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Abstract

We propose a method to aggregate noisy ordi-
nal labels collected from a crowd of workers or
annotators. Eliciting ordinal labels is important
in tasks such as judging web search quality and
rating products. Our method is motivated by
the observation that workers usually have diffi-
culty distinguishing between two adjacent ordi-
nal classes whereas distinguishing between two
classes which are far away from each other is
much easier. We formulate our method as min-
imax conditional entropy subject to constraints
which encode this observation. Empirical eval-
uations on real datasets demonstrate significant
improvements over existing methods.

1. Introduction

There has been considerable amount of work on learning
when labeling is expensive, such as techniques on trans-
ductive inference and active learning. With the emergence
of crowdsourcing services, like Amazon Mechanical Turk,
labeling costs in many applications have dropped dramat-
ically. Large amounts of labeled data can now be gath-
ered at low price. Due to a lack of domain expertise and
misaligned incentives, however, labels provided by crowd-
sourcing workers are often noisy. To overcome the qual-
ity issue, each item is usually simultaneously labeled by
several workers, and then we aggregate the multiple labels
with some manner, for instance, majority voting.
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An advanced approach for label aggregation is suggested
by Dawid & Skene(1979). They assume that each worker
has a latent confusion matrix for labeling. The off-diagonal
elements represent the probabilities that a worker misla-
bels an arbitrary item from one class to another while
the diagonal elements correspond to her accuracy in each
class. Worker confusion matrices and true labels are jointly
estimated by maximizing the likelihood of observed la-
bels. One may further assume a prior distribution over
worker confusion matrices and perform Bayesian inference
(Raykar et al., 2010; Liu et al., 2012; Chen et al., 2013).

The method ofDawid & Skene(1979) implicitly assumes
that a worker performs equally well across all items in a
common class. In practice, however, it is often the case that
one item is more difficult to label than another. To address
this heterogeneous issue,Zhou et al.(2012) propose a min-
imax entropy principle for crowdsourcing. It results in that
each item is associated with a latent confusion vector be-
sides a latent confusion matrix for each worker. Observed
labels are determined jointly by worker confusion matrices
and item confusion vectors through an exponential family
model. Moreover, it turns out that the probabilistic label-
ing model can be equivalently derived from a natural as-
sumption of objective measurements of worker ability and
item difficulty. Such kinds of objectivity arguments have
been widely discussed in the literature of mental test the-
ory (Rasch, 1961; Lord & Novick, 1968).

All the above approaches are for aggregating multiclass la-
bels. In many scenarios, the labels are ordinal. To be con-
crete, let us consider the example of screening mammo-
grams. A mammogram is an x-ray picture used to check
for breast cancer in women. Radiologists often rate mam-
mograms on a scale such as no cancer, benign cancer, pos-
sible malignancy, or malignancy. Since ordinal labels are
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Worker confusion matrix
(Dawid & Skene, 1979)

Worker confusion matrix
and item confusion vector

(Zhou et al., 2012)

Both workers and items are
characterized by confusion matrices

(Section2)

Confusion matrices are structured
to encode adjacency confusability

(Section3)

Figure 1.Roadmap for the development of our method for aggregating crowdsourced ordinal labels.

special cases of multiclass labels, one may apply the pre-
vious general multiclass approaches to aggregate ordinal
labels. However, workers have different error patterns in
ordinal labeling. We observe that they usually have diffi-
culty distinguishing between two adjacent ordinal classes
whereas distinguishing between two classes which are far
away from each other is much easier. We refer to this ob-
servation asadjacency confusability. In the example of
screening mammograms, a radiologist may rate a mammo-
gram which indicates possible malignancy as malignancy,
but it is less likely that she rates a mammogram which in-
dicates no cancer as malignancy.

