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ABSTRACT

Optimising the parameters of ranking functions with respect
to standard IR rank-dependent cost functions has eluded
satisfactory analytical treatment. We build on recent ad-
vances in alternative differentiable pairwise cost functions,
and show that these techniques can be successfully applied
to tuning the parameters of an existing family of IR scor-
ing functions (BM25), in the sense that we cannot do better
using sensible search heuristics that directly optimize the
rank-based cost function NDCG. We also demonstrate how
the size of training set affects the number of parameters we
can hope to tune this way.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Storage and
Retrieval—information search and retrieval

General Terms

Experimentation

Keywords

evaluation, optimisation, effectiveness measures, ranking,
scoring

1. INTRODUCTION

Traditional retrieval functions have very few free param-
eters, but nevertheless these parameters need to be set to
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some value, and this choice affects the resulting performance.
In order to determine the optimal value of the free param-
eters, experiments are typically run testing very many pa-
rameter values on some training set and selecting those that
lead to the best performance with respect to the measure of
choice. Such an exhaustive search for the optimal parame-
ter values is both simple and extremely effective: it can be
applied to any combination of retrieval function and perfor-
mance measure. However, the number of values that need
testing grows exponentially with the number of parameters.
For this reason, exhaustive searches can only be carried out
for very few parameters. Beyond that, exhaustive search
is impossible and we need to use heuristics or a learning
algorithm to direct the search for optimal parameter values.

This results in a difficult situation well known to most
IR researchers: we add features to our retrieval functions
to improve their performance, but in doing so we increase
the number of unknown parameters, which makes it harder
to find good parameter values, which in turns hurts perfor-
mance. In particular we consider that negative results (e.g.
adding this feature did not help...) make sense only if we be-
lieve that we have reached the global maximum of the new
ranking function with respect to the performance measure
of choice.

For these reasons the lack of efficient learning algorithms
for retrieval functions (and retrieval performance measures)
seems to us one of the bottlenecks of IR research today. In
this paper we do not propose a solution to this problem, but
rather, we discuss and test two approaches available to us
today: traditional greedy searches, and an extension of the
gradient descent approach recently proposed in [4]. In this
paper, we apply these to training sets of up to 2048 queries.

Training set size

What is a typical training set size? This depends very much
on the environment of the experiment. Our evaluation data
is taken from a commercial Web search engine; it is reason-
able to suppose that all such search engines typically collect
and use very large training sets, considerably larger than
those used here. On the other hand, a common TREC sit-



uation is to have 50 queries to train on, at the lower end of
our range.

Our guess is that there are relatively few environments in
which very large training sets are feasible — outside of the
Web search engines, and possibly a few other public search
services and the intranets of a handful of large companies.
In many environments, the question of whether one can rea-
sonably train on less than (say) 100 queries may be critical
to any training exercise. The choice of training set sizes in
this paper is informed by such considerations.

Overview of the paper

First we summarise some fundamental points about param-
eters and optimisation, including a brief review of some of
the methods used in search engine tuning. Next we discuss
the measure of effectiveness we use: a primary metric which
we really wish to optimise, and a substitute metric used in
the tuning process. Then we describe the tuning methods
and procedures, for which we require gradients (derivatives)
of the metric with respect to the parameters of the model.
The BM25F ranking function, which is a component of the
search engine, has non-linear parameters; the gradients for
this component are established in the Appendix. In sections
3 and 4, we present experiments and results, with different
size models (number of parameters) and different size tran-
ing sets.
The primary contributions of the paper are as follows:

e an empirical analysis of the interaction between size
of model (number of free parameters) and training set
size; and

e an investigation of the optimisation of the parameters
of BM25F, including derivation of the gradients as in-
dicated.

In the course of this work, we compare two alternative meth-
ods of optimisation, and show that a relatively fast machine
learning method can perform just as well as a naive search
of parameter space. We also show that significant benefit
can be gained from using a large number of weak features,
over and above the usual range of features used in typical
TREC web track work.

