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Abstract

Programming today involves code editing mixed with bouts
of debugging to get feedback on code execution. For pro-
gramming to be more fluid, editing and debugging should
occur concurrently as live programming. This paper de-
scribes how live execution feedback can be woven into the
editor by making places in program execution, not just code,
navigable so that evaluation results can be probed directly
within the code editor. A pane aside the editor also traces
execution with entries that are similarly navigable, enabling
quick problem diagnosis. Both probes and traces are re-
freshed continuously during editing, and are easily config-
ured based on debugging needs. We demonstrate the useful-
ness of this live programming experience with a prototype.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Live Programming; Debugging

1. Introduction

Programming burdens our minds as we must imagine how
code will execute while editing it. To correct errors in our
mental simulation, we must stop editing and instead “debug”
code to get feedback on how it really executes. Hancock [10]
compares this to archery: aiming an arrow (editing code) in-
volves mentally simulating a physical system, while shoot-
ing (debugging) provides discrete feedback for the next shot.
Good archers learn how to get their aim right the first time—
but why not just use a water hose instead?

Live programming makes programming easier by re-
executing a program continuously during editing. Back to
Hancock’s analogy, consider hitting a target with a stream
of water: we simply keep correcting our aim until the target

[Copyright notice will appear here once ’preprint’ option is removed.]

is hit where, unlike archery, we receive continuous feedback
on where we are shooting. With live programming, we just
edit an executing program until its output looks right.

But what does this output look like? In many live pro-
gramming systems [5, 17, 18, 22, 24, 26, 27], programmers
only observe updated visual output while editing; many rel-
evant intermediate results are left unseen. And what about
programs like compilers whose original outputs are not even
visual? Original program output can be augmented with
traces that overview program execution, e.g. we can reason
about compiler execution by augmenting it with print state-
ments; but we still cannot see code execute in detail as we
could in a step-based debugger.

This paper recasts live programming as editing and de-
bugging code at the same time. In our system, places in pro-
gram execution, not just code, are navigable in the editor;
i.e. not only can we navigate from a method call to its def-
inition, but we can also probe expression values for the call
directly in the editor. So we can avoid tediously navigating
through execution to find places to probe, a pane aside the
editor overviews program execution through tracing; trace
elements are editor-navigable to execution places where a
problem, identified in a trace, can be diagnosed through
probing. Probes and traces are refreshed continuously during
editing, and are easily configured in code based on debug-
ging needs: traces are formed from print statements, while
probes are enabled by annotations. We have implemented
this design in a prototype of our YinYang language.

This paper continues with Section 2 describing a base
live programming model that is enhanced in Section 3 with
probing and tracing. Section 4 discusses our experience with
YinYang (videos available); Section 5 presents interesting
technical details. YinYang currently does not handle interac-
tive programs that involve time-ordered events: Section 6 de-
scribes the challenges of supporting such programs. Related
work is presented in Section 7 and Section 8 concludes.

2. Live Programming

In the context of programming, many IDEs provide contin-
uous and/or responsive feedback on the lexical, syntactic,
and type safety of our code. However, many “live” visual
languages such as VIVA [27], Forms/3 [6], Morphic [15],
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and PureData [22] go beyond this by providing live feed-
back about how program execute as visual code is edited.
For example, a VVVV [18] program is edited by connecting
together various data-flow patches; by connecting a rotate
patch to a rectangle patch, we can see rendered rectangles
rotate in real time as we change the rotation angle.

Beyond live visual languages, two techniques are often
used to get timely execution feedback in textual procedu-
ral languages. First, REPLs (read-eval-print loop) enable the
progressive input of top-level statements, displaying results
as statements are written. However, REPLs are intended
for quick experimentation and feedback is not available for
method definitions. Second, as pioneered in LISP [16] and
Smalltalk [8], many IDEs support fix-and-continue where
code can be changed while the program is executing. How-
ever, fix-and-continue only affects future executions; e.g. if
we change w.color = red to w.color = blue, the color of old
w objects bound will remain red, only future w objects will
be blue. In contrast, live visual languages execute changed
code as if it was always in its post edit state.

