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Abstract
Parallel or incremental versions of an algorithm can signif-
icantly outperform their counterparts, but are often difficult
to develop. Programming models that provide appropriate
abstractions to decompose data and tasks can simplify par-
allelization. We show in this work that the same abstractions
can enable both parallel and incremental execution.

We present a novel algorithm for parallel self-adjusting
computation. This algorithm extends a deterministic parallel
programming model (concurrent revisions) with support for
recording and repeating computations. On record, we con-
struct a dynamic dependence graph of the parallel computa-
tion. On repeat, we reexecute only parts whose dependencies
have changed.

We implement and evaluate our idea by studying five ex-
ample programs, including a realistic multi-pass CSS lay-
out algorithm. We describe programming techniques that
proved particularly useful to improve the performance of
self-adjustment in practice. Our final results show significant
speedups on all examples (up to 37x on an 8-core machine).
These speedups are well beyond what can be achieved by
parallelization alone, while requiring a comparable effort by
the programmer.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Techniques—Concurrent Programming; D.3.3
[Software]: Programming Languages—Language Constructs
and Features

General Terms Languages, Performance

Keywords Self-adjusting computation, Incremental mem-
oization, Parallel programming
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(a) (b)

while (true) {
compute() ;
mutate() ;
}

compute:
- deterministic
- potentially parallel
- no I/O

mutate:
- nondeterministic
- may perform I/O

record {
compute() ;
}
while (true)
{
mutate() ;
repeat ;
}

Figure 1. (a) Imperative compute-mutate loop. (b) An
equivalent loop using our record and repeat commands that
can exploit redundancy in the computation.

1. Introduction
Many programs perform repetitive tasks but are incapable
of exploiting the redundancy inherent in the repeated com-
putation. For example, in reactive or interactive programs,
we often find compute-mutate loops as shown in Fig. 1(a).
In such a loop, a deterministic computation, represented by
compute, is repeated. Between repetitions, the user or envi-
ronment may read and write the state in a nondeterminis-
tic manner, represented by the function mutate. The changes
performed by mutate may be small or large, yet compute is
always fully repeated, which is potentially wasteful.

For example, a web browser recomputes the layout of a
page many times, whenever the page content changes based
on user actions or the execution of scripts. If the changes
are small, much of the layout computation is redundant; dis-
covering and exploiting such redundancy manually or auto-
matically is difficult in practice. Other examples of compute-
mutate loops appear in games, compilers, spreadsheets, edi-
tors, forms, simulations, and so on.

Researchers have long recognized the performance po-
tential of incremental computation. For many algorithms,
specialized versions can adjust quickly to changes in the in-
put, typically improving the asymptotic complexity. More-
over, many general techniques to incrementalize a compu-
tation automatically or semi-automatically have been pro-
posed. For some algorithms, standard techniques like mem-



oization or dynamic programming may be sufficient. For im-
perative programs with side-effects, researchers have pro-
posed self-adjusting computation, which can track data and
control dependencies, selectively repeating only the parts of
the computation that depend on changed inputs.

Since the performance gains can be quite dramatic, self-
adjusting computation is a viable alternative to paralleliza-
tion (where it applies). Parallelization has been well studied
as a means of improving the performance of applications, but
its success often requires serious thought and effort by the
programmer. Over the years, researchers developed many
programming models (embodied by languages, language ex-
tensions, or libraries) that facilitate parallelization by provid-
ing suitable abstractions to the programmer.

Self-adjusting computation and parallelization exhibit
some deep similarities: both aim to improve performance
and both need to leverage the structure of the computation
to do so successfully. This similarity in purpose and method
is not merely of academic interest. In this paper, we demon-
strate that it is possible and sensible to write programs that
are both parallel and incremental, and can thus reap the
performance benefits of both.

We show that a single, small set of programming prim-
itives (record, repeat, fork, join, and type declarations) are
sufficient to simultaneously exploit parallelism and perform
self-adjusting computation, at a programming effort compa-
rable to traditional parallelization. The crucial insight is that
once the programmer declares how to divide a task into in-
dependent parts, both self-adjustment and parallelization can
benefit.

Overall, we make the following contributions:

• We present a single, small set of primitives that allow pro-
grammers to simultaneously express the potential for par-
allelization and incrementalization in their applications.
• We describe an algorithm for parallel self-adjusting com-

putation, i.e. an algorithm that can (1) record dependen-
cies of a deterministic parallel computation, and (2) re-
peat the computation while only reexecuting parts whose
dependencies have changed.
• We implement our model as an extension to the concur-

rent revisions system, deployed in the form of a C# li-
brary, and apply it to five sample applications written in
C#, including a multi-pass CSS layout algorithm.
• We describe three programming techniques (granularity

control, simple outputs, and markers) that enable self-
adjusting computation to perform better in practice.
• We demonstrate that for all of the studied examples,

self-adjustment can provide significant performance im-
provements compared to sequential or parallel execution
only, while requiring a programming effort comparable
to manual parallelization. Across our benchmarks we ob-
serve a 12x to 37x speedup compared to the sequential
baseline on an 8-core machine.

Section 2 gives an overview of our programming model.
In Section 3 we describe the algorithm and give a correct-
ness argument. In Section 4 we discuss the benchmarks, the
programming techniques, and the performance results, con-
cluding in Section 5 with a discussion of related work.

2. Overview
In this section, we establish the parameters for our work. We
begin with a simple illustration example that records a com-
putation of a parallel sum, changes one of the summands,
and then repeats the computation. We then describe the es-
sentials of the concurrent revisions model and the various
isolation types in more detail.

2.1 Programming Model
Our work builds on concurrent revisions, a recently pro-
posed deterministic parallel programming model [14]. In
this model, the programmer forks and joins tasks called re-
visions that can execute in parallel. The programmer must
declare data that is shared by concurrent revisions to have an
isolation type. The model then guarantees deterministic par-
allel execution [16] by copying memory locations that are
accessed concurrently, and by resolving conflicts determin-
istically. We summarize the essentials of this model in Sec-
tion 2.5.

To extend the concurrent revisions model with support
for self-adjusting computation, we add record and repeat

commands that let the programmer identify the computation
that is to be repeated (Fig. 1 (b)). Moreover, we require that
the programmer use isolation types not only for concurrently
accessed variables, but also for variables that are accessed
by consecutive revisions and that thus may introduce data
dependencies.

2.2 Parallel Sum Example
The pseudo-code in the small example program in Fig. 2
demonstrates how to record and repeat a parallel summa-
tion using record and repeat commands. Summation follows
a parallel divide-and-conquer structure and switches to se-
quential summation below some threshold, a common prac-
tice for parallel algorithms. When programming with con-
current revisions, all variables that may be accessed by con-
current revisions or by consecutive revisions must be de-
clared using an isolation type.

In main(), we first allocate and initialize an array of ver-
sioned integers. Then we record the computation, a paral-
lel summation using recursive divide-and-conquer and fork-
join parallelism with a user-specified threshold for switching
over to sequential summation. In ParallelSum(), the variable
sum is declared to have type CumulativeInt. This data type de-
clares sum as versioned (and isolated in each revision), and
on a join operation sum combines any additions that were
done in parallel. This is very similar in concept to hyperob-
jects in Cilk++ [22]. The first computed total is 1000. Next,



const int threshold := 250 ;

int ParallelSum(Versioned〈int〉[] a, int from, int to) {
if (to − from 6 threshold)
return SequentialSum(a, from, to) ;

else {
CumulativeInt sum := 0 ;
Revision r1 := fork {

sum := sum + ParallelSum(a, from, (from + to)/2) ;
}
Revision r2 := fork {

sum := sum + ParallelSum(a, (from + to)/2, to) ;
}
join r2 ;
join r1 ;
return sum ;
}
}

int SequentialSum(Versioned〈int〉[] a, int from, int to) {
int sum := 0 ;
for (int i := from ; i < to ; i++) { sum := sum + a[i] ; }
return sum ;

}

void main() {
Versioned〈int〉 a[1000] ;
Versioned〈int〉 total := 0 ;
for (int i := 0 ; i < 1000 ; i++) { a[i] := 1 ; } //initialize
record { total := ParallelSum(a, 0, 1000) ; }
assert(total = 1000) ;
a[333] := a[333] + 1 ;
repeat ;
assert(total = 1001) ;

}

Figure 2. Simple example of applying self-adjusting com-
putation to a parallel program using revisions.

we add 1 to element a[333] and do a repeat where the com-
puted total is now 1001.

