Worry-Free Database Upgrades: Automated Model-Driven
Evolution of Schemas and Complex Mappings

James F. Terwilliger
Microsoft Corporation

ABSTRACT

Schema evolution is an unavoidable consequence of the ap-
plication development lifecycle. The two primary schemas in
an application, the client conceptual object model and the
persistent database model, must co-evolve or risk quality,
stability, and maintainability issues. We present MoDEF,
an extension to Visual Studio that supports automatic evo-
lution of object-relational mapping artifacts in the Microsoft
Entity Framework. When starting with a valid mapping be-
tween client and store, MoDEF translates changes made to
a client model into incremental changes to the store as an
upgrade script, along with a new valid mapping to the new
store. MoDEF mines the existing mapping for mapping pat-
terns which MoDEF reuses for new client artifacts.

Categories and Subject Descriptors

D.2.2 [Design Tools|: Evolutionary Prototyping; D.2.12
[Interoperability]: Data Mapping

General Terms
Algorithms, Theory

Keywords

Schema evolution, model management, O-R mapping

1. INTRODUCTION

Object-Relational Mapping systems (ORMs) have become
a popular, if not essential, tool for programmatic access to
persistent data. In any ORM system, there are three arti-
facts: a model of the client (usually including object inheri-
tance), a model of the store (i.e., a relational database), and
a mapping between the two. As an application evolves over
its life cycle, its client model may change, so the store model
and mapping must adapt as well both to maintain the valid-
ity of the mapping and to ensure that sufficient constructs
are available in the store to persist client objects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’10, June 6-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

Philip A. Bernstein
Microsoft Research
james.terwilliger@microsoft.com phil.bernstein@microsoft.com

1191

Adi Unnithan
Microsoft Corporation
adi.unnithan@microsoft.com

Some ORM tools have infrastructure that handles auto-
matic versioning, a key part of the evolution problem. Ruby
on Rails [6] has migration features that allow an application
that expects version X but detects a database with version Y
to automatically invoke a script that migrates the database
from version Y to version X.

Our system solves an orthogonal problem: how to gen-
erate the versioning scripts. The mapping used by Active
Record in Rails is trivial; the model and database are always
version aligned because the model is inferred by convention
from the database. If the ORM supports non-trivial map-
pings between the client and store (e.g., [2, 5]), it takes man-
ual effort to determine a proper store migration for a given
client model evolution. Non-trivial mappings arise when the
mapping language is flexible, thereby allowing the DBA to
optimize performance by choosing the best mapping pattern
for a workload. The more complicated the pattern, the more
delicate the task is of choosing a store migration that will
preserve the pattern when new constructs are added.

In this demonstration, we present MoDEF (Model-Driven
Entity Framework), a Microsoft Visual Studio extension.
Visual Studio ships with a designer to construct client mod-
els for use with the Entity Framework (EF), an ORM with
flexible mapping capabilities [5]. The designer allows a de-
veloper to build a client model and manually map it to an
existing store, or to use a pre-defined mapping scheme to
generate a new database schema. Our extension captures
changes made to a client model and updates the mapping
and store model without additional user input. The result is
a new model that correctly persists the new client model, a
new valid mapping derived from the previous mapping and
consistent with its mapping patterns, and a script that up-
grades a database instance in-place. Thus MoDEF enables
true model-driven design, where the model evolves during
application development.

A prominent feature of the Entity Framework is its flexible
mapping language with firmly grounded semantics. Given
that flexibility, each construct that is added to a client model
can have many different valid mappings to storage. A dis-
tinguishing feature of MoDEF is that it can mine an O-R
mapping for patterns, and then create storage and mappings
for new client constructs that are consistent with those pat-
terns. This feature enables a user to add new constructs to
a client model without specifying the mapping, regardless of
the complexity of the existing mapping to storage.