However, fix-and-continue can be augmented as follows
to create a more useful live programming experience. Sup-
pose we write a procedure called Render that is called con-
tinuously to re-render the display:
while (true)

ClearScreen();

Render();
def Render() = draw(‘hello world")

Assuming Render executes quickly, editing its code while
this program is running will provide responsive execution
feedback: as we change draw statements in Render, new
results are quickly displayed. This form of basic live pro-
gramming is supported by and considered useful in Khan
Academy’s learn programming system [24]. However, this
approach to live programming has a few problems. First, no
state is preserved between invocations of Render, which is
non-interactive. This paper does not solve problems related
to interactive programs, which are discussed more in Sec-
tion 6. Next, a naive implementation will re-execute Render
completely on every display frame, which is slow if Render
is large; we explore latency issues in Section 5. Finally, the
output produced by Render is often not sufficient in helping
us write code, which is the focus of this paper.

As described so far, live programming does not replace
contemporary debugging techniques. The live output from
executing a program continuously is just a picture (“hello
world”) or, perhaps if Render were like a compiler, obscure
binary output. To actually debug code, we need to know
more about how the program executes beyond its final out-
put. Additionally, no help is given in mapping output back to
code: we must manually figure out how observed outputs are
related to the code we are editing. In contrast, contemporary
debugging techniques enable code execution understanding
through step-based debugging, tracing with print statements,

and so on. The next section describes how to merge the re-
sponsiveness and continuity of live feedback with the under-
standing gained from debugging.

3. Making Live Programming Useful

How a program executes is often not obvious from its exter-
nal behavior, which is true in any complex system; e.g. we
cannot know how a car is broken by driving it. On this point,
Victor [30] critiques live programming as follows:

We see code on the left and a result on the right, but it’s the
steps in between which matter most. The computer traces a
path through the code, looping around loops and calling into
functions, updating variables and incrementally building up
the output. We see none of this.

Our live programming system, dubbed YinYang, aims to
fix this problem by focusing on debugging, which is miss-
ing from many existing live programming systems like [5,
17, 24, 26]. Traditional debugging techniques, like breaking
and stepping with a debugger, are not compatible with con-
tinuous execution: instruction stepping interferes with con-
tinuous live feedback, while a separate debugger interface
to navigate and inspect execution necessarily disrupts pro-
grammer focus on code editing. YinYang combines editing
and debugging not just in time but also in space where up-
dated debug results are conveniently visible while editing.
The rest of this section adapts two debugging techniques into
YinYang: probing that presents in detail how code executes,
and tracing that overviews execution with print statements.

Probing

A traditional source debugger for a procedural language en-
ables us to observe code execution at a fine-grained level by
breaking at or stepping through instructions while inspecting
expression values. Unfortunately, using a debugger with live
programming would require a focus away from editing, and
what do breaking and stepping even mean when the program
is continuously re-executing?

To augment live programming with debugging, YinYang
projects program execution information directly onto code in
the editor so that we can keep editing code. Consider a call
to a binary search (BS) method that is entered via a REPL
into a program as a top-level statement:
> e = [1,4,7,8,10,13]
>.BS(e, 7,0, el)

>

Immediate execution feedback is given because the execu-
tion context of the statement is fixed at its point of input in
the REPL. To edit and debug at the same time in YinYang,
an expression’s value has a presence in the editor near the
expression so it can be easily observed while editing. To
avoid being overwhelmed with useless feedback, program-
mers have control over what expressions are “probed:” ex-
pressions can be preceded with @ operators in the editor to
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Figure 1. An illustration of live programming with probing alone; read left-to-right; unboxed red/underlined code indicates an edit.

create probes that visualize their values; e.g.:

©BS(e, 7, 0, @e.L)

[2]6]

Here the probes on both the BS call and e’s length appear
beneath the line that they are located on; note probes are un-
labeled and ordered left to right according to @ order. Probes
are continuously maintained as code is edited; e.g. prepend-
ing a O element to list e causes these probes to immediately
go from to .