We propose a method to aggregate ordinal labels by tak-
ing adjacency confusability into account. The roadmap for
the development of our method is illustrated in Figure1.
We first develop a general minimax conditional entropy ap-
proach for aggregating multiclass labels (Section2). It ex-
tends the work ofZhou et al.(2012), and generates a label-
ing model in which both item difficulty and worker abil-
ity are characterized by confusion matrices. In contrast,
Zhou et al.(2012) model item difficulty using confusion
vectors. Then, as the main contribution in this paper, we
adapt the general multiclass minimax conditional entropy
approach to ordinal labels (Section3). It is minimax condi-
tional entropy subject to a different set of worker and item
constraints which encode adjacency confusability observed
in ordinal labeling. The formulation gives rise to an ordi-
nal labeling model parameterized withstructured worker
and item confusion matrices. Due to the introduced struc-
ture, the ordinal labeling model has fewer parameters than
the multiclass labeling model if there are more than two
classes. In the case in which there are only two classes,
the two models coincide as expected. In Section4, we fur-
ther introduce two kinds of regularization into the minimax
conditional entropy scheme to address two practical issues.
One is for preventing overfitting, and the other is for ob-
taining probabilistic labels. In practice, probabilisticlabels
are more useful than deterministic ones. When the label
estimate of an item is close to uniform over several classes,
we may want to either ask for more labels for the item or

forward the item to an external expert. In Section5, we
present a dual coordinate ascent method to solve the min-
imax conditional entropy program as well as an efficient
model selection technique. In Section6, we empirically
compare our method with existing methods that aggregate
multiclass or ordinal labels. Finally, we conclude the paper
with a discussion of future directions in Section7.

2. Multiclass Minimax Conditional Entropy

In this section, we develop a method for aggregating multi-
class labels from crowds. It extends the work ofZhou et al.
(2012) such that item difficulty is represented by a two-
dimensional confusion matrix instead of one-dimensional
confusion vector. Matrix forms are more flexible for encod-
ing domain knowledge in different types of labeling tasks.
The flexibility is demonstrated when this general multiclass
method is adapted to ordinal labels in Section3.

Let us first introduce some notations. Assume that there
are a group of workers indexed byi, a set of items indexed
by j, and a number of classes indexed byk or c. Let xij

be the observed label that workeri assigns to itemj, and
Xij be the corresponding random variable. Denote byYj

the true label of itemj andQ(Yj = c) the probability that
itemj belong to classc. A special case is thatQ(Yj = c) is
simply an indicator function, that is, deterministic labels.

Now we introduce two four-dimensional tensors with each
dimension corresponding to workersi, items j, observed
labelsk, or true labelsc. One is theempirical tensor in
which each element is given by

φ̂ij(c, k) = Q(Yj = c)I(xij = k)

to represent an observed confusion from classc to classk
by workeri on itemj, and the other is theexpected tensor
in which each element is given by

φij(c, k) = Q(Yj = c)P (Xij = k|Yj = c)

to represent an expected confusion from classc to classk
by workeri on itemj. In the development of our method,
these two tensors play the fundamental roles.
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Denote the sum of the entropies of the observed labels con-
ditioned on the true labels by

H(X |Y ) =−
∑

j,c

Q(Yj = c)
∑

i,k

P (Xij = k|Yj = c)

× logP (Xij = k|Yj = c).

To estimate the true labels, we minimize-maximize the con-
ditional entropy sum, that is,

min
Q

max
P

H(X |Y ) (1)

subject to the worker and item constraints

∑

j

[
φij(c, k)− φ̂ij(c, k)

]
= 0, ∀i, k, c, (2a)

∑

i

[
φij(c, k)− φ̂ij(c, k)

]
= 0, ∀j, k, c, (2b)

plus the probability constraints
∑

k

P (Xij = k|Yj = c) = 1, ∀i, j, c, (3a)

∑

c

Q(Yj = c) = 1, ∀j, Q(Yj = c) ≥ 0, ∀j, c. (3b)

The constraints in Equation (2a) enforce the expected con-
fusion counts in the worker dimension to match their em-
pirical counterparts. Symmetrically, the constraints in
Equation (2b) enforce the expected confusion counts in the
item dimension to match their empirical counterparts.

