Enforcing Object Protocols by Combining Static and Runtime
Analysis

Madhu Gopinathan

Indian Institute of Science
gmadhu@csa.iisc.ernet.in

Abstract

In this paper, we consider object protocols that constrain in-
teractions between objects in a program. Several such pro-
tocols have been proposed in the literature [3, 9, 6, 5]. For
many APIs (such as JDOM [23], JDBC [22]), API design-
ers constrain how API clients interact with API objects. In
practice, API clients violate such constraints, as evidenced
by postings in discussion forums for these APIs. Thus, it is
important that API designers specify constraints using ap-
propriate object protocols and enforce them.

The goal of an object protocol is expressed as a proto-
col invariant. Fundamental properties such as ownership can
be expressed as protocol invariants. We present a language,
PROLANG, to specify object protocols along with their pro-
tocol invariants, and a tool, INVCOP++, to check if a pro-
gram satisfies a protocol invariant. INVCOP++ separates the
problem of checking if a protocol satisfies its protocol in-
variant (called protocol correctness), from the problem of
checking if a program conforms to a protocol (called pro-
gram conformance). The former is solved using static anal-
ysis, and the latter using runtime analysis. Due to this sep-
aration (1) errors made in protocol design are detected at
a higher level of abstraction, independent of the program’s
source code, and (2) performance of conformance checking
is improved as protocol correctness has been verified stat-
ically. We present theoretical guarantees about the way we
combine static and runtime analysis, and empirical evidence
that our tool INVCOP++ finds usage errors in widely used
APIs. We also show that statically checking protocol cor-
rectness greatly optimizes the overhead of checking program
conformance, thus enabling API clients to test whether their
programs use the API as intended by the API designer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 08 date, City.

Copyright (© 2008 ACM [to be supplied]. .. $5.00

Sriram K. Rajamani

Microsoft Research India
sriram@microsoft.com

Categories and Subject Descriptors D.1.5 [Program-
ming Techniques]: Object-oriented Programming; D.2.1
[Requirements/Specifications]: Tools; D.2.4 [Soft-
ware/Program  Verification]: Class invariants; D.2.5
[Testing and Debugging]: Monitors

General Terms Design, Languages, Reliability, Verifica-
tion

Keywords Invariants, Aspect Oriented Programming, Pro-
gram Verification

1. Introduction

Design decisions impose constraints on both the structure
and behavior of software. Most practitioners of software en-
gineering believe that there is value in capturing these design
decisions as rules, and using tools to automatically enforce
that programs follow these rules. In practice, data types are
the only rules that are widely documented in programs and
enforced by programming languages. Recent work has ex-
tended this approach to specify and check stateful protocols
on objects [2, 13, 16, 8, 15]. These tools treat each object
independently. Examples include checking if a lock is ac-
quired and released in strict alternation, or checking if a file
is opened before being read or written.

Object Invariants. The next challenge in this line of re-
search is to specify and check rules that involve multiple
inter-related objects. The simplest form of such rules are ob-
ject invariants. For example, consider a class Node in a bi-
nary search tree with a Key field k, and fields left and right
that point respectively to the left and right children of a node.
The object invariant of Node states that left.k < k and k <
right.k. Furthermore, the invariant needs to hold recursively
for the nodes pointed to by left and right. Thus, the invariant
of Node depends on its fields k, left and right.

The fundamental difficulty with checking object invari-
ants is that the invariant of an object o may depend on several
objects p1,p2,.... Thus, a change to p; (possibly through
aliases to p;), may break the invariant of o, and there is no
easy way to know the objects that depend on p;. For exam-
ple, if a client of binary search tree changes a key k, it might



break the invariant of a node that depends on k. Since k does
not refer to n, such violations are hard to detect.

In recent work we have designed a tool INVCOP [18]
to enforce object invariants at runtime. INVCOP tracks de-
pendencies of objects automatically, and validates if a state
change of object p breaks the invariant of any object o that
depends on p. In our example, INVCOP automatically tracks
that Node n depends on Key k. When k changes, it validates
whether the change breaks the invariant of n. Thus, INVCOP
guarantees that when an object o is in a steady state, any vi-
olation of o’s invariant is detected exactly where it occurs.
Object Protocols. Object protocols specify generic con-
straints to structure interactions between objects. Several
such protocols have been proposed in the literature [3, 9,
6, 5]. In order to check if programs follow these protocols,
several techniques such as “ownership” type systems [9, 6],
and program verification tools [4] have been proposed. The
goal of an object protocol is expressed as a protocol invari-
ant, which is parameterized over the object invariants of the
participating objects.

As an example consider the Representation Containment
protocol from [9]. The goal of this protocol is to ensure that
if an object with an owner is accessed, then its owner must
also have been accessed. Thus, an owner is assured that if
the protocol is followed, then the objects it owns are not
accessed without its knowledge. Additionally, if an object
is not accessed, then its object invariant must hold.

Object protocols can be described operationally with: (1)
auxiliary fields added to each object, (2) protocol methods
that manipulate auxiliary fields, and (3) a protocol invariant
over the auxiliary fields. For example, the Representation
Containment protocol can be described by adding 2 auxil-
iary fields to each participating object: (1) accessed, which
is true if o is being accessed, (2) owner, which points to the
object that owns o. The protocol fields accessed and owner
are manipulated by protocol methods (See Figure 3 in Sec-
tion 3). The protocol invariant for this protocol is:

(0.owner = null
V' o.owner.accessed))
A(—o.accessed = o.Inv())

Yo. (o.accessed =

Note that the protocol invariant is parameterized over object
invariant o.Inv() of participating objects. Each object type
provides its own definition of the Inv() method.

When API methods are called in a program, protocol
methods are invoked using an appropriate binding. For ex-
ample, when the key field of Node n is set to Key k, using
a binding, the protocol method Own(nk) (Figure 3, Sec-
tion 6.2) is invoked which sets k.owner to n. Suppose the
root node is made the owner of all nodes in a search tree.
The Representation Containment protocol governs how the
auxiliary field accessed of each node n in the tree changes
and that whenever n.accessed is false, the object invariant
n.Inv() holds.

Importance of Object Protocols. For many APIs (such as
JDOM [23], JDBC [22]), API designers constrain how API
clients interact with API objects. Several realistic design sce-
narios require a designer to constrain interactions between
objects (see Sections 6.2.3,6.2.4). API clients commonly
make mistakes in following these protocols (see Section 6).
API designers need to design and customize object protocols
according to the needs of the API (see Section 5). Therefore,
we believe that it is important for API designers to state ob-
ject protocols and enforce that API clients follow such pro-
tocols.

Checking Object Protocols. An obvious technique to check
protocol invariants is to encode the object protocol with its
auxiliary fields (for example, accessed and owner in the
Representation Containment protocol) as part of the partici-
pating object, and encode the protocol invariant as the object
invariant. Then, we can use a tool for checking object invari-
ants (such as INVCOP) to check protocol invariants.

However, this technique has two major difficulties. First,
errors can be made in the description of the protocol. It is
unsatisfactory to detect such errors while checking if a par-
ticular program follows the protocol, since these are generic
errors independent of the particular program being checked.
It is desirable to detect such errors at the level of the proto-
col description itself (without bringing the program into the
picture). Second, as our empirical results show, the overhead
of checking if a program obeys a protocol invariant purely
at runtime is unacceptably high (see Table 2 in Section 6).
This overhead is due to a large number of changes to proto-
col fields, and validations that are consequently triggered by
automated dependency tracking.