Many code blocks have ambiguous executions contexts;
e.g. methods have multiple callers while loops have multiple
iterations. YinYang solves this problem by projecting an exe-
cution context according to how we navigate to the code. For
a method definition, execution context can be specified with
respect to a method call that is top-level or has a projected
execution context. Consider the illustration in Figure 1: the
top BS method call, which exists in a top-level execution

context, can be clicked to navigate to the BS method defini-
tion and project the execution context of the call, resulting
in the top-right panel. When execution context is projected
onto a block of code, whatever code in the block that is not
executing in the corresponding control flow is struck out;
e.g. at the bottom of the top-right panel, the first recursive
BS call is struck out since a[m] (8) is not less than 7.
Because a method definition can have only one execution
context projected on it at a time, when navigating to the last
BS call of the top-right panel, the new execution context
results in different probe values for the bottom-left panel
of Figure 1. Method definitions with projected execution
context are also annotated with a up-pointing triangle to
navigate back to their caller (both in code and execution
context), which the programmer does in Figure 1’s bottom-
left panel to go back to the first BS call, resulting in the
bottom-right panel. The projection of execution context onto
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Figure 2. An illustration of live programming with tracing alone.

a block of code does not prevent that code from being edited,
and how these edits affect the projected execution context are
immediately visible in any probes displayed at the time. For
example, as the programmer fixes the bug in the BS method
definition, the probe on the top BS call immediately updates
to 7’s correct index in the list (2). In contrast to method
definitions, loops begin the execution context of their first
iteration, with arrows to project next or previous iteration
execution contexts.

Because program code executes continuously, stepping
through code is not meaningful and so the presentation of
execution information is spatial. The value of a stateful ex-
pression depends exactly on where it occurs and is probed in
the execution; the value of an expression at different points
in the program’s execution can only be seen by replicating
and probing the expression in multiple locations; e.g.
©x; q(); ©x

0] 42]

x has the value of 0 before q is called the value of 42 after as q
changes the value of x as a side effect. Likewise, code must
be written to probe expressions that are not already in the
code; in this way, watch and local variable debugger panes
are entirely supplanted by the code editor.

Tracing

The most effective debugging tool is careful thought, cou-
pled with judiciously placed print statements—Kernighan [12].

Finding problems in a program by probing its execution can
be like searching for a needle in a haystack. Program ex-
ecution in YinYang can also be abstracted into a trace that
overviews what the program is doing through print-like trace
statements added to code according to debugging needs. Un-
like a program’s original output meant for program clients,
traces are specifically meant as a programmer-oriented Ul
that locate problems or map how code is executing. Trace
entries immediately appears in a trace pane to the right of

the editor as trace statements are added to the executing pro-
gram; Figure 2 illustrates tracing in use.

Neither probing nor tracing alone provide a complete de-
bugging experience. Probing might find a problem after nav-
igating through much of a program’s execution, which is
tediously impractical. Tracing, in contrast, identifies prob-
lems quickly but hardly tells us why they occurred. We then
combine probing and tracing using the insight that the print
statements that create trace entries are executed somewhere
in the program—this execution place can then be used as an
anchor for code execution navigation and probing! Clicking
on each line of trace output in Figure 2 will cause navigation
in the editor to the code execution place that created that
line of output; projecting the correct execution context on
BS accordingly. Tracing identifies problems in an overview
of the program’s execution and then acts as a map to navi-
gate the editor to various code execution locations at which
point probing helps to diagnose problems in detail.

Figure 3 demonstrates the synergy between probing and
tracing in debugging the binary search method of Figures 1
and 2; note that a longer e list is being used in this example.
We start out by adding trace statements and discover that the
28 element is not found in the list. We then navigate directly
to the last trace output created in the BS method before the
search fails (top-left to top-right panels), where we are able
to probe to find out that ¢ and b on the last BS call will both
be bound to 16. We correct the problem by realizing that b
1s exclusive, not inclusive, and so 1 should not be subtracted
from m. After we fix the problem (bottom-left panel), the
execution context projected onto the code we are editing is
gone as it no longer exists in the updated program execu-
tion. We navigate from the last BS trace entry to check our
results (bottom-left to bottom-right panels), re-projecting an
execution context on the BS method’s definition.

