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Abstract—Ownership is a key aspect of large-scale software development. We examine the relationship between different ownership

measures and software faults/failures in three large software projects drawn from different process domains: Windows Vista, the

Eclipse Java IDE, and the Firefox Web Browser. We find that in all cases, measures of ownership such as the number of low-expertise

developers, and the proportion of ownership for the top owner have a relationship with both pre-release faults and post-release failures.

However, we find that the strength of the effects is related to the development process used. Vista shows the strongest relationship

with ownership level, followed by Eclipse, and then Firefox, suggesting that the more that a project uses an open source style process,

the more that team sizes rather than ownership levels affect to failures. We also find reasons that low-expertise developers make

changes to components and show that the removal of low-expertise contributions dramatically decreases the performance of contribution

based defect prediction. Finally we provide recommendations for source code change policies and utilization of resources such as code

inspections based on our results.

Index Terms—Empirical Software Engineering, Ownership, Expertise, Defects
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1 Introduction

Many recent studies [1]–[4] have shown that human
factors play a significant role in the quality of

software components. Ownership is a general term used
to describe whether one person has responsibility for a
software component, or if there is no one clearly responsible
developer. There is much folklore relating to the effect of
ownership on quality. For instance, Raymond claims that in
Open Source Software (OSS), despite rather disorganized
and dispersed ownership, high quality software is still
produced [5]. Within Microsoft, we have found that when
more people work on a binary, it has more failures [2], [6].
However, to our knowledge, the effect of ownership has not
been studied in depth in commercial and OSS contexts.
We suspect that when there is no clear point of contact
and the contributions to a software component are spread
across many developers, there is an increased chance of
communication breakdowns, misaligned goals, inconsistent
interfaces and semantics, all leading to lower quality.

Interestingly, unlike aspects of software which are known
to be related to defects such as churn, dependency complex-
ity, or size, ownership is something that can be deliberately
changed by modifying processes and policies. Thus, the
answer to the question: “How much does ownership affect
quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
effect, then policies to enforce strong code ownership can
be put into place; managers can also watch out for code
which is contributed by developers who have inadequate
relevant prior experience. If ownership has little effect, then
the normal bottlenecks associated with having one person
in charge of each component can be removed, and available
talent reassigned at will.

However, our experience is that different projects use
different processes, and the effects of ownership may well
be related to the development style of a particular project.
Specifically, we have observed that many industrial projects
encourage high levels of code ownership while open source
projects tend to be somewhat more open. In this paper, we
examine ownership and software quality in projects with
varying software processes and different policies regarding
ownership. We make the following contributions in this
paper:

1) We present an in depth quantitative study of the
effect of multiple measures of ownership on pre-release
and post-release defects for multiple large software
projects.

2) We deliberately examine projects with different soft-
ware processes and policies in an effort to see how
they are related to the effects of ownership.

3) We identify reasons that components have many low-
expertise developers contributing to them.

4) We propose recommendations for dealing with the
effects of low ownership in contexts where ownership
is strongly related to software quality.

2 Theory & Related Work
A number of prior studies have examined the effect of
developer contribution behavior on software quality.

The closest work to ours that we are aware of is that
of Weyuker et al. [7], that examines the effect of including
team size in prediction models. They use a count of the
developers that worked on each component, but do not
examine the proportion of work, which we account for. They
found a negligible increase in failure prediction accuracy
when adding team size to their models.

Similarly, Meneely and Williams examined the relation-
ship of the number of developers working on parts of the
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Linux kernel with security vulnerabilities [8]. They found
that when more than nine developers contribute to a source
file, it is sixteen times more likely to include a security
vulnerability.

Compared to the current state of the art in code
ownership we observe that to the best of our knowledge
there has been little or no empirical work on assessing
the impact of owners on code quality. New methods like
Extreme Programming (XP) [9] profess collective code
ownership but there has been no empirical evidence or
backing of this data on reasonably mature/complex or
large systems. Our study is the first to empirically quantify
the effect code owners (and low-expertise contributors)
have on the overall code quality.

Domain, application, and even component-specific knowl-
edge are important aids for helping developers to maintin
high quality software. Boh et al. found that project specific
expertise has a much larger impact on the time required
to perform development tasks than high levels of diverse
experience in unrelated projects [10]. In a qualitative study
of 17 commercial software projects, Curtis et al. [11] found
that “the thin spread of application domain knowledge”
was one of the top three salient problems. They also found
that one common trait among engineers categorized as
“exceptional” was that they had deep domain knowledge,
and understood how the system design would generate
the system behavior customers expected, even under
exceptional circumstances. Such knowledge is not easily
obtained. One systems engineer explained, “Someone had
to spend a hundred million to put that knowledge in my
head. It didn’t come free.”

The question naturally arises, how can we determine who
has such domain knowledge? Fortunately, there is a wealth
of literature that uses the prior development activity on a
component as a proxy for expertise and knowledge with
respect to the component. As examples Expertise Browser
from Mockus et al. [12] and Expertise Recommender from
McDonald and Ackerman [13] both use measures of the
amount of work that a developer has performed on a
software component to recommend component experts.
Fritz et al. found that the ability of a developer to answer
questions about a piece of code in a system was strongly
determined by whether the developer had authored some
of the code, and how much time was spent authoring it [14].
Mockus and Weiss found that changes made by developers
that were more experienced with a piece of code were less
likely to induce failures [15]. In a study of offshoring and
succession in software development [16], Mockus evaluated
a number of succession measures with the goal of being able
to automatically identify mentors for developers working
on a per-component basis. A succession measure based on
ownership was able to accurately pinpoint the most likely
method and was used in a large scale study evaluating
the factors affecting productivity in project succession and
offshoring.

Research in other domains, such as manufacturing, has
found that when a worker performs a task repeatedly, the
labor requirements to complete subsequent work in the

same task decreases and the quality increases [17]. Software
development differs from these domains in that workers
do not perform the exact same task repeatedly. Rather,
software development represents a form of constant problem
solving in which tasks are rarely exactly the same, but
may be similar. Nonetheless, developers gain project and
component specific knowledge as they repeatedly perform
tasks on the same systems [18]. Banker et al. found that
increased experience increases a developer’s knowledge of
the architectural domain of the system [19]. Repeatedly
using a particular API, or working on a particular system
creates episodic knowledge. Robillard indicates that the
lack of such knowledge negatively affects the quality of
software [20]. Indeed, Basili and Caldiera present an
approach for improving quality in software development
through learning and experience by establishing“experience
factories” [21]. They claim that by reusing knowledge,
products, and experience, companies can maintain high
quality levels because developers do not need to constantly
acquire new knowledge and expertise as they work on
different projects. Drawing on these ideas, we develop
ownership measures which consider the number of times
that a developer works on a particular component, with
the idea that each exposure is a learning experience and
increases the developer’s knowledge and abilities.