We solve both these problems using the following
methodology. We specify the object protocol outside of the
program using a simple language PROLANG. A PROLANG
description of an object protocol consists of auxiliary fields,
methods that manipulate auxiliary fields, and a protocol in-
variant. Each protocol method makes assumptions about the
values of the auxiliary fields, and changes the values of the
auxiliary fields (See Figure 3 in Section 3).

Our goal is to check if a given program M follows a
protocol P with protocol invariant PI. Our methodology
decomposes this check into two parts:

e First, we perform a protocol correctness check using
static analysis (using automatic theorem provers). This
checks if the protocol description of P in PROLANG,
satisfies the protocol invariant P1.

e Next, we perform a program conformance check using
runtime analysis. This checks if a program M satisfies
the protocol P.

The protocol correctness check involves analyzing the proto-
col methods that manipulate the auxiliary fields, and check-
ing if these methods satisfy the protocol invariant, while
making assumptions specified in the bodies of these meth-



ods. The program conformance check involves only dis-
charging these assumptions, and avoids checking the entire
protocol invariant at runtime. Consequently, we are able to
greatly optimize the runtime overheads during program con-
formance checking.

Our work has two main research contributions:

e Due to careful design of the protocol language PROLANG
and the runtime system, we are able to formally prove
that if the protocol verification(static check) passes, and
program conformance(runtime check) passes for a run 7,
then the program indeed satisfies the protocol invariant
for r (see Theorem 3 in Section 4). Thus, violations of
protocol invariants are guaranteed to be detected exactly
where they occur.

e We demonstrate that our language PROLANG is rich
enough to express several object protocols from pub-
lished literature (Section 5), and that the separation of
concerns greatly reduces the overhead of checking pro-
gram conformance (Section 6). We also demonstrate that
by binding publicly available APIs with object protocols,
we can detect usage errors reported in discussion forums
for commonly used APIs (Section 6).

Benefits to API designers. INVCOP++ enables API de-
signers to create a library of verified object protocols, and
bind API classes or interfaces to appropriate protocols. De-
sign mistakes in protocols are detected statically. A proto-
col description in PROLANG together with a binding to API
classes provides precise documentation on how the API is to
be used.

Benefits to API clients. INVCOP++ enables API clients
to detect API protocol violations at runtime, exactly where
they occur with no extra effort on their part (assuming that
the API designer has included PROLANG descriptions of the
object protocols governing API usage, bound to the API).
By verifying protocols statically, the overhead in checking
program conformance is significantly reduced.
Limitations. We are aware of two main limitations of our
work:

e While our protocol correctness check is static and com-
plete, our program conformance check is dynamic and
incomplete. That is, we are able to guarantee program
correctness only for the runs that we check, and we are
unable to show that a program satisfies a given protocol
invariant for all runs. This is the price we pay for flexi-
bility. Unlike earlier approaches to object protocol spec-
ification, which force people to use particular ownership
type systems, or particular pre-defined object protocols,
we allow different parts of the API to use different pro-
tocols. We also allow API designers to fine-tune object
protocols according to their requirements (see Section 5).

® Our techniques work only for sequential programs, and
further work needs to be done to extend this to concurrent
programs.

interface Key{

//this < k?

boolean Less(Key k);
}

class Node {
Key k;

Node left;
Node right;

Node(Key key) { k = key };

//object invariant of this node
boolean Inv(){
return((left==null || left.k.Less(k) && left.Inv()) &&
(right==null || k.Less(right.k) && right.Inv()));
}
}

class BinarySearchTree {
Node root;

//insert a key

void Insert(Key k) {

//code to create a new node
//and insert k

assert root.Inv();

}
boolean Inv() {
return (root==null || root.Inv());
}
}

Figure 1. Binary Search Tree

Outline. The remainder of this paper is organized as fol-
lows. To make this paper self-contained, Section 2 reviews
the core ideas behind INVCOP. Section 3 presents our proto-
col description language PROLANG. Section 4 describes the
static and runtime analyses performed by our new tool IN-
VCOP++, and states the formal guarantees behind the com-
bination of static and runtime analysis. Section 5 illustrates
that several object protocols from published literature can be
modeled using PROLANG, and hence consequently verified
and enforced using INVCOP++. Section 6 presents empiri-
cal results from running INVCOP++ on several APIs avail-
able in the public domain. Section 7 compares our work with
related work, and Section 8 concludes the paper.

2. Background

In this section, we briefly explain the core ideas behind
INVCOP [18].

Consider the class Node in Figure 1 that is used to con-
struct a binary search tree. The invariant of Node is expressed
by the Inv () method which states that if the left child is not
null, then its key must be less than this node’s key, and the
tree rooted at the left child must be a valid binary search tree,
i.e. left.Inv() must hold. A similar condition must hold
if the right child is not null.



Consider the following client code that uses the
BinarySearchTree APL:

class IntKey implements Key {
int x;

boolean Less(Key k) {
IntKey o = (IntKey)k;
return x < 0.X;

}

}

Key k1 = new IntKey(10);
Key k2 = new IntKey(5);
Key k3 = new IntKey(15);

BinarySearchTree bst = ..;

bst.Insert(kl);

bst.Insert (k2);

bst.Insert(k3);

//now, we have a tree with k1 as the key
//of the root node, k2 the key of its left
//child and k3 the key of the right child

//the following statement breaks the invariant of root
k2.x = 20;

//assertion fails in bst.Insert
bst.Insert(new IntKey(..));

In the above example, the invariant of bst is violated
by the statement k2.x = 20 (line 23), but goes undetected,
since there is no way for the runtime to know that an up-
date to k2.x breaks the invariant of bst. Later in line 26,
when bst.Insert is called and root.Inv() is checked,
this violation is detected. The goal of INVCOP is to detect
such violations exactly where they occur. Although it is not
a good practice to insert mutable keys, API client program-
mers make such mistakes and it is difficult to find the root
cause of the violation in large programs [10, 11].

INVCOP uses runtime verification to enforce the follow-
ing inv-rule: The invariant of an object o (which can re-
fer to the state of other objects p) must hold when control
is outside of any of o’s methods. The unique feature of IN-
VCOP is that it tracks object dependencies automatically. In
this case, after inserting the key k3, during the execution of
root.Inv(), it is automatically detected that root depends
upon keys k1,k2 and k3 since these fields are referred in
root.Inv(). When k2 is changed (line 23), INVCOP vali-
dates this change by asserting root . Inv (). Using such de-
pendency tracking, INVCOP guarantees that violations of
the inv-rule are detected exactly when they occur.

INVCOP assigns the role ObjWlInv (object with invari-
ant) to participating objects. This role has a boolean field
inv, a side effect free function Inv () that returns a boolean,
and a set dependents of objects that depend on an object
with this role.

role 0bjWInv{
boolean inv;
boolean Inv();

Set<0bjWInv> dependents;
}

The participating objects are required to provide only the
Inv() function (as in Node in Figure 1). The fields inv and
dependents are automatically managed by INVCOP. IN-
VCOP must ensure that whenever o.inv is true, the func-
tion o.Inv() returns true in a program. By default, IN-
VCOP sets o0.inv to true when control exits public meth-
ods of o, and sets o.inv to false when control enters pub-
lic methods of o. In the case of reentrant code, this can be
modified as desired. INVCOP sets o.inv to true only after
asserting that o.Inv () returns true. In addition, during the
execution of o.Inv(), INVCOP monitors all objects p that
are accessed by o. Inv () and adds o to p.dependents. When
p is modified, INVCOP automatically checks that for every
o € p.dependents, if o.inv is true, then o.Inv() indeed
holds. If o.Inv() does not hold, then a violation of o’s in-
variant has been detected exactly where it occurred.