The Lagrangian of the inner maximization problem in (1)
can be written as

L = H(X |Y ) + Lσ + Lτ + Lλ (4)

with

Lσ =
∑

i,c,k

σi(c, k)
∑

j

[
φij(c, k)− φ̂ij(c, k)

]
,

Lτ =
∑

j,c,k

τj(c, k)
∑

i

[
φij(c, k)− φ̂ij(c, k)

]
,

Lλ =
∑

i,j,c

λijc

[∑

k

P (Xij = k|Yj = c)− 1

]
,

whereσi(c, k), τj(c, k) andλijc are introduced as the La-
grange multipliers. By the Karush-Kuhn-Tucker (KKT)
conditions (Boyd & Vandenberghe, 2004),

∂L

∂P (Xij = k|Yj = c)
= 0,

which implies

logP (Xij = k|Yj = c) = λijc − 1− σi(c, k)− τj(c, k).

Combining the above equation and the probability con-
straints in (3a) eliminatesλ and yields

P (Xij = k|Yj = c) =
1

Zij

exp[σi(c, k) + τj(c, k)], (5)

whereZij is the normalization factor given by

Zij =
∑

k

exp[σi(c, k) + τj(c, k)].

Although the matrices[σi(c, k)] and[τj(c, k)] in Equation
(5) are obtained as the consequence of maximum condi-
tional entropy, they can be understood rather intuitively.
We can regard the matrix[σi(c, k)] as the measure of the
intrinsic ability of workeri. The (c, k)-th entry represents
how likely workeri labels a randomly chosen item in class
c as classk. Similarly, we can regard the matrix[τi(c, k)]
as the measure of the intrinsic difficulty of itemj. The
(c, k)-th entry represents how likely itemj in classc is la-
beled as classk by a randomly chosen worker. In what
follows, we refer to[σi(c, k)] as worker confusion matrices
and[τi(c, k)] as item confusion matrices.

Minimum conditional entropy can be both intuitively and
theoretically understood. Intuitively, it means that we be-
lieve that the observed labels are the least random given
the true labels (Zhou et al., 2012). Theoretically, minimum
conditional entropy can be understood as maximum likeli-
hood. Substituting the labeling model in Equation (5) into
the Lagrangian in Equation (4), we can obtain the dual form
of the minimax program (1) as

max
σ,τ,Q

∑

j,c

Q(Yj = c)
∑

i

logP (Xij = xij |Yj = c).

It is easy to see that, to be optimal, the true label distri-
bution has to be deterministic. Consequently, the dual La-
grangian can be written as

log

{∏

j

∑

c

Q(Yj = c)
∏

i

P (Xij = xij |Yj = c)

}
,

which is nothing else but the log complete likelihood. In
Section4, we show how to reformulate the objective func-
tion in (1) to obtain probabilistic labels.

The main difference between the presented multiclass label
aggregation method and the work ofZhou et al.(2012) is
that the item constraints in the latter are formulated as

∑

i,c

[
φij(c, k)− φ̂ij(c, k)

]
= 0, ∀j, k. (6)

Such a formulation results in a one-dimensional confusion
vector[τj(k)] representing the difficulty of itemj instead
of a confusion matrix. The connection between Equation
(6) and (2b) is straightforward. Equation (6) can be recov-
ered by summing Equation (2b) over all possible values of
the true labels. So the constraints in Equation (6) are less
restricted than the constraints in Equation (2b).
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Reference label

True label Observed label

≥, < ≥, <

Figure 2.Indirect comparison between a true label and an ob-
served label via comparing both to a reference label which varies
through all possible values in a given ordinal label set.

3. Ordinal Minimax Conditional Entropy

In this section, we adapt the general multiclass label ag-
gregation method developed in Section2 to ordinal labels.
Overall, we construct a different set of worker and item
constraints to encode adjacency confusability observed in
ordinal labeling that we discussed in Section1. The for-
mulation leads to an ordinal labeling model parameterized
with structured worker and item confusion matrices.