2. PARAMETER OPTIMISATION

A model, in this case a ranking model for information
retrieval, will have some number of free parameters. If the
model has too few free parameters, then its effectiveness is
limited, because even given a large amount of extra training
data it cannot improve. It has too few degrees of freedom.
If the model has too many free parameters, the danger is
overfitting. Overfitting gives very good performance on the
training data, but the system does not generalise to new
examples, so will perform poorly on a test set of queries. [1]

A typical machine learning approach would be to err on
the side of having a powerful model with many parameters,
to take advantage of the available training data, and to then
employ additional techniques to avoid overfitting. One such
technique is early stopping, to which subject we will return
in section 2.5.

A fundamental question for information retrieval is whether
these machine learning approaches, using large numbers of
parameters and large amounts of training data, can give

better retrieval effectiveness than approaches with few pa-
rameters. A significant barrier to study in this area has
been finding efficient methods for exploring large parameter
spaces, because rank-based effectiveness metrics do not lend
themselves to efficient tuning. This is discussed in detail in
the remainder of the paper.

There are two general approaches used by the IR commu-
nity to handle such tuning. One is to try many parameter
settings and evaluate the objective function (such as mean
average precision) at each parameter setting: potentially a
very expensive procedure for many parameters. These ap-
proaches can be further sub-divided into a) approaches that
involve full exploration of a low-dimensional grid of param-
eters, for example a full 3-D grid [7], and b) heuristics that
allow incomplete exploration of more dimensions [15] [2].
These latter methods are used as a baseline in this paper,
and further details are presented in section 2.2.

The other approach is to choose a metric that does not
depend on calculating an overall ranking [6, 5], but that can
be more easily optimised, for example by gradient descent
[4]. Such approaches are potentially much faster, but have
the potential disadvantage of mismatch between the met-
ric being optimised and the rank-based metric that better
reflects user satisfaction [12]. This is one of the questions
addressed in the present paper.

In the work discussed below, we use as our primary metric
only the rank-based NDCG, defined below. However, we
make no assumptions about the primary measure, and our
methods could be used with any single-point or rank-based
measure, such as for example Mean Average Precision.

Some related work

A number of other approaches to this problem have also been
used. Methods based on SVMs, for example [10], typically
have a time-complexity which depends on the size of the
training set rather than the number of parameters. Such
methods also interact with the choice of metric: for example
Joachims [10] uses metrics relating to a singe point in the
ranked output such as Precision at rank k. He extends his
method to one rank-based measure, the area under the ROC
curve — his argument depends on being able to define this
area in terms of the probability of pairwise error.

Wanting to consider cases with a large amount of training
data, we do not pursue the SVM option here.

Generalisability

Optimising the parameters of a model for a particular set
of conditions raises questions of generalisability, beyond the
overfitting question already raised. FEither or both of the
set of documents or of topics may be special in some way,
or systematically different from the target real environment
in which the system will be deployed. A similar problem is
frequently observed in a TREC environment — some choice
of methods or parameters which worked well on last year’s
TREC data will often fail on this year’s task.

This is a general problem, not addressed in the present
paper (we assume some sampling process in generating the
training and test topics, and a fixed document collection).
We expect, for purely statistical reasons, to overfit because
our training set is too small, but not because of systematic
differences. To some extent our assumptions mirror the sit-
uation from which our data is taken, a general web search
engine. We might expect the overall character of the doc-



uments and topics to change over time, but probably grad-
ually. However, we recognise the existence of the general
problem.

2.1 IR Effectiveness measure: NDCG

The corpus used in this paper has 5 levels of relevance
judgement: four relevant levels and one irrelevant. A suit-
able ranking effectiveness measure that makes use of the
multi-level relevance judgements is NDCG (normalised dis-
counted cumulative gain) [9]. The four positive relevance
grades are assigned rather arbitrary gains of 31, 15, 7 and
3 respectively. The rank-based discount function is m
for rank j; however, the calculation is truncated at rank
10 (in effect the discount function goes to zero after rank
10). As usual for NDCG, we calculate DCG for each query,
by stepping down the ranks accumulating the discounted
gain at each rank; we also calculate the best possible DCG
for this query, derived from an ideal ranking in which a
more-relevant document always precedes a less-relevant doc-
ument. DCG is normalised per query by this maximum
value, and the resulting per-query NDCG is averaged over
queries.