INVCOP offers the following correctness guarantee. A
proof of this theorem can be found in [18].

Theorem 1. Let r be any run of a program P which is run
with INVCOP’s runtime. Suppose INVCOP does not raise
any runtime violations during r. then, the following holds in
all states of r:

Yo € ObjWinv.(o.inv = true) = (0.Inv() = true)

3. Object Protocols

Recall the Representation Containment protocol from Sec-
tion 1. This protocol ensures that every object o with an
owner is accessed only with the knowledge of 0’s owner, and
for every object o, its object invariant holds when it is not ac-
cessed. As we stated before, the protocol adds two auxiliary
fields accessed and owner for each object, and the protocol
invariant is:

(0.owner = null
V' o.owner.accessed))
o.Inv())

Yo. (o.accessed =

A(—o.accessed =

Suppose we want a binary search tree to behave accord-
ing to this protocol. We could treat the protocol’s auxiliary
fields as object fields, encode the above invariant as the ob-
ject invariant, and use INVCOP to ensure that the object in-
variant holds. This scheme is very inefficient. To see why,
recall the class Node class from Section 2. The protocol can
be encoded in the class Node as follows:
class Node : ObjWInv {

//program fields
Key k;

Node left;

Node right;

//protocol fields
boolean accessed;
ObjWInv owner;



//protocol invariant encoded as object invariant
boolean Inv(){
return((!accessed ||
(owner==null || owner.accessed)) &&
(accessed ||
(left==null ||
left.k.Less(k) && left.Inv()) &&
(right==null ||
k.Less(right.k) && right.Inv())));

Note that the encoded object invariant of Node is ob-
tained by substituting the original object invariant of Node
for o.Inv() in the protocol invariant (we have also rewrit-
ten implications using disjunctions). If we attempt to use IN-
VCOP to enforce the object invariant of Node, it suffers seri-
ous performance problems as changes to the protocol fields
need to be tracked in addition to changes to program fields,
and additionally, changes to protocol fields need to be vali-
dated by nodes that depend on them.

Consider a tree with 100,000 nodes. Assume that the root
owns all the nodes in the tree. This is in conformance with
the protocol, since the root (owner) is accessed before any
node is accessed. However, if the protocol is encoded into
the program, the Inv () function for each node depends on
root, since the Inv function mentions owner .accessed and
the root is the owner for all nodes in the tree. This depen-
dency is automatically tracked by INVCOP. When the tree
is traversed, the root node is accessed first and its accessed
field is set to true. INVCOP needs to validate this change
with every node in the tree since every node in the tree de-
pends on the accessed field of the root! As our empirical
results show (see Section 6, Table 2, scenarios S3 and S4),
this encoding is very inefficient due to a large number of in-
variant validations triggered by automatic dependency track-
ing.

Additionally, when the object protocol is encoded as part
of a program, mistakes could be made. Such errors at the
protocol level can be detected only when a protocol is ap-
plied to a specific program, which is unacceptable. There-
fore, we must detect errors in the protocol description at a
higher level of abstraction.

3.1 A language to specify object protocols

We have designed a language PROLANG to describe object
protocols separately from programs, and solve both the prob-
lems mentioned above. A PROLANG description of a pro-
tocol looks like a class declaration with (1) auxiliary field
declarations, (2) method declarations, and (3) a protocol in-
variant specification. However, the meaning of a auxiliary
field declarations, method declarations, and protocol invari-
ant are quite different from the usual notions associated with
a class. Intuitively, the auxiliary field declarations add auxil-
iary state to all objects, method declarations manipulate aux-
iliary states of multiple objects, and protocol invariants are

P := protocol pn body
body == {auxfld® methodt invariant}
aurfld == tObjWInv.fn :=c
method = mn (arg’) {s}
arg = ObjWInv o | Object]] p
s == assumelels;s
| if (0.fn){s} else{s}

| for(p in o.sfn){s}
| 0.fn:=wv | CheckAndSetInv(o)
| 0.sfn.Add(p) | 0.sfn.Remove(p)

invariant == (Yo: ObjWlInv :: ¢le)
t == boolean | ObjWInv | enum type
| Set(ObjWInv)
¢ == true | false | null | enum constant
v o= cle
e == olo.fn|oprn()|o.prn(Object[] p)
le = logical expression
qle = quantified le that has inv
pn €  protocol names
fn € aux. field names of any type
sfn € aux. field names of Set type
mn € method names
prn €  predicate names
o,p € variable names

Figure 2. Syntax of PROLANG

inductive invariants over the auxiliary state of all objects.
Figure 2 shows the grammar for PROLANG. Below, we give
informal descriptions of various parts of the grammar, fol-
lowed by an example.

Auxiliary field declarations. Object protocols are specified
by adding auxiliary fields to each object which is assigned
the role ObjWlnwv, in addition to the fields we introduced
in Section 2. In particular, the boolean inv exists by default,
and can be manipulated by the protocol methods. The set
dependents used by dependency tracking also exists. This
field cannot be accessed by the protocol methods.

Method declarations. Method declarations take one or
more objects as arguments, make assumptions about the pro-
tocol state, and change the protocol state. There are two spe-
cial methods: (1) The Init(o) method takes an object of type
ObjWiInv and is called every time an object o with sub-
type ObjWinwv is initialized. (2) The Validate(o) method
also takes an object of type ObjWInv. Whenever an object



p changes, INVCOP++ automatically calls Validate(o) for
every o whose Inv () method depends on p.

There are two restrictions on coding the methods. First,
we stipulate that o.inv can be set to true only by using
CheckAndSetInv(o), which asserts o.Inv () before setting
0.inv to true:

CheckAndSetInv(0bjWInv o) {
assert(o.Inv());
0.inv := true;

}

Next, we require that every code path in the method body
for Validate(o) must either call CheckAndSetInv(o) or set
o.inv to false.

Protocol invariant declaration. The protocol invariant
needs to be universally quantified over all objects of type
ObjWinw. i.e., of the form Vo € ObjWlinv. ¢(o).
Example. Figure 3 shows the Representation Containment
protocol [9] specified using PROLANG. Note that this spec-
ification separates the protocol from the program unlike our
earlier encoding, which mixed the protocol description with
the program.

This protocol adds two auxiliary fields for every ob-
ject that is assigned the role ObjWInv: (1) a boolean field
accessed, and (2) a reference field owner. In addition, the
boolean field ¢nv is available to the protocol methods.

The protocol description specifies 5 methods: Init,
Validate, Own, Access and Done. Recall the restriction
that every code path in Validate(o) needs to either call
CheckAndSetInv(o) or set o.inv to false. Note that the defi-
nition of Validate(o) in Figure 3 indeed satisfies this restric-
tion.

The protocol is associated with a program through a bind-
ing using Aspect Oriented Programming (AOP) [25]. Us-
ing such a binding, the method Own (o, p) is invoked when
o must own p, the method Access(o) is invoked before a
method call on o, and the method Done(o) is invoked after
a method call on o. For the binary search tree example, af-
ter setting the key field k of a node n, Own(n, k) must be
invoked. Before any public method call on any object that
implements Key, Access must be invoked and after the call,
Done must be invoked. A sample binding for this example
is shown in Section 6.2.

Finally, note that the object protocol invariant is also part
of the protocol description in Figure 3.