Let us first introduce two symbols∆ and∇ which take on
arbitrary binary relations inR = {≥, <}. To estimate the
true ordinal labels, we consider

min
Q

max
P

H(X |Y ) (7)

subject to the ordinal-based worker and item constraints
∑

c∆s

∑

k∇s

∑

j

[
φij(c, k)− φ̂ij(c, k)

]
= 0, ∀i, s, (8a)

∑

c∆s

∑

k∇s

∑

i

[
φij(c, k)− φ̂ij(c, k)

]
= 0, ∀j, s, (8b)

for all ∆,∇ ∈ R, and the probability constraints in (3).

Let us explain the meaning of the constraints in Equation
(8). To construct ordinal based constraints, the first issue
that we have to address is how to compare two ordinal la-
bels which are respectively observed labelk and true label
c in our scenario. For multiclass labels, as we have seen
in Section2, the comparison problem is trivial. We only
need to check whether two given labels are the same or
not. For ordinal labels, such a problem becomes tricky.
Here, we suggest an indirect comparison between two or-
dinal labels by comparing both to areference label s which
varies through all possible values in a given ordinal label
set (Figure1). Then, for each chosens, we partition the
Cartesian product of the label set into four disjoint regions

{(c, k)|c < s, k < s}, {(c, k)|c < s, k ≥ s},

{(c, k)|c ≥ s, k < s}, {(c, k)|c ≥ s, k ≥ s}.

A partition example is shown in Table1 where the given
label set is{0, 1, 2, 3}. Equation (8a) defines a set of con-
straints for workers by summing Equation (2a) over each

region. Similarly, Equation (8b) defines a set of constraints
for items by summing Equation (2b) over each region.

From the above discussion, when there are more than two
ordinal classes, the constraints in Equation (8) are less re-
stricted than those in Equation (2). Consequently, the label-
ing model resulted from Equation (8) has fewer parameters,
as we will see in Equation (11). In the case in which there
are only two ordinal classes, those disjoint regions degen-
erate to single cells, and, thus, the two sets of constraintsin
Equation (8) and (2) are identical.

To understand the motivation underlying the constraints in
Equation (8), let us write

∑

c∆s

∑

k∇s

φ̂ij(c, k) =
∑

c∆s

∑

k∇s

Q(Yj = c)I(xij = s)

=
∑

c∆s

Q(Yj = c)
∑

k∇s

I(xij = s)

= Q(Yj∆s)I(xij∇s). (9)

For example, when∆ =< and∇ =≥, the above equation
becomes

∑

c<s

∑

k≥s

φ̂ij(c, k) = Q(Yj < s)I(xij ≥ s).

For a comparison between an observed label and a refer-
ence label, there are two possible outcomes: the observed
label is larger or equal to the reference label; or the ob-
served label is smaller than the reference label. Similarly,
for a comparison between a true label and a reference label,
there are also two possible outcomes. Putting together the
above two comparisons, we have four possible outcomes in
total. From Equation (9), the constraints in Equation (8a)
enforce expected counts of all the four kinds of outcomes
in the worker dimension to match their empirical counter-
parts. Symmetrically, the constraints in Equation (8b) en-
force expected counts of all the four kinds of outcomes in
the item dimension to match their empirical counterparts.

The Lagrangian of the maximization problem in (7) can be
written as

L = H(X |Y ) + Lσ + Lτ + Lλ,

with

Lσ =
∑

i,s

∑

∆,∇

σ∆,∇
is

∑

c∆s

∑

k∇s

∑

j

[
φij(c, k)− φ̂ij(c, k)

]
,

Lτ =
∑

j,s

∑

∆,∇

τ∆,∇
js

∑

c∆s

∑

k∇s

∑

i

[
φij(c, k)− φ̂ij(c, k)

]
,

Lλ =
∑

i,j,c

λijc

[∑

k

P (Xij = k|Yj = c)− 1

]
,

whereσ∆,∇
is , τ∆,∇

js andλijc are the introduced Lagrange
multipliers. By the similar process as in Section2, we can
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(a) Partitioning withs = 1

(0, 0) (0, 1) (0, 2) (0, 3)
(1, 0) (1, 1) (1, 2) (1, 3)
(2, 0) (2, 1) (2, 2) (2, 3)
(3, 0) (3, 1) (3, 2) (3, 3)