There is a knowledge-sharing factor at play as well. The
set of developers that contribute to a component implicitly
form a team that has shared knowledge regarding the
semantics and design of the component. Coordination
is a known problem in software development [22]. In
fact, another of the top three problems identified in
Curtis’ study [11] was “communication and coordination
breakdowns.” Working in such a group always creates
a need for sharing and integrating knowledge across all
members [23]. Cataldo et al. showed that communication
breakdowns delay tasks [1] If a member of this team devotes
little attention to the team and/or the component, they
may not acquire the knowledge required to make changes to
the component without error. We attempt to operationalize
these team members in this paper and examine their effect
on quality.

If ownership of a particular component in a system
(whether it be a file, class, module, plugin, or subsystem)
is a valid proxy for expertise, then what is the effect of
having most changes made by those with little expertise? Is
it better to have one clear owner of a software component?
We operationalize ownership in two key ways here and
formally define our measures in section 3. One measure
of ownership is how much of the development activity for
a component comes from one developer. If one developer
makes 80% of the changes to a component, then we say that
the component has high ownership. The other way that
we measure ownership is by determining how many low-
expertise developers are working on a component. If many
developers are all making few changes to a component, then
there are many non-experts working on the component and
we label the component as having low ownership.
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We expect that having one clear “owner” for a component
will lead to fewer failures and that when many non-experts
are making changes, indicating that ownership is spread
across many contributors, the component will have more
failures.

Based on our observations and prior work [24], the
management and social organization in an open source
project is more free form than commercial projects, though
clearly still existent, and developers are less constrained to
work in only one portion of the code base (and also, are
not held as responsible for a particular component). Thus,
we expect that the strength of the relationship between
ownership and software quality may differ based on the
development style. We therefore examine ownership in
multiple projects using different styles.

We expect that the relationship of ownership with code
quality will differ with development process.

3 Terminology and Metrics
We adopt Basili’s goal question metric approach [25] to
frame our study of ownership. Our goal is to understand the
relationship between ownership and software quality. We
also hope to gain an understanding of how this relationship
varies with the development process in use. Achievement of
this goal can lead to more informed development decisions
or possibly process policy changes resulting in software
with fewer defects.

In order to reach this goal, we ask a number of specific
questions:

1) Are higher levels of ownership associated with less
defects?

2) Is there a negative effect when a software entity is
developed by many people with low ownership?

3) Are these effects related to the development process
used?

In order to answer these questions, we propose a number
of ownership metrics and use them to evaluate our hypothe-
ses of ownership. We begin by defining some important
terms and metrics used throughout the rest of this paper:

• Software Component – This is a unit of development
that has some core functionality. Defects can be traced
back to a specific component and software changes
from developers can also be traced to a component.
In Windows Vista, a component is a compiled binary
(.exe, .dll, .sys). In Eclipse this is a plugin or top level
package. In Firefox, this represents a set of Java or
C++ files in the same directory, (as used in prior
studies [26]).

• Contributor – A contributor to a software com-
ponent is someone who has made commits/software
changes to the component.

• Proportion of Ownership – The proportion of
ownership (or simply ownership) of a contributor for a
particular component is the ratio of number of commits
that the contributor has made relative to the total num-
ber of commits for that component. Thus, if Cindy has

made 20 commits to org.eclipse.jdt.ui and there
are a total of 100 commits to org.eclipse.jdt.ui

then Cindy has an ownership of 20%.
• Minor Contributor – A developer who has made

changes to a component, but whose ownership is
below 5% is considered a minor contributor to that
component. This threshold was chosen based on
examination of distributions of ownership1. We refer
to a commit from a minor contributor as a minor
contribution.

• Major Contributor – A developer who has made
changes to a component and whose ownership is at
or above 5% is a major contributor to the component
and a commit from such a developer is a major
contribution.

With these terms defined, we now introduce our metrics.

• Minor – number of minor contributors
• Major – number of major contributors
• Total – total number of contributors
• Ownership – proportion of ownership for the contrib-

utor with the highest proportion of ownership

Figure 1 shows the proportion of commits for each of the
developers that contributed to abocomp.dll in Windows
Vista, in decreasing order. This library had a total of 918
commits made during the development cycle. The top
contributing engineer made 379 commits, roughly 41%.
Five engineers made at least 5% of the commits (at least
46 commits). Twelve engineers made less than 5% of the
commits (less than 46 commits). Finally, there were a total
of seventeen engineers that made commits to the binary.
Thus, our metrics for abocomp.dll are:

Metric Value

Minor 12
Major 5
Total 17
Ownership 0.41

4 Hypotheses

We begin with the observation that a developer with lower
expertise is more likely to introduce bugs into the code. A
developer who has made a small proportion of the commits
to a binary likely has less expertise and is more likely to
make an error. We expect that as the number of developers
working on a component increases, the component may
become “fragmented” and the difficulty of vetting and
coordinating all these minor contributions becomes an
obstacle to good quality. Thus if Minor is high, quality
suffers.

Hypothesis 1 - Software components with many minor
contributors will have more failures than a software com-
ponents that have fewer.

1. A sensitivity analysis with threshold values ranging from 2% to
10% yielded similar results.
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Fig. 1: Graph of the proportion of commits to abocamp.dll by developers during the Vista development cycle, showing
the four measures of ownership used in this paper.

We also look at the proportion of ownership for
the highest contributing developer for each component
(Ownership). If Ownership is high, that indicates that
there is one developer who “owns” the component and
has a high level of expertise. This person can also act as
a single point of contact for others who need to use the
component, need changes to it, or just have questions about
it. We theorize that when such a person exists, the software
quality is higher resulting in fewer failures.

Hypothesis 2 - Software components with a high level of
ownership will have fewer failures than components with
lower top ownership levels.