2.3 Execution
In Section 3, we present the algorithm to implement record
and repeat in detail. This algorithm records the dynamic de-
pendence graph of a parallel computation while it executes.
When repeating a computation, the algorithm selectively re-
executes (and rerecords) only those revisions that have a de-
pendency on changed input.

Revisions are the unit of memoization in our model. Dur-
ing the repeat step, revisions whose input dependencies have
not changed are not reexecuted but rather replayed by con-
sulting and applying their memoized effect.

The execution of our example program is shown in Fig-
ure 3. The left side shows the dynamic unfolding of the re-
cursive computation of revisions during the record phase (in
a so-called revision diagram). Note that memoization takes
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Figure 3. Revision diagrams illustrating the initial compu-
tation recorded by record (left) and the repeated computation
performed by repeat. On repeat, the runtime avoids reexecut-
ing some of the revisions, and simply replays their effects on
join.

place at the level of the forked-joined revisions, not func-
tions; revisions are reexecuted or replayed in their entirety.

The right side of Fig. 3 shows the revisions that are reexe-
cuted during the repeat phase (solid lines). This reexecution
includes the revision that sums the range a[250−499] as well
as that revision’s ancestors. The dotted lines represent revi-
sions whose behavior is not affected by the update to a[333].
Only two of these revisions inside the computation (r.1 and
r.1.2) are actually reexecuted during the repeat phase.

During recording, we need to track memory accesses.
Since the memory locations that are potentially involved in
data dependencies have a special isolation type, we can avoid
the excessive overhead that would result from tracking every
single memory access.

2.4 Performance
We give a detailed evaluation of our algorithm and imple-
mentation in Section 4. In particular, we parallelized a multi-
pass CSS layout algorithm using the concurrent revisions
model and then applied the self-adjustment algorithm. We
also studied two other interactive sample applications (a ray-
tracer and a morph creator) and two smaller benchmarks (a
webcrawler and a spell checker).

Just as it is sometimes difficult to write parallel pro-
grams that perform well, we found that effective use of
self-adjustment requires some thought by the programmer.
By studying the performance of our benchmarks, we iden-
tified specific programming techniques that enable self-
adjustment to perform better in practice:

• The first important observation is that if the granularity
of the smallest replayable unit is too small, the overhead
of dependence tracking is too high. This issue is in per-



fect sync with the well-known importance of controlling
the granularity of the smallest schedulable unit to limit
the overhead of parallelization. Both of these issues can
be addressed uniformly in our framework, by limiting
the number of revisions forked (because in our model,
revisions are both the smallest schedulable unit and the
smallest replayable unit). In our example program, we
control the granularity using a threshold parameter.
• The second observation is that if revisions access large

amounts of data (for example, a bitmap representing a
picture), tracking access to each individual memory lo-
cation incurs too much overhead. To solve this prob-
lem, we introduce pseudovariables called markers. Each
marker represents a group of locations, and we ensure
that whenever revisions read/write a memory location
represented by a marker, it also reads/writes the cor-
responding marker. Using such markers allows us to
track dependencies more coarsely (trading precision for
speed).

Using the granularity and marker techniques, we were
able to achieve excellent performance on all sample appli-
cations:

• The recording overhead was very small and was in all
cases more than compensated by the speed gained from
parallel execution. On a eight-core machine, recording
was thus still between 1.8x and 6.4x times faster than
the sequential baseline computation.
• Repeating the computation after a small change was be-

tween 12x and 37x times faster than the sequential base-
line computation (again on a 8-core machine).

2.5 Concurrent Revisions
This section briefly explains the concurrent revisions pro-
gramming model. Adding self-adjusting computation to a
concurrent imperative language with low-level synchroniza-
tion primitives (such as threads and locks) is problematic.
Racing side-effects introduce nondeterminism and cross-
thread data dependencies that are difficult to track. To enable
parallel self-adjusting computations, it is much better to start
with a deterministic programming model that is not sensitive
to a particular thread schedule.

Our work is based on a recently proposed deterministic
concurrent programming model, concurrent revisions [14].
Preliminary results [14] indicate that (1) concurrent revi-
sions are relatively easy to use for parallelizing reactive or
interactive applications, (2) can deliver reasonable parallel
performance for such applications, and (3) work well even
for tasks that exhibit conflicts and would be difficult to par-
allelize by other means. The key design principles are:

• Explicit Join. The programmer forks and joins revisions,
which can execute concurrently. All revisions must be
joined explicitly.

• Declarative Data Sharing. The programmer uses special
isolation types to declare data that may be shared.
• Effect Isolation. All changes made to shared data within

a revision are only locally visible until that revision is
joined.

Conceptually, the runtime copies all shared data when a new
revision is forked, marks all locations that are modified in
the revision, and writes the changed locations back to the
joining revision at the time of the join. Therefore, the run-
time can schedule concurrent revisions for parallel execution
without creating data races. As a result, the computation is
determinate, meaning that it is fully specified by the program
and does not depend on the relative timing or scheduling of
tasks [15].

To compare and contrast this model with classic asyn-
chronous tasks, consider the example code in Fig. 4. In
Fig. 4(a), we fork/join a classic asynchronous task; the as-
signment x := 1 races with the assert statement above the
join, with nondeterministic results. In Fig. 4(b), we fork/join
a revision, and the variable x is declared to have the isolation
type Versioned〈int〉. Since the writes to x become visible to
the main revision at the join only, there is no race, and the
the value of x is deterministic.

A technical report companion to the original paper con-
tains a thorough discussion and formalization of the seman-
tics of concurrent revisions [15, 16].

2.5.1 Revision Diagrams
It is often helpful to visualize computations using revision
diagrams (see Fig. 4(c)). Such diagrams show each revi-
sion as a vertically aligned sequence of points, each point
representing one (dynamic) instance of a statement. We use
curved arrows to show precisely where new revisions branch
out (on a fork) and where they merge in (on a join). In gen-
eral, revisions can be nested and the life-time of a child revi-
sions can exceed that of its parent. As such, it is more general
than pure fork-join paralellism where the life-time of each
task is limited to the lexical scope. Some restrictions still
exist, where a revision diagram always forms a semi-lattice
which is important when merging isolation types [16].

Since revisions can not directly communicate and are
fully isolated, information flows along edges only. Revision
diagrams overapproximate control and data dependencies:
two statements not connected by a path in the revision dia-
gram are always independent.

2.5.2 Cumulative Types
In initial applications for concurrent revisions [14], the ver-
sioned type Versioned〈T〉 delivered the correct semantics for
the majority of data. However, this type is not appropriate for
parallel aggregation, since it wipes out the current value of a
location when joining a revision that modified that location.

For aggregation, the revisions model supports the cu-
mulative isolation type Cumulative〈T,f〉, where f is a user-



(a) (b) (c)

int x ;
x := 0 ;
Task t := fork{
x := 1 ;
}
assert(x = 0
∨ x = 1) ;

join t ;
assert(x = 1) ;

Versioned〈int〉 x ;
x := 0 ;
Revision r :=

fork{
x := 1 ;
}
assert(x = 0) ;

join r ;
assert(x = 1) ;

◦x := 0

��
◦fork

�� ��
◦assert

(x=0)

��

◦x := 1

rr◦join

assert
(x=1)

��
◦

Figure 4. (a) A classic asynchronous task operating on a
standard integer variable. (b) A revision operating on a ver-
sioned integer variable. (c) A revision diagram that visual-
izes how the state of x is branched and merged.