(b) Partitioning withs = 2

(0, 0) (0, 1) (0, 2) (0, 3)
(1, 0) (1, 1) (1, 2) (1, 3)
(2, 0) (2, 1) (2, 2) (2, 3)
(3, 0) (3, 1) (3, 2) (3, 3)

(c) Partitioning withs = 3

(0, 0) (0, 1) (0, 2) (0, 3)
(1, 0) (1, 1) (1, 2) (1, 3)
(2, 0) (2, 1) (2, 2) (2, 3)
(3, 0) (3, 1) (3, 2) (3, 3)

Table 1.Partitioning the Cartesian product of an ordinal label set
{0, 1, 2, 3}. Each table shows a partition including four disjoint
regions with respect to a possible reference label.

obtain a probabilistic ordinal labeling model

P (Xij = k|Yj = c) =
1

Zij

exp[σi(c, k) + τj(c, k)], (10)

where

σi(c, k) =
∑

s≥1

∑

∆,∇

σ∆,∇
is I(c∆s, k∇s), (11a)

τj(c, k) =
∑

s≥1

∑

∆,∇

τ∆,∇
js I(c∆s, k∇s), (11b)

andZij is the normalization factor obtained by summing
the numerator over all possible labels.

The ordinal labeling model in Equation (10) is actually the
same as the multiclass labeling model in Equation (5) ex-
cept the worker and item confusion matrices in Equation
(10) are now subtly structured through Equation (11). Con-
sequently, whenever there are more than two classes, the
ordinal labeling model has fewer parameters than the mul-
ticlass labeling model. In the case in which there are only
two classes, the ordinal labeling model and the multiclass
labeling model coincide.

4. Regularized Minimax Conditional Entropy

In this section, we develop regularized minimax condi-
tional entropy to address two practical issues—preventing
overfitting and generating probabilistic labels.

Let us first look at the overfitting issue. Given a finite num-
ber of observed labels, the empirical counts in Equations

(2) or (8) may not exactly match their expected values. It
is more likely that they fluctuate around their expected val-
ues. On the other hand, those fluctuations should not be too
large. Hence, to be more realistic, we have to move from
exact matching to approximate matching while penalizing
large fluctuations as in (Zhou et al., 2012).

Now let us look at the issue of probabilistic labels. In prac-
tice, probabilistic labels are usually more helpful than de-
terministic labels. When the estimated label distribution
for an item is close to uniform over multiple labels, we
may want to either ask for more labels for the item or for-
ward the item to an external expert. Unfortunately, the min-
imax conditional entropy methods in Sections2 and3 can
only generate deterministic labels. To remedy this issue, as
shown below, we put an extra entropy regularization over
the unknown true label distributions.

Let us denote by

H(Y ) = −
∑

j,c

Q(Yj = c) logQ(Yj = c).

To estimate the true labels, we consider

min
Q

max
P

H(X |Y )−H(Y )−
1

α
Ω(ξ)−

1

β
Ψ(ζ) (12)

subject to the relaxed worker and item constraints
∑

c∆s

∑

k∇s

∑

j

[
φij(c, k)− φ̂ij(c, k)

]
= ξ∆,∇

is , ∀i, s, (13a)

∑

c∆s

∑

k∇s

∑

i

[
φij(c, k)− φ̂ij(c, k)

]
= ζ∆,∇

js , ∀j, s, (13b)

for all ∆,∇ ∈ R, and the probability constraints in Equa-
tion (3).

The introduced slack variablesξ∆,∇
is andζ∆,∇

js in Equation
(13) model the fluctuations, which are not restricted to be
positive and could be rather arbitrary. However, when there
are a sufficiently large number of observations, the fluctua-
tions should be approximately normally distributed, due to
the central limit theorem. Such observation motivates us to
choose the regularization functions

Ω(ξ) =
1

2

∑

i,s

∑

∆,∇

(
ξ∆,∇
is

)2

, Ψ(ζ) =
1

2

∑

j,s

∑

∆,∇

(
ζ∆,∇
js

)2

to penalize large fluctuations. The introduced entropy term
H(Y ) in (12) can be considered as penalizing a large devi-
ation from uniform distribution.