4. Analysis

Given an object oriented program and an object protocol
with a protocol invariant expressed in PROLANG, we would
like to ensure that the program satisfies the protocol invari-
ant. Recall our first attempt to do this in Section 3, by encod-
ing the protocol into the program, and encoding the protocol
invariant as the object invariant, and the difficulties faced
with such an approach.

protocol RepresentationContainment {

// boolean ObjWInv.inv exists by default
boolean ObjWInv.accessed;
0bjWInv ObjWInv.owner;

Init(0ObjWInv o) {
false;
:= true;
null;

o.inv :=
o.accessed
o.owner :=

}

Validate(ObjWInv o){
assume (o0.accessed = true);
o.inv := false;

}

Own(0bjWInv o, ObjWInv p) {
assume(o.accessed = true);
assume (p.owner = null ||

p.owner = 0);
p.owner := o;

}

Access(0bjWInv o) {
assume(o.accessed = false);
assume (o.owner = null ||

o.owner.accessed = true);
o.accessed := true;

}

Done (0bjWInv o) {
assume(o.accessed = true);
CheckAndSetInv(o);
o.accessed := false;

}

invariant (forall o : ObjWInv ::
(o.accessed ==> o.owner = null ||
o.owner.accessed) &&
('o.accessed ==> o.inv = true));

Figure 3. Representation Containment Protocol

We separate this verification problem into two parts.

® Protocol correctness: check if the object protocol P sat-
isfies its protocol invariant PI.

® Program conformance: check if the program M con-
forms to the protocol P.

Our new tool INVCOP++ solves the protocol correctness
problem using static analysis, and the protocol conformance
problem using runtime analysis. We describe the two analy-
ses below, and formally state and prove that the two analyses
together ensure that the program M indeed satisfies the pro-
tocol invariant.

4.1 Protocol correctness.

We assume that the object protocol P is specified in
PROLANG. Using automatic theorem proving (our imple-
mentation uses Simplify [14]) we check whether P satisfies



its protocol invariant PI. The object protocol P is consid-
ered as a state transition system of an unbounded number of
objects, with the initial state of each object specified by ex-
ecuting the Init method, and subsequent states obtained by
executing the other methods in the protocol. We wish to es-
tablish that the set of all possible states that can be reached
by executing the methods of the protocol P satisfy the pro-
tocol invariant PI. Let PI be of the form Yo - (o). For
the base case, we need to show that the Init method satisfies
the protocol invariant. Let Init(.S) be a predicate that holds
whenever S is the auxiliary state produced by running the
Init action. We need to show that:

Y(S) - Init(S) = Sk PI

For the inductive case, we need to show that for each method
A in the protocol description, if we execute A from a state
S, that satisfies PI to reach a state .So, then S, satisfies PI:

v(51752)'51 ): PI/\A(Sl,SQ) = Sg ): PI

Our tool, INVCOP++, automatically generates these proof
obligations from the protocol description, and uses an au-
tomatic theorem prover to check these proof obligations. If
the proof obligation is not valid, then the automatic theo-
rem prover gives a counterexample, which indicates why the
protocol does not satisfy the protocol invariant.

The following theorem states that our static analysis in-
deed establishes that a protocol satisfies its protocol invari-
ant.

Theorem 2. Let P be any PROLANG protocol with proto-
col invariant PI, such that the Init action satisfies ¥(S) -
Init(S) = S |= PI and every other protocol method A
satisfies V(Sl,Sg) - 51 |: PI N A(51752> = Sy ': PI.
Then, for every reachable auxiliary state S such that S is ob-
tained by successive execution of protocol methods, we have

that S |= PI

Proof. By induction over the sequence of protocol methods
executed. O

Example. Recall the Representation Containment proto-
col description from Figure 3. Let init(0) be a formula that
holds whenever o is the result of executing the Init method.
In this example, init(o) is given below:

o.inv = false A o.accessed = true N\
o.owner = null

init(o) =

Note that init(o) can be generated automatically from the
body of Init in Figure 3. The protocol invariant PI is given
by Yo. ¢(0), where

©(0) = Vo. (0.owner = null
V o.owner.accessed))
A(—o.accessed = o.inv)

(0.accessed =

The proof obligation for the Init method is thus given by:
Yo - init(o) = p(0)

To prove that the Done method preserves the protocol invari-
ant, we proceed as follows. We wish to produce a formula
done(o1,09) that holds whenever an object can transition
from state 07 to o2 by executing the Done method. Such a
formula is given below:

done(o1,09) = ol.accessed A 02.inv
A —02.accessed
A ol.owner = 02.owner

Again, we note that done(o1, 02) can be generated automat-
ically from the body of Done in Figure 3. The proof obliga-
tion for the Done method is given by:

Yo1,09 - (01) A done(o1,02) = p(02)

Suppose the protocol designer forgets to set o.inv to true
in the method Domne, i.e. line 34 is missing in Done. Then
the above implication does not hold as there exists an ob-
ject og such that —os.accessed A —o0g.inv which satisfies
©(01) A done(o1, 02) A—p(02). The proof obligation for the
Done method fails with a counterexample that shows such
an object 0s.

4.2 Program conformance.

After verifying a protocol P as above, we use runtime anal-
ysis to check if the runs of a program M conform to the
protocol P. INVCOP++ uses Aspect Oriented Program-
ming (AOP) to bind the protocol P’s methods to appropriate
points in the program M. After creation of every object o
with role ObjWinwv, Init(o) is called to initialize o’s auxil-
iary state. If an object p changes, then INVCOP++ guaran-
tees to invoke Validate(o) for every o whose Inv () depends
on p.

INVCOP++ converts the assume statements in the meth-
ods of the protocol description P to assertions and checks
them at runtime. This ensures that the assumptions made by
the static analysis to prove the protocol invariant are indeed
discharged at runtime.

For any protocol invariant PI let PI be the formula ob-
tained by replacing every positive occurrence of o.inv with
0.Inv(). We refer to PI as the instantiated protocol invari-
ant, since the occurrences of o.inv have been instantiated
with actual invariants from the program M. For the protocol
invariant P in our example, Pl is:
forall o : 0ObjWInv ::

(o.accessed = true ==> o.owner = null ||

o.owner.accessed = true) &&
(o.accessed = false ==> o.Inv() = true)

Our main theorem composes the results of the protocol
correctness and the program conformance phases.



Theorem 3. Consider any protocol P with protocol invari-
ant PI and methods that satisfy conditions of Theorem 2. Let
r be any run of program M superimposed with protocol P
using some binding. Suppose r does not have any assertion
violations. Then, in all states of r we have that the instanti-
ated protocol invariant PI holds.

Proof. Three sets of assumptions made by the static anal-
ysis phase are guaranteed to be discharged by the runtime
analysis. First, the static analysis assumes that every ob-
ject o’s auxiliary state is initialized by the method Init(0),
and the runtime ensures that the method Init(o) is indeed
called for every object with the role ObjWlInv. Second,
the static analysis assumes conditions stated in the method
body on the auxiliary state during the verification of each
method. These assumptions are converted into assertions and
checked by the runtime analysis. Finally, automated depen-
dency tracking ensures that Validate(o) is called whenever
an object p that o depends on changes. Since every code
path in Validate(o) either establishes 0.Inv() or sets o.inv
to false, we are able to reuse Theorem 1 in Section 2, and en-
sure that for every run r, the instantiated protocol invariant
PI holds if no assertion failure is detected at runtime. (]

Our work employs an intricate interplay between static

and runtime analysis. During static analysis (to check pro-
tocol correctness) we assume conditions stated in protocol
method bodies, and prove the protocol invariant inductively.
During runtime analysis (to check program conformance),
we merely discharge these assumptions, without having to
check the entire protocol invariant. However, this alone is
not sufficient to get the guarantee obtained in Theorem 3,
since the object invariant of o can be changed if some p that
o depends on changes. In addition, we need the automatic
dependency tracking and invalidation scheme from our ear-
lier work [18], and the constraints on the protocol methods
(see Section 3.1) to prove Theorem 3.
Performance and correctness benefits. Consider again, the
binary tree example from Section 3. Recall that when the
object protocol invariant was encoded in the program, every
time the root node was accessed, the protocol invariant had
to be checked for all the nodes of the tree due to dependency
tracking. However, by describing the protocol separately us-
ing PROLANG, and verifying the object protocol invariant
statically, INVCOP++ greatly reduces the number of checks
that need to be done at runtime. Indeed, the protocol invari-
ant is never directly checked at runtime, and only the local
assumptions made in the method bodies of the protocol de-
scription are checked at runtime. As our empirical results
show in Section 6, this greatly enhances the performance of
the runtime analysis. Further, errors made in the protocol de-
scription are now detected during the static analysis phase
itself, independent of the program on which the protocol is
enforced, leading to correctness benefits.