(a) (b)

CumulativeInt x := 0 ;
r := fork { x := x + 2 ; }
x := x + 3 ;
join r ; //x = 3 + (2 − 0)
assert(x = 5) ;

◦x := 0
��
◦
�� ��
◦x := x + 3
��

◦x := x + 2

nn◦
assert
(x=5)

��
◦

Figure 5. Example illustrating parallel aggregation with the
isolation type CumulativeInt.

specified merge function f : (T,T,T) → T. This merge func-
tion is called by the runtime on join. For example, we can
define a cumulative integer as

CumulativeInt = Cumulative〈int,accumulate〉

where the function accumulate is defined as follows:

int accumulate(int current, int joined, int original) {
return current + (joined − original) ;

}

The runtime calls this function during a join with current be-
ing the current value in the joining revision, joined being the
current value in the joined revision, and original being the
value at the time the revision was originally forked. Fig. 5
shows an example of how CumulativeInt performs aggrega-
tion. Both Versioned〈T〉 and Cumulative〈T,f〉 are subclasses
of a Versioned class.

Note that the determinacy of the computation does not
depend on the merge function being associative or commu-
tative; the only requirement is that it be a function in the
mathematical sense.

3. Implementation
We now proceed to explain how we add support for self-
adjusting computation to concurrent revisions. We provide

high-level pseudo-code of our algorithm and the implemen-
tation of the main operations of read and write (of versioned
locations), record, repeat, fork, and join.

Our presentation contains simplifying assumptions and
restrictions that are not part of our actual implementation1

since we believe that these details would make it quite chal-
lenging to follow the logic of the algorithm. We discuss some
of the differences and the relationship to the concurrent re-
visions algorithm [14] in more detail in the appendix.

3.1 Motivation
We present detailed pseudocode since the algorithm proved
difficult to get right and we went through multiple iterations.
Moreover, it is significantly different from all previous im-
plementations of self-adjusting computations, which were
designed purely for sequential execution. Some particular
difficulties include:

• The decision whether to reexecute or replay a revision
must be both fast and precise. Simple validation schemes
(e.g. recording all inputs and checking whether they are
the same before replaying) are too slow, while simple in-
validation schemes (e.g. mark a revision for reexecution
any time anybody writes to one of its inputs) are too im-
precise. Precision was particularly important for the CSS
layout example.
• Dependencies must be tracked accurately. In a sequential

setting, timestamps are sufficient to determine dependen-
cies. In a concurrent setting, we need to track the struc-
ture of the computation (which is in our case represented
by the revision diagram). Note that this approach cru-
cially relies on the isolation guarantees.
• The data structures must be designed to be thread-safe

(both record and repeat contain parallelism), yet use min-
imal synchronization to avoid overhead.

3.2 Description of Operation
At a high level, our implementation handles the example
program in Fig. 2 as follows:

1. The call to record performs a computation as shown in the
revision diagram in Fig. 3, on the left. As revisions exe-
cute, we construct a summary tree, where each summary
records details about a revision, such as (1) a pointer to
the entry point of the code, (2) the sequence of child sum-
maries, in fork order, (2) the writes performed by the
summary, and (3) the dependencies of the summary. De-
pendencies can be external (the summary depends on a

1 Specifically, we assume that no revisions are used outside the
record/repeat computations, we omit memory management considera-
tions such as garbage removal and reference counting, we store writes di-
rectly in List data types (assumed to be thread-safe) rather than building
truly thread-safe segment trees [14], we do not consider cumulative types
as described in Section 2.5.2, and we do not discuss how we handle the
creation of temporary or permanent versioned locations during recording.



value that was written before the recording began), or in-
ternal (the summary depends on a value that was written
earlier during recording). When finished recording, the
summary tree contains all the needed information. We
assume throughout that all forked revisions are joined be-
fore recording ends.

2. Upon the assignment a[333] := 2 the runtime records that
this location was written to.

3. When the user calls repeat, we first perform external
invalidations. This means that for any summary that has
an external dependency on a value that was modified
since the last record, we invalidate that summary and all
of its parents. In this example, the summary r.1.2 has an
external dependency on the modified location a[333], so
we invalidate summaries for r.1.2 and r.1 and r.

4. We now check if we can replay the computation. If the
root summary r were still valid, we could replay the
entire computation instantly (by writing 1000 to total).
However, in this case, the top summary r is invalid, so we
have to reexecute it. As we reexecute, we also construct
a new summary.

5. When the re-executing code calls fork, we pull up the
summary from the previous execution that has the same
location in the summary tree as the summary that we are
just about to fork. If a summary is still valid, we need
not reexecute it and we can keep the old summary object.
Otherwise, we reexecute and construct a new summary
object. In this example, summaries r.1 and r.1.2 are reex-
ecuted, but not r.1.1 and r.2.

6. When joining a summary that was not reexecuted, we
reapply the effects as memoized during record at the join
point. For r.1.1, the recorded effect is to add 250 to the
sum. Similarly, revision r.2 is entirely elided and its effect
(adding 500 to the sum) is reapplied at its join point.
See Figure 16 in the appendix for how the MergeWrites

function (from Figure 8) works in the presence of user-
defined merge functions.

Perhaps the most intricate part of the algorithm is the
propagation of internal invalidations (in the above example,
there are no internal dependencies and thus no internal in-
validations). We perform internal invalidations whenever we
encounter a fork while reexecuting a summary; right before
executing the fork (and checking whether its summary is still
valid), we first examine what has been written by the cur-
rent revision so far, and check if any downstream summaries
need to be invalidated because of it.

A common case is where the reexecuting revision writes
a different value than the previously recorded one. Another
case is where it writes to a location that it did not write to
before (and any part of the code that depended on an older
write needs to be invalidated). Perhaps the most subtle case
is where a location that was written to previously is not

written to at all this time around (and any part of the code
that depended on the previous write needs to be invalidated).
To handle such cases, we explicitly pass along the previous
summary tree while building a new one during re-execution.

Another subtlety is that we wish to only invalidate sum-
maries that are forked after the invalidating write. To handle
this, we need to index writes in a summary relative to the
number of forks and use this index when tracking dependen-
cies.

3.2.1 The Summary Class
Figure 6 shows the main data structure in our algorithm; a
Summary. A summary captures the information we record
about each revision.

Summaries store the entry point2 of the recorded code in
code (which may be needed for reexecution), and a thread
thread that executes the code. The summaries form a tree
structure that corresponds to the fork structure of the pro-
gram. Each summary has a parent summary (null if it is the
root of the tree), and a list of children summaries. The child
summaries are ordered by the fork order in the summary’s
thread.

A summary s may be uniquely identified in the summary
tree by a coordinate (d,i), where d represents the depth of the
summary in the tree (with the root summary having depth 0),
and i represents the index of s in the list s.parent.children (i is
-1 if s is the root summary).

The execution of a code thunk by a thread is broken into
segments by fork operations: a thread that forks n children
has n+1 segments. For each segment, the summary records
in the writes field the last write operation to each versioned
location written during the execution of that segment.

Each segment maintains an explicit write list3; we can
then implement reads to versioned locations by searching
through a parent chain. This gives the correct semantics for
concurrent revisions where each revision only sees its own
writes and is fully isolated from other revisions. Further-
more, we have a static variable globalwrites (also defined in
Figure 6) that contains all the global writes (i.e. outside the
recorded computation4). We assume that all versioned loca-
tions are present in the first map in the globalwrites list as if
they were all initialized before the program starts.