Because client-side changes are tracked as they occur,
MoDEF can provide more informed schema evolutions than
would be possible by taking a difference between client ver-

sions. For instance, MoDEF recognizes entity type and
property renaming as it occurs in Visual Studio when initi-
ated by the developer. A tool that compares two different
versions of a client model would only recognize that one en-
tity type or property had been removed from the previous
version, while a new one was added to the new version. As
a more complex example, MoDEF allows one to refactor a
client model by moving a property across inheritance, which
would ordinarily be also recognized as a dropped and added
property and result in a script that drops data.

In a large company and for large applications, a database
administrator may be the final gateway to the product. The
upgrade script produced by MoDEF is punctuated by com-
ments that correlate fragments of the script with the client
model change that generated it, thus conveying intent to a
DBA who may want to tune the script and enabling com-
munication between the DBA and the developer. As the
requirements for an application change, MoDEF allows the
developer to modify the application as needed, then provide
the DBA with the necessary scripts and provenance infor-
mation to manage the database effectively as well.

In Section 2, we outline our demonstration of MoDEF
with model-driven schema evolution scenarios. We give a
brief overview of EF and technical details of MoDEF in Sec-
tion 3. Section 4 describes an example client-driven evolu-
tion. Finally, Section 5 covers related and future work.

2. WHAT WILL BE DEMONSTRATED

The demo shows how MoDEF automatically handles sev-
eral typical model and mapping evolution scenarios. It be-
gins with one of three different starting points:

e Empty models and mapping, which arises when a new
application is constructed entirely model-first

e A client model and mapping generated by reverse-
engineering a database, such as when an application
is constructed from an existing database [3]

e A hand-created mapping from an existing client to an
existing store for optimal physical performance

Regardless of the starting point, we begin the demo with
a client model, a store model, and a valid mapping between
them. We then lead MoDEF through several typical model-
driven evolution activities, including the following;:

e Add a new entity type, either as a child of an existing

type or the root of a new hierarchy

e Add a new association between entity types

e Add a new property to an entity type, both where the
property is nullable and where it must have a value

e Rename an existing entity type or property

e Drop an existing entity type, property, or association

Refactor a one-to-one association between two entity

types into an inheritance relationship (Figure 1)

e Move an entity type property to its parent or to a child

In the case of adding a new non-nullable property to an
entity type, we assign a default value that is set for all ex-
isting instances of entity types. This default need not be
the same as the ordinary default value that is set for new
instances. For clarity, we call the value assigned to new in-
stances the default value, and the value assigned to existing
instances the inherited value.

1192

4+ publisher =])

| | #: pub_info A
L o i
1| X Delete
1= Properties = Properties
€ pubid Select » 9 puby o
= pub_i _ pui_t
2 pub_name |&] Show in Medel Browser = logo
=ity Update Model from Database... = prinfo
5 state = Mavigation Properties

Benerate Database from Model...

= Navigation Properties = ”

B < 2 Add Code Generation Item... = publisher

2 pub_info e .
Refactor Association into Inheritance...

Figure 1: Refactoring association into inheritance

MoDEF keeps a log of actions as they occur on the En-
tity Framework design surface. The log is persisted to disk
whenever the active model is saved; if Visual Studio is closed
without saving changes, the log is discarded. When the de-
veloper is ready to construct a new version of the database,
the developer selects the “Generate database from model”
menu option, at which time the developer can choose to
generate a new database or create an upgrade script from
the log. MoDEF then processes the change log items, which
are atomic actions expressed against the client model, and
translates them into changes against the store model and
the mapping. The next section describes these actions and
their translation in more detail.

3. TECHNICAL DETAILS

EF is an ORM system whose mappings are equations be-
tween queries. Given a client (object) model C' and a store
(relational) model S, a mapping M is expressed as a collec-
tion of mapping fragments. Each mapping fragment takes
the form “Qc = Qs,” where Q¢ and Qs are select-project
relational algebra queries over C' and S respectively. EF
compiles mapping fragments into views that describe how
to move data between client and store schemas.