5. Scenarios

In this section, we demonstrate the expressiveness of
PROLANG by encoding various object protocols from pub-
lished literature. We motivate the need for each protocol by
presenting a scenario that cannot be handled by the proto-
cols discussed prior to it. In Section 5.2, we show a scenario
where we need to “fine-tune” a protocol from the literature
to suit the needs of the particular API under consideration.

In addition to the Representation Containment protocol
that we have discussed in Section 3, we consider three other
protocols: (1) the Privileged Reader protocol [6] that enables
an object o to grant another object read access to objects
owned by o, (2) the Boogie protocol [3] that enables an ob-
ject o to own another object p and later, transfer the owner-
ship of p to a third object and (3) the Friends protocol [5]
that enables several friends to constrain state changes of a
granter object that they all depend on.

5.1 Privileged Reader

Suppose that the API designer of BinarySearchTree used
the Representation Containment protocol such that a tree
owns all its nodes and keys. Consider implementing an it-
erator for iterating over the nodes in a tree as shown below.
For simplicity, we show the protocol methods invoked (in
bold) in the program itself.

class NodeIterator {
BinarySearchTree tree = ..;

//preorder traversal

Node Next() {
//current points to
//the node on top of
//a stack of nodes

Access(current);
Push(current.left);
Done(current);

return current;

The Next method needs to access the nodes directly with-
out accessing the tree. The Representation Containment pro-
tocol is too restrictive for this scenario. Figure 4 shows an
extension of this protocol called Privileged Reader [6]. This
protocol enables BinarySearchTree to let NodeIterator
read its nodes. The protocol invariant states that if an object
o is accessed, then either it has no owner or its owner has
been accessed or a privileged object has accessed o.

Instead of invoking Access, the newly added method
PAccess must be invoked before an iterator accesses a node.
The protocol invariant is maintained even though the owner
of a node (tree) is not accessed as PAccess sets paccessed to
true.



protocol PrivilegedReader {
//in addition to the fields in
//representation containment protocol
boolean ObjWInv.paccessed := false;

//Methods not shown are the same as in
//the representation containment protocol.
Done (0bjWInv o) {

assume(o.accessed = true);

CheckAndSetInv(o);
o.accessed := false;
o.paccessed := false;

}

//PAccess is a new method
PAccess(0bjWInv o) {
assume (o.accessed = false);
o.accessed := true;
o.paccessed := true;

}

invariant(forall o : ObjWInv ::
(o.accessed = true ==>
(o.owner = null ||
o.owner.accessed ||
o.paccessed)) &&
(o.accessed = false ==> o0.inv));

Figure 4. Privileged Reader Protocol.

5.2  Ownership Transfer

In the protocols that we have discussed, once an object o
owns another object p, it never gives up ownership of p. The
API designer of BinarySearchTree would like the keys in-
serted by the API client to be owned by a tree only when the
keys are part of that tree. When a key is deleted from a tree,
then it must give up ownership of that key. Figure 5 shows
the Boogie protocol [3] that allows ownership transfer.

The auxiliary field o.st keeps track of whether object o
is valid, invalid, or committed. The objects owned by o are
elements of the set o.comp. The protocol invariant states
that if an object o is either valid or committed, then o’s
invariant holds and all objects p on which o depends are also
committed.

The field o.st is modified by the methods Pack and
Unpack. When an object o is packed, it transitions from in-
valid to valid state and all objects p owned by o are com-
mitted to o. The API designer must pack an object o after
construction and after a public method execution.

When object o is unpacked, it transitions from valid to
invalid state and all objects p owned by it become valid. The
API designer must unpack o before a public method executes
on o. Note that o can be unpacked only if it is not committed.
If o is committed, then all objects which depend on o must
be unpacked before unpacking o.

The method Own (o, p) adds p to the set o.comp, i.e. o
owns p. The method Giveup(o, p) removes p from o.comp,
i.e. o gives up ownership of p. Using this protocol, every
node can own its children and the associated key. The tree

protocol Boogie {
enum State {Invalid, Valid, Committed};
State ObjWInv.st;
Set<0bjWInv> ObjWInv.comp;

Init(ObjWInv o) {
//Body supplied by rule designer

o.inv := false;
o.st := State.Invalid;
o.comp := nullset;

}

Validate(ObjWInv o) {
assume(o.st = State.Invalid);
o.inv := false;

}

Pack(ObjWInv o) {
assume(o.st = State.Invalid);
CheckAndSetInv(o);
for(p in o.comp) {
assume(p.st = State.Valid);
p.st := State.Committed;
}
o.st := State.Valid;
}

Unpack(ObjWInv o) {
assume(o.st = State.Valid);
o.st := State.Invalid;
for(p in o.comp)

p.st := State.Valid;
}

//o owns p

Own(0bjWInv o, ObjWInv p) {
assume(o.st = State.Invalid);
o.comp.Add(p) ;

}

//o gives up p

Giveup(ObjWInv o, ObjWInv p) {
assume(o.st = State.Invalid);
o.comp.Remove(p);

}

//rule invariant
invariant (forall o: ObjWInv ::
(o.st = State.Invalid ||
(o.inv && (for all p: ObjWInv ::
(p in o.comp ==
p.st = State.Committed)))));

Figure 5. Boogie Protocol.

can own the root node. When a key is deleted from the tree,
the node that owned it must give up ownership of the key as
follows:

class BinarySearchTree {
void Delete(Key k) {
Unpack(this);
//Locate the node z that owns k
Node z = ..
//Delete z from the tree



Giveup(z,k);
Pack(this);
}
}

Conceptually, this protocol serves the purpose of the API
designer, i.e. prevent keys that are part of the tree from being
modified by an API client and give up ownership of the key
when it is deleted. However, this protocol does not allow the
BinarySearchTree.Delete method to be implemented as
in [12]. Suppose that the tree bst contains three nodes root,
y and z with y as the left child of root and z as the left child
of y and the key to be deleted is owned by the node z.

The value of the st field for these objects are shown
in Figure 6. The tree bst is invalid as it has already been
unpacked. Therefore, the root is valid and the nodes y and
z are committed. To delete node z, node y must be unpacked.
However, to unpack y, all the nodes along the path from the
root to the node y must be unpacked and later they must be
packed again in the reverse order. Thus, this protocol as it
is, does not permit a straightforward implementation of the
Delete method.

Committed

Committed

Figure 6. Problem deleting node z.

However, we can implement the Delete method as is by
changing the ownership structure of this protocol, based on
an idea in [9]. The tree can own all the nodes (as opposed to
every node owning its children) and each node can own its
associated key. Therefore, we modify the Boogie protocol
to allow indirect references to owned objects as shown in
Figure 7.