Another feature of the data is the relative sparsity of rel-
evance judgements: only shallow pools have been judged.
This raises questions about how to evaluate ranking mea-
sures such as NDCG, given that there may be many unrated
documents early in the ranking resulting from any changed
ranking function. We might consider either treating unrated
documents as non-relevant (this is the usual IR convention)
or evaluating the measure only on rated documents. In the
experiments presented here, we adopt the former usual con-
vention when reporting NDCG on a test set.

2.2 Optimising NDCG

Most IR performance measures of interest, including
NDCG, are defined in terms of the rank of the documents
and not their score. Computing the rank involves a sorting
operation on the scores, which is not continuous, and for
which no suitable gradients have been proposed. For this
reason, it is clearly difficult to use gradient descent opti-
mization techniques.

Line search

Given this difficulty, it is natural to use techniques that
do not depend on gradient, but instead only on the actual
computation of NDCG. An obvious candidate is the general
class of optimisiation methods sometimes referred to as line
search [13].

We use the following procedure in the experiments in
this paper [8]. From an initial point in parameter space,
a search along each individual parameter co-ordinate axis is
performed (all other parameters are taken as fixed). The
value of the training set NDCG is computed for each of
N sample points along the line, centred on an initial point
in parameter space. The location of the best NDCG value
is recorded. The distances of these optima from the initial
point define a “promising” direction in parameter space. For
example, if a distant optimum was found for a particular
dimension, then there would be a large component of this
promising direction in that dimension. Finally, we sample
NDCG along this promising direction, generally involving
changes now in all parameters. If we find an NDCG value
that is better than where we started, we move the current
estimate of the best parameter vector.

We define an epoch as one cycle through all parameters,
plus the final search along the promising direction. Thus if
there are P parameters then we perform P + 1 line search
operations per epoch.

At the end of each epoch we reduce the scale over which
the samples are taken by a factor of 0.85. The starting point
for the next epoch uses the chosen optimum of the previous
epoch.

We stop training if either we have reached a (rather arbi-
trary) limit of 24 epochs or we have seen 3 successive epochs
with no improvement.

While this procedure is unquestionably computationally
expensive, this particular kind of line search is at least par-
allelizable, as each co-ordinate axis can be searched inde-
pendently. Another common technique we could use in the
future to speed up the line search is called search by golden
section [13], where the optimum is bracketed by ever reduc-
ing intervals.

2.3 Substitute Measures

Some approaches to optimisation formulate the problem
with an explicit or implicit objective function (that which
the method tries to optimise) that may be different from any
traditional measure of retrieval effectiveness. For example,
approaches based on linear regression typically use a least-
squares error function in the predicted variable. Logistic
regression attempts to predict a binary categorisation, us-
ing its own error function. Other categorisation approaches
similarly make use of particular error functions which may
be very different from any recognisable IR measure.

It may be observed that the general recommendation in
the machine learning literature (see for example [12]) is that
the objective function should indeed be the function one re-
ally wants to optimise. As against this, it may be that the
measures we really care about are not susceptible to suit-
able methods. Clearly, if we pursue other measures purely
because we have suitable optimisation methods to go with
them, then we need to pay great attention to the question of
whether good parameters according to the substitute mea-
sures are also good for the measures we care about.

Logistic regression is an example where the objective of
the optimiser is seen as optimising the prediction of rele-
vance itself, rather than a resulting effectiveness measure
such as MAP or NDCG. The assumption is that if we can
predict the relevance of each document well, we can also do
well on the regular IR measures. An alternative approach
is to consider pairs of documents rather than single docu-
ments. That is, what we want to optimise is a ranking, or a
measure based on rankings, and a simple test of a ranking
is whether a given pair of documents is in the right order.
This approach has some support in the IR literature (with
the bpref measure of [3]) and in the machine learning lit-
erature (with the learner of [6]). The bpref work indicates
that the choice of pairs is critical for the IR case; this relates
to the fact that measures such as MAP or NDCG are very
heavily weighted to the top end of the ranking.