We also expect that the relationship between our mea-
surements of ownership will vary with the development
process used. Corporations like Microsoft, where devel-
opment is more controlled, require developers to work
in specific portions of a large project: this type of work
assignment is key to the governance of large teams, while
maintaining accountability and responsibility. In most OSS
projects, contributors have more freedom to choose their
work assignments and cannot so easily be directed to
work on a specific portion of the project. While Raymond
suggests that OSS has a bazaar-like organization [5], we
have observed that many of the large OSS projects are in
fact organized (though still not as rigidly as in a corporate
setting) and that different participants tend to gravitate
towards specific parts of the system [24]. Thus, although
the OSS projects in our study do not have clear ownership
policies and guidelines as commonly found in industry,
there are gatekeepers for certain parts of the system that
make decisions and vet changes. It is certainly true that
many open source developers are in fact paid to work on
particular projects by their employers; however, rarely does
a single employer maintain full control of the project, and,
in fact, a single project may have contributors that are
sponsored by many employers. Eclipse represents a bit of

an anomaly in that most contributors are employed by one
entity, IBM. We study the “core” Eclipse development
environment and do not include third-party plugins.

Because there is little externally imposed organization,
or explicit code ownership policies, with OSS projects,
developers are less constrained to work in only one portion
of the code base; also, they are not held as responsible
for a particular component. Therefore, in the OSS setting,
we expect that the strength of the relationship between
ownership and software quality will be lower than in
corporate settings.

Hypothesis 3 - The relationship between ownership and
number of software failures will be lower in software projects
that use a more open source style development process.

We take no position on the merits of any development
style; we simply theorize that the effect of ownership on
software quality changes as a result of the development
process.

5 Data Collection and Analysis

This data presents an opportunity to investigate hypotheses
regarding code ownership. In addition, there are also large
and successful Open Source Software (OSS) projects that
make their data readily available for study. Gathering
data from multiple projects that differ in development
style enables us to examine, qualitatively, whether the
relationship between ownership and software quality is a
general phenomenon, or if it is process dependent. In this
study, we examine Windows Vista, the Eclipse Java IDE,
and the Firefox Web Browser.

Windows Vista is controlled and developed completely by
Microsoft, who have processes and policies that favor strong
code ownership. Vista was developed by 2,000+ software
developers and is composed of thousands of individual
executable files (.exe), shared libraries (.dll), and drivers
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(a) A.dll
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Ownership of B.dll by Developers

(b) B.dll

Fig. 2: Ownership graphs for two binaries in Windows Vista

Commercial Open Source

Development Process Spectrum

Fig. 3: Spectrum of development processes from commercial
to open source.

(.sys), which we collectively refer to as binaries. We track
the development history from the release of Windows Server
2003 to the release of Windows Vista and include pre-release
defects as well as post-release failures in the first six months
after release as software quality indicators.

The Eclipse Java IDE is a project developed by IBM.
Although it is technically open source, many of the commits
to it come from IBM employees and IBM appears to
govern much of the project. It thus represents a “hybrid”
project that is largely controlled by one entity, but which
espouses open source principles, making the source code
available under an open source license (the Eclipse Public
License). Eclipse conducts work in the open, accepting
contributions and in some cases, guidance, from the larger
community. Although external contributions are common,
discussions with core members indicate that these are
usually small patches that fix issues rather than complete
additional features, and often require manual editing by
Eclipse developers prior to being accepted into the code
base [27]. We track development activity as well as pre-
and post-release bugs for six major releases: 2.0, 2.1, 3.0,
3.1, 3.2, and 3.3.

The Firefox web browser is more representative of
the open source ecosystem, though clearly there is large
variance in the types of OSS projects and we do not claim

that there is one style of OSS development. Contributions
to Firefox come from a myriad of sources and no
single commercial entity completely controls or owns the
development process2. We track development activity as
well as pre and post-release bugs for two major releases
of Firefox: Release 1.5 (November 2005) and 2.0 (October
2006). During this time, over 500 paid and unpaid people
contributed to the browser.

These three projects form a continuum in the process
domain (Figure 3). Vista is closed source, has rigorous
ownership policies and is wholly controlled by a single
company. Eclipse is more open, accepts contributions
from external entities, and follows a more open source
development methodology, but is still mostly controlled by
IBM. Firefox is a more “traditional” open source project
with repository access open to anyone who demonstrates
competent skills and a desire to contribute to the project.

We require several types of data. The most important
data are the commit histories and software failures. Soft-
ware repositories record the contents of every change made
to a piece of software, along with the change author, the
time of change, and an associated log message that may be
indicative of the type of change (e.g. introducing a feature,
or fixing a bug). For Windows Vista, we collected the
number of changes made by each developer to each source
file and used a mapping of source files to binaries in order to
determine the number of changes made by each developer
to each binary. For Eclipse and Firefox, we mined the
changes from the publicly available CVS repositories. For
Eclipse, we use plugins as the level of granularity for
software components (specifically, JAR files within plugins,
as some plugins are composed of multiple JAR files) because
the quality of the defect data is not as reliable at the source
file level due to the low number of defects that most source
code files have. In addition the majority of bug fixes are
tied to multiple source files, but the same plugin. The
number of plugin JAR files per release ranged from 90
in 2.0 to 250 in 3.3. We used only the plugins that are

2. Although Firefox is still contributed to by people from many
companies, Mozilla Corp now maintains more control. This was not
as true for the historical releases that we examined.
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part the official Eclipse project and exist in the Eclipse
CVS repository. For Firefox, we examined components by
directory structure as used in prior work [26] for similar
reasons. A manual inspection indicated that subsystems
within firefox are reflected in the directory structure.

We used the commit logs and mapping of source files to
software components to categorize contributors into minor
and major contributors on a software component basis and
calculate the ownership level for each component.

We also gathered both pre-release and post-release
software failures for all three projects. For Vista, we
gathered the failures recorded prior to release and in the
first six months after release. Because of the information
contained in the failures, we can automatically trace them
back to the binaries that caused them. For Eclipse, we
mined the bug database and used automated techniques to
link closed bugs in the database to the commits that fixed
them in the software repository [28], [29]. Each bug in the
database includes the date when it was opened and also
the version of Eclipse that the bug occurred in. We use this
information along with the release dates of each version of
Eclipse to categorize bugs into pre-release and post-release.
Of necessity, this only includes bugs that were a) actually
fixed and b) manually attributed in the log message so
that an automated process could identify it. We argue
that the most important bugs are those that are fixed
and thus those that matter the most are being recorded.
In addition, Eclipse has a rigorous policy of manually
attributing bug IDs in their log messages. For Firefox,
the pre and post-release data for the 1.5 and 2.0 releases
was manually obtained by an open source engineer who was
contracted for the purpose of this research study to obtain
the best possible data. We therefore have high confidence
in the failure information. This developer also annotated
each bug with whether it was a pre-release or post-release
failure. For all three projects, we only count failures that
the development team deemed important enough to fix.