A new auxiliary field owner is added. The protocol in-
variant has the additional condition that if an object is in-
valid, then its owner is either null or invalid. The new method
ToOuwner(o, p) lets o.owner to own p. This method must
be invoked when a child field (left or right) of a node is
set. As the node whose field is being set is owned by the tree,
its child will also be owned by the tree even though the tree
does not refer directly to the child node.

With the modified protocol, all nodes along the path from
root to the node y are valid since the tree has already been
unpacked. Therefore, y can be unpacked to delete node z.
Thus, the Delete method need not be modified to accom-
modate the Boogie protocol. The modified protocol also al-

protocol IndirectReference {
//new auxiliary field
//initialized to null
0bjWInv ObjWInv.owner;

ToOwner (0bjWInv o, ObjWInv p) {
assume (o.owner != null
&% o.owner.st = State.Invalid);
o.owner.comp.Add(p) ;
p.owner := o.owner;

}

Unpack(0bjWInv o) {
assume (o.owner = null
|| o.owner.st = State.Invalid);
assume(o.st = State.Valid);
o.st := State.Invalid;
for(p in o.comp)
p.st := State.Valid;
}

invariant (forall o : ObjWInv ::
(o.st = State.Invalid ==>
(o.owner = null ||
o.owner.st = State.Invalid))
&&
(o.st != State.Invalid ==>
(o.inv && (p in o.comp ==>
p.st = State.Committed))));

Figure 7. Boogie Protocol with Indirect Reference.

lows a node to give up the key it owns when the key is
deleted from the tree. This discussion illustrates the need for
mixing-and-matching ideas from various protocols to fine-
tune a protocol according to the requirements of the API de-
signer.

5.3 Friends Constrain Granter

Consider the classes Connection and Statement in the
JDBC API [22]. The API designer must express the con-
straint that if any statement s created using a connection
c is open, then the connection ¢ must not be closed. Since
several statements can share the same connection, this con-
straint cannot be enforced by letting a statement s own its
connection c using one of the protocols above as all of them
allow an object to have at most one owner.

The Friends protocol [5] shown in Figure 8 can be used
by the JDBC API designer. The auxiliary field granter
points to the shared object on which constraints are imposed
and the field friends contains the objects which impose con-
straints on the granter. In this example, the granter field of
all statements s point to the connection ¢ and the friends
field of c contains all statements s created using c. If the field
ok of a friend is true, then that friend agrees to a proposed
state change of the granter. The protocol invariant states that
if a friend f is valid and its granter is not null, then the
granter must know about f, i.e. f € f.granter.friends and



protocol Friends {

enum State {Invalid, Valid};
State ObjWInv.st;

boolean ObjWInv.ok;

0bjWInv ObjWInv.granter;
Set<0bjWInv> ObjWInv.friends;

Init(ObjWInv £) {

f.inv := false;
.st := State.Invalid;
.0k := false;
.granter := null;
.friends := nullset;

Hh Hh Fh Hh

}

Validate(ObjWInv f) {
if (f.st = State.Valid)

CheckAndSetInv(f);
else
f.inv := false;

}

Attach(0bjWInv g, ObjWInv f£f) {
assume(g != null);
assume(g.st = State.Invalid);
assume (f.granter = null);
f.granter = g;
g.friends.Add(f);

}

Detach(0bjWInv g, ObjWInv f) {
}

UpdateGuard(ObjWInv g, Object[] args) {
assume(g.st = State.Invalid);
for(f in g.deps) {
assume(f.granter = g);
f.ok := f.0K(args);
assume (f.st = State.Invalid || f.ok);
}
}

Pack(0bjWInv £f) {
assume (f.st = State.Invalid);

f.ok := true;
f.st := Valid;

Unpack(ObjWInv o) {
assume(o.st = State.Valid);
o.st := State.Invalid;

}

invariant(forall f : ObjWInv ::
f.st = State.Valid ==> f.inv &&
(f.granter = null ||
(f in f.granter.friends && f.ok)));

Figure 8. Friends Protocol.

f agreed to the last state change of the granter, i.e. f.ok is
true.

The API designer can invoke the methods Attach and
Detach to add and remove friends to a granter. The auxiliary
field ok of a friend f is set to true when the object f is
packed. The API designer invokes UpdateGuard before a
state change of the granter. This method queries each friend
using the method OK. If the friend f agrees to the change,
then the field f.ok is set to true, otherwise it is set to false.

Figure 9 shows how the JDBC API designer would use
the Friends protocol. In scenario 1, a statement s created
using a connection c is attached as a friend of the granter
c. If the statement s is open, then it constrains updates of
the field Connection.closed of the granter ¢ such that
Connection.closed is not set to true. In scenario 2, an
API client closes the connection ¢ without being aware that
the statement s is still open. Before updating this field, the
protocol method UpdateGuard is invoked. This invokes the
method OK on the friend s which returns false and the auxil-
iary field s.ok is set to false. At runtime, this causes an as-
sertion violation as the statement s is valid and not ok with
the proposed state change of connection c.

c s )
Connection Statement Friends

new Statement(c)

API Client

Init(stmt)

connection = con

®

- reum a Attach(c,s)
< : Pack(s) | |
| ‘ i
: i . Unpack(c) _
[ I i >
close() UpdateGuard(c,args)

@ isClosed = true

< OK@gy |
[ return .
] sd false

Figure 9. Using Friends Protocol.

6. Experience

We present our experiences in implementing the above
methodology in a tool INVCOP++ and using it to enforce
API protocols. INVCOP++ has two components:(1) the Ver-
ifier implements the protocol correctness check described in
Section 4.1, and (2) the Enforcer implements the program
conformance check described in Section 4.2.

6.1 Protocol Correctness

The Verifier implements the protocol correctness check we
saw in Section 4.1. In particular, it verifies that the object
protocol action Init establishes the protocol invariant and



Protocol # of proof obligations | Verified Time
(millisec)
Representation Containment 5 yes 70
PrivilegedReader 6 yes 70
Boogie 6 yes 70
IndirectReference vl 7 no 70
IndirectReference v2 7 yes 70
Friends 7 yes 70

Table 1. Protocol Verification

the other protocol actions maintain the protocol invariant.
The Verifier generates proof obligations to be verified by an
automated theorem prover. If a proof obligation is not valid,
then the theorem prover returns a counterexample which
can help the protocol designer in correcting mistakes in the
protocol. Our implementation uses the Simplify automatic
theorem prover [14].

Table 1 summarizes the results of protocol verification.
For each protocol, the columns show the number of proof
obligations, whether it was verified and the time taken in
milliseconds. IndirectReference v1 is obtained by comment-
ing out the assumptions to the Unpack action in Figure 7.
Simplify generates a counterexample stating that the proto-
col invariant cannot be preserved since o becomes invalid
and its owner can still be valid. After correcting this mis-
take, the protocol IndirectReference v2 as shown in Figure 7
is verified correct.

6.2 Program Conformance

The Enforcer implements the program conformance check
we saw in Section 4.2. For a given protocol description and
a binding to API classes, the Enforcer generates an aspect.
If the API clients include this aspect in their build, then
protocol violations are detected exactly where they occur
in client programs. Our implementation takes as input a
protocol description in PROLANG and a binding written
using Aspect] [1] syntax. It then generates an aspect which
can be compiled using the Aspect] compiler. We discuss an
example binding below.

