2.1.2 Generating Candidate Rectangles
Candidate rectangles are generated by enumerate all the possible
rectangles from the horizontal and vertical line segments obtained
from the last step. A priori knowledge is then applied to remove
unlikely image rectangles: a rectangle that is too small or too large
is removed. A very small rectangle is unlikely used to fill with an
image since it is too hard for humans to recognize. A very large
rectangle makes other images too small. The rectangles that are too
close to the boundary of the composite image are also removed for
the same reason.

In the next step, the candidate rectangles are processed and ranked
according to the edge intensity, traversing objects, and edge density
variation cues. The detail is described in Appendix 9.2.

3.2.2 Consistency Inference
The a priori knowledge that constituent images cover the whole
composite image and that there is no overlapping between any two
constituent images is used to check consistency of the survived

192

rectangles in order to select one as the response to the click test.
Two rectangles are said to be neighbors if one contains at least one
pixel in the neighborhood of some pixel(s) in the other rectangle.
Two neighboring rectangles are said to agree with each other if they
share at least one boundary or one boundary of a rectangle is on the
extension of a boundary of the other rectangle. Two distinct
rectangles are said to be inconsistent with each other if they overlap
each other or they are close enough to each other such that the gap
between them is too small to hold a constituent image.

The following steps are applied to determine a rectangle with its
geometric center as the response to the click test:

1) All the rectangles with a confidence value of 1, if any, are
selected. Each selected rectangle is then checked against all
the other rectangles in the set of candidates. If any
inconsistency is detected, the rectangle is dropped from the
selected rectangles. If there is any selected rectangle that
survives the inconsistency checking, the one with the largest
number of agreed neighboring rectangles is located and its
geometric center is returned. Then the attack ends.

2) Each rectangle in the set of candidates is checked against the
other rectangles in the set of candidates. If no inconsistency is
detected, the rectangle is selected. At the end of this process, if
there is any rectangle selected, the one with the largest number
of agreed neighboring rectangles and, if there are still multiple
choices, with the highest confidence value is located and its
geometric center is returned. Then the attack ends.

3) If all the candidate rectangles are inconsistent with some
candidate rectangle, the rectangle with the highest confidence
is located and its geometric center is returned.

Figure 4. Two challenge images and the image regions (enclosed

by red lines) returned by our attack.

3.3 Attacking Results
We have used both our own implementation of IMAGINATION’s
click test and IMAGINATION’s online service [14] to evaluate our
attack algorithm. Using our own implementation, the evaluation
process was automated and fast, but our implementation might be
different from the actual IMAGINATION. Therefore we collected
109 click test images from IMAGINATION’s online service, and
attacked them to compare with the result from our own
implementation. Unlike our own implementation, the evaluation
using IMAGINATION’s online service could not be automated
since the service applied an annotation test after a click test, denied
access if failing either test more than a small threshold number.
Each collected image was first manually labeled to locate
perceivable image boundaries. The output of our attack algorithm
was then compared with the labeled result to determine if the attack
was successful or not. For the 109 collected click test images, our
attack solved 81 test images correctly, resulting in a success rate of
74.31%. Figure 4 shows the image regions (enclosed by the red
lines) returned by our attack algorithm for two collected challenge
images. This success rate agrees with the result evaluated with our
own implementation of IMAGINATION’s click test where 2000
click test images were used. Our average attack speed was 0.962s

per image when running on a PC with 3.2GHz Intel P4 and 2GB
memory.

If we use a random guess for the annotate test of IMAGINATION,
the success rate will be 1 in 15, or 6.67%. By combining the attack
results of IMAGINATION’s two tests, our attack algorithm can
achieve an overall success rate of 74.31%	 × 	6.67%,	 or 4.95%.
This number can be increased if a technique better than a random
guess is used for the annotate test. In fact, this annotate test has
several shortcomings, e.g., difficult to build an image database
large enough to meet the demand of a large scale application,
language-dependent, and poor rejection of a random guess.

4. OTHER ATTACKS

4.1 Low-level Features and Semantics
A typical image contains rich information which can be classified
roughly into two types: low-level features and high-level semantics.
Low-level features are the information that can be extracted from
an image with little or nothing to do with perception or
understanding of the image. Many low-level features have been
developed for various tasks. Commonly used low-level features
include color, shape, texture, color layout, among others. Color is a
widely used feature. A color feature can be represented by the color
histogram which is a distribution of the colors in an image. Texture
refers to repeated patterns with varying intensities or colors such as
grassland. Contrast is a simple representation of texture. Shape
represents a visual object, represented by the outer boundary of the
shape or the entire region of the shape. Color layout includes both
the color feature and the spatial relations. More low-level features
can be found in [23]. Computers are typically good at extracting
low-level features from an image.

High-level semantics, on the other hand, is associated with
perception or interpretation of an image such as identifying
semantically meaningful objects contained in an image, and
relationships of these objects. Low-level features are typically
deterministic, i.e., the same or similar result is produced when a
low-level feature is extracted from the same image by any
computer or most humans at any time. High-level semantics, on the
other hand, may be subjective and user-dependent, especially when
interpretation is applied during extraction. Different semantic
meanings may be generated when the same image is perceived by
different people or by the same person at different times. There is
still a large gap between low-level features and high-level
semantics. Image understanding or general object recognition aims
to reduce such a gap but still remains a hard AI problem in
computer vision.

4.2 Attack on Asirra
Golle [24] designed a machine learning attack on Asirra. In this
attack, an image is partitioned and divided into uniform blocks. The
discriminative features used in the attack are the block's color
patterns and 5x5 texture tiles. Machine learning on the labeled
training data produces a classifier that has achieved a success rate
of 82.7% in distinguishing a cat from a dog used by Asirra, much
higher than a random guess does. For a 12-image Asirra, the
success rate is 10.3%. However, no insightful explanation was
given on why a seemingly hard object recognition problem can be
readily solved by a machine learning attack.

4.3 Attack on ARTiFACIAL
We have developed a machine learning attack on ARTiFACIAL
[25]. There are two stages in the attack: detect the face in a

193

challenge and then locate the six facial corner points on the face.
Based on the observation that the intensity perturbation introduced
by ARTiFACIAL could be largely removed in the gradient domain
which represents spatial variations of the image's intensities, we
have designed a gradient-domain based face detector that learns the
structural shapes of facial components to detect the face in a
challenge image. Figure 5(a) shows the gradient domain
representation of the challenge image shown in Figure 1(c). Then
the intensity perturbation which manifests as horizontal and vertical
lines in the gradient domain is neutralized (Figure 5(b)), thanks to
their very different patterns from the gradient of a human face.