In this paper, we use a differentiable cost measure based
on the scores of pairs of documents. We discuss this measure
in the next section.

2.4 RankNet

In RankNet [4], a cost function (referred to here as RNC)
is defined on the difference in scores of a pair of documents.



The training data is defined as some set of pairs of docu-
ments on which the relevance judgements give us a preferred
order for a particular query. Thus a pair consisting of one
relevant and one non-relevant, or one highly relevant and
one minimally relevant, might be a candidate. The choice
of pairs used in RankNet is discussed further in section 3.1.

The basic idea behind RankNet is as follows. The algo-
rithm assumes that it is provided with a training set con-
sisting of pairs of documents d2, d; together with a target
probability Pio that document d; is to be ranked higher
than document dz. They define a ranking function (model)
of the form g : RP — R, in other words, mapping a vector
of D feature values to the reals. The rank order of a set of
documents is therefore defined by the values taken by g. In
particular, it is assumed that g(di) > g(d2) means that the
model ranks d; higher than ds.

The map from the outputs g to probabilities is modelled
using a logistic function P2 = ¢™ /(1 4+ ¢~ ) where Y =
g(d2) — g(d1), and Pi2 is the probability that d; is ranked
higher than ds. Burges et. al. then invoke the cross-entropy
error function to penalize pair ordering errors:

C(Y) = —Pizlog Pia — (1 — Pia)log(1 — Pi2). (1)

This is a very general cost function allowing us to use any
available uncertainty we may have concerning the pairwise
ratings. In this paper, we take the pair ordering data as
certain, and so for us, Pyo are always one. With this simpli-
fication, the RankNet cost becomes:

RNC(Y) = log (1 + eY) (2)

where Y is the difference in the scores of the two documents
in the pair, positive if the documents are in the wrong order.

The RankNet cost function assigns a cost to a pair in
the wrong order, increasing as the score difference increases
in that direction. It does not go immediately to zero, but
asymptotically approaches zero, as the score difference in-
creases in the other direction. Thus the gradient of RNC
not only encourages the pair to be in the right order, but
encourages them to have at least some separation in their
scores.

Given a scoring/ranking function g that is differentiable
with respect to the parameters, RNC will also be differen-
tiable with respect to the parameters. Thus we will be able
to discover the gradient of RNC, and a gradient descent
procedure for discovering an optimum is feasible.

The full RankNet method is based on a neural net. The
only aspect we have taken from this work is RNC itself,
together with the idea of gradient descent.

Gradient descent on RNC

Our approach to this is a special case of a textbook imple-
mentation of the back-propagation algorithm [11]. From a
starting point (set of parameter values), the chosen pairs are
evaluated in a random order. An epoch is a cycle through
all pairs. For each pair, its contribution to the gradient vec-
tor for RNC is evaluated. A small step (determined by a
training rate) is taken in parameter space, in the direction
of reducing cost. The initial training rate is 0.001, and this
is reduced every time an epoch results in an increase in the
total RNC. As with the line search optimization procedure
described in section 2.2, we do a maximum of 24 epochs.

Ranking functions

The various ranking functions used are defined in more de-
tail in section 3.2. In general, they involve a single strong
content feature, namely BM25F, combined with a number
of additional weak features (both static and dynamic) pro-
vided by a commercial search engine. The parameters to
be optimised are (a) the linear weights of the combina-
tion of BM25F with the other features, and (b) the highly
non-linear parameters of BM25F itself. That is, BM25F is
treated as a single feature in a single-layer neural net with
the other features, but the back-propagation is extended to
the internal parameters of BM25F .

The derivatives of RNC with respect to the linear weights
are simple, but those with respect to the BM25F parame-
ters are more complex — they are presented in the Appendix.
The back-propagation procedure extends to these parame-
ters. This aspect is an original contribution of the present
paper.