Finally, we gathered source code metrics including
various size, complexity, and churn metrics. For Vista, we
gather this information from the source code repositories
and the build process. For Eclipse and Firefox, we gathered
churn from the repository history and size and complexity
by using Understand3, a tool from SciTools which
calculates a number of metrics on C, C++, and Java code.

5.1 Analysis Techniques

We use a number of methods to examine the relationship
between ownership and software quality.

We began with a correlation analysis of both pre and
post-release failures with each of the ownership metrics as
well as a number of other metrics such as test coverage,
complexity, size, dependencies, and churn. The results
indicated that pre and post-release defects had strong
relationships with Minor, Total, and Ownership. In
fact, in Windows Vista, Minor had a higher correlation

3. http://www.scitools.com/products/understand

with both pre (0.86) and post-release defects (0.70) than
any other metric that Microsoft collect!

However, we also observed some relationship between
code attributes and ownership metrics. For example, Fig-
ure 2 shows data for two binaries within Vista with vastly
different ownership profiles. Unsurprisingly, the binary
depicted in Figure 2-b (B.dll) has more failures than
the binary in Figure 2-a (A.dll), eight times as many
pre-release failures and twice as many post-release failures.
However, B.dll is also a larger binary and experienced far
more churn during the Vista development cycle. Thus it
is not clear whether the increase in failures is attributable
to more minor contributors or other measures such as size,
complexity, and churn, which are known to be related to
defects [30], [31] and are likely related to the number of
minor contributors. Prior research has shown that when
characteristics such as size are not considered, they may
affect the validity of other software metrics [32].

To overcome this problem, we used multiple linear regres-
sion, which is primarily used in two different ways. First, it
can be used to make predictions about an outcome based
on prior data (for instance predicting how many failures
a software component may have based on characteristics
of the components). Second, it enables us to examine the
effect of one or more variables when controlling for other
variables. We use it for the latter in an effort to examine
the relationship of our ownership measures when controlling
for source code characteristics such as size, complexity, and
churn. The linear regression model for failures indicates
which variables have an effect on failures, how large the
effect is, in what direction (i.e. if failures go up when a
metric goes up or when it goes down), and how much of
the variance in the number of failures is explained by the
metrics. We compare the amount of variance in failures
explained by a model that includes the ownership metrics
to a model that does not include them. There are many
measures of churn, complexity, and size. However, to avoid
multi-collinearity, we include only one of each measure in
the model; We choose the measure which results in the
best base model. This gives an indication of how much
ownership actually affects software failures. We examined
the improvement in amount of variance in failures explained
by the metrics (commonly referred to as the adjusted R2)
and examine improved goodness of fit using F-tests to
determine if the addition of an ownership metric improves
the model by a statistically significant degree [33].

Linear regression models can be reliably interpreted if
certain assumptions hold. Two key assumptions are that
the residuals are normally distributed, and not correlated
with any of the independent variables. In our analysis, we
found that the distribution of failures was almost always
heavily right skewed. When we transformed the dependent
variable to be the log of the number of failures, the skew
diminished, and the residuals reasonably fit the normality
assumption. This data transformation was applied to all
dependent variables except for post-release failures in Vista,
where linear regression assumptions were met by the raw
data.

http://www.scitools.com/products/understand
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Windows Vista
Model Pre-Release Post-Release

Failures Failures

Base (code metrics) 26% 29%
Base + Minor 46%∗(+20%) 41%∗(+12%)
Base + Total 40%∗(+14%) 35%∗(+6%)
Base + Minor + Ownership 50%∗(+4%) 44%∗(+3%)

TABLE 1: Variance in failures for the base model which
includes standard metrics of complexity, size, and churn,
as well as the models with Minor and Ownership added.
An asterisk∗ denotes that a model showed statistically
significant improvement when the additional variable was
added.

6 Results

We now present and contrast the results of our analy-
sis of Windows Vista, Eclipse and Firefox. Tables 1
and 2 illustrate the results of our analysis. We denote
with an asterisk∗, cases where an goodness-of-fit F-test
indicated that the addition of a variable improved the
model by a statistically significant degree. The value in
parentheses indicates the percent increase in variance
explained over the previous model (the model without
the additional variable added). For example, in Table 1 the
Base+Minor+Ownership model in Vista explains 50% of
the variance in pre-release failures which is 4% more than
the Base+Minor model which explains 46%.

6.1 Windows Vista

We built four statistical models of failures for Windows
Vista (summarized in Table 1). The first model contains
only the classical source code metrics: size, complexity,
and churn. We refer to this as the base model. This
model showed that churn, size, and complexity all have a
statistically significant effect on both pre and post-release
failures. In addition, these metrics are able to explain
26% of the variance in pre-release failures and 29% of
the variance in post-release failures.

In the second model, we added Minor to the set of
predictor variables in the base model. The statistics showed
that Minor is positively related to both pre and post-
release failures to a statistically significant degree. The
addition of Minor increased the proportion of variance
in pre-release failures to 46% and post-release failures to
41%.

Next, we included Total instead of Minor in addition
to the classic variables. This was performed to see if the
total number of developers has a different effect on quality
than the number of minor contributors. The gains shown
by Minor were stronger than those shown by Total for
both types of failures to a statistically significant degree,
indicating that Minor has a larger effect on failures.

Finally, we added Ownership, the level of ownership for
the top contributor, to the second model, which contained
the base code measures and Minor. Ownership was found

Eclipse 3.0

Model Pre-Release Post-Release
Failures Failures

Base (code metrics) 35% 40%
Base + Minor 44%∗(+9%) 48%∗(+8%)
Base + Total 46%∗(+11%) 49%∗(+9%)
Base + Minor + Ownership 48%∗(+4%) 51%∗(+3%)
Base + Total + Ownership 47% (+1%) 51%∗(+2%)

TABLE 3: Variance in failures explained for Eclipse
regression models.

to have a negative relationship with failures to a statistically
significant degree. The addition of this variable increased
the explanatory power of the model, but not as much as
the addition of Minor. We found this despite the order of
adding variables to the model. Minor still showed more of
an effect than Ownership even when it was added second
(not shown). This model explains 50% of variance in pre-
release failures and 44% of variance in post-release failures;
We also observed a similar marginal increase in variance
explained when adding Ownership to the base model.