Figure 5. (a) Gradient image of the challenge image shown in

Figure 1(c). (b) After line filtering. (c) Face detection result.

The discriminative facial structural features obtained by machine
learning are applied to detect location and orientation of the face.
Figure 6 shows the top 5 features produced by the machine learning
process. They represent structure features on the eyes and nose of a
face. When tested on 800 challenge images, the face detection rate
was 42.0%. The red tilted rectangle in Figure 5(c) shows the
detected face for the challenge shown in Figure 1(c). After the face
detection, a facial component-based discriminative algorithm and a
refinement algorithm is then applied to the detected face to locate
the six corner points. The success rate to correctly identify the six
corner points on a face detected at the first stage was 42.9%. The
overall success rate to pass an ARTiFACIAL test is therefore 42.0%	 × 42.9% , or 18.0%. The average time to produce a
response was 1.47s when tested with the 800 challenges on a PC
with 3.2GHz Intel P4 and 2GB memory.

Figure 6. First 5 features produced by the learning procedure.

5. A SIMPLE FRAMEWORK
In this section, we propose a simple framework for understanding
the design of a good IRC. We first examine the design flaws in the
three reprehensive IRCs that led to successful attacks. We then
propose three guidelines in designing robust IRCs.

5.1 Lessons from Successful Attacks
The task in the click test of IMAGINATION [13] is to distinguish
authentic image boundaries from false image boundaries such that
at least the boundary of one constituent image is identified. Humans
decide that a boundary is likely false if the two sides of the
boundary are correlated since two randomly selected images are
unlikely correlated. This eliminating process is iteratively applied
until an image's boundary is confidently identified. This iterative
process can be readily performed by machines through computing
low-level features of the image. That is, a cognitive decision about
whether both sides of a boundary are correlated or not can be
approximated by detecting similarity of textures and continuity of

traversing objects. No image recognition or semantics is necessarily
used. This explains why the click test of IMAGINATION fails.

• Lesson #1. An IRC that does not rely on image semantics is

doomed to be vulnerable to automated machine attacks. For
such an IRC, the human’s natural cognitive “algorithm” for
passing the CAPTCHA test can be imitated or approximated
by machines automatically computing certain low-level
discriminative features – such a task can be readily performed
by a computer, and sometimes done even more accurately by a
computer than by humans. Instead, image recognition task
must be introduced in an IRC.

The task to solve an Asirra challenge is a binary classification
problem, as the image is of either a dog or a cat. It is still an open
problem how human beings exactly carry out such classification
tasks, but it is believed that cognitive capability of image
recognition is needed to perform the tasks. Although computers do
not have such a capability, Asirra was broken by computers for a
simple reason: often it is sufficient to compute low-level features to
achieve binary classification.

A common method for binary classification is to identify a set of
discriminative low-level features and use machine learning on
empirical training data to automatically learn both the common
patterns among the individual objects of each type, and the most
effective discriminative patterns to distinguish objects of one type
from objects of the other type. The training data contain positive
samples which are objects of the type that the classifier wants to
identify (cats in Asirra's case) and also negative samples which are
objects of the other type. Golle's attack [24] used two simple yet
highly discriminative low-level features: texture and color patterns.
Texture patterns are highly discriminative in this case. For example,
cats usually have patterns of furs and whiskers, which are very
different from those of dogs. Although not used in Golle’s attack,
shapes would be another highly discriminative low-level feature
since cats and dogs typically have very distinctive ear shapes. In
fact, a recent study [26] on cat detection using machine learning on
texture and shape patterns claimed a success rate of above 90% for
cat detection. Note that cat detection is harder than identifying cats
from a collection of cats and dogs since detection faces much more
variations in the background or cluttering objects.

Although it is unclear how much semantic discrimination humans
use in solving Asirra's binary classification problem, we have
experienced that in many cases, substantial low-level features in the
images aided humans to distinguish cat images from dog images.
On the other hand, rather than an IQ test, a CAPTCHA is designed
to let most humans easily pass in a short time. To be user friendly,
an IRC based on a binary classification problem needs to use
images of objects that can be easily and unambiguously identified
by most humans. This implies that the objects of each type share
easily perceived common features, some of which are highly
discriminative that humans can readily apply to distinguish between
the two types. Some of these perceivable discriminative features
should be associated with or reflect in low-level features; otherwise
it is unlikely for most humans to produce the same result for a
challenge, as required by the usability of an IRC, since high-level
semantics tends to be subjective and use-dependent. Low-level
features, on the other hand, are typically deterministic, and can lead
to a consistent and unambiguous result by most humans. By
identifying and selecting a set of highly discriminative low-level
features, adversaries can apply machine learning on empirical data
to find effective decision criteria to distinguish between the two

194

types, resulting in an automated effective attack. Therefore, we
have the following lesson.

• Lesson #2. A user-friendly IRC based on a binary

classification problem to classify an object into one of two

fixed types a priori of concrete objects 3 is highly likely

vulnerable to machine learning attacks.

ARTiFACIAL [12] relies on face detection. In general, an object
detection problem is harder than a binary classification problem
since the negative samples for the latter case have much less
variations, making the classification problem easier. In our attack
on ARTiFACIAL, the spatial patterns of facial features are learned
by machines as the discriminative features to identify the face in a
challenge image with cluttering background. The a priori
information that there exists one and only one face in a challenge
image is also exploited to improve the detection rate. As such, an
IRC based on object detection does not appear to be able to provide
a significantly more secure design than a binary classification based
IRC.

• Lesson #3. A user-friendly IRC based on detecting a concrete

object of a fixed type a priori is very likely to be vulnerable to

machine learning attacks.

5.2 Guidelines for Designing Robust IRCs
From the lessons we learned in Section 5.1, we would summarize
three guidelines to shed light on the design of a robust IRC.

• Guideline #1. Rely on unambiguous high-level semantics.

This guideline is directly derived from the first lesson. One problem
associated with using semantics is that the retrieved semantic
information from an image tends to be subjective and user-
dependent. A good example is image labeling, where different
people may give the same image different labels. This intrinsic
ambiguity in semantics makes it difficult to generate CAPTCHA
challenges using image semantics.