Suppose that the API designer of binary search tree re-
quires every node 7 in the tree to own the key & it points to.
First, the class Node and the interface Key needs to be bound
to the role ObjWlinwv. This is specified as shown below.

declare parents: Node implements ObjWInv;
declare parents: Key implements ObjWInv;

//Inv method for Key
public boolean Key.Inv() {
return true;

}

Then, after the field Node . key is set, the protocol method
Own needs to be invoked. This is specified as shown below.

pointcut setKey(ObjWInv n, ObjWInv k) :
set(private Key Node.key)

&& target(n)
&& args(k);

after(0ObjWInv n, ObjWInv k) returning :
setKey(n,k) {
Own(n,k);

}

The pointcut (a specification of interesting points in the
program) setKey captures setting the field Node . key. The
target is the node n whose field is being set and the argument
is the key k. After the field Node.key is set, the protocol
method Own is invoked.

Given a protocol description and a binding such as the
one above as inputs, the Enforcer generates an aspect by
combining the inputs. Each protocol method is mapped to a
method in the aspect. Assume statements in protocol actions
are translated to assert statements. Based on the binding, the
protocol methods are invoked and the execution proceeds
only if the precondition of the protocol method is satisfied.
At runtime, a singleton instance of the generated aspect is
created in the virtual machine and it enforces the associated
protocol.

The generated aspect computes dependencies of an object
o dynamically by recording all the objects and fields refer-
enced during the execution of 0.Inv() as in our earlier tool
INVCOP [18]. Whenever a field f of object p is changed,
for all objects o such that o depends on p.f, the Validate
method from the PROLANG description of the protocol is
called.

Table 2 shows results from enforcing object protocols on
two real world APIs, JDOM and MySQL JDBC, and several
other programs that illustrate violations typical of realistic
design scenarios involving multiple API objects. The first
column gives the API name, and the column “Num Classes”
gives the number of classes exposed by the API. The col-
umn “Scenario” gives the protocol scenario enforced. Ta-
ble 3 gives more details on each scenario. The column “Pro-
tocol” gives the name of the object protocol on which the
program is checked for conformance. The column “n” gives
the number of scenarios executed and “d” gives the number
of objects that each object depends upon. The column IN-
VCOP shows the time taken to check protocol correctness
and program conformance at runtime with our old tool IN-
VCOP. The column INVCOP++ shows the time taken to



API Num Scenario | Protocol n d INVCOP | INVCOP++
Classes (ms) (ms)
JDOM 69 S1 Boogie 2000 1 3915 3324
4000 1 8452 5437
8000 1 14461 9834
16000 1 43663 21191
MySQL 95 S2 Friends 900 900 3055 160
1000 | 1000 4046 161
2000 | 2000 * 180
4000 | 4000 * 231
BinarySearchTree | 3 S3 Representation 50 50 2043 1011
Containment 100 100 14942 7721
150 150 53788 22893
200 200 124489 59596
BinarySearchTree | 3 S4 Representation 100 100 5618 220
Containment 200 200 39707 540
variant 400 400 * 1802
800 800 * 7360
Patient 3 S5 Representation | 2000 1 471 280
Observations Containment 4000 1 831 490
8000 1 1492 841
16000 1 2714 1492
Deserialization 3 S6 Representation | 2000 1 140 50
Containment 4000 1 170 50
8000 1 250 80
16000 1 371 110

Table 2. Execution time in milliseconds for INVCOP and INVCOP++, illustrating performance improvement obtained by
combining static and dynamic analysis. The column labeled “n” shows the number of times a usage scenario was executed.
The column labeled “d” shows the number of objects that depend on a protocol field and therefore the number of times Validate
is called when such a field changes. The value “Num Classes”’shows the number of API classes. A cell with a “*” indicates that

the time taken is more than 3 minutes.

Scenario | Num Classes | Description
involved
S1 3 Iterate over an XML document and remove certain elements through the iterator
S2 3 Create statements using the same connection
S3 3 Search keys in a tree
S4 2 Insert keys into a tree
S5 2 Print observations through patient
S6 2 Access content of review through deserialized manager

Table 3. Description of scenarios

check program conformance with our new tool INVCOP++.
When the number of dependents for an object is small, we
get a 2X performance improvement using static analysis,
When the number of dependents is large, the performance
improvement is even larger, and for large values of d, the
time taken by the unoptimized tool INVCOP is unaccept-
ably high.

As described earlier, in the old tool INVCOP the object
protocol is encoded into the program as described in the first

part of Section 3 and therefore protocol correctness and pro-
gram conformance are checked at runtime. The new tool IN-
VCOP++ exploits the static analysis (i.e, the protocol cor-
rectness check) to optimize the runtime check. In particular,
no validation checks are triggered for updates to protocol
fields since the protocol has been statically validated. The
only runtime checks are (1) the assertions that arise from the
assume statements in the methods of the PROLANG descrip-
tion of the protocol, and (2) the dependency checks that arise



from updates to the existing fields of the objects (excluding
the auxiliary fields used to model the protocol). Below, we
give details on the APIs for each scenario in Table 2. For
more details, see [27].

6.2.1 JDOM [23]

JDOM is an API that facilitates in-memory representation
of XML documents and iterating over and manipulating the
content of such documents. Figure 10 shows a usage of class
Document in JDOM. A document iterator for navigating an
XML document (in the form of a tree) uses a stack of list iter-
ators where each list iterator is used for iterating over nodes
at each level in the tree. An element in the tree is returned
by the list iterator on top of the stack. If the client code calls
detach on an element, then it is removed from the list of
nodes at that level. The iterator becomes invalid if the un-
derlying collection is modified without its knowledge. This
happens if the client code invokes detach during iteration.
The iterator throws ConcurrentModificationException
if the next method is called again. From the exception trace,
it is difficult for JDOM developers to find out where exactly
the API protocol was violated [24].

‘ él?clem ‘ Document‘ E;‘z:g:em ‘ ‘Element ‘ ‘ Iterator ‘ List ‘
_ getDescendants) ; ; :
hasNext) ] §
next() g 3 : 3
T % w0, ]
[ detach() ;|
> remove(thig \ V|
>
nextq) > next()
Conc| rr)r‘llModificali nException >

Figure 10. Navigating an XML Document.

After compiling with the aspect generated by IN-
VCOP++ from the Boogie rule, the stack trace is as shown
below. Here, the iterator owns the list when iteration starts
and gives up ownership of the list after iteration ends.

java.lang.AssertionError:

Unpack (o)

o.st != State.Valid, o.st = Committed

o.class = class jdom.ListProxy

at rules.Boogie_jdom.Unpack(Boogie_jdom.aj:319)

at org.jdom.Content.detach(Content.java:91)
at ItemHandler.processItem(OrderHandler.java:10)
at OrderHandler.processOrder(OrderHandler.java:23)

This clearly points out that the client code processItem
violated the API protocol by calling Content.detach
which modifies the list without the knowledge of the iterator.
Note that a class C' can be bound to the role ObjWinv by As-
pect] only if the byte code of C'is under its control. Since we

cannot bind java.util.Iterator to ObjWinwv, our proto-
type implementation uses proxy objects to keep track of the
relationship between an iterator and its collection.

6.2.2 MySQL JDBC [28]

As we discussed in Section 5.3, a connection must not be
closed before closing any statement created by that con-
nection. However, JDBC API programmers make such mis-
takes [21] and it is hard to locate where exactly the connec-
tion was closed when a statement depending on that connec-
tion is still open.

The Friends protocol shown in Figure 8 is bound to
classes Statement and Connection such that all the state-
ments s created using a connection c share the connection ¢
and c can be closed only if all statements s that depend on it
are closed.