The results of our analysis of ownership in Windows
Vista can be interpreted as follows:

1) The number of minor contributors has a strong
positive relationship with both pre- and post-release
failures even when controlling for metrics such as size,
churn, and complexity.

2) Higher levels of ownership for the top contributor to
a component results in fewer failures when controlling
for the same metrics, but the effect is smaller than
the number of minor contributors.

3) Ownership has a stronger relationship with pre-release
failures than post-release failures.

6.2 Eclipse

The same regression analysis was conducted on pre- and
post-release defects across six major releases of Eclipse.
Table 3 contains our results from only one release of
Eclipse, chosen because it was most representative of
our findings4 We describe the differences in our Eclipse
models below.

In Eclipse, the addition of Minor to the model always
improved the model’s explanatory power by 4-10% with
regard to pre-release failures and the increase was always
statistically significant. The improvements were between 1
and 8% for post-release failures. However, in many cases,
there was no statistically significant difference between
adding Minor to the model and adding Total, and in a
few cases, Total was better to a statistically significant
degree. Because both Minor and Total had large effects,
but neither was consistently better, we built regression
models for both which also incorporated Ownership (last
two models in Table 3). This addition resulted in a marginal

4. The complete findings can be found at http://wwwcsif.cs.ucdavis.
edu/˜bird/ownership.

http://wwwcsif.cs.ucdavis.edu/~bird/ownership
http://wwwcsif.cs.ucdavis.edu/~bird/ownership
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Firefox 1.5 & 2.0

Release Model Pre-Release Failures Post-Release Failures

1.5

Base (code metrics) 32% 32%
Base + Minor 53%∗(+21%) 36%∗(+4%)
Base + Total 60%∗(+28%) 37%∗(+5%)
Base + Minor + Ownership 58%∗(+8%) 37% (+1%)

2.0

Base (code metrics) 35% 23%
Base + Minor 47%∗(+12%) 26%∗(+3%)
Base + Total 51%∗(+16%) 27%∗(+4%)
Base + Minor + Ownership 50%∗(+3%) 27% (+1%)

TABLE 2: Variance in failures explained for Firefox for the base model which includes standard metrics of complexity,
size, and churn, as well as the models with Minor, Total and Ownership added.

improvement of 1-3% and in six of the 24 cases (we added
Ownership to the Total and Minor models for pre- and
post-release failures for all six releases) the effect was not
statistically significant. In every case where there was a
statistically significant effect, higher values for Minor and
Total increased failures and higher levels of Ownership
reduced them.

We summarize our findings:

1) Both Minor and Total have a positive relationship
with pre and post-release defects. However, neither is
consistently a better indicator, and the effect is weaker
than in Vista.

2) Higher levels of Ownership sometimes have a posi-
tive relationship with pre and post-release quality, but
the effect is small when it is statistically significant.

3) Ownership measures have a slightly larger effect on
pre-release failures than post-release failures.

6.3 Firefox

We also performed our regression analysis on the 1.5 and
2.0 releases of Firefox yielded results that differ from the
other projects. In both cases, we examined both pre- and
post-release failures and built a series of models to examine
the effect of ownership when controlling for size, churn and
complexity. Table 2 show our results for Firefox.

As before, the addition of both Minor and Total to
the base model resulted in a strong improvement in the
model. However, unlike the other projects, Total had
a stronger relationship with defects than Minor for all
data sets. The effect was large, from 12% to 20% for pre-
release defects and 4% for post-release. Furthermore, the
addition of Ownership to the Minor models only showed
a statistically significant improvement in the pre-release
defects, though even this augmented model was never better
than the Total model. Total is more related to the
number of people working on a component than their level
of expertise.

We make the following key observations from the Firefox
data:

1) Team size has a stronger relationship with defects
than ownership levels.

2) Team size and ownership metrics have a much
stronger relationship with pre-release defects than post-
release defects.

6.4 Comparison

We summarize the comparison of results for our analysis of
pre-release and post-release defects in Vista, Eclipse, and
Firefox in Table 4. This table characterizes the magnitude
from none to strong based on the magnitude of the effect of
each metric relative to the others. For metrics that measure
ownership levels (Minor and Ownership), there is a clear
trend of being stronger in Vista than in Eclipse and
stronger in Eclipse than Firefox. In all cases, the effect
of Major was weak and often not statistically significant,
indicating that the number of higher-expertise contributors
has little effect on quality. The total number of contributors
has an effect in all projects, but a stronger effect in the
more open source style projects that do not have enforced
ownership policies. In the context of Vista, where formal
ownership policies are in place, the violation or adherence
to such policies have an effect on software quality. In the
two projects without such policies, we see an effect, but it
is clearly not as strong.

7 Effects of Minor Contributors

One of the key findings in our analysis was that the
number of minor contributors has a strong relationship
with failures in Windows Vista, but a weaker relationship
in Eclipse and Firefox. Since the effect was strongest
in Vista, and because Microsoft could make changes to
practices based on these findings, we were eager to gain a
deeper understanding of this phenomenon in that particular
dataset; so we performed two more detailed analyses.

First, we observed that almost all developers were major
contributors to some binaries and minor contributors to
others. This led us to investigate the obvious question:
Given a particular developer, is there a relationship between
a component to which she is a major contributor, and the
one to which she is a minor contributor?
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Metric Windows Vista Eclipse Firefox

Code Metrics (Base) Medium + Medium to Strong + Medium +
Minor Strong + Medium to Strong + Medium +
Major Weak + Weak + Weak to None +
Ownership Medium − Weak − None

TABLE 4: Summary of relationship of Ownership metrics with failures. A + indicates that failures increased with
higher values of a metric and a − indicates that failures decreased.

Second, we adapted a fault prediction study carried out
by Pinzger et al. [3] and examined the effect of modifying
the study in ways related to ownership.

7.1 Dependency Analysis

The majority of developers that contributed to Vista
acted as major contributors to some binaries and minor
contributors to others. There are very few Vista developers
who are only minor contributors. This fact is an indication
of strong code ownership, as it shows that nearly everyone
has a main responsibility for at least one binary.