However, there are still some ways to use semantics without
ambiguity in the answer and thus they can likely be used in IRC
design. An example is spatial relationships of objects. Humans can
understand relative sizes, shape changes and occlusion relationships
of different objects, and can deduce spatial relationships of
different objects. This cognitive process involves recognition of
objects, and thus is still hard for computers to perform. Another
example is logical relationships of objects. Like spatial
relationships of objects, deducing logical relationships of objects
also involves recognition of objects, a hard AI problem.

• Guideline #2. Boost robustness with more variations such as

relying on recognition of multi-type objects for either

detection or classification.

Based on the second and third lessons, the task of either binary
classification of objects from two types a priori or detecting an
object of one type a priori may leave sufficient low-level features
that can be efficiently exploited by machine learning methods,
resulting in a seemingly image recognition problem solved by
computers. We can make an IRC more secure by making machine

3 A concrete object means an object that is unambiguously and

easily defined and identified. IRCs usually rely on concrete
objects, since for these objects human users can generate
consistent answers that can be easily verified by a machine.

learning attacks much harder than before. This can be achieved, for
example, by increasing the number of concrete object types used in
an IRC. Multi-label classification is much harder for computers
than binary classification.

It appears that Guideline #2 is a general principle which is
applicable to all CAPTCHAs including text schemes. For example,
by increasing variations of segmentation-resistant mechanisms, text
distortion methods and fonts, and then randomly selecting one or
more fonts, a segmentation-resistance mechanism and a text
distortion method in generating the current challenge, we can have
a text CAPTCHA that is more robust than the state-of-the-art,
making an attacker’s life much harder.

• Guideline #3. Disable machine learning by eliminating the

possibility of using empirical data or a priori knowledge such

as the types of objects. This means that a current challenge is

independent of the past challenges in terms of computable

features such as low-level image features.

An intrinsic feature for all machine learning attacks is that they
typically rely on empirical data to learn effective discriminative
features and decision criteria before becoming effective. The most
fundamental solution to deal with these attacks is therefore to
disable machine learning by making the past challenges
uncorrelated with the current or future challenges. In this way, the
discriminative features or decision criteria learned from the past
challenges would be ineffective to solve the current or a future
challenge. This can be achieved by randomly selecting a type and
an object of the type to generate a challenge, with both the number
of types and the number of individual objects of each type being
sufficiently large, infinite ideally, so that it is intractable for the
current computing capability. This is the ultimate goal, although
hard to achieve.

In principle, Guideline #3 is applicable to all CAPTCHAs. For text
CAPTCHAs, however, it is still an open problem whether we can
create an unlimited number of segmentation-resistant mechanisms,
or an unlimited number of combinations of segmentation-resistant
mechanisms and text-distortion methods.

6. A NOVEL IMAGE BASED CAPTCHA
A novel IRC, Cortcha (Context-based Object Recognition to Tell
Computers and Humans Apart), is presented in this section.

Intuitive ideas. Based on the third guideline, an IRC should use an
unlimited number of different types of objects. This can be easily
achieved by crawling images in the Internet. But how do we
generate challenges? In general, computers do not understand the
semantics of an image, but we want to avoid labeling images in
generating challenges. Computers do a poor job in segmenting an
image into semantically meaningful objects. Objects that are
automatically segmented by computers were considered not
suitable for an IRC. Instead, semantically meaningful objects were
considered necessary in generating IRC challenges in order for
human users to produce consistent answers. This explains why
many existing IRCs require manual labor such as labeling or
selecting images. It is a dilemma seemingly hard to solve.

Our insight is that although an object that is segmented by a
computer might be poor cognitively, but if the object is surrounded
by its original context in the image, then the object is readily
recognizable by humans. By exploiting the context, objects
segmented by computer can be used in an IRC. The magic of

195

context solves the dilemma, and an IRC can be designed without
labeling any image.

To use context for humans to recognize a computer-segmented
object, we can crop the object and detach it from its original image,
and then ask a user to use the image as a context cue to identify the
detached object from a set of decoy objects. The hole left by
cropping in the original image must be filled. Otherwise the
detached object can be easily deduced by comparing the contour of
a candidate object with the shape of the hole. The filling should not
allow bots to locate the cropped region but should leave some
semantic hints such as unnaturalness to enable humans to quickly
locate the region. Image inpainting [27], which is to incrementally
fill a hole with the best matching blocks, can be modified to
achieve the goal.

These intuitive ideas led to the development of Cortcha. In Cortcha,
a user is asked to identify, among a set of candidate objects, an
object detached from an image, and then place it back to its original
position in the image.

Advantages. The major innovation in Cortcha is to exploit the
surrounding context to recognize an inaccurately segmented and
thus often semantically meaningless object. Compared with
existing IRCs, Cortcha has the following advantages:

• No need to manually label any image. Context-based object
recognition makes it possible to use semantically
meaningless objects in our design. Therefore object
segmentation can be done by computers and the whole
challenge generation process can be fully automated.

• An unlimited number of types of objects can be used in

Cortcha. This can effectively disable the learning process in
machine learning attacks.

• Cortcha is scalable. In Cortcha, the tasks of source image
collection and challenge generation can both be automated.
By crawling the Internet, a large number of images can be
quickly and continuously added to Cortcha's image database.
Cortcha can therefore meet the demanding requirement of a
large scale application such as Hotmail.

6.1 Detailed Description
Cortcha consists of the following stages: collecting images into the
database, generating challenges, displaying challenges, and grading
responses.

6.1.1 Image Database
Cortcha relies on a secret database of images. The huge number of
images in the Internet combined with the fact that the content-based
image retrieval at the Internet scale is still in its infancy makes it
feasible to convert these public images into Cortcha’s secret
database. It is highly unlikely for adversaries to find out the original
Internet image used in a Cortcha challenge before the current
CAPTCHA session expires.

Not all images are suitable for Cortcha. We discard small-sized
images as well as noisy ones which have a large ratio of high
frequency energy to low frequency energy. We also discard
monotonic images, whose absolute gradient values are on average
small or whose histogram entropy is small. However, instead of
discarding large images, we crop them into suitable sizes.