EF mappings are flexible enough to handle the three main
hierarchy mapping schemes: Table-per-Type (TPT), Table-
per-Concrete Class (TPC), and Table-per-Hierarchy (TPH).
EF also allows multiple schemes to be used within a single
hierarchy, hybrid approaches that blend the paradigms, and
horizontal and vertical partitioning of client entity sets.

When adding a new property, entity type, or association
to a client model, there are many possible mappings to per-
sist the new client data. For example, suppose one adds
entity type E to a hierarchy currently mapped entirely us-
ing a TPT scheme. One can map E to its own table without
re-mapping inherited properties (consistent with TPT), or
re-map properties inherited from only E’s parent (a TPT-
TPC hybrid), or map FE to the same table as E’s parent (thus
creating a small TPH scheme of just E and its parent).

MoDEF automatically maps new client model constructs
in a fashion consistent with existing mapped constructs,
which the user can override if desired. If there is no sin-
gle consistent mapping scheme among mapped constructs,
MoDEF examines schema elements that are the most “simi-
lar” to the new construct. For a newly added entity type E,
MoDEF assigns a similarity value to each entity type in E’s
hierarchy based on its location in the hierarchy relative to F.
The similarity value formalizes some abstract notions such
as F is more similar to its siblings than its cousins, more
similar to its parent than its grandparent, etc. If using the
most familiar mapped model constructs still cannot yield a

Client Store

(4 Thing A1) (9 student %)) TPersonTp="S"
&4 > %
| =¥ Person |
‘ = Scalar Properties = Sc_alur Properties ! TEntity
B I < S | S > ¢ m
5 Mame | # Navigation Properties | EName
- *§ *%7 Y
@2 Company (A1) (@2 Pperson &) Lo TPerson
= Thing = Thing % Ie po
= Scalar Properties =l Scalar Properties TCorp DOB
7 Contact 75 DoB ¢ D Grade
® MNavigation Properties & Navigation Properties Came T
TPerson.Tp = “P” A A
(a) (b)

Figure 2: An example pair of client (a) and store
(b) models, with a mapping between them. The left
“parenthesis” is to indicate that the mapping line
from Thing goes behind the Student entity type

Table 1: The mapping relation for the models and
mapping in Figure 2 (column CC not shown, since
the mapping has no client conditions)

CE CcP ST SC sX K D

Thing ID TEntity | EID — Yes Guid
Thing Name TEntity | EName | — No Text
Company | ID TCorp BID — Yes Guid
Company | Contact | TCorp CName | — No Text
Person 1D TPerson | PID Tp=P | Yes Guid
Person DOB TPerson | DOB Tp=P | No Date
Student ID TPerson | PID Tp=S | Yes Guid
Student DOB TPerson | DOB Tp=S No Date
Student Class TPerson | Grade Tp=S | No Text

consistent scheme — for instance, if F has only two siblings,
where one is mapped TPC and the other TPT — MoDEF
relies on a user-specified default to generate the new store
constructs and mapping. We believe this scenario to be rare
in practice. The default is also used if the new entity type
is the root of a new hierarchy, and thus there is no mapping
information to mine.

Internally, MoDEF translates an EF mapping M into a
mapping relation M(CE,CP,CX,S8T,SC,SX, K, D) with the
following attributes:

e CE,CP,CX: Client entity type, property, conditions
e ST,S8C,S8X: Store table, column, conditions

e [C: a flag indicating if the property is part of the key
e D: The domain of the property

The mapping relation is a pivoted form of an EF mapping,
where each row represents a property-to-property mapping
for a given set of conditions. Table 1 shows the mapping
relation for the models and mapping in Figure 2.

In the mapping relation, each mapping scheme manifests
itself as an invariant. Given a mapping relation M, if the
hierarchy Hg for entity type E is mapped using TPT and
®(F) is the set of entity types in Hg limited to those that
meet a similarity threshold, then the following must hold:

1. All entity types are mapped to distinct tables. For
each pair of entity types E', E” € ®(E), E' # E":

TsEOcE=p M NTspocp—prM =

1193

2. Non-key properties are never re-mapped in derived en-
tity types. For each property P in each entity type
E' € &(E):
|0~k OCP=POCE=E'VCE inherits from B2M]| =1

In Table 1, Thing, Company, and Person satisfy the TPT
invariants. When a user adds a child entity type to Thing,
MoDEF adds it with a TPT-style mapping by adding a ded-
icated table and not re-mapping inherited properties.