The isValid flag tracks if the summary is still valid: if any
dependency changes, this flag is set to false when dependen-
cies are validated. The dependencies field maintains the de-
pendencies of a summary explicitly. It is implemented as a
map from versioned locations to coordinates in the summary
tree. For example, if a location l was read in the summary’s
thread, there would be an entry for l with coordinates (d,i) if

2 For simplicity, we assume that parameters are passed using versioned
variables.
3 Our actual implementation encodes these lists using thread-safe segment
trees [14].
4 Again, our actual implementation uses segment trees which enables us to
use concurrent revisions outside the computation as well.



private class Summary
{

// readonly fields
Thunk code ;
Summary parent ; // tree parent
int depth, index ; // coordinate in tree

// all fields below change during execution of code
bool isValid ;
Thread thread ;
List〈Summary〉 children ; // tree children
// read before write dependencies
Map〈Versioned, Pair〈int,int〉〉 dependencies ;
List〈Map〈Versioned,Value〉〉 writes ; // write segments

int forkCount() {
return children.Count ;
}

// constructor
Summary(Summary parent, Thunk code) {
this.parent := parent ;
this.code := code ;
this.depth := (parent = null) ? 0 : parent.depth+1 ;
this.index := (parent = null) ? 0 : parent.forkCount() ;
this.isValid := true ;
this.children := new List〈Summary〉() ;
this.dependencies

:= new Map〈Versioned, Pair〈int, int〉〉() ;
this.writes := new List〈Map〈Versioned,Value〉〉() ;
}

private void Start(Summary prev) {
if (thread 6= null)
error(”cannot start a summary more than once”) ;

writes.Add(new Map〈Versioned,Value〉()) ;
thread := StartNewThread{

// ‘current’ and ‘previous’ are threadlocal state
current := this ;
previous := prev ;
code() ;
}

}

private void Wait() {
if (thread 6= null) thread.join() ;
}

}

[threadlocal] private static Summary previous ;
[threadlocal] private static Summary current ;
private static List〈Map〈Versioned,Value〉〉 globalwrites ;

Figure 6. The definition of a Summary, including the (thread
local) static variables current, previous, and globalwrites.

that location l was last written by an ancestor summary iden-
tified by (d,i); i.e. it was written by a prior summary at depth
d in parent tree, just before its ith fork point. Dependence on
writes which occur at the top level, outside of the summary
tree, are captured by the location (0,−1).

Finally, we have the methods Start and Wait that start the
thread associated with the summary and wait for it to end.
The Start method sets two thread local variables, current and
previous, before executing the associated code. The current

thread local variable points to the summary itself while the
previous thread local variable points to the summary con-
structed during a previous execution. On a first recording,
the previous variable will be null.

The previous summary is used when a certain summary
becomes invalid and is re-executed. By keeping the previous
summary, we can compare the writes done in the new ex-
ecution with the ones done previously. This information is
necessary in order to precisely determine if more locations
become invalidated when re-executing a summary. For ex-
ample, if during re-execution a certain location is not writ-
ten, but it was written during the previous execution, then
all summaries that depended on that location need to be re-
executed too.

3.2.2 Writing, Reading, and Dependencies
We assume that any writes and reads to versioned locations
call the read and write operations defined in Figure 7.

A write operation on a versioned location updates the
global store if its execution is outside of a computation being
recorded or reexecuted (current=null). Otherwise, it writes
to the last segment of the current (thread local) summary. In
our real implementation, we implement such write lists using
version maps in concurrent revisions, but for simplicity, we
represent these lists here explicitly to model the concurrent
revision semantics.

Similarly, a read operation on a versioned location reads
from the global store if its execution is outside of a computa-
tion being recorded or reexecuted. Otherwise, the lookup op-
eration proceeds up the tree of summaries, starting with the
current summary. Note that when reading from each parent,
we start looking at s.index in the writes list since we cannot
see writes that occurred after our own fork point.

The other notable aspect of the read procedure is that it
records write-to-read dependencies, when the write occurs
outside of the summary in which the read took place using
the AddDependency method. A dependency records the fact
that a read of location l by summary s reads the value written
by the last write to l within a particular parent segment in
the summary tree; this segment is identified by its depth and
index. The dependencies are stored in the dependencies map
of the currently executing summary (see class Summary).

Now that we have described the summary data structure,
the execution of reads and writes, and how they establish
dependencies, we are in a position to describe the record,
repeat, fork, and join procedures.



public void write(Versioned loc, Value val) {
if (current = null) globalwrites.Last()[loc] := val ;
else current.writes.Last()[loc] := val ;
}

public Value read(Versioned loc) {
if (current = null)

return LastWrite(globalwrites, loc) ;

// was loc written to by this summary?
if (FindWrite(current.writes, loc))

return LastWrite(current.writes, loc) ;

// otherwise, search along parent chain
Summary s := current ;
while (s.parent 6= null) {
for (i := s.index ; i > 0 ; i--)
if (s.parent.writes[i].ContainsKey(loc)) {

// internal dependency
AddDependency(current, loc, s.parent.depth, i) ;
return s.parent.writes[i][loc] ;

}
s := s.parent ;
}

// external dependency
AddDependency(current, loc, −1, 0) ;
return LastWrite(globalwrites, loc) ;

}

private bool FindWrite(List〈Map〈Versioned,Value〉〉 writelist,
Versioned loc) {

for (i := writelist.Count−1 ; i > 0 ; i--)
if (writelist[i].Contains(loc))

return true ;
return false ;

}

private Value LastWrite(List〈Map〈Versioned,Value〉〉 writelist,
Versioned loc) {

for (i := writelist.Count−1 ; i > 0 ; i--)
if (writelist[i].ContainsKey(loc))

return writelist[i][loc] ;
error(”write not found”) ;

}

private void AddDependency(Summary s, Versioned loc,
int depth, int index) {

if (! s.dependencies.ContainsKey(loc)) {
s.dependencies[loc] := (depth, index) ;

}
}

Figure 7. Implementation for writing and reading versioned
data, including the FindWrite, LastWrite, and AddDependency

helper methods.

private static Summary compute ;

public void record(Thunk code) {
compute := new Summary(null, code) ;
compute.Start(null) ;
compute.Wait() ;
globalwrites.Add(new Map〈Versioned,Value〉) ;
MergeWrites(compute.writes, globalwrites.Last()) ;

}

public void repeat() {
DoExternalInvalidations() ;
if (!compute.isValid) {

var prev = compute ;
compute := new Summary(null, compute.code)
compute.Start(prev)
compute.Wait() ;

}
globalwrites.Add(new Map〈Versioned,Value〉) ;
MergeWrites(compute.writes, globalwrites.Last()) ;

}

private void MergeWrites(List〈Map〈Versioned,Value〉〉 joinee,
List〈Map〈Versioned,Value〉〉 main){

foreach(segment in joinee) {
foreach ((loc,value) in segment) {

// writes in joinee win
main.Last()[loc] := value ;

}}
}

private void Invalidate(Summary s) {
s.isValid := false ;
// invalidate along the parent chain too
if (s.parent 6= null) Invalidate(s.parent) ;

}

private void DoExternalInvalidations() {
var before := globalwrites.WithoutLastElement() ;
foreach((loc,value) in globalwrites.Last()) {

// skip if value has not changed
if (value = LastWrite(before,loc))
continue ;

// invalidate dependent summaries
foreach((s, (d, i)) where s.dependencies[loc] = (d, i)) {
if (d = −1) // depth outside of summary tree

Invalidate(s) ;
}
}

}

Figure 8. Implementation of record and repeat,
and the helper methods MergeWrites, Invalidate, and
DoExternalInvalidations.



3.2.3 Record and Repeat
The record procedure (Figure 8) takes a code thunk as input
and creates a summary object that summarizes the execution
of that thunk. After the execution of the thunk completes,
the procedure merges the writes by the thunk into the global
write list using MergeWrites. The MergeWrites procedure de-
scribed in this section implements only the ‘joinee wins’
strategy for regular versioned locations. In the appendix we
also show an implementation that can handle user defined
merge functions (Figure 16).

The repeat procedure first performs invalidations via
DoExternalInvalidations, which may set the isValid flag of
various summaries to false. If the root summary is not
valid, then a new summary must be created via (partial) re-
execution, using the same code thunk as initially provided.
The new root summary is started with the previous computed
summary prev as its argument.