Substituting the labeling model in Equation (10) into the
Lagrangian of (12), we can obtain the dual form

max
σ,τ,Q

∑

j,c

Q(Yj = c)
∑

i

logP (Xij = xij |Yj = c)

+H(Y )− αΩ(σ) − βΨ(τ). (14)
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Algorithm 1 Regularized Minimax Conditional Entropy

input: {xij}, α, β

initialize:

Q(Yj = c) ∝
∑

i

I(xij = c) (15)

repeat:

{σ, τ} = argmin
σ,τ

αΩ(σ) + βΨ(τ)

−
∑

j,c

Q(Yj = c)
∑

i

logP (Xij = xij |Yj = c) (16a)

Q(Yj = c) ∝
∏

i

P (Xij = xij |Yj = c) (16b)

output: Q

Whenα = 0 andβ = 0, the objective function in (14) turns
out to be a lower bound of the log marginal likelihood

log

{∏

j

∑

c

∏

i

P (Xij = xij |Yj = c)

}

= log

{∏

j

∑

c

Q(Yj = c)

Q(Yj = c)

∏

i

P (Xij = xij |Yj = c)

}

≥
∑

j,c

Q(Yj = c)
∑

i

logP (Xij = xij |Yj = c) +H(Y ).

The last step is based on Jensen’s inequality. Maximiz-
ing marginal likelihood is supposed to be more appropri-
ate than maximizing complete likelihood since only the ob-
served labels essentially matter in our inference. The regu-
larized form of multiclass minimax conditional entropy in
Section2 can be established in the same way.

5. Optimization and Model Selection

The dual problem of regularized minimax conditional en-
tropy for either multiclass or ordinal labels is nonconvex.A
stationary point can be obtained via coordinate ascent (Al-
gorithm1), which is essentially Expectation-Maximization
(EM) (Dempster et al., 1977; Neal & Hinton, 1998). We
first initialize the label estimate via aggregating votes in
Equation (15). Then, in each iteration step, given the cur-
rent estimate of labels, update the estimate of worker and
item confusion matrices by solving the optimization prob-
lem in (16a); and, given the current estimate of worker
and item confusion matrices, update the estimate of la-
bels through the closed-form formula in (16b). The pro-
gram in (16a) is strongly convex and smooth. So it can
be solved with linear convergence rates (Nesterov, 2004).
The closed-form formula in Equation (16b) is identical to
applying Bayes’ rule with a uniform prior.

Next we discuss how to select the regularization parameters

α andβ. If the true labels of a subset of items are known—
such subsets are usually referred to as validation sets, we
may choose(α, β) such that those known true labels can
be best predicted. Otherwise, we suggest to choose(α, β)
via k-fold likelihood-based cross-validation. Specifically,
for each possible(α, β) chosen from a candidate set:

1. Randomly partition the set of observed labels intok
equal-size subsamples;

2. Leave out a single subsample and use the remaining
k − 1 subsamples to estimate worker and item confu-
sion matrices using Algorithm1;

3. Compute the marginal likelihood of the observed la-
bels in the left-out subsample using the estimated
worker and item confusion matrices;

4. Repeat steps (2)−(3) till each subsample is left out
once and only once;

5. Compute the average of the obtained marginal likeli-
hoods over allk subsamples.

The (α, β) resulting in the largest average marginal like-
lihood is considered to be optimal. Finally, we run Algo-
rithm 1 over the full dataset using the optimal(α, β). The
cross-validation parameterk is typically set to 5 or 10.

To make the model selection process less time consuming,
we would like to further suggest to set

α = γ × (number of classes)2,

β =
number of labels per worker
number of labels per item

× α.
(17)

In our experiments, we chooseγ from {1/4, 1/2, 1, 2, 4}.
From our limited empirical studies, larger candidate sets for
γ do not cause more gains. There are two observations that
motivate us to consider using the square of the number of
classes in Equation (17). First, the square of the number of
classes has the same magnitude as the number of parame-
ters in a confusion matrix. Second, label noise dramatically
increases when the number of classes increases, requiring
more than linearly scaled regularization.