Discussions with engineers at Microsoft indicated that
often an engineer who was the owner of one binary would
make changes to another binary whose services he or
she used, often in the process of addressing reported
bugs. In our context this would show up as one engineer
who was a major contributor to some binary, A, and a
minor contributor to some binary, B, with a dependency
relationship between A and B. We call this a Major-Minor-
Dependency relationship, which is illustrated in Figure 4.

Cataldo et al. found that making changes to a depending
component without coordinating with the other stakehold-
ers (in our case, the owner) of the component increases the
likelihood of faults [1]. We have no record of the commu-
nication between developers of Windows Vista. However,
the fact that a minor contributor has, by definition, made
few if any prior contributions to a component suggests
that their participation in the component’s implicit team is
likely minimal, increasing the risk of a introducing a bug.

But does this actually happen? Is a developer D,
working on binary Foo.exe, statistically more likely to
be a minor contributor to a binary Bar.dll, just because
Foo.exe depends on Bar.dll? If so, how many of the minor
contributors to components can this phenomenon account
for? If the majority of minor contributors are a result
of component owners making changes do depending or
dependent components to accomplish their own tasks such
as resolving failures, then deliberate steps could be taken
to avoid this type of risky behavior.

To investigate this further, we first used MaX, a static
analysis tool at Microsoft to detect dependency relation-
ships between binaries [34]. These relationships include
method calls, read and writes to the registry, IPC, COM
calls, and use of types. Using this tool, we construct a
dependency graph that includes all of the binaries in
Windows Vista.

Major-Minor-Dependency Relationship

Dependency

Major 

Contrib
utor

Minor Contributor

Foo.exe

Bar.dll

2

Add graph rewiring slide around. ont op..

add some thought bubbles to the developer
“I need to use this...”
“I need to make a change to that... which is used by this...”

Fig. 4: Illustration of the major-minor-dependency rela-
tionship commonly observed in Vista

The next step is to determine whether the major-minor-
dependency phenomenon occurs statistically more often
than would be expected by chance. But what exactly
does “by chance” mean? We model “chance” by generating
a large, plausible, random sample of contributions; we
can then compare the observed frequency of major-minor
dependency with the frequency in the generated sample.
Our plausible random model is that each developer chooses
their contributions at random, while preserving their rate of
minor and major contributions. In other words, a developer
is just as hardworking, but her choice of where to contribute
is not influenced by dependencies in the code. Using this
model, we generate a large sample of simulated contribution
graphs. This gives us a basis for comparison to evaluate
observed, real-world contribution behavior is influenced by
dependencies between modules.

This “bootstrapping” approach comes from the statistical
theory of random graphs [35]–[37]. A phenomenon is judged
statistically significant if the actual, observed phenomenon
occurs rarely in the generated sample graphs. Following
previous techniques [35], [36], we use a graph-rewiring
method to bootstrap our random ensemble, based on
the observed frequency of commits from individuals. In
each generated random sample, each developer makes the
same number of major and minor contributions as in the
observed real sample, but the contributions are chosen at
random from the given set of components. We check to
see how often a “majorly contributed component” has an
actual dependency on a “minorly contributed component”
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Fig. 5: An illustration of graph rewiring. Rewiring preserves
the number of minor and major edges per developer and per
binary, but randomizes the organization of the contribution
network.

in these generated random samples. If the frequency of
major-minor-dependency relationships that occur in the
ensemble of simulated samples differs significantly from
that of the observed real sample, then we can conclude that
the phenomenon most likely represents some real, intended
behavior, and not simply a chance occurrence.

Graph rewiring is performed as follows in our context.
For the sake of convenience we refer to an edge connecting a
binary to one of its major contributors as a major edge and
an edge connecting a binary to one if its minor contributors
as a minor edge. Two edges that are either both major edges
or both minor edges are selected at random and endpoints
of both are switched. Thus, after the switch, the number
of major and major contributions for each developer node
and each component node remains the same.

After performing E2 rewirings where E is the number
of contribution edges in the graph, a sufficiently random
graph is obtained. We created 10,000 such random con-
tribution graphs and compared the frequency of major-
minor-dependency relationships to the frequency in the
observed, actual contribution graph. We found that in the
observed Vista contribution graph, 52% of the binaries
had minor contributors who were major contributors to
other binaries that the original had a dependency with.
In contrast, this relationship only existed for an average
of 24% of the binaries in the random networks with the
same minor and major contribution degree distributions.
The maximum value for the normally distributed frequency
of this phenomenon out of all 10,000 graphs was 32% of
the time, indicating that 52% is definitely a statistically
significant difference, and the phenomenon that we are
observing does not occur by chance.

In Vista, one common reason that a developer is a minor
contributor to a binary is that he/she is a major contributor
to a depending binary. This allows for processes to be put
into place to recognize and either minimize or aid minor
contributions

We also performed this analysis on our Eclipse data. We
used the static analysis tool Understand from SciTools5

to identify program dependencies within Eclipse. The

5. http://www.scitools.com/products/understand

Release Actual % Mean Random % p-value

2.0 62.0% 35.4% � .01%∗

2.1 23.3% 21.8% 0.333%
3.0 31.3% 29.1% 0.224%
3.1 46.1% 31.3% � .01%∗

3.2 48.4% 41.6% 0.016%∗

3.3 47.8% 36.4% 0.001%∗

TABLE 5: The actual proportion of binaries with major-
minor-dependencies as well as the mean of 100,000 random
graphs with the same major and minor edge distributions
for six releases of Eclipse. The p-value is the likelihood
that the actual proportion is no higher than the proportion
in the random graphs. ∗ indicates statistically significant
results.

dependencies are determined at the class level, and we
use a mapping from classes to files and then to plugins to
determine plugin dependencies. A class A may depend on
a class or interface B if A inherits or implements B, has a
field of type B, calls a method in B, imports B, creates
an instance of B, or contains a method that either returns
or accepts a parameter of type B.

For each release of Eclipse, we compared the number of
binaries that had major-minor-dependency relationships in
the actual graph with 100,000 randomly generated graphs
with the same dependencies and the same major and minor
contribution edge distributions.