When one adds new client schema constructs, MoDEF
issues queries against M to determine which invariants hold.
In essence, it mines an EF mapping in search of mapping
schemes. MoDEF supports the TPT and TPC schemes for
hierarchy mapping, plus the following:

e Hybrids between TPT and TPC

e TPH, where all properties for all entity types map to
distinct columns

TPH, where properties may share a column if they
have the same name and type (this scheme is how Ruby
on Rails maps hierarchies)

TPH, where properties may share a column if they
have the same type (minimizing column count)

Any of the above TPH schemes, where there is no dis-
criminator column (type membership is determined by
the presence or absence of values)

Consistent horizontal partitioning, i.e., all entity types
are partitioned on a particular property’s value
Patterns of store-side conditions on mapping fragments,
which can be used to assign constant values on insert

Handling renamed or dropped constructs is much simpler
than handling added constructs. When an entity type, prop-
erty, or association is dropped, MoDEF removes all rows in
the mapping relation that refer to the dropped object, and
any store objects that become unmapped. Renames propa-
gate through the mapping any time the renamed client con-
struct and its mapped store construct have the same name.

MoDEF supports refactoring an association into an inher-
itance relationship by treating the association as if it were a
TPT relationship that has not been identified yet. A 1-1 as-
sociation along a foreign key is exactly how the TPT scheme
represents inheritance in a relational database. Thus, the
refactoring leaves the store unchanged and alters the map-
ping to institute the inheritance on the client side.

MoDEF also supports refactoring a client model by mov-
ing a property of an entity type to that entity type’s par-
ent or to one of its children. Movement of a property from
an entity type to its parent is lossless, whereas moving the
property to a child will delete any data in that property for
instances that do not belong to the new entity type. For
TPT, MoDEF adds a new column to the destination table
(corresponding to the property’s destination entity type),
moves all applicable data across the foreign key linking the
two tables, and drops the old column. For TPC and TPH, no
data movement or column modification is necessary, though
individual data values may be deleted if no longer applicable
or set to a default value if the property is non-nullable and
instances already exist of the destination entity type.

4. EXAMPLE EVOLUTION

When one selects the “Generate database from model”
command in MoDEF, the resulting SQL script is punctu-
ated by comments that describe the client-side action that

-- Add property ‘CE0’ to entity type ‘Company’
ALTER TABLE [TCorp] ADD COLUMN [CEQ] varchar(40);

-- Add property ‘Major’ to entity type ‘Student’
with inherited value ‘General Studies’

ALTER TABLE [TPerson]
ADD COLUMN [Major] varchar(50);

UPDATE [TPerson] SET [Major] = ‘General Studies’
WHERE [Tp] = ‘S’;

-- Rename property ‘DOB’ of entity type ‘Person’
to ‘BDay’
EXEC sp_rename ‘TPerson.DOB’, ‘BDay’, ’COLUMN’;

-- Move property ‘Contact’ of entity type
‘Company’ to entity ‘Thing’
ALTER TABLE [TEntity]
ADD COLUMN [CName] varchar(50);
UPDATE [TEntity] SET [CNamel child. [CName]
FROM [TEntity] as parent
LEFT OUTER JOIN [TCorp] as child
ON parent.EID = child.CID
ALTER TABLE [TCorp] DROP COLUMN [CName];

Figure 3: An example of punctuated SQL, the result
of incremental updates to the model in Figure 2