The procedure DoExternalInvalidations (see Figure 8) de-
termines which summaries are invalidated by global writes
that occurred between the record procedure and beginning of
the repeat procedure. By construction, these writes occur in
the last map of the list globalwrites. If the value of a loca-
tion loc was written but has not changed then no invalidation
takes place. Otherwise, for every summary s that is depen-
dent on the location loc by a write with global scope (depth
equal to -1), s is invalidated by a call to Invalidate.

The procedure Invalidate takes a summary as input and
sets its isValid bit to false, and recursively invalidates the
parent summary, until reaching the root of the summary tree.

3.2.4 Fork and Join
The fork operation defined in Figure 9 takes a code thunk
as input. A fork operation may only take place in a thread
that has a corresponding Summary (that is, no fork is allowed
outside of a repeat/record execution). The fork operation first
performs invalidations via DoInternalValidations. It then finds
the (candidate) summary from the previous execution that
corresponds to this fork. If this candidate is valid and has the
same code thunk as input to the fork, then it can be safely
reused/replayed. Otherwise, the forked code must be re-
executed by creating a new summary. Finally, the summary
corresponding to the fork is added to the current summary’s
children and a new write map is appended to accumulate
updates in the next segment of the current thread’s execution.

The procedure DoInternalValidations defined in Figure 10
determines which summaries must be invalidated due to
differences in the behavior of the current thread segment
(just before the fork) compared to its past behavior. The map
recentwrites contains the locations written in the segment,
while the map previouswrites contains the location written in
the corresponding segment of the previous execution. For
each location loc, there are three cases that (might) require
invalidation:

1. loc is in the domain of recentw, but not previousw;

public Summary fork(Thunk code) {
if (current = null)
error(”no fork allowed outside computation”) ;

DoInternalInvalidations() ;
// null if undefined
Summary candidate := null ;
if (previous 6= null ∧

previous.children.Count > current.forkCount())
candidate = previous.children[current.forkCount()] ;

if (candidate 6= null ∧ candidate.isValid ∧
candidate.code = code) {
candidate.parent := current ;

} else {
var prev = candidate ;
candidate := new Summary(current, code) ;
candidate.Start(prev) ;

}
current.children.Add(candidate) ;
current.writes.Add(new Map〈Versioned,Value〉()) ;
return candidate ;

}

public void join(Summary s) {
if (current = null)
error(”no join allowed outside computation”) ;

s.Wait() ;
MergeWrites(s.writes, current.writes.Last()) ;

}

Figure 9. Implementation of fork and join.

2. loc is in the domain of previousw, but not recentw;

3. loc is in the domain of both maps but has different values
in each map;

When any of these cases occur, InvalidateDependentSummaries

is called with that location as an argument. This procedure
iterates over all summaries s that are dependent on loc. If s is
already invalid, there is nothing to do Otherwise, we know
that the summary s was previously or currently dependent
because of a write to location loc in execution segment at
coordinate (d,i).

The while loop searches up the parent chain in the sum-
mary tree to see if the summary current is “between” the
coordinate (d,i) and the given summary s. More precisely,
we mean that the (added, modified, or deleted) write to loca-
tion loc at coordinate (current.depth,current.forkCount()) ex-
ecutes at or after the write to loc at coordinate (d,i) and
before the read of location loc by summary s at coordinate
(s.depth.s.index).

The variable dep is initially set to summary s. The while
loop iterates as long as dep.depth is positive, greater than
d, and greater than current.depth (if any of these conditions
become false it is clear that the summary current cannot be
between (d,i) and s).



private void DoInternalInvalidations() {
if (previous = null ∨

previous.writes.Count 6 current.forkCount())
return ;

var recentw := current.writes.Last() ;
var previousw := previous.writes[current.forkCount()] ;

// process recent writes
foreach ((loc, value) in recentw)

if (!previousw.ContainsKey(loc) ∨
previousw[loc] 6= value)

InvalidateDependentSummaries(loc) ;
// process the old writes that did not happen again
foreach (Versioned loc in previousw.keys−recentw.keys)

InvalidateDependentSummaries(loc) ;
}

private void InvalidateDependentSummaries(Versioned loc) {
foreach ((s, (d, i)) where s.dependencies[loc] = (d, i)) {

if (!s.isValid)
continue ;

Summary dep := s ;
while (dep.depth > 0 ∧ dep.depth > d ∧

dep.depth > current.depth)
{

if (dep.parent = previous) {
if (current.forkCount() > dep.index)
break ;

if (current.depth = d ∧ current.forkCount() < i)
break ;

Invalidate(s) ;
break ;

}
dep := dep.parent ;

}
}

}

Figure 10. Implementation of the helper methods
DoInternalInvalidations and InvalidateDependentSummaries.

The loop body first checks if dep.parent is equal to
previous. This check deserves some explanation. Certain
summaries in the dependencies list of location loc may have
been inserted during the current execution of repeat. There-
fore, it is important to verify which tree we are in (the one
from the past, before the execution of repeat, or the one cur-
rently being constructed) as we traverse up the parent chain.
The check ensures that dep.parent is from the previous sum-
mary tree.

Now, if current.forkCount() is greater than dep.index then
its execution order is after the summary s under considera-
tion, and so it cannot occur between (d,i) and s. In this case,
s will not be invalidated. Otherwise, the current.forkCount()

is less than or equal to dep.index, and since we have that

dep.depth > current.depth, we also know that the segment
(current.depth, current.forkCount()) executes before s.

If current.depth is equal to d and current.forkCount() is
less than i, the segment (current.depth, current.forkCount())

executes before the segment (d,i), which means that the write
to loc in this segment, if repeated, would block the write from
current reaching the read of loc in s. Otherwise, one of three
cases hold:

• d is less than current.depth, in which case the summary
current executes after segment (d,x) for any x.
• d equals current.depth and i is less than current.forkCount(),

in which case the summary current also executes after
(d,i);
• d equals current.depth and i equals current.forkCount().

In this case, we must assume that the write to location
loc in segment (current.depth,current.forkCount()) comes
after the write to loc in segment (d,i).

In all three of the case above, invalidation of summary s takes
place.

The algorithm as presented is quite intricate and it would
be useful to have correctness proof. We do not have a com-
plete proof at this point, but we have worked through the
most interesting parts of the reasoning with some care, and
included it in the appendix (Section A.1).

4. Experiments and Results
In this section, we describe our experiences applying self-
adjusting concurrent revisions to a selection of small appli-
cations. We give quantitative performance results and de-
scribe the programming techniques that were particularly ef-
fective at improving the performance of self-adjusting com-
putation.

Our library prototype is an extension of the original con-
current revisions C# library, which uses an advanced work-
stealing scheduler. We added primitives for record and repeat

as described. To pass code arguments to the fork and repeat

operations, we use delegates, the C# version of closures.
Since our prototype is implemented entirely as a C# library,
we were able to take existing sample programs and conve-
niently parallelize/incrementalize them using our new prim-
itives.

4.1 Studied Examples
We studied two simple benchmarks (which we wrote our-
selves), two interactive parallel sample applications (which
we took from samples delivered with .NET 4.0 [30]), and a
sequential CSS layout algorithm (which we obtained from a
research group investigating efficient web browser designs).
Each example contains a compute-mutate loop, for which
we chose some representative small mutation.

Raytracer This interactive application (an extension of a
sample from [30]) repeatedly renders a classic raytracer



scene, showing polished balls on a tiled plane. The com-
putation traces, for each pixel, an independent ray that
touches various objects as it bounces around. The small
mutation between repetitions is to alter the color of one
of the balls, which changes the color of all pixels whose
rays have touched that ball.

StringDistance This simple example is inspired by a spell-
checker that provides correction suggestions. The com-
putation finds for each of 20 given words the 3 clos-
est matches in a dictionary of 12,000 words, using the
Levenshtein distance metric (also known as edit dis-
tance) [31]. The small mutation is to add one word to
the dictionary.

WebCrawler This example is inspired by a webcrawler, and
(unlike all other examples) is I/O-bound rather than CPU-
bound. The computation performs several tasks for each
of 30 given URLs, such as measuring latency, download-
ing and validating the HTML, and counting the number
of words. The small mutation is to modify one of the
URLs. For this benchmark, we assume the content at the
URLs is static.