The difference between the random graphs and the
actual software graphs made of real major and minor
contribution edges and dependencies is significant in four
of the six Eclipse releases. However, even in cases where
the difference is statistically significant, the magnitude
of the difference is not large; only the 2.0 release shows
a difference of more than 15%. This contrasts sharply
with our results for Vista. This indicates that although
the major-minor-dependency relationship does occur in
Eclipse more that would be expected by chance, it is
not as strong of a phenomenon here as in Vista and likely
does not explain the reason that some plugins have many
minor contributors while others do not. This gives further
evidence that ownership does not play as strong a role in
Eclipse as it does in Vista, where almost half of the minor
contributors (violators of strong ownership practices) were
explained by dependency relationships.

The major-minor-dependency relationship is statistically
significant in Eclipse, but occurs less than is Vista,
indicating that the reasons for minor contributors differ
between these projects.

We were unable to perform this analysis on the Firefox
code base. The many different languages in use (e.g.
C, C++, javascript, XUL, XML) in this project make
identifying dependencies difficult.

7.2 Effects on Network Metrics

In 2007, Pinzger et al. reported a method to find fault
prone binaries in Windows Vista based on contribution
networks [3]. A contribution network is composed of

http://www.scitools.com/products/understand
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Fig. 6: An example contribution network. Boxes represent
binaries and circles represent developers who contributed
to them. A dashed line between a binary and developer
indicates a minor contributor relationship.

binaries and the developers that contributed to those
binaries. Thus, a node representing a developer is connected
to all binaries the developer has contributed to and a
node representing a binary is connected to all developers
that contributed to it. Figure 6 shows an example of a
contribution network with boxes representing binaries and
circles representing developers. Major contribution edges
are solid and minor contribution edges are dashed.

The field of social network analysis has developed a
number of metrics that measure various attributes of
nodes in a network. For instance, the degree of a node
is the number of direct connections that it has and can be
indicative of how important the node is within the local
network. Other metrics measure how much information
can flow through a node, the average distance from a node
to all other nodes, how much “power” a node exerts over
its neighbors, etc. An in-depth discussion of these metrics
can be found in Wasserman and Faust [38]. Pinzger et al.
found that these measures had a strong relationship with
post-release failures in Windows Vista and in a companion
study [4] we found that these measures were able to predict
failures in Eclipse accurately as well.

Specifically, when they built a predictor for fault prone
binaries using this method, it identified 90% of the fault
prone binaries in Vista (recall) and 85% of the binaries
that it classified as fault prone actually were (precision).
This was a dramatic increase over the predictive power of
prior methods that used source code metrics.

We adapted that study, and examined the effect of
removing minor contributor edges. In Figure 6, such minor
edges are indicated by the dashed lines. The topological
effect of removing minor edges, as shown in Figure 6, is
that many pairs of binaries that had short connecting
paths through minor contributors are disconnected. Our
findings focused on two key aspects of the results. First, we
examined the correlation between social network measures
and post-release failures in the complete network and the
network with minor edges removed. Second, we measured
the change in the ability of a predictor to identify fault
prone binaries when removing major or minor contribution

SNA Metric All Edges Only Major
No Minor

Degree 0.675 0.287
Weighted Degree 0.607 0.572
Bonacich Power 0.669 0.079
Weighted Bon. Power 0.537 0.349
Closeness 0.637 0.063
Farness -0.636 -0.061
Reach 0.652 0.075
Betweenness 0.624 0.106

TABLE 6: Correlation of Social Network Analysis metrics
on the contribution network with post-release failures.
The first column is for the entire contribution network
and the second column is with minor contributor edges
removed. Removing the minor edges drops the correlations
considerably.

Metric All Edges Only Major Only Minor
No Minor No Major

Precision 75.0% 43.7% 84.4%
Recall 81.7% 58.3% 87.9%
F-Score 78.2% 49.9% 86.1%
AUC 78.9% 74.3% 90.5%

TABLE 7: Performance of network based failure predictors
for Vista

edges.

Table 6 shows the strength of relationship of eight
network measures with post-release failures. These par-
ticular metrics are displayed because they had the highest
correlation with failures. The first column shows the values
for the complete network and the second contains values
for the network with minor contribution edges removed.
The values dropped for all metrics, some quite dramatically.
These findings clearly indicate that the edges from minor
contributors embody much of the important structure of
the contributions graph. So much so that their removal
results in a decrease in the discriminatory power of these
metrics.

We also built a predictor from these measures for
identifying fault prone binaries in Vista using the same
approach as Pinzger et al. [3]. They trained a logistic
regression model on a randomly chosen two thirds of the
binaries in the contribution network and then evaluated the
model based on its results when classifying the remaining
third.

This process was repeated fifty times, each with a
different random split of the data and the measures of
performance, precision, recall, F-score, and area under the
ROC curve (AUC) — standard measures of information
retrieval [39] — were averaged across all runs.

Their original model based on the complete network
identified 90% of the fault prone binaries and 85% of its
fault prone predictions were correct. When the predictor
was trained using the same methods on the network with
minor contributors removed, it identified only 55% of the
fault prone binaries and around 60% of its fault prone
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Release Metric All Edges Only Major Only Minor
No Minor No Major

1.5
Precision 46.2% 27.3% 66.5%
Recall 62.8% 54.4% 69.3%
F-Score 52.6% 35.7% 67.4%
AUC 81.1% 76.6% 84.2%

2.0
Precision 34.7% 6.9% 26.3%
Recall 62.0% 44.3% 59.5%
F-Score 43.9% 12.7% 34.4%
AUC 78.9% 72.0% 73.9%

TABLE 8: Performance of network based failure predictors
for Firefox

predictions were correct. In Pinzger’s formulation of the
prediction approach, random guessing would result in 50%
for both measures. Thus a predictor based on network
measures for a network containing major contributor only
does marginally better than one that chose binaries purely
at random. Table 7 shows the performance when a predictor
is trained on the complete network, the network with minor
contributions removed and major contributions removed,
as well as the performance of a random guessing approach.

We replicated this technique on the Firefox and
Eclipse data and examined the performance of the defect
predictor for the complete contribution networks as well
as networks with major contributor edges and minor
contributor edges removed. The results for our Firefox
analysis are shown in Table 8. In both cases, removing the
minor contribution edges decreases the performance much
more than removing the major contribution edges and for
the 1.5 release, the minor contribution network performed
better than the model based on the complete network.