2.5 Train, validate, test

Given a fixed set of queries with associated relevance eval-
uations, we will frequently want to hold out some set of
queries from the training process in order to use them for
testing — we wish to avoid overfitting the training set, and
such a held-out test set will help us establish the generalis-
ability of our trained model. However, a common procedure
in machine learning training methods is to do a 3-way divi-
sion of the evaluated material, into training, validation and
testing. The validation step has several possible functions.
Conventionally, one use is to avoid overfitting, as follows.
We go through an iterative training process on the train-
ing set, and at each iteration evaluate on the validation set.
When we reach some stopping point, we would normally
expect the best value of the objective function in the train-
ing set to be that achieved in the last iteration. However,
we choose the model on the basis of the validation set re-
sults, which often means choosing an earlier iteration. This
heuristic is found to work well.

RankNet’s Validation Trick

In [4] the validation stage has a dual purpose. The training
process is driven by gradient descent on the RNC. How-
ever, instead of validating on RNC, the authors validate by
choosing the best model (over training epochs) according to
validation set NDCG, the effectiveness measure we are really
interested in. So in addition to preventing us from overfit-
ting, it also serves to reject models that were only good
according to RNC by checking them on the true metric of
interest.

3. EXPERIMENTS

Given a parameterised ranking function, training set and
a measure that we wish to optimise, we have to choose a
training (optimisation) method. A perfect training method
would find the true global optimum of the desired measure
in the full parameter space; however, any realistic method
is likely to fail in this task, and result in a set of parameters
which is not exactly optimal. We are concerned with the
extent to which we may fall below optimal performance. In

"We are currently also working on 2-layer nets, which need
more data but may perform better than linear models [4]



the case of a heuristic line-search, such sub-optimal perfor-
mance will be purely because the line search fails to find the
true global optimum. In the case of gradient descent based
on RNC, we have the additional factor that optimal cost is
not necessarily the same as optimal effectiveness in terms of
our real objective.

As we have seen, the choice of training method may de-
pend on the number of parameters in the model. Another
variable that may be important is the size of the training
set. We might expect that we need a larger training set
if we have (want to make effective use of) more parame-
ters. Also, while all training methods might be expected to
do better with larger training sets, the relationship between
performance of the method and training set size might vary
between trainers.

The variables that we wished to consider in the experi-
ments described below are as follows:

e The number of parameters in the ranking function;
e The size of the training set (number of queries);

e The use of a gradient descent method based on RNC,
versus a form of line search.

Our experiments involve training sets ranging from 16 to
2048 rated queries® (section 3.1) with rankers with 2 or 9 or
375 tunable parameters (section 3.2).

3.1 Data

Because we wished to explore these variables (specifically
the first two) in regions which are not commonly available
in public data sets, we have conducted our experiments on
data sets taken from a commercial search engine. These
data sets provide us with a large number of queries with
relevance judgements, and also allow us to use many dis-
tinct features which may be combined in weighted fashion.
Thus the feature weights provide us with most of our many
parameters.

The data sets are based on a set of English queries (num-
bers given below) sampled from query logs on a large web
search engine. For each query, we select a candidate docu-
ment collection consisting of approximately 2500 top ranked
documents, of which approximately 30 are rated by judges
on a 5 point relevance scale (including non-relevant). The
remainder are labelled as not relevant. In addition, there are
a random sample of a few hundred unretrieved documents
from the set of documents containing all query terms, which
represent documents that are poor matches with high prob-
ability. However, idf values for the term weights are taken
from the original collection.

To facilitate the investigation of the effect of training set
size, we vary the size of the training set, starting at 16
queries, and increasing by steps of v/2 to 2048. For each
training set, there is an associated validation set of one-
quarter the size. The test set is a fixed set of 512 queries.
For validation and test, NDCG is evaluated from the full
ranking; unrated documents are treated as non-relevant.

The remainder of this section describes how the choice of
optimisation method affects the training data that we use
in our experiments.

2We are currently working on experiments on training sets
upto 10 times larger.