6.1.2 Image Segmentation and Object Selection
An image is first processed to identify its salient objects. We apply
the JSEG [28] method to segment the image into objects. The

boundary of each object is refined to align with the gradient edges.
Small-sized objects are merged with their best matched neighbors.
We then assign each object a perceptual significance value, which
is calculated with the saliency detection scheme proposed in [29].

Not all the resulting objects are suitable as the object to be cropped
from the image for generating a challenge. We have observed
improved usability when both the object to be cropped and its
surrounding context in the image are semantically meaningful.
Humans can correlate the semantics of an object with that of the
surrounding context in solving a challenge. Such semantic
correlation cannot be exploited by computers. This observation
leads us to discard objects with a small significance value and those
that are thin, monotonic, or overly large-sized. An object’s
thickness is measured by the maximum value of its distance
transform. A thin or monotonic object tends to carry little semantic
information. A large object tends to make its surrounding context of
little semantic meaning.

We also discard objects which share local or global similarity with
the remaining image. Such similarity may be exploited by attackers
to deduce a correct answer to a challenge. Local similarity is
calculated by comparing the local color histogram and texture on
both sides of the object’s boundary. Global similarity is calculated
by using SIFT [30] to extract scale-invariant local features. The
features from the objects are compared with those from the
remaining image to detect any similar object in the remaining
image.

If there exists any survived object at the end of the above process,
the image, along with the survived objects, is inserted into
Cortcha’s database for future use. With all the measures adopted
above, it is still possible that a survived object is segmented
incorrectly in terms of cognition, carrying little semantic
information. Cortcha allows such a case since the context in the
inpainted image can be leveraged by humans in recognizing the
object. This is a key advantage over other IRCs such as Pix [21],
Chew and Tygar [11], Asirra [15], and the orientation CPATCHA
[16], which all require semantically meaningful objects, and thus
have to involve human labors to label or select suitable images. On
the contrary, the image segmentation and object selection process
in Cortcha can be fully automated.

6.1.3 Image Inpainting
To generate a challenge, an image is randomly selected from the
database. Then, an object is randomly selected from the objects
stored along with the image. The image and its objects are then all
deleted from the database. A buffer region of n-pixels surrounding
the object is created in the image. The object and the buffer region
are then cropped from the image. The buffer region is used to
remove possible traces of local similarity between the object and
the remaining image. The cropped region is then filled with an
inpainting algorithm modified from [27], as described next.

We first locate a region surrounding the cropped region and
calculate its color histogram. The database is then searched to find
an image that matches the color histogram best. The found image is
used as the primary source while the remaining image as the
secondary source in inpainting. The hole to be filled is divided into
blocks. These blocks are filled sequentially. In filling a block, a
matching block from the source is needed. The primary source is
searched first for a matching block. If no matching block is found,
the secondary source is searched to find a set of matching blocks.
We then randomly select a block from the set as the source block. It

196

is possible to use several images from the database as the primary
source for the inpainting process.

Two scheduling schemes are used to determine which block to be
filled next. The first scheme places a block with a large curvature
and a shorter distance to the cropped boundary at a higher priority.
The second scheme treats a block with structured neighboring
blocks at higher priority. The first schedule is applied to boundary
blocks of the cropped region while the second schedule is applied
to internal blocks. For the blocks lying between the two types of
blocks, either schedule can be applied, depending on a random
selection process. The first schedule ensures smooth transition at
the boundary while the second schedule maintains structured filling.
Sharp changes at the boundary might be correlated with the contour
of the detached object. Lack of structures may indicate a filling
region. They both can help an attacker solve a challenge.

If any part of the detached object’s boundary lies in the boundary of
the image, that part may indicate the block’s location in the image.
This leaking information exploitable by attackers can be effectively
removed by applying outpainting, an inpainting process for the
reversal direction, to grow the object beyond its boundary at the
part that lies in the image’s boundary. As described later in Section
6.2, the extra pixels “filled” by the outpainting process are invisible
when the detached object is aligned correctly with the inpainted
image in solving a Cortcha challenge.

6.1.4 Generating a Challenge
The detached object, outpainted if necessary, is used to search the
database to find the best matched L-1 objects in the image database.
These objects are from distinct images. The search is based on the
color histogram and the complexity, measured as the averaged
absolute values of the object’s gradient. More advanced
technologies such as SIFT [30] can also be applied. These L-1
objects are optionally further processed by warping, rotating, or, if
lacking of structures, randomly embedding with a similarly colored
visual object. The resulting objects are used as decoy objects. These
optional distortions make a decoy object look odd to humans so that
the authentic object can be easily identified by human eyes. If the
detached object can be detected by a computer, e.g., a human or a
cat face, similar computer-detectable objects are retrieved from the
database as decoy objects. None of the optional distortions is
applied in this case. The reason to treat generic objects and
computer-detectable objects differently is to prevent attacks from
“recognizing” an object or detecting the distortion applied to decoy
objects to solve a challenge.

The detached object and its L-1 decoys form L candidate objects.
They, as well as the inpainted image, are scaled in size by a factor
that is empirically chosen. We use the bicubic interpolation for
image scaling. A random noise is then added to the scaled image
and candidate objects. The purpose of both image scaling and
random noise is to remove any quantization or other patterns in an
image that can be exploited to deduce the inpainted region or the
detached object.

6.2 Solving Cortcha Challenges
A Cortcha challenge displays an inpainted image along with L

candidate objects. Figure 7 shows an actual challenge from our
current implementation, in which eight candidate objects were used.
A user selects a candidate object, and drags it to move around or
drop to a position of the inpainted image. Wherever the object is on
top of the inpainted image, surrounding the object, a buffer region
(of the same width as we use in the challenge generation process) is

created. The buffer region is cropped and then filled by an image
smoothing method. Effectively, a composite image is created by
combining the inpainted image and the candidate object on the spot.
The resulting composite image is presented to the user, but only the
pixels within the inpainted image’s boundary are visible. As a result,
when the detached object is corrected aligned with the inpainted
image, the outpainted portion, if exists, is invisible. At each trial
location, if the composite image looks natural and semantically
meaningful, the detached object and its due position are found. The
challenge is thus solved. Figure 8 shows the result when the
detached object is correctly placed back.

Figure 7: A Cortcha challenge with 8 candidate objects on

the left and the inpainted image on the right.

Figure 8. A successfully solved Cortcha challenge: the right

panel shows the composite image when the detached

object was placed at the correct position.