6.2.3 Patient and Observations [17]

Consider a scenario where two objects need to be merged.
For example, in a hospital management system, on admit-
ting a patient, a record is created. Later, it might be discov-
ered that a separate patient record had already been created
for the same patient. It is important to tie the two records
together because the subsequent treatment might depend on
the observations in both the records. For this, the API de-
signer uses a superseding strategy in which one patient ob-
ject is marked as active and the other object for the same
patient as superseded. The superseded object is not deleted
because it contains the information based on which a patient
was treated before the objects were tied together. All data
in the superseded object is copied to the active object and
method calls on the superseded object are delegated to the
active object.

The clients of this API may not know about the details of
the superseding strategy and therefore may write a program
in which a reference to the observations part of patient is
retained assuming that it contains all the observations for a
patient. Later, if two patient objects are merged, then this
assumption does not hold any longer and could cause errors
as shown in Figure 11.

The Representation Containment protocol can be used to
prevent an API client from directly accessing observations
without accessing patient. If the API designer wants clients
to iterate over observations, then the Privileged Reader pro-
tocol can be used.

6.2.4 Deserialization [29]

A class may depend on the fact that the objects it refers
to through private fields are not available through object
references outside the class. For example, consider classes
Manager and Reviews. Even if a manager refers to the
reviews object through a private field, it may be possible to
steal a reference to the reviews object during deserialization.
Using such a reference, the reviews could be read without the



API jsl: Patient js10bs: js2: Patient
Client =103 | | CPservations id = 456
|: getObs() :|
. supersede(js2) __|
> merge(..) ‘D

J

'—u}—“ nt D print() ‘{‘:I

print() %

Figure 11. API Client makes wrong assumption.

knowledge of a manager. The Representation Containment
protocol can be used to prevent this.

7. Related Work

Several papers have pointed out the need to specify and
check protocols involving multiple objects. In [19], behav-
ioral compositions and obligations on participants have been
identified as key to object oriented design. Recently, [20]
has pointed out the need to enforce framework constraints
(which typically involve multiple objects) so that plugin
writers cannot violate them.

Several ownership type systems have been invented to
track dependencies between objects [9, 6]. The proposals in
the literature differ in how they constrain programs: for ex-
ample, some allow ownership transfer whereas some others
do not. Program verification tools have been built to check
if programmers follow particular programming methodolo-
gies [3]. When multiple objects depend on a shared object
(as in many statements depend on the same connection), the
methodology needs to be extended [5]. Also, these systems
do not work with existing programming languages. For each
protocol, one has to use the corresponding verification sys-
tem that works only for that protocol. We have been able to
encode, verify and enforce all these protocols uniformly in
our work. With our approach, the user can “mix-and-match”
various protocols for various parts of the API, and “fine-
tune” the protocol while still being able to use INVCOP++
to verify and enforce the protocol. However, the price paid
for this flexibility is that our program conformance check is
dynamic, whereas ownership type systems and program ver-
ification tools are able to check program conformance stati-
cally.

JML [26] requires that an invariant must hold at the end
of each constructor’s execution, and at the beginning and end
of all public methods. JML’s runtime checker does not auto-
matically track dependencies of objects. Thus, if o depends
on p, and p gets modified in a way that violates o’s invari-

ant, the JML checker is not able to detect this at the point of
violation.

MOP [7] also generates aspects for runtime verification
from specifications. It is possible that such aspects acting as
observers will miss relevant events in the program. There-
fore, one cannot guarantee that protocol violations are de-
tected exactly where they occur in API client programs. With
INVCOP++, we offer the guarantee as stated in Theorem 3.

8. Conclusion

We have presented a methodology to check if client pro-
grams that use object oriented APIs satisfy API protocol in-
variants.

Our methodology involves stating reusable object proto-
cols involving inter-related objects in PROLANG. Our tool
INVCOP++ checks statically that methods of a protocol es-
tablish and maintain its protocol invariant and checks at run-
time whether a program conforms to a protocol. We have
validated this methodology by stating and verify several ob-
ject protocols in PROLANG and using INVCOP++ to detect
protocol violations reported in discussion forums on widely
used APIs. By judiciously combining static and dynamic
analysis, we are able to reduce the performance overhead
of runtime checking.

When compared to approaches such as ownership type
systems, our approach is far more flexible, and allows “mix-
and-match” and “fine-tuning” of object protocols. However,
we are able to check program conformance only at runtime.
Checking program conformance statically with an arbitrary
protocol specified in PROLANG requires further research.
Also, extending our work to concurrent programs, and han-
dling subclasses, require further research.

References
[1] Aspect] — http://www.eclipse.org/aspect;j/.

[2] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. In POPL 02: Principles
of Programming Languages, pages 1-3. ACM, January 2002.

[3] M. Barnett, R. DeLine, M. Fihndrich, K. R. M. Leino, and
W. Schulte. Verification of object-oriented programs with
invariants. JOT, 3(6):27-56, 2004.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pro-
gramming system: An overview. In CASSIS 04: Construction
and Analysis of Safe, Secure and Interoperable Smart devices,
LNCS 3362. Springer Verlag, 2004.

[5] M. Barnett and D. A. Naumann. Friends need a bit more:
Maintaining invariants over shared state. In MPC, pages
54-84. Springer-Verlag, 2004.

[6] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. In POPL, pages 213-223. ACM, 2003.

[7] F. Chen and G. Rosu. Mop: an efficient and generic runtime
verification framework. In OOPSLA, pages 569-588, 2007.



[8] B. Chin, S. Markstrum, and T. Millstein. Semantic type
qualifiers. In PLDI 05: Programming Language Design and
Implementation, pages 85-95. ACM, 2005.

[9] D. G. Clarke, J. Potter, and J. Noble. Ownership types for
flexible alias protection. In OOPSLA, pages 48—64, 1998.

[10] http://www.servlets.com/archive/servlet/
ReadMsg?msgId=539019&1istName=jdom-interest.

[11] http://bugs.mysql.com/bug.php?id=2054.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press, 1992.

[13] R. DeLine and M. Fihndrich. Enforcing high-level protocols
in low-level software. In PLDI 01: Programming Language
Design and Implementation. ACM, 2001.

[14] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365-473, 2005.

[15] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing. In
ISSTA 06: Software Testing and Analysis. ACM, 2006.

[16] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. In PLDI 02: Programming Language Design and
Implementation, pages 1-12. ACM, 2002.

[17] M. Fowler. Analysis Patterns: Reusable Object Models.
Addison-Wesley, 1997.

[18] M. Gopinathan and S. Rajamani. Runtime monitoring
of object invariants with guarantee. In RV ’08: Runtime
Verification (to appear), 2008. available at http://
research.microsoft.com/~sriram/Papers/rv08.pdf.

[19] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioural compositions in object-oriented
systems. In OOPSLA/ECOOP, pages 169-180, 1990.

[20] C. Jaspan and J. Aldrich. Checking framework plugins. In
OOPSLA Companion, pages 795-796, 2007.

[21] http://archives.postgresql.org/pgsql-jdbc/
2003-10/msg00062 . php.

[22] http://java.sun.com/products/jdbc/download.
html#corespec40.

[23] IDOM —http://wuw. jdom.org.

[24] JDOM FAQ - http://www.jdom.org/docs/faq.html#
a0390.

[25] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP, pages 220-242, 1997.

[26] G. Leavens and Y. Cheon. Design by contract with jml, 2003.
[27] http://people.csa.iisc.ernet.in/~gmadhu/oopsla.
[28] MySQL — http://www.mysql. com.

[29] http://java.sun.com/javase/6/docs/platform/
serialization/spec/security.html#4271.