CSS Layout This example models a CSS (cascading style
sheet) layout algorithm, as employed by HTML browsers.
While simpler than a real browser, it contains important
complexities such as the presence of floating boxes. The
original sample code we obtained was sequential; we
parallelized it and added self-adjustment. The computa-
tion lays out a randomly generated tree containing about
400,000 boxes using three passes performed in sequence:

1. The first pass propagates down temporary width and
height, and propagates up minimum and preferred
width.

2. The second pass computes the width on the way
down, and the height on the way up (laying out the
children boxes). It also sets the relative position of all
boxes.

3. The third pass computes the absolute position of all
boxes.

The small mutation is to change the contents of one of
the (leaf) text boxes, making it wider in the process.
Depending on the data, this could in principle change the
position of every single box, but in practice most boxes
stay in the same position.

Morph This interactive application (an extension of a sam-
ple from [30]) computes a morph, that is, an animation
that interpolates between two bitmaps guided by a list of
vector pairs supplied by the user. The small mutation is
to alter a small portion of each picture (in our case, by
overlaying some text in each picture).

All examples with the exception of the layout algorithm
exhibited plenty of parallelism and were easy to parallelize

(by words, URLs, or picture tiles). In the layout exam-
ple, divide-and-conquer naturally fits the tree structure, and
can be applied in each of the three passes. The achievable
speedup is modest, however, because the tree is not bal-
anced.

In principle, one could spend extra development effort
and manually derive incremental versions of all of these al-
gorithms. However, we believe that for any realistically de-
tailed application, the complexity of manual incrementaliza-
tion can quickly become overwhelming. In the layout algo-
rithm, in particular, understanding dependencies is challeng-
ing as they show up in many places (vertically for each pass,
going down or up, and also laterally from one pass to the
next).

4.2 Performance Results
We show the main performance results in Fig. 11. For each
benchmark, the baseline column shows the time taken by the
original code for the computation (without versioning, paral-
lelism, or any form of self-adjusting computation). We then
show execution times and speedups for recording the com-
putation the first time around, and repeating it after mak-
ing a small change to the inputs. All speedups are relative
to the baseline, and all measurements are taken on a 8-
core machine (a 2.33 GHz Intel Xeon(R) E5345). On the
right, we show statistics about the computation: the number
of summaries that were affected by the small mutation and
needed to be reexecuted (out of the total number of sum-
maries recorded), and the number of read (R) and write (W)
accesses to versioned locations (V) and markers (M) that the
computation performed during recording.

The numbers show that the recording overhead is small
enough to be compensated by the gains from parallel execu-
tion. Specifically, recording is still faster than the sequen-
tial baseline, between 1.8x and 6.4x times. When repeat-
ing the computation after a small change, the speedup is
much beyond the reach of optimal parallelization (8x), rang-
ing from 12x to 37x. These numbers confirm our claim that
self-adjusting computation is not just an alternative to paral-
lelization, but indeed a lucrative extension.

To identify in more detail how the speedups are com-
posed, we provide a more detailed breakdown and visual
representation in Fig. 12. Again, we compare normalized
execution times relative to the sequential baseline. For each
benchmark we measure record and repeat, and also compute
(which uses the vanilla concurrent revisions model, without
recording dependencies). Moreover, for each of those sce-
narios, we test how much of the effect is due to parallel ex-
ecution by imposing variable parallelism bounds on the un-
derlying task scheduler: a parallelism bound of n means that
at most n revisions can be simultaneously executing at any
point of time.

We observe a few interesting details in Fig. 12. First,
we can see that the use of the concurrent revisions model
adds overhead: compute with parallelism bound 1 is up to



Benchmark lines baseline parallel record parallel repeat reexecuted RV WV RM WM
Raytracer 1409 2.140 s 751 ms 2.8x 116 ms 18x 19 of 145 3.5M 0 0 0
StringDistance 618 268 ms 122 ms 2.2x 22.5 ms 12x 2 of 13 236k 236k 0 0
WebCrawler 525 16.3 s 3.42 s 4.8x 1.03 s 16x 3 of 109 135 135 0 0
CSS Layout 2674 185 ms 101 ms 1.8x 6.88 ms 27x 11 of 143 1674 377 2605 1296
Morph 2238 143 s 22.2 s 6.4x 3.86 s 37x 121 of 1729 0 0 5.7M 0

Figure 11. Main performance results and statistics. We show benchmark characteristics, average execution times and speedups
relative to the sequential baseline, and statistics about the summaries and accesses to versioned locations and markers.
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Figure 12. Graphical representation of normalized execution times for compute, record and repeat, relative to the sequential
baseline. Lower is better. We show execution times for various parallelism bounds (for example, pb=4 instructs the revision
scheduler to schedule at most 4 revisions in parallel).

Benchmark Memory in VM Working Set Size
self-adj. baseline self-adj. baseline

Raytracer 7.55 2.59 91.7 90.3
Morph 2.62 1.13 127.2 131.6
Css0 169 126 368 281

Figure 13. Measured memory consumption for the three
largest benchmarks, in Megabytes.

30% slower than the sequential baseline. However, the dif-
ference between compute and record is marginal, meaning
that adding self-adjustment to concurrent revisions does not
worsen this overhead significantly. We can also see that
while parallelism is useful during repeat for two of the five
examples (Raytracer, Morph) it does not help the other three,
because they exhibit no significant parallelism within the
parts of the computation that is reexecuted during repeat.

Memory Consumption. Running a self-adjusting computa-
tion does of course require more memory than the original
baseline computation, since it records the computation and
stores multiple versions of shared variables. To get a better
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Figure 14. Effect of the granularity on speedups. The hor-
izontal axis shows (on a logarithmic scale) the number of
revisions in the computation (which increases exponentially
when we decrease granularity). The vertical axis shows the
speedup (or slowdown, if less than 1) relative to the baseline,
also on a logarithmic scale.



understanding of the practical impact of this fact, we mea-
sured the following quantities for the three largest bench-
marks (Fig. 13):

• Size of the Recorded Computation. We measure the mem-
ory allocated by the VM right after recording the compu-
tation, and compare it to the memory allocated by the
baseline (which does not use versions or record compu-
tations) at the corresponding program point.
• Comparison of Working Set Size. We compare the work-

ing set size (as reported by the OS) of the self-adjusting
computation and the baseline.

Not surprisingly, the size of the recorded computation varies
with the benchmark. For the Raytracer and Morph bench-
marks, it consumes a large proportion of the managed mem-
ory, but does not significantly affect the working set size.
For the layout examples, the extra memory required is about
30%. Overall, we consider the extra memory consumption
to be well within reason for many applications, considering
the gains in speed.

4.3 Programming Techniques
Just like it is difficult to write parallel programs that per-
form well, we found that effective use of self-adjustment re-
quires some thought on behalf of the programmer. By study-
ing the performance of our benchmarks, we were able to
identify specific programming techniques that enable self-
adjustment to perform better in practice.

Revision Granularity. Since the creation and synchroniza-
tion of tasks incurs a non-negligible overhead, parallel per-
formance suffers if the task granularity is too fine. We ad-
dressed this issue by using parameters that control the num-
ber of revisions directly, or indirectly, e.g. by setting some
threshold for recursive divide-and-conquer (such as shown
in Fig. 3). Varying these parameters can affect execution
times dramatically; we show this effect in Fig. 14. As can
be seen, the speedups are best when using relatively few
(less than 500) revisions only. This is true even for the repeat

phase, where we may expect smaller granularities to pay off.

Simple Outputs. We found that for some locations, we
can avoid versioning and improve performance (due to less
indirection and copying). We call a location l a simple output
if

• l is created before the compute/mutate loop.
• l is never read within compute(), and never written within
mutate().
• l is race-free, i.e. not concurrently written to.

Simple outputs do not require versioning because (1) no
computation in Compute depends on them, and (2) their
value persists across iterations.