6.3 Usability

6.3.1 Experimental Settings
Our database included 30,000 images that we crawled from the
Internet. The longest side of each image was 500 pixels. 350
Cortcha challenges were then generated from this database. All the
thresholds needed in generating these challenges were empirically
determined from a small set of representative samples, and then
applied to all the images. The average time for generating a
challenge (following the whole process as described in Section 6.1)
was 122s on a PC with 3.2GHz Intel P4 and 2GB memory. Note
that many steps in this process can be performed offline. Therefore,
offline preprocessing will significantly reduce the average time
required for online generation of challenges.

A website was used in our usability study. A participant browsed
the website to start a test. Each test consisted of 20 randomly
selected Cortcha challenges presented sequentially. The responses
and solving times were recorded by our web server. After the test,
each participant was asked to answer a questionnaire as an exit
survey. We invited a group of interns who had never exposed to
Cortcha to participate in our study. Most of them were graduate
students in their twenties. 84 volunteers participated and completed
the study. In our experiment, the position tolerance for a response

197

was set to be 10.0% of the inpainted image’s height and width. The
buffer region was set to have a width of n=3 pixels.

6.3.2 Results
We examine Cortcha based on the following three components,
partially quoted from [31]:

1. Learnability. Figure 9 shows the average solving time for each
of the 20 sequentially presented challenges. Note that different
participants received different challenges even for the same
index of challenge since each challenge in the usability
experiments was randomly selected from the 350 generated
challenges. We can see from the figure that the participants
improved the solving time significantly as their experiences
built up. They spent 25.6s on average to solve the first
challenge, and the solving time dropped quickly to 20s or below
after the first two challenges. This indicates that Cortcha is
fairly easy and quick to learn.

Figure 9. Average solving time vs. the challenge index.

2. Errors and efficiency. The overall accuracy rate was 86.2%,
and the average solving time among all the 84 participants and
20 challenge indexes was 18.3s. As compared in Table 1,
Cortcha has a human accuracy rate that is slightly higher than
Asirra, Orientation and IMAGINATION, significantly higher
than CT_L, but lower than ARTiFACIAL, Video and CT_A.
On average, Cortcha takes slightly more time to solve than
Asirra and ARTiFACIAL, but less than other IRCs with a
solving time reported.

We have also conducted a usability study of Google’s text
CAPTCHA with the same group of people. The text challenges
from Google’s Gmail site were used in the experiments. Each
participant was asked to solve 20 text challenges sequentially.
105 volunteers participated and completed the test. The average
accuracy rate was 82.8% and the average solving time was 7.9s.
Compared with Google’s text CAPTCHA, Cortcha has a
slightly higher human accuracy rate but takes more than double
the time to solve a challenge.

It is worth mentioning that in the Cortcha’s usability study,
more than half (43 out of 84) of the participants had an
accuracy rate higher than 90%, and the participants with a
higher accuracy rate (>80%) spent a significantly more time (3s
more on average) than those who performed poorly (with an
accuracy rate lower than 80%). Since the challenges were
randomly selected in the experiment, this may indicate that the
participants with a lower accuracy rate might not have paid
sufficient attention.

We observed that 51% of the tested challenges were solved in
less than 15 seconds, but we also got a long tail for the
distribution of the solving time, up to 40 seconds or even more.
In Cortcha, some challenges are easier to solve than others. For
example, if a detached object is semantically meaningful and

the unnaturalness of the inpainted region is apparent to human
eyes, this challenge will be easy to solve. Otherwise it can take
a longer time to solve, or lead to more erroneous responses.

3. Satisfaction. We collected 72 valid responses in the exit survey.

About 78% (≈56/72) of the responses indicated a difficulty
level of either medium/acceptable or easy for them to learn how
to solve Cortcha. About 1/3 of the responses preferred Cortcha
to traditional text-based CAPTCHAs. Many of them liked
Cortcha because it was interesting, secure, and keyboard-free.
Complaints were mainly on the difficulty of some Cortcha
challenges. Specifically, for some challenges, it was hard to
either determine where the inpainted region was or differentiate
between candidate objects with similar color patterns.

6.3.3 Discussions
After examining each challenge and its responses, we concluded
that most of the “difficult” images had the following common
characteristics: the detached object lay inside a repeated texture. An
almost seamless inpainting result was produced: although different
from the original image, the inpainted image looked natural. There
was no unnaturalness in the inpainted region that the participants
could leverage to locate the original position of the detached object.
The surrounding context was mainly textures, almost irrelevant
semantically to the detached object. This inspires us to add a
posteriori check: if the inpainted region has a similar pattern as its
neighborhood, the challenge might be hard to solve and should not
be used. We will implement this posteriori check to further improve
Cortcha’s usability.

Another inspiring finding is: easy challenges were dominant in our
randomly generated challenges. 294 out of the 350 challenges have
been tested more than three times. 173 out of the 294 challenges
(58.8%) were found to be very easy to solve, and the participants
did not make any mistake on them. Less than 10% (24) of the 294
challenges were found difficult. Their accuracy rates were below
50%. This observation inspires us to explore a heuristic approach
towards image filtering to remove difficult images. This approach
can improve the human accuracy rate and reduce the solving time.

6.4 Robustness

6.4.1 Random Guess Attacks
When 8 candidate objects are used in a Cortcha challenge, a
random selection has a chance of 1/8 or 12.5% to be correct. A
random search for the correct alignment position results in a
probability of 10%*10% or 1.0% to be correct. Therefore a random
guess attack could have a success rate of 0.125%, which is however
much smaller than the design criterion (0.6% success for bots, see
Section 2.2).

A random guess attack can be made even harder by using a larger
number of candidate objects. For example when L=12, the success
rate of a random guess attack will be 0.083%. This rate can be
further reduced. For example, when a larger inpainted image is
used, the tolerance of alignment position variations can be
tightened from the current 10% to, say 5%, reducing the success of
a random guess attack to 0.021%.

6.4.2 Other Possible Attacks
Using machine learning to classify or recognize objects was an
effective attack on Asirra and ARTiFACIAL, but it will not work
on Cortcha since the objects used in a current challenge are
uncorrelated with those used in other challenges. However, object
segmentation and image inpainting used in generating Cortcha

15

17

19

21

23

25

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
v
e

.
so

lv
in

g
 t

im
e

(s
)

Cortcha test index

198

challenges may leave traces or characteristics, which can be
exploited to tell the detached object or its position in the image.
Possible attacks that we can think of are as follows.