Line search on NDCG

Line search training can use all the documents that we have
for each query, both rated and un-rated, giving approxi-
mately 2500 documents per query. We assume that unrated
documents get zero gain in the NDCG computation.

Gradient Descent on RNC

If each unlabeled document were used to compute the set
of all pairs for the computation of RNC, there would be
an extremely large number of pairs per query. Also the
evidence from the bpref study [3] suggests that we need to
be more selective about the pairs we use. To reduce the
number of pairs to a more manageable size, we adopted a
similar sampling strategy to that described in [4] as follows.
We randomly subsampled from the unrated documents to
give a subset of the same size as the average number of
rated documents per query. These documents are treated
as irrelevant. We do not use tied pairs.

As argued in [4], it is possible that this is not just good
for computational reasons. In performing this subsampling
process, we are substantially increasing the probability that
any unrated document that we use in our training process
really is irrelevant, and therefore should get zero gain in
NDCG.

3.2 Ranking functions

This section describes the three ranking models we shall
investigate.

The 2-parameter model

The 2-parameter model is simple BM25, the parameters be-
ing the usual BM25 parameters of k controlling term fre-
quency saturation rate and b controlling document length
normalisation. Note that kK > 0 and 0 < b < 1. The fi-
nal document score is the sum of BM25 with a single fixed
weight (parameter-free) query independent feature. This
query independent feature captures the quality of the docu-
ment according to the link structure of the web, independent
of query and content.

The 9-parameter model

The 9-parameter model is BM25F [14, 15] (see appendix),
this time in a trainable combination with the single query
independent feature used in the 2-parameter model. The
BM25F ranking function is an extension of the BM25 func-
tion that admits extra degrees of freedom to capture the
relative semantic significance of any fields that may be con-
tained in the document.

In our current corpus, there are four fields: incoming an-
chor text, URL, title and body. Each field has its own b
and its own term-frequency weight w. Again, 0 < b < 1
and w > 0. Since there is redundancy between varying the
weights and varying the k value [14], we choose to fix the
single k£ value and vary the four weights. The final scoring
function is BM25F linearly combined with the static feature
(one more weight). The formula for this ranking function
and the derivatives that may be used in back-propagation
are given in the appendix.

We note that the 9-parameter model is very similar to the
model used in our successful submission to the TREC Web
Track in 2004 [15]. It thus represents something close to the
state of the art of web search at TREC.



The 375-parameter model

The 375-parameter model uses a large number of weak fea-
tures. These features are not described in detail here; the
object is to illustrate the process. As with the 9-parameter
model, the scoring function first calculates BM25F and then
combines the BM25F score in a weighted linear fashion with
the remaining features.

4. RESULTS

We investigate the relevance performance of the three
rankers described in the last section over a range of training
set sizes.

4.1 The 2-parameter ranker

With two parameters, we can plot an approximate effec-
tiveness surface by running a full grid over the parameter
space. In Figure 1 we see three surfaces, based on the 64-
query training set and the 512-query test set, in the form
of contours. The three are: RNC on the selected pairs from
the training set; NDCG as calculated on the training set;
and NDCG as calculated on the test set.

The striking thing about this figure is the similarity be-
tween Figure 1a, the RNC computed from rated and random
sub-sampled documents from only 64 queries, and Figure 1c,
the target test set NDCG computed from all available docu-
ments from 512 queries. Both these surfaces appear smooth
(good for search- and gradient-based optimisation alike) and
seem to have very similar structure. In contrast, the train-
ing set NDCG surface in Figure 1b appears bumpy. This
gives us at least an intuitive feel for why direct optimisation
of the training set NDCG may give unpredictable results for
small training sets.

Armed with the derivatives of the RNC with respect to k, b
(see appendix), we ran line search on NDCG verses gradi-
ent descent optimisation on RNC over the range of training
query set sizes. We initialised both at £ = 1.0 and b = 0.5.
Our principle result here is that that gradient descent and
line search performed almost identically over all query set
sizes. In all cases, the trained ranker gave a test set NDCG
of about 0.30 £ 0.02°

In addition, we observed that the test set NDCG did not
improve significantly from the initial starting point. In other
words, we would have got similar test set NDCG perfor-
mance with the 2-parameter ranker set to its initial point,
with no optimization of BM25 parameters.