Markers. We found that we can improve performance con-
siderably by tracking an entire group of locations as a whole,
rather than each individual location separately. The idea is
that

• The library provides a special marker class, with methods
MarkRead() and MarkWritten().
• For each group of locations that the client code would

like to track, it creates a single marker object.
• The client code ensures that whenever it reads from or

writes to a location in the group, it calls MarkRead() or
MarkWritten(), respectively.
• The client code ensures that all locations in the tracked

group are race-free (i.e. they may not be concurrently
accessed by two revisions, with at least one access being
a write) and feedback-free (i.e. they may not be both an
input to and an output of compute()).

If properly used, markers ensure sufficient invalidation of
revisions to maintain the correct semantics of self-adjusting
computation. We used markers in the layout algorithm, to
track entire subtrees of the box trees as a single entity.

Clearly, it is desirable to reduce the reliance on such man-
ual techniques as much as possible. We hope to automate
more of this process in the future. For example, it is conceiv-
able that lessons learnt in the context of parallelization, such
as automated parameter tuning [8], can apply similarly for
self-adjustment. Even so, we feel that the study of manual
techniques is an important first step that can not be skipped.

5. Related Work
Our work spans the two research areas of (1) deterministic
parallel programming, and (2) self-adjusting computation,
and contributes to both. To the former, it adds the capability
of incremental execution. To the latter, it adds parallelism,
but also a shift in perspective that puts more control into the
hand of the programmer and less burden on the compiler. It
thus reflects a similar shift of perspective that has driven the
parallel programming community towards parallel program-
ming models and away from parallelizing compilers. Fig. 15
clarifies how to position our model with respect to previous
work: the research presented in this paper spans the two left
quadrants.

We now give some more detailed background on these
research areas.

5.1 Incremental and Self-Adjusting Computation
An incremental algorithm efficiently computes its output
with respect to the previous output and the changes in input.
Compared to conventional (static) algorithms, an incremen-
tal algorithm has the potential for asymptotic improvements
in speed for certain classes of changes to input. Tradition-
ally, incremental computation has been explored in the con-
text of functional languages. The primary techniques used
to achieve incremental computation are dependence graphs,
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Figure 15. Categorization of Related Work.

memoization, and partial evaluation [5]. Dependence graphs
track what computations must be updated upon changes to
input [18, 26, 37]. Memoization (caching the result of func-
tion calls) [1, 6, 25, 29, 33] and partial evaluation (specializ-
ing a function with respect to some fixed input) [20, 36] can
be used to achieve or enhance incremental computation. A
comprehensive bibliography on incremental computation is
provided by Ramalingam and Reps [34]. Incremental com-
putation is increasingly important as the size of data sets in-
creases and the computation over that data becomes more in-
volved. For example, Guo et al. implemented memoization
and dependence tracking in a Python interpreter to help sci-
entists do faster prototyping of compute-intensive data pro-
cessing scripts [23].

Our work builds on self-adjusting computation, a method
for automatically obtaining an incremental algorithm from a
batch algorithm [3]. The benefit of self-adjusting computa-
tion comes from not having to design an incremental algo-
rithm, which is known to be quite tricky for even relatively
simple problems. In the classical approach, data dependen-
cies are tracked with modifiable references, and change
propagation is efficiently implemented with dynamic de-
pendence graphs and memoization. An early self-adjusting
library, written in ML [2], was also reimplemented in a
monadic style in Haskell [17]. In recent work, dependence
tracking has been addressed at the data structure level, in-
stead of individual memory cells, enabling further perfor-
mance improvements [4].

5.2 Parallel Self-Adjusting Computation
Several recent papers have proposed parallel self-adjusting
algorithms for specific problems [7, 11, 12, 35]. Unlike our
work presented here, they do not investigate how to provide
a general programming model. We are aware of only one
paper addressing this same question [24].

In that work, the authors consider a tiny language that in-
cludes a letpar primitive for expressing the parallel evalua-
tion of multiple expressions. They impose the restriction that
locations be written at most once and are never read before
written. While this restriction does indeed enforce determin-

ism, it is more akin to dataflow models than to standard im-
perative parallel programming models (we discuss those in
Section 5.3 below). The programming model we consider,
concurrent revisions, is strictly more expressive, allowing
multiple (and even concurrent) writes to shared locations.

Our work shares the idea from the Hammer et al. pro-
posal [24] of tracking the sequential and parallel control-
flow of a computation as a tree. In their work, they track
dependences from writes to reads so as to later determine
which reads are affected (read from a location whose con-
tents have changed) by a change propagation algorithm. Our
invalidation and re-execution approach over the tree of re-
gions is similar to that of Hammer et al. However, our ap-
proach memoizes computations at the level of the concurrent
revision (task), while the approach of Hammer et al. mem-
oizes at the level of individual reads of locations. Thus, our
approach can be much more coarse-grained and under the
control of programmer (based on the programmer’s choice
of parallel decomposition using concurrent revisions).

The semantics of classical self-adjusting computation dif-
fers slightly from our loop characterization in cases where
outputs of compute are overwritten by mutate, or where
compute exhibits feedback (i.e. outputs are also inputs). For
more detail, see Section A.2 in the appendix. We believe the
loop characterization is more easily understood by program-
mers, and lends itself better to apply to existing compute-
mutate loops.

5.3 Models for Deterministic Concurrency and
Parallelism

Concurrent revisions [14] are a good fit for self-adjusting
computation due to the determinism and well-defined se-
mantics [15]. In recent years, a variety of related program-
ming models for deterministic concurrency have been pro-
posed that restrict tasks from producing conflicts. Some
of these models leverage hardware support [9, 19], but do
not guarantee isolation. Others support a restricted fork-join
concurrency model [10, 13], or involve the implementation
of efficient deterministic scheduling [32]. We believe that
our approach to integrating self-adjusting computations with
parallel programming could be realized in many of these
frameworks. Another interesting connection between par-
allel execution and self-adjusting computation is that both
appear to benefit from raising the abstraction level of data
types [4, 27, 28].

6. Conclusion and Future Work
We have shown that a single, small set of primitives can
enable programmers to write applications that can both (1)
exploit parallelism, and (2) react incrementally to changes.
We have presented the first known algorithm to perform such
parallel self-adjusting computation. We have experimentally
evaluated this idea by applying it to five example programs,



and observe performance gains that are well beyond what
can be achieved by parallelization alone.

Many questions remain to be answered by future work.

• Our current library implementation fully trusts the pro-
grammer to eliminate data races and invisible dependen-
cies. More stringent checking may prove useful to find
bugs, using a static approach as in DPJ [13] or a dynamic
approach as in precise data race detection [21].
• Given the numerous programming techniques known for

parallel programming, we believe the three we have pre-
sented for incremental programming barely scratch the
surface. Knowing more about these techniques, and find-
ing ways to apply them automatically, may help to fur-
ther promote self-adjusting computation as an alternative
to (or even better, an extension of) parallel computation.
• Similar techniques that we used to implement self-

adjustment may also work to support speculative par-
allelism and an embedding of optimistic concurrency in
the concurrent revisions model.
• We are considering user studies to evaluate our program-

ming model and provide further evidence of its useful-
ness.
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A. Appendix: Additional Material
In this appendix we include some additional material that
discusses potentially interesting details that are however not
crucial to the main contributions of the paper.

A.1 Correctness
The algorithm as presented is quite intricate and it would be
useful to have correctness proof. Clearly, a full formalization
of the algorithm and execution semantics is beyond the scope

of this paper. However, we can give a precise correctness
argument for our algorithm where we focus on the essential
details. Our notion of correctness centers around the loop
characterization described in the introduction. In particular,
we leverage the key assumptions that the code executed by
a summary is deterministic and that all threads are joined
before the end of the outermost summary.

What we would like to show, is that after the initial call
to record(code), calling record(code) subsequent times should
have the same effect as repeat.