An image may show a specific noise or quantization pattern such as
an imaging sensor noise pattern or a JPEG quantization pattern.
These patterns have been used in image forensics to detect image
forgery and identify image source [32]. A correlation of such a
pattern in the detached object and in the remaining image may help
identify the detached object. The inpainted region may show a
distinct pattern that helps locate the inpainted region. However,
these patterns can be destroyed by scaling the image’s size with a
nonlinear bicubic interpolation and by adding noise to the image. In
Cortcha, both inpainted images and candidate objects are scaled in
size using a bicubic interpolation, and then random noise is added,
as described in Section 6.1.4. Therefore noise or quantization
patterns cannot be exploited to attack Cortcha. More sophisticated
measures such as those in [33] can also be adopted by Cortcha to
thwart attacks based on other image forensic technologies.

There might exist some local similarity between an object and its
surrounding region due to light reflection, shadowing, inaccurate
segmentation, or other issues. Such local similarity, calculated with
computable features such as color or texture patterns, can be
exploited to solve a challenge. This issue is addressed in Cortcha by
aligning an object’s boundary with its gradient edges, cropping an
object which contains little or no local similarities (currently based
on color and texture) with its surrounding region, and using a buffer
region to separate a detached object and the remaining image. From
our observation on the 350 Cortcha challenges used in our study, a
buffer region with a width of n=3 pixels can effectively remove
color-based local similarity between a detached object and the
remaining image. Such a buffer region does not have a significant
perceptual impact on the composite image when a human user is
solving a challenge.

Low-level features might be used to detect possible correlations
between a detached object and the remaining image. Such a
correlation would increase the chance to identify the detached
object. To address this threat, we make sure that all the candidates
have a similar correlation with the inpainted image. For example,
readily computable low-level features such as color histogram and
complexity are used to find decoy objects. When the image
database is sufficiently large, decoy objects are all similar to the
detached object in terms of the applied low-level features. In
addition, SIFT [30] is used in Cortcha to prevent the existence of a
similar object in the remaining image. It is possible that attackers
apply other low-level features or better algorithms to calculate
correlations or detect similar objects. However, these low-level
features or algorithms can also be adopted by Cortcha to thwart this
type of attack.

A possible brute force attack is to use the same object segmentation
method as used in Cortcha to solve a challenge. In such an attack,
each candidate object is tested at all the possible positions. At each
trial, the same object segmentation procedure is applied to the
composite image. If the segmentation result agrees with the object
under test and the trial location, the detached object and its location
are deduced. However, this brute force attack will not be effective.
At a trial position, the object under test is unlikely to have a smooth
transition with the image at its boundary, thus leading to an
agreeing segmentation result. Therefore this attack will produce
many false alarms, as confirmed by our preliminary experimental
results.

Artifacts produced by the image inpainting might be exploited to
deduce an inpainted region. Wu et al. proposed an attack to identify
an inpainted region [34]. Their attack compares different parts of an
image to detect abnormal similarity between destination blocks and
their source blocks in the inpainting process, and then deduces the
inpainted region. In Cortcha’s inpainting, the source blocks are
mainly from the primary source, a secret image in the database.
When the database is large and contains a large variation of
different images, the cropped image is unlikely to contribute many
blocks during inpainting. In addition, when filling a block, our
method applies a smoothing operation to smooth the pixels from
the source block and those in the destination blocks. Such a
smoothing operation removes most of the similarity between a
destination block and its source block. Therefore the attack
proposed in [34] is ineffective on Cortcha.

A lousy inpainting method may leave some artifacts to indicate
where inpainting starts. This location information can be correlated
with the contour of the detached object, leading to a possible attack.
It is also possible that an inpainting method produces a smoothed
region that lacks of structures as compared to the remaining image.
Therefore, detecting structureless regions may help locate the
inpainted region. Our inpainting method applies different schemes
to decide which block is filled next. It ensures that an inpainted
region is still rich in structures. It also prevents inpainting artifacts
from forming a long edge in parallel with the detached object’s
contour. We have conducted an experiment to find all the edges in
an inpainted image that are in parallel with some portions of the
detached object’s contour. The preliminary result showed that most
of the found edges were irrelevant to the detached object’s contour.
Therefore correlating inpainting artifacts with a candidate object’s
contour does not lead to locating the inpainted region.

Another possible brute force attack is the following. Each candidate
object is tested at all the possible locations. At each trial, the region
covered by the candidate is taken as an object and cropped from the
image. The same inpainting procedure as that used in generating
Cortcha challenges is then applied to fill the cropped region. The
inpainted result is then compared with the region covered by the
candidate. If they are similar, the candidate is presumed to be
cropped from that position. The original inpainting algorithm
proposed in [27] would suffer from this attack, since the inpainting
procedure is deterministic and all the source blocks used in
inpainting are publically available. Our inpainting algorithm selects
source blocks from a secret image whenever possible, and
introduces randomness in selecting blocks from the public
remaining image. These measures prevent the above attack from
producing an inpainting result similar to ours. On the other hand,
this brutal force attack in general would hardly be practical, since it
requires applying the inpainting process, which is slow, many times.

6.5 Legal Issues for Deployment
Copyrights of images used by Cortcha might cause legal issues that
prevent Cortcha from being deployed in the real world. This is a
common issue for all the IRCs that use crawled images, such as the
CAPTCHAs proposed by Chew and Tygar [11] and the orientation
CAPTCHA [16] introduced by Google. Cortcha likely faces even
more copyright issues since it modifies images to generate
challenges, and some of the resulting images may appear
unpleasantly. We leave these issues for lawyers to deal with in near
term, and for future technology innovations in the longer term.

199

7. CONCLUSIONS
We have attempted a systematic study of image recognition
CAPTCHAs. We provided a thorough review of the state-of-the-
art, presented a novel attack on a representative scheme, and
analyzed successful attacks on the other representative schemes.
Learned from these attacks, we defined for the first time a simple
but novel framework for guiding the design of robust image
recognition CAPTCHAs. The framework led to our design of
Cortcha, a novel CAPTCHA that exploits semantic contexts for
image object recognition. Our usability study showed that Cortcha
yielded a slightly better human accuracy rate than Google’s text
CAPTCHA. Cortcha offers the following novel features. Image
labeling is entirely avoided. The source image collection and
challenge generation are fully automated. An infinite number of
object types are used to generate Cortcha challenges. Objects used
in the current challenge are independent of the objects used in
previous challenges. This independence makes powerful machine
learning attacks useless in attacking Cortcha. Being scalable,
Cortcha is a stride forward for image recognition CAPTCHAs
towards practical applications. Our future work includes improving
Cortcha’s speed, a large-scale usability study, and a thorough
evaluation of Cortcha’s robustness.