4.2 The 9-parameter ranker

As we increase the number of parameters, the ‘ground
truth’ represented by the grid search is not accessible to us.
We use the line search procedure described in section 2.2 as
a substitute baseline. Because it directly optimizes NDCG,
there is reason to believe that it should perform well against
the gradient descent approach.

With this ranker, we again compared the performance
of line search against gradient descent on the RNC, using
derivatives of RNC with respect to BM25F parameters pre-
sented in the appendix. We set identical initial BM25F
weights as ws = 1.0, bs = 0.5 (see appendix) and the initial

3This confidence limit is 95% on true population NDCG
value given the 512 sample size, and unless otherwise stated,
applies to all our results on the 512 query test set.

0.5 J

(c)

Figure 1: Objective function contours for training
and test sets for the 2-parameter model: (a) RNC
in the training set; (b) NDCG in the training set; (c)
NDCG in the test set. (Training set of 64 queries.
RNC in the training set based on chosen pairs only;
Both NDCG plots, train and test, are based on all
documents.)



weight of the query independent feature to be the same as
it was for the 2-parameter model.

The results are shown in Figure 2 as “Line search 9” and
“Gradient descent 9”7. We can see that the two optimization
techniques are comparable in performance, with gradient
descent being slightly more consistent.

We also report a significant improvement in performance
over the initial model (epoch zero), thus proving the value
of BM25F tuning in this ranker. The initial model had a
test set NDCG of 0.27. As you can see from Figure 2, both
tuning mechanisms beat this by a very significant margin
for all but the smallest training set sizes. We conclude that
the extra degrees of freedom in a tuned BM25F model are
a valuable addition to the parameter space.

4.3 The 375-parameter ranker

In this scenario the line search baseline is not feasible us-
ing commonly available computer hardware. Therefore we
set out to compare the use of gradient descent on all the
parameters (“Gradient descent 375” in Figure 2) with the
use of gradient descent on the BM25F parameters alone and
line search on the rest (“Line search 375”).

As you would expect, such a large model needs a certain
amount of training data before it starts performing well.
Paired t-tests indicate that the 375-parameter model sig-
nificantly outperforms the 9-parameter model for training
sets of 256 queries or more. It is also significantly worse
for training sets of 45 queries or fewer. All these differences
were significant at p < 0.01 (and usually at p < 0.001). We
also measured changes as the collection size grows, showing
significant improvements in the 375-parameter model, but
no significant changes in the 9-parameter model (Table 1).

We note that this result indicates that many weak features
can add significantly to a state-of-the-art TREC Web Track
ranker.
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Figure 2: NDCG on the test set for different train-
ing set sizes, different numbers of parameters per
model, and the two optimisation methods.

Effect of BM25F tuning

Assuming that we wish to adopt the gradient descent ap-
proach to tuning BM25F parameters, it is natural to con-
sider how much improvement the tuning process makes over
the initialisation point. In Figure 3 we repeat the “Gradient
descent 375”7 run, now labelled “Tuned BM25F”. We show
three further runs: the first is the test NDCG for the model
without BM25F (with 367 parameters, “No BM25F”), the
second is a run with the BM25F model with its initial set-
tings (“Untuned BM25F”) and the third is the line-search
tuned BM25F parameters from the corresponding “Line
search 9” runs as fized values in the 375-parameter ranker
(“Precooked BM25F”).

We see that the ranker without BM25F is consistently
beaten for training sets above about 100 queries. Adding
even an untuned BM25F gives a statistically significant im-
provement for training set sizes greater than or equal to
512 queries. However, the difference between the remaining
three models is not statistically significant. It is surprising
that tuning BM25F in this context makes so little difference.
We are currently working on larger query sets (training and
test) to see under what conditions, if any, this difference
becomes significant.
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Figure 3: The effect of tuning BM25F within a large
ranking model. How NDCG improves by adding an
untuned BM25F feature, and how it does not change
much by tuning it in the presence of hundreds of
other features.