6. Experiments

In this section, we report empirical results of our method on
real crowdsourced data in comparison with state-of-the-art
methods that aggregate multiclass or ordinal labels. Three
error metrics are considered. Let us denote byy the true
rating and̂y the estimate. The error metrics are defined as:
(1) L0= I(y 6= ŷ); (2) L1= |y− ŷ|; and (3) L2= |y− ŷ|2.

For convenience, in what follows, the regularized mini-
max conditional entropy method for multiclass labels is re-
ferred to asentropy multiclass or entropy(M),
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Figure 3.Error rates of the two entropy methods on the web dataset. Theregularization parameterγ is chosen by using validation sets.

Majority Vote Dawid& Skene Latent Trait Entropy (M) Entropy (O)
L0 Error 0.269 0.170 0.201 0.111 0.104
L1 Error 0.428 0.205 0.211 0.131 0.118
L2 Error 0.930 0.539 0.481 0.419 0.384

Table 2.Error rates of different methods on the web dataset. The regularization parameterγ for both the entropy methods is chosen via
likelihood-based cross-validation without using any ground truth labels.

Probability Bin (0, 0.5) (0.5, 0.6) (0.6, 0.7) (0.7, 0.8) (0.8, 0.9) (0.9, 1)
# Items 173 291 292 313 406 1178
L0 Error 0.416 0.381 0.199 0.080 0.020 0.001
L1 Error 0.543 0.395 0.216 0.093 0.025 0.001
L2 Error 0.832 0.423 0.250 0.118 0.035 0.001

Table 3.Positive correlation between probabilistic labels and error rates. The results are fromentropy ordinal on the web dataset.
The labels estimated with larger probabilities are more likely to be correct. We have a similar observation forentropy multiclass.

and the regularized minimax conditional entropy method
for ordinal labels is referred to asentropy ordinal or
entropy(O). Both are implemented by Algorithm1.

Majority voting and the method ofDawid & Skene(1979)
are considered as baselines. We also compare our method
with latent trait analysis (Andrich, 1978; Master, 1982;
Uebersax & Grove, 1993), which are the only ordinal la-
bel aggregation methods that we have seen in the literature.
Roughly speaking, in such kind of scheme, each item is as-
sumed to have a latent real-valued score, and each worker is
assumed to have her personal class thresholds which char-
acterize her class definitions. Given an item, an observed
label from a worker is assumed to be generated through
a probabilistic model which is a logistic (or normal) ogive
(Lord & Novick, 1968) of the item score, the worker’s class
thresholds, and the measurement error parameters for the
worker and item. In our empirical studies, we take an open
source implementation of latent trait analysis byMineiro
(2011). We observe that the method ofZhou et al.(2012)
performs almost the same asentropy multiclass so
its results are not additionally reported.

Web search relevance rating. The web search relevance
rating dataset contains 2665 query-URL pairs and 177
workers (Zhou et al., 2012). Give a query-URL pair, a
worker is required to provide a rating to measure how the

URL is relevant to the query. The rating scale is 5-level:
perfect, excellent, good, fair, or bad. On average, each
pair was labeled by 6 different workers, and each worker
labeled 90 pairs. More than 10 workers labeled only one
pair. The average L0 error rate of workers is62.95%.

We first compare the two entropy methods with the param-
eterγ chosen by validation sets. We randomly select 1500
pairs to form a test set, and then select 10 to 100 pairs
from the remaining pairs to form validation sets. The er-
ror rates on the test set are summarized in Figure3. Each
data point is obtained via averaging over100 random sam-
pling trials.Entropy ordinal outperformsentropy
multiclass on all the three error metrics.