8. REFERENCES
[1] Ahn, L. von, Blum, M., and Langford, J. 2003. Telling humans

and computers apart automatically. Comm. of the ACM. 46
(Aug. 2003), 57-60.

[2] Ahn, L. von, Blum, M., Hopper, N. J., and Langford, J. 2003.
CAPTCHA: Using hard AI problems for security.
Eurocrypt’2003.

[3] Baird, H. S. and Popat, K. 2002. Human interactive proofs and
document image analysis. In Proc. of Document Analysis
Systems 2002. 507–518.

[4] Hocevar, S. PWNtcha - Captcha Decoder web site.
http://sam.zoy.org/pwntcha/.

[5] Mori, G. and Malik, J. 2003. Recognizing objects in
adversarial clutter: Breaking a visual CAPTCHA. In Proc.
IEEE Conf. on Computer Vision & Pattern Recognition, 2003.

[6] Moy, G., Jones, N., Harkless, C., and Potter, R. 2004.
Distortion estimation techniques in solving visual
CAPTCHAs. In IEEE Conf. on Computer Vision & Pattern
Recognition, 2004.

[7] Chellapilla, K. and Simard, P. 2004. Using machine learning
to break visual human interaction proofs. Neural Information
Processing Systems (NIPS'04), MIT Press.

[8] Yan, J. and El Ahmad, A. S. 2007. Breaking Visual
CAPTCHAs with naive pattern recognition algorithms. In
Proc. Ann. Comp. Security Applications Conf. 2007, 279-291.

[9] Yan, J. and El Ahmad, A. S. 2008. A low-cost attack on a
Microsoft CAPTCHA. In ACM CCS'2008, 543-554.

[10] Yan, J. and El Ahmad, A. S. 2008. Usability of CAPTCHAs or
usability issue in CAPTCHA design. In Proc. 4th Symposium
on Usable Privacy and Security (2008), 44-52.

[11] Chew, M. and Tygar, J. D. 2004. Image Recognition
CAPTCHAs. In Proc. 7th Info. Security. LNCS 3225, 268-279.

[12] Rui, Y. and Liu, Z. 2004. ARTiFACIAL: Automated reverse
Turing test using FACIAL features. Multimedia Systems 9
(2004), 493–502.

[13] Datta, R., Li, J., and Wang, J. Z. 2005. IMAGINATION: A
robust image-based CAPTCHA Generation System. In ACM
Multimedia 2005, 331-334.

[14] IMAGINATION demo system.
http://goldbach.cse.psu.edu/s/captcha/

[15] Elson, J., Douceur, J. R., Howell, J., and Saul, J. 2007. Asirra:
a CAPTCHA that exploits interest-aligned manual image
categorization. In ACM CCS’2007, 366-374.

[16] Gossweiler, R., Kamvar, M., and Baluja, S. 2009. What’s up
CAPTCHA? a CAPTCHA based on image orientation. In
WWW’2009, 841-850.

[17] Kluever, K. A. and Zanibbi, R. 2009. Balancing usability and
security in a video CAPTCHA. In Proc. Symp. Usable Privacy
and Security, (2009).

[18] Chellapilla, K., Larson, K., Simard, P., and Czerwinski, M.
2005. Computers beat humans at single character recognition
in reading-based Human Interaction Proofs. In 2nd Conference
on Email and Anti-Spam (CEAS'05), 2005.

[19] Chellapilla, K., Larson, K., Simard, P., and Czerwinski, M.
2005. Building Segmentation Based Human-friendly Human
Interaction Proofs. In 2nd Int’l Workshop on Human
Interaction Proofs, Springer-Verlag, LNCS 3517, 2005.

[20] Chellapilla, K., Larson, K., Simard, P., and Czerwinski, M.
2005. Designing Human Friendly Human Interaction Proofs
(HIPs). In Proc. of the SIGCHI Conf. on Human Factors in
Computing Systems (CHI’05). 711-720.

[21] Ahn, L. von. 2005. Human Computation. Ph. D. dissertation,
Carnegie Mellon University, CMU-CS-05-193.

[22] http://www.yuniti.com/register.php.

[23] Rui, Y., Huang, T. S., and Chang, S.-F. 1999. Image retrieval:
current techniques, promising directions, and open issues. J.
of Visual Comm. & Image Representation, 10, (1999), 39-62.

[24] Golle, P. 2008. Machine learning attacks against the Asirra
CAPTCHA. In ACM CCS’2008, 535-542.

[25] Zhu, B. B., LI, Q., Liu, J, and Xu, N. Machine learning attacks
on ARTiFACIAL. 2010. Submitted for publication.

[26] Zhang, W., Sun, J., and Tang, X. 2008. Cat head detection -
how to effectively exploit shape and texture features. In Proc.
ECCV 2008, Part IV, LNCS 5305 (2008), 802–816.

[27] Sun, J., Yuan, L., Jia, J., and Shum, H.-Y. 2005. Image
completion with structure propagation. In Int. Conf. Computer
Graphics and Interactive Techniques, (2005). 861-868.

[28] Deng, Y. and Manjunath, B. S. 2001. Unsupervised
segmentation of color-texture regions in images and video.
IEEE Trans Pattern Analysis and Machine Intelligence, 23(8)
(2001), 800-810.

[29] Liu, T., Sun, J., Zheng, N. N., Tang, X., and Shum, H-Y.
2007. Learning to detect a salient object. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, (2007) 1-8.

[30] Lowe, D. 2004. Distinctive image features from scale-
invariant keypoints. Int. J. of Computer Vision. 60 (2), 91-110.

[31] Nielsen, J. 2003. Usability 101: Introduction to Usability.
http://www.useit.com/alertbox/20030825.html.