Store

(G2 Thi BY om— ugn
A F @2 swdent 7 LTRerson.Tp =S
— = Person :
= Sealar Broperties S TEntity :
i --j;aar roperties g e G@T—i \V4
- W Class
4 Name g EName
5 Contact Z Major . [Jperson
_ e 7 PO
it 7 [¥ BDay
@2 Company }1‘)| (G4 peson (&) TCol Grade
1 : 2 o Z rp
» = Thing | . = Thing B ™
= Scalar Properties = Scalar Properties cEo Major
FCEQ 4 BDay = A
: . TPerson.Tp.=. R/ :

Figure 4: The client and store models after the

changes in Figure 3

generated a given fragment of the script. Figure 3 shows
the result of doing four incremental changes to the client
model shown in Figure 2: two added properties (one with
an inherited value), a renamed property, and a moved prop-
erty. After these changes have been made, the client and
store models are as shown in Figure 4, and the mapping is
as shown in Table 2.

5. RELATED WORK AND FUTURE WORK

A wealth of research has been done on schema evolu-
tion [7], but very little has been done on co-evolution of
schemas connected by a mapping. One prominent exam-
ple is MeDEA, which uses manual specifications of update
policies [1]. For each change to the client schema and for
each mapping, one can manually specify policies that pre-
scribe the effect on the store. The advantage that MoDEF
provides is that one does not need to specify any policies
manually, other than a single global default scheme; the de-
veloper uses the existing tools provided with Visual Studio
in the normal way.

1194

Table 2: The mapping relation from Table 1 after

applying the changes from Figure 3

CE cP SE SP SC K D

Thing ID TEntity | EID — Yes Guid
Thing Name TEntity | EName | — No Text
Thing Contact | TEntity | CName | — No Text
Company | ID TCorp BID — Yes Guid
Company | CEO TCorp CEO — No Text
Person 1D TPerson | PID Tp=P | Yes Guid
Person BDay TPerson | BDay Tp=P | No Date
Student ID TPerson | PID Tp=S | Yes Guid
Student BDay TPerson | BDay Tp=S | No Date
Student Class TPerson | Grade Tp=S | No Text
Student Major TPerson | Major Tp=S | No Text

The Both-As-View (BAV) federated database language
can express non-trivial mappings between schemas, though
it does not handle inheritance [4]. For some schema changes
(to either schema in BAV), either the mapping or the other
schema can be adjusted to maintain validity. Many cases
require manual intervention for non-trivial mappings.

Two cases of schema evolution have been considered in
data exchange, one on incremental client model changes [8],
and one where evolution is represented as a mapping [9].
Both cases focus on “healing” the mapping between schemas,
leaving the non-evolved schema invariant. New client con-
structs do not translate to new store constructs, but rather
add quantifiers or Skolem functions to the mapping, which
means client constructs do not receive any persistence.

A prominent feature of EF is that it compiles mapping
fragments into views that describe how to translate data
from a store model into a client model and vice versa. An ac-
tive area of our research is to translate incremental changes
to a model into incremental changes to these compiled views.

REFERENCES

E. Domingueza, J. Lloret, A. L. Rubio, and M. A.
Zapata. Evolving the Implementation of ISA
Relationships in EER Schemas. ER Workshops 2006,
LNCS 4231.

Hibernate. Available at http://www.hibernate.org/.
A. Malpani, P. A. Bernstein, S. Melnik, and J. F.
Terwilliger. Reverse Engineering Models from
Databases to Bootstrap Application Development.
ICDE 2010.

P. McBrien and A. Poulovassilis. Schema Evolution in
Heterogeneous Database Architectures, a Schema
Transformation Approach. CAiSE 2002.

S. Melnik, A. Adya, and P. A. Bernstein. Compiling
Mappings to Bridge Applications and Databases.
ACM TODS 33(4) (2008).

Ruby on Rails. http://rubyonrails.org/.

E. Rahm and P. A. Bernstein. An Online Bibliography
on Schema Evolution. SIGMOD Record 35(4), 2006.
Y. Velegrakis, R. J. Miller, and L. Popa. Preserving
Mapping Consistency Under Schema Changes. VLDB
Journal, 2004, 13(3).

C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings When Schemas Evolve. VLDB 2005.

6.
1]

[9]