We then compare the entropy methods with the existing
methods that we have discussed. All the methods except
the entropy methods have no parameter to tune. It would
be unfair if we require additional validation sets to tune the
parameterγ in the entropy methods. Thus, we chooseγ
through 5-fold data likelihood based cross-validation. The
error rates of different methods are summarized in Table
2. From the results,entropy ordinal outperforms
entropy multiclass which outperforms all the oth-
ers. The results also show that marginal likelihood based
cross-validation works pretty well. It is completely compa-
rable with validation sets based model selection.
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Figure 4.Error rates of the two entropy methods on the price dataset. The regularization parameterγ is chosen by using validation sets.

Majority Vote Dawid& Skene Latent Trait Entropy (M) Entropy (O)
L0 Error 0.675 0.650 0.688 0.675 0.613
L1 Error 1.125 1.050 1.063 1.150 0.975
L2 Error 1.605 1.517 1.504 1.643 1.492

Table 4.Error rates of different methods on the price dataset. The regularization parameterγ for both entropy methods is chosen via
likelihood based cross-validation without using any ground truth labels.

To investigate the correlation between probabilistic labels
and error rates, we collect the obtained label probabilities
into bins from(0, 0.5) to (0.9, 1) and check the error rates
in each bin (Table3). We observe that the labels estimated
with larger probabilities are more likely to be correct.

Household item price estimation. The price dataset con-
sists of 80 household items collected from stores such as
Amazon and Costco. The prices of those items are es-
timated by 155 undergraduate students (Liu et al., 2013).
There is a total of seven price bins: $0−$50, $51−$100,
$101−$250, $251−$500, $501−$1000, $1001−$2000,
and $2001−$5000. Given an item, a student has to de-
cide which bin its price falls in. All the items are estimated
by all the students, that is, we have a full data matrix. The
average L0 error rate of students is69.47%, compared to
the L0 error rate of random guessing at85.71%.

We first compare the two entropy methods with the param-
eterγ chosen through validation sets. We randomly select
50 items to form a test set, and then select10 to 30 items
from the remaining items to form validation sets. The error
rates on the test set are summarized in Figure4. Each data
point is obtained via averaging over 100 random sampling
trials. Entropy ordinal performs substantially better
thanentropy multiclass on all the three error met-
rics. We then compare the entropy methods with the state-
of-the-art methods that we have discussed. The parameter
γ in the entropy methods is chosen via 5-fold data likeli-
hood based cross-validation. We summarize the error rates
of different methods in Table4. Entropy ordinal
again performs the best among all the methods.

Although it is proposed as an ordinal approach, latent trait
analysis performs even worse than the multiclass method
by Dawid & Skene(1979) on both datasets in terms of L0

and L1 errors. It is perhaps partially because latent trait
analysis violates the Main Principle for inference suggested
by Vapnik(1998). As its intermediate step, latent trait anal-
ysis attempts to estimate a real-valued score for each item.
This is a more ambitious problem than estimating ordinal
labels. To estimate ordinal labels, we only have to know
the ranges which real-valued scores fall in. The data that
we have may be sufficient for estimating ordinal labels, but
they may be insufficient for estimating continuous scores.

7. Conclusion and Discussion

We have presented a novel method for aggregating ordinal
labels from a crowd of workers. The key component in
our method is an ordinal labeling model in which worker
ability and item difficulty are illustrated with structured
confusion matrices. The matrix forms are uniquely de-
termined through minimax conditional entropy subject to
worker and item constraints which encode adjacency con-
fusability observed in ordinal labeling—workers usually
have difficulty distinguishing between two adjacent ordinal
classes whereas distinguishing between two classes which
are far away from each other is much easier. Empirical re-
sults on real crowdsourced data show that our method per-
forms substantially better than existing methods.

Our minimax conditional entropy scheme is general and it
can be extended to many other labeling tasks which involve
structured labels, such as protein folding (Khatib et al.,
2011), machine translation (Zaidan & Callison-Burch,
2011), and speech captioning (Murphy et al., 2013). To
achieve these extensions, we need to formulate domain-
specific worker and item constraints which may result in
differently structured confusion matrices to parameterize
the probabilistic labeling models for those tasks.
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