This correctness argument relies on two key lemmas. We
say that a summary is “replayed” if we do not have to re-
execute any of the code for that summary. Otherwise, it
is “re-executed”. Note that summaries may be replayed in
either the repeat or fork methods. We say that two summaries
are deeply equal if they have the same fields and the same
tree structure. With these definitions, we can state the key
lemmas:

LEMMA 1 (Record is neutral). If we initialize isValid to
false for every summary (so that every summary is re-
executed), the behaviour is the same as if we just execute
all the code associated with each summary. In other words,
recording does not effect the computation.

LEMMA 2 (Replay is sound).
If isValid for a summary is set to true at the join point for
that summary, replay or re-execution produce summaries
which are deeply equal. In other words, in Figure 9, af-
ter executing candidate.parent := current, then candidate is
deeply equal to: candidate := new Summary(current, code) ;

candidate.Start(prev) ;.

The first lemma is easy to validate by checking that each
repeat and fork re-executes all code in each case and rebuilds
each summary. The correctness argument for the second key
lemma is more intricate though. We argue its correctness as
follows:

• Assume there is an execution where the re-executed sum-
mary would produce a different value than the replayed
one. So, there is an execution where the valid bit was set
but re-execution got a different value.
• The only way the program can diverge from a previous

execution is if a read returns a different value. So we need
to show that if isValid is true, than all the reads are in fact
returning the same values.
• Assume that there is a read which returns a different

value. Consider the first such “divergent” read in in the
partial order of segments enclosed by summaries. This
partial order is with respect to forks and joins (a segment
calling fork is before the fork, segment calling join is after
the segment being joined). We perform a case analysis
based on where the write initially came from:

If the write came from the same summary, then it
could not have diverged by our determinism assump-



tion; all prior writes are deterministic. In the case
where the value was written by a join, we leverage the
fact that this is the first divergent read in the partial or-
der. The summary being joined must not contain any
divergent reads, and so, by induction, has determinis-
tic behaviour.

If the write came from a previous summary, the cur-
rent summary must have been created with a call to
fork. However, the call to DoInternalInvalidations in-
side of fork would have invalidated the current sum-
mary if either the write was from the same segment
with a different value, from a different segment, or
did not occur.

If the write came from outside the summary tree,
then it has either been replaced with a more recent
write inside the summary tree or else a different
value was written outside of the summary tree. In
the first case, by the determinism assumption, the
write must have come from a previous summary.
However, DoInternalInvalidations would invalidate the
current summary if a new write occurs. For the sec-
ond case, the only way to reenter a summary tree
after exiting is via the repeat method. In this case,
DoExternalInvalidations would have set the isValid bit
for the current summary if a different value had been
written outside.

�

A.2 Compute-Mutate Loop Semantics
Our loop characterization can help to answer subtle semantic
questions about self-adjusting computation in an imperative
setting. It is not necessarily exactly equivalent to traditional
notions of self-adjusting computation, in situations where
either (1) outputs of the computation are overwritten by
mutate, or (2) there is feedback (locations that are both
inputs and outputs of the computation). Specifically, our
loop characterization implies that in both of the following
programs, the assertions do not fail:

int x = 0 ;
record { x := 1 ; }
x = 2 ;
repeat ;
assert(x = 1) ;

int x = 0 ;
record { x := x + 1 ; }
repeat ;
repeat ;
assert(x = 3) ;

Not all interpretations of self-adjusting computation in
prior work behave in this way (the assertions may fail).
There is often an implicit assumption that the programmer
is responsible for identifying inputs and outputs, and must
manually copy outputs back to inputs when feedback is
desired.

A.3 Extending the Implementation for User-Defined
Merges

In Section 3 we simplified discussion by eliding the case
with user-defined merge functions. In this case, the merge
function must be run when the summary is replaying or
reexecuting. However, the MergeWrites function as presented
does not have a way to calculate the three values needed to
run a merge function. Figure 16 details an alternate version
of MergeWrites which handles user defined merges.

In this case, MergeWrites takes as input the main sum-
mary which we are merging writes into and also the joinee
summary we are merging writes from. Note that this version
of MergeWrites is suitable for use in the join function; in the
case of record and repeat, we extend this function to handle
the lack of a current summary.

We need to work backward through the writes from the
joined summary, only calling the merge function for the last
write. To do this, we keep track of which locations we have
already merged in the mergedLocations set. In order to find
the original and current values for the location loc, we use
the special methods GetValue and GetParentValue. GetValue
cycles back through the summary parent chain to find the
first location in which loc was written. This method is very
similar to the read method, but does not add dependencies.
The GetParentValue method starts immediately by looking
for the value in the parent chain. It turns out that as a conse-
quence of the concurrent revision model where revision dia-
grams always from a semi-lattice, the original ancestor value
of the main and joinee is always the direct parent value of the
joinee [16].

A.4 Pseudocode vs. Actual Implementation
We now discuss some of the differences between the pre-
sented pseudocode algorithm and our actual implementation
in more detail.

Our pseudocode uses List〈Map〈Versioned,Value〉〉 to store
write sets. In the actual implementation, we use segment
trees [14] (trees that have immutable nodes and mutable
leaves) to encode the structure of the revision diagram.
Each segment has a unique id. We then store inside each
Versioned〉 object a map from int to Value that stores the var-
ious versions. This map is encoded as an array of arrays of
key-value pairs, for the sake of minimizing the synchroniza-
tion requirements under concurrent access.

As described in [14], Segment objects (redundantly)
maintain a list of versioned objects that contain versions
for them; this allows us to remove those versions when deal-
locating segments. We deallocate segments when their ref-
erence count reaches zero.

To store the list of writes in a Summary, we keep a list
List〈Segment〉 of segments, with an extra first entry repre-
senting the root from which the revision was forked (if we
have n segments, this list has thus size n + 1). We can then
compute the write lists as needed by the algorithm by walk-



private void MergeWrites(Summary joinee, Summary main) {
Set〈Versioned〉 mergedLocations = new Set〈Versioned〉() ;
Map〈Versioned, Value〉 target = current.writes.Last() ;
for (int i := joinee.writes.Count−1 ; i > 0 ; i--)

foreach ((loc,value) in joinee.writes[i])
if (!mergedLocations.Contains(loc)) // only merge last

write
{
mergedLocations.Add(loc) ;
Value mainValue := GetValue(main, loc) ;
Value origValue := GetParentValue(joinee, loc) ;
if (origValue = mainValue)
main[loc] := value ; // no conflict

else
main[loc] := loc.merge(mainValue, value,

origValue) ;
}

}

private Value GetValue(Summary s, Versioned loc){
if (FindIndex(s.writes, loc) 6= −1)

return LastWrite(s.writes, loc) ;
else

return GetParentValue(s,loc) ;
}

private Value GetParentValue(Summary s, Versioned loc) {
while (s.parent 6= null) {
for (i := s.index ; i > 0 ; i--)
if (s.parent.writes[i].ContainsKey(loc)) {

return s.parent.writes[i][loc] ;
}

s := s.parent ;
}
return LastWrite(globalwrites, loc) ;

}

Figure 16. Merging writes with merge functions.

ing through the segment chain. Note that it is possible that
several segments in this list are the same; this helps us to
avoid excessive creation of empty write lists, which turns
out to have a big performance impact (since the searching
for writes tends to be expensive, and depends heavily on how
many segments need to be traversed).

Finally, note that the foreach loop in DoExternalInvalidations,
namely:

foreach((s, (d, i)) where s.dependencies[loc] = (d, i))

is potentially expensive since it visits all summaries in or-
der find all dependencies. To keep the cost under control,
we store the dependencies (which we presented as a field
Map〈Versioned,(int x int)〉 inside summaries in the pseu-
docode) in the versioned object, as a Map〈Summary,(int x int)〉.
This helps to iterate the loop above.

Similarly to the way we back-reference versioned objects
that contain ids of Segment objects inside a list in the Seg-
ment objects, we redundantly store a list of Versioned objects
in the summary objects, containing all the Versioned objects
that contain that summary as a key in their dependency map.
Again this helps to remove those dependency entries when a
summary is deallocated.