S.  CONCLUSIONS

We may summarise our results as follows:

e We have started to build up some convincing evidence
that gradient on RNC can be used effectively to tune
the parameters of ranking functions such as BM25F.
This makes training of such traditional ranking func-
tions much less computationally expensive.

e Gradient descent and line search track each other quite
closely (in final model effectiveness if not in selected
parameter values).



e Final model effectiveness is somewhat unstable when
we have only a small training set. This result is par-
ticularly true if we have a large number of parameters.

e A large number of features, each with its own linear
weight, may be used to improve performance provided
that we have a large enough training set.

e BM25F tuning seems to become less critical with large
feature sets.

We find the relative success of gradient descent, using
RNC, very interesting. This is a far more efficient method
than line search when we work with subsampled pairs as
discussed, and seems to do just as well, despite the fact that
it uses the ‘wrong’ objective function. The RankNet pro-
cedure seems to be a pretty robust process. We do not of
course know how close we are to any ‘true’ optimum, but it
appears at least difficult to do better.

It remains the case that optimising these ranking func-
tions is an intuitive process involving many heuristics. Very
many decisions were taken in setting up both these of ex-
periments, any one of which could be affecting the results
we have obtained. One example is the train-validation split
— for situations where the potential number of rated queries
is restricted, holding out queries for validation (and/or test)
limits the training set in ways that might be bad for training.
Similarly the use of judge effort for deep pool evaluation on
smaller numbers of queries or shallow pool on larger num-
bers is a significant issue. A few of these variables have been
explored in a limited way during the preparation of this pa-
per, but there remain many unexplored areas. Nevertheless,
the apparent robustness of gradient descent is encouraging.

Number of training queries
64 362 2048
LS9 0.328 -0.001 (p=0.730)  -0.002 (p=0.564)
GD9 0.333 +40.003 (p=0.563) +0.003 (p=0.533)
GD375 0.355 +40.018 (p=0.013) +0.043 (p<0.001)

Table 1: Adding more training queries does not give
significant improvements for the 9 parameter mod-
els, but does for the 375 parameter model.
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APPENDIX
A. DERIVATIVES OF RNC WRT BM25F

In this appendix, we derive the derivatives of the RNC

with respect to the BM25F parameters. We define the BM25F
ranking function as:

F =YL (f) (3)

where I; is the Robertson-Spark-Jones term weight (idf),
and 7 is some sort of saturation function and f; is the field
aggregated term frequency. We will use the following usual
saturation function:

T(f) = —k_{f, (4)
and the definition of f; is:
fi=y e (5)

where w; is the field weight, and the document length nor-
malisation model is defined in the usual way, per field, as:

Bs =1 — by + bals/ls (6)

We first derive some general results, and then go on to use
these for the required derivatives with respect to k, ws, bs.

A.1 Derivatives of BM25F

With respect to k

oF or
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With respect to ws
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With respect to b
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A.2 RankNet Cost Derivatives

This section uses the partial derivatives of BM25F to get
the required derivatives of the RNC, here denoted C'. Let 3
be a generic BM25F parameter, y(l),y(2) be a pair of scores
where d; has a better rating than d, and Y = y® — 3.

(10)

oc _ocov _ac (o a0\
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With respect to score differences
C(Y) =log (1 + ey> (12)
oc _ oo €
Gy =0 = (13)

A.3 With respect to BM25F parameters

We assume that the scoring function combines N features
linearly, and that the Nth feature is BM25F. We have

N
y® =3 wia (14)
=0
and so:
Ay oF k)
= 15
o8~ "N op (15)

where F*) is BM25F. Now the gradient we require is

oC  aC oF®  gFW

%‘TY“”V( FER )
The required partial derivatives of the RankNet cost with
respect to k, ws and bs can be obtained by substituting (7),
(8) and (10) respectively for F*) /83 in (16), and dC/dY
is given by (13).

(16)