[32] Ng, T.-T., Chang, S.-F., Lin, C.-Y., and Sun, Q. 2006. Passive-
blind image forensics. Chapter 15, Multimedia Security

200

Technologies for Digital Rights Management, edited by Zeng,
W., Yu, H., and Lin, C.-Y., Academic Press, (2006), 383-412.

[33] Gloe, T., Kirchner, M., Winkler, A., and Böhme, R. 2007. Can
we trust digital image forensics? In ACM Multimedia 2007,
78-86.

[34] Wu, Q., Sun, S. J., Zhu, W., and Li, G. H. 2009. Identification
of inpainted images and natural images for digital forensics.
Journal of Electronics (China), 26 (3) (2009), 341–345.

[35] Canny, J. 1986. A computational approach to edge detection.
IEEE Trans. Pattern Analysis and Machine Intelligence, 8
(1986):679-714.

9. APPENDIX

9.1 Line Segment Detection
The following two-step procedure is applied to the binary edge image

vhbinI
−

 obtained in Section 3.2.1.1 to find all the potential vertical and

horizontal line segments.

• Tracing step. For the horizontal direction, we scan each row from left
to right to search connected edge points. A line segment tracing ends
when a gap occurs or the edge point drifts away from the current line
segment’s row index estimated by averaging the traced points. A
similar operation is applied for the vertical direction. The result of this
step is a collection of short horizontal and vertical line segments.

• Clustering step. In this step, the line segments from the previous step
are divided into different subsets with an online clustering algorithm
according to adjacency. The online clustering algorithm for horizontal
line segments works as follows.

Online Segments Clustering Algorithm
Input: A set of short horizontal line segments
1. For each new arrived line segment, find its nearest cluster in the

current cluster set 3 = {3�, 3�, … , 36} . If 3 is empty or the nearest
distance exceeds a threshold σ, a new cluster 36�� is generated.
Otherwise the line segment is added to the nearest cluster 3#.

2. Update the row index for each 3#. The row index of 3# is calculated
by averaging the row index weighted by the line length on all the
members in 3#.

3. For each cluster in 3, sort its line segments by their left end points.
Merge two line segments if their horizontal gap is within a tolerance
threshold 8*.

4. Recalculate the row index for each line segment by minimizing the
average distance to adjacent binary horizontal edge points.

Output: Final horizontal line segments

9.2 Cleansing and Ranking Rectangles
Candidate rectangles are processed and ranked according to the following
visual cues executed in the order of their presentation in this section.

9.2.1 Edge Intensity Cue
The first cue is the edge intensity on each side of a rectangle, which
indicates how visible the rectangle is. This cue is useful to find a true image
rectangle since at least one constituent image should be easily perceived by
humans. It is worth noting that false boundaries generated by the dithering
process tend to be weak enough to avoid confusing humans.

Given a boundary 9 of : points, the edge intensity cue along 9 is defined as
follows:

;"#<(#$"<=�9� = >�
6∑ &�?@AB�C�?�6D%� ; 				? ∈ 9, (2)

where &�?@AB� is the edge intensity of the nearest local maxima ?@AB to
location ? along the perpendicular direction. This intensity is capped by a
maximum value &<� . The weight function C�?� takes into account the
distance G between ? and ?@AB:

C�?� = H1 − J)�D,	DKLM�)KLM N� ; 			G�?, ?@AB� < G@AB0,																	PQℎRSCTUR , (3)

Where G@AB is the maximum distance to search for the nearest local
maxima, and G�V, W� is the distance between two points V and W. Rectangles
with at least one side whose ;"#<(#$"<= is smaller than a threshold are

removed from the list of candidate rectangles.

9.2.2 Traversing Object Cue
A true image region boundary does not have any traversing object while a
false one may have since dithering may not make a traversing object
disappear. The following steps are applied to find traversing objects.

The canny edge detection [35] with an adaptive threshold is applied to each
color channel, and the results from the color channels are properly aligned
and merged. Vertical and horizontal line segments are not considered as part
of an object to avoid interference from the true or false image boundaries.
Then the edge density on each side of a rectangle boundary is calculated in
the same way as that described next in Appendix 9.2.3. No traversing object
cue is applied to the boundary if the edge density on either side is too large
to avoid mismatched objects across the boundary, or if there is no contour
long enough on either side. Otherwise contour segments along the boundary
are searched and matched in the following way: for each contour segment
long enough along the boundary, contour segments on the other side of the
boundary are searched, and a matched contour is found if 1) both contour
segments have adjacent ending points; 2) the contour segment to be
matched is also long enough; 3) the two contour segments are smooth
enough across the boundary. If two matched contour segments across the
boundary are found, they form a traversing object.

If a traversing object is detected along a boundary, the boundary is
presumed to be false, and all the associated rectangles are removed from the
set of candidates.

9.2.3 Edge Density Variation Cue
If the textures on both sides of a boundary are very different and the change
of texture aligns with the boundary, the boundary is likely to be a true image
region boundary. We use edge density as a measure of texture. Edge density
variation across the boundary is our third cue. The edge density in a
rectangle area X is defined as follows:

	Y�X; 8� = ∑ Z[\�]L^^�B,=;_�M\�`MaM\�,b\�`bab\��B\��B\���=\��=\�� , (4)

CℎRSR	&!"#�Acc is the binary edge map after applying a threshold 8 on the
total edge image &()*(. Dithering may cause edges on one side less visible

than the other side. A uniform threshold may result in significantly fewer
edges on one side. This problem can be addressed by applying a different
threshold	on each side of the boundary, 8�on one side and 8� on the other.
The edge density variation is calculated as follows:

;dAe"A<"f#�9� = |h�i�;	_����i�;	_��|h�i�;	_���h�i�;	_�� (5)

Thresholds 8�and 8� are chosen to minimize Eq. (5) under the following
conditions:

1) Both 8�and 8� are larger than a minimal threshold value 8@"# and
their difference is within a range: |8� − 8�| ≤ Δ;

2) At least one side has its edge density larger than a minimum edge
density unless 8@"# is reached.

If the minimum edge density variation across a boundary ;@"#is large than a
threshold ;<�, the boundary is presumed to be a true image region boundary
and is assigned a confidence value of 1. A boundary that is a part of the
boundary of the composite image is also assigned a confidence value of 1.

Other boundaries are each assigned a confidence value of
kK\�klm ∗ 0.9, where

;@"# ≤ ;<�. The confidence of a rectangle is the average of the confidences
of its four side boundaries.