The results for our Eclipse data, shown in table Table 9,
was mixed. In some of the releases (2.0, 3.0, 3.2, 3.3), the
predictor based on networks with no minor contribution
edges performed just as well as the complete network. In
others (2.1, 3.1) and in other releases they performed far
worse. The results are also inconcluside with models based
on networks with minor contribution edges removed. In
releases that do show a difference between the predictive
power between the different networks, the difference is
sometimes large and statistically significant (p � 0.01)
even after adjusting for multiple hypothesis testing [40].
Thus, our data are not just a result of running a enough
experiemtns that “something is bound to be significant.”
Until a deeper investigation is made into the differences
between Eclipse releases in terms of characteristics such
as development policies and practices, size and makeup of
the development team, and architectural changes, we must
report that our examination of the effect of different types
of ownership edges on network-based failure prediction is
inconclusive for the Eclipse project.

We therefore conclude that for Vista, the minor contri-
bution edges provide the “signal” used by defect predictors
that are based on the contribution network. Without them,
the ability to predict failure prone components is greatly
diminished, further supporting our hypothesis that they

Release Metric All Edges Only Major Only Minor
No Minor No Major

2.0
Precision 72.4% 69.6% 51.4%
Recall 75.3% 76.7% 65.3%
F-Score 72.7% 71.8% 54.0%
AUC 85.7% 84.8% 66.8%

2.1
Precision 66.4% 59.2% 44.6%
Recall 70.1% 69.7% 53.2%
F-Score 67.0% 62.4% 46.0%
AUC 74.1% 72.8% 52.2%

3.0
Precision 73.7% 72.4% 63.2%
Recall 77.8% 79.2% 76.0%
F-Score 75.0% 74.9% 66.6%
AUC 84.7% 84.3% 79.1%

3.1
Precision 53.9% 43.1% 61.8%
Recall 64.3% 56.6% 60.4%
F-Score 57.1% 47.1% 59.8%
AUC 71.8% 58.6% 66.4%

3.2
Precision 60.9% 65.4% 60.3%
Recall 76.0% 81.1% 72.7%
F-Score 66.8% 71.6% 63.9%
AUC 80.2% 83.0% 70.2%

3.3
Precision 54.9% 55.9% 72.9%
Recall 69.1% 70.9% 73.8%
F-Score 59.9% 60.9% 70.7%
AUC 72.7% 72.8% 82.3%

TABLE 9: Performance of network based failure predictors
for Eclipse

are strongly related to software quality. The results for
Firefox and Eclipse are less conclusive.

8 Discussion

Our findings are valuable in a number of ways. We have
shown that for Windows Vista, ownership does indeed
have a relationship with code quality. This observation
is an actionable result, as this is an aspect of software
development that can be controlled to some degree by
management decisions on development process and policies.
In all projects, the addition of Minor improved the
regression models for both pre and post-release failures
to a statistically significant degree. Thus hypothesis 1 is
empirically supported.

The analysis of Ownership is a little bit different. In
this case, we saw a smaller, but still statistically significant
effect in Vista, but the effect was only sometimes significant
in Eclipse and Firefox. We conclude that hypothesis 2
is supported only in the case of Windows Vista.

We have also shown that the relationship between
ownership levels and failures is stronger in a traditional,
commercial development context than in projects with more
of an open-source style development process. It appears
that team size becomes more important than ownership
level metrics when a project uses a more open source-style
development process. At the meta-level, this provides strong
evidence that results from studies of open source projects do
not always generalize to settings where a different process
is used. The process that is used may dictate the effect
of other factors on software quality as well. Therefore,
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when determining the applicability of a research result
to a software project, the context of the study must be
taken in account. Our data lends support to arguments
made by Raymond and others that ownership matters
less in open source contexts than it does in traditional
commercial software development projects. Clearly, our
findings should be interpreted with caution. We examine
three large, mature projects that differ in process and
ownership policy, but that also differ in other ways such
as domain, language, and user base.

We hasten to point out that in our study we contrast
only three large software projects from different domains.
While the ownership policies and practices of these projects
differ, we lack the sample size necessary to give strong
quantitative support to our hypothesis and rule out other
possibly confounding factors. Thus, our findings support
hypothesis 3, but further study on more projects is required
for strong quantitative evidence. Our findings open the door
to further investigations of differences between “traditional”
and “open-source” style development (though these are also
broad generalities, they are first steps). Finally, we make
the following recommendations regarding the development
process based on our findings:

1) Changes made by minor contributors should be re-
viewed with more scrutiny. Changes made by minor
contributors should be exposed to greater scrutiny
than changes made by developers who are experienced
with the source for a particular binary. When pos-
sible, major contributors should perform these code
inspections. If a major contributor cannot perform
all inspections, he or she should focus on inspecting
changes by minor contributors.

2) Potential minor contributors should communicate
desired changes to developers experienced with the
respective binary. Often minor contributors to one
binary are major contributors to a depending binary.
Rather than making a desired change directly, these
developers should contact a major contributor and
communicate the desired change so that it can be
made by someone who has higher levels of expertise.

3) Components with low ownership should be given
priority by QA resources. Metrics such as Minor
and Ownership should be used in conjunction
with source code based metrics to identify those
binaries with a high potential for having many post-
release failures. When faced with limited resources
for quality-control efforts, these binaries should have
priority.

These recommendations are currently being evaluated
at Microsoft. We plan to investigate the relationship of
the ownership measures used in this paper with software
quality in other projects at Microsoft that differ in size and
domain. Further, we plan to observe the results of projects
that follow these recommendations.

9 Conclusion
We have examined the relationship between ownership and
software quality in three projects with different develop-

ment styles. We found that while high levels of ownership,
specifically operationalized as high values of Ownership,
and low values of Minor, are associated with less defects,
the effect is stronger in commercial settings where there are
ownership practices in place than in open source settings.

An investigation into the effects of minor and major
contributions on network based defect prediction found that
removing minor contribution edges severely impaired pre-
dictive power for Vista and Firefox, but was inconclusive
in Eclipse. We also found that in Vista, when a component
has a minor contributor, the same developer is a major
contributor to a dependent component approximately half
of the time. Changes to policies regarding tasks that would
lead to this behavior, such as bug fixing, may be useful in
Vista, but less so in Eclipse, where this phenomenon is
not as common.

For organizations where ownership has a strong rela-
tionship with defects, we have presented recommendations
which are currently being evaluated at Microsoft.
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