Probing and tracing together provide almost all of the
debugging capabilities that programmers are used to. For
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Figure 3. An illustration of live programming with probing and tracing.

example, trace elements can be created instead to make
navigable execution locations where we would otherwise
use break points, which YinYang lacks. Debugging is then
a more spatial, rather than temporal, experience that fluidly
corresponds to code editing.

4. Experience

Although Figures 1, 2, and 3 illustrate how YinYang is used,
the fluidity of this live programming experience is more
dramatic in video form:

sqrt: http://www.youtube.com/watch?v=01Xyoh-G6DE

fib: http://www.youtube.com/watch?v=UVf1SJnNb6E

Note that the language being edited in the video is a custom
statically-typed procedural language; however its features
are unimportant for the purposes of this paper.

Execution in this prototype is re-done on every keystroke.
Although responsive, the feedback might be wrong or miss-
ing when code has syntax or semantic errors, or it might be

volatile while typing in a construct. Perhaps programmers
should sometimes have control over when refresh occurs.

We experimented with multiple designs for probing be-
fore settling on the one in YinYang. An earlier prototype pro-
jected code onto execution: method calls could be expanded
as a projected method definition. However, this design was
found to be confusing as projections became deeply nested,
while having the same method definition projected in multi-
ple places was disorienting. Our final design reverses this:
rather than project code onto execution, execution is pro-
jected onto non-duplicated code. While we believe our cho-
sen design is less confusing, more work needs to be done to
indicate what execution context is being projected.

YinYang avoids overwhelming us with too much feed-
back by giving us direct control over probing and tracing
through configuration by code—we are not distracted with
expression values that we do not care about or trace entries
that are not useful. The fact that code is used for debugging
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makes its semantics very clear and flexible; e.g. conditions
can be used to filter out trace elements while expressions
can be written to probe values where (and when) needed. On
the other hand, configuration-in-code requires us to litter our
code with trace statements and probe annotations, which ap-
pears messy while read-only third-party code seems impos-
sible to debug at all. Additionally, debug code might need to
access members that should normally be encapsulated; e.g.
if we want to probe a private member of an object. However,
although debug code appears collocated with normal code as
a programmer convenience, it could be stored separately and
could be exempted from encapsulation.

Tracing as described so far is essentially printf debug-
ging, which is useful in understanding how a problem was
“reached” even if it is somewhat primitive. The synergy be-
tween tracing and probing that we identified in the Section 3
clarifies the unique role of tracing during debugging. Al-
though we only use print-style tracing in this paper, traces
could also be expandable trees, zoomable graphs, and so on;
e.g. graph-style traces are commonly used in compiler de-
velopment to visualize a large number of relationships. Nav-
igability for such traces still applies; e.g. clicking on a graph
node would navigate the code editor to the code and execu-
tion context that created the node.

5. Technology

As a live programming language, YinYang depends heavily
on incremental computation in both its compiler implemen-
tation and programming model. An incremental compiler is
necessary to re-parse and type check the code quickly, keep-
ing certain landmarks in the code cohesive between edits to
ensure experience continuity. An incremental programming
model is necessary so that the program’s themselves can re-
execute quickly. We solve both problems with an incremen-
tal computation framework, called Glitch, that transparently
repairs program executions after a change in input...or code.
A program execution in Glitch is decomposed into a
tree of nodes that can be re-executed independently on a
code or input change. Node decompositions are specified by
programmers based on their understanding of the program’s
run-time modularity; e.g. execution nodes for a compiler
can be chosen to correspond to nodes of the syntax tree
(AST) for the code being compiled. Nodes have direct data-
flow dependencies with their parents for arguments and their
children for return values, where they are re-executed if these
change; e.g. if the code lexer stream that a parse node is
called on changes, the node is re-executed to repair the parse
tree accordingly. Likewise, nodes are re-executed when the
shared state they read, which is traced dynamically, changes;
e.g. if a symbol table entry read by a parse node changes.
Unlike in other incremental computation frameworks
(e.g. [1]), Glitch code can do imperative operations. These
operations are logged on node execution and are automat-
ically undone if they are not re-performed on a node re-

execution. Beyond being undoable, imperative operations in
Glitch must also be commutative as nodes can re-execute
in any order in response to arbitrary changes. Only a few
operations are easily commutative, e.g. set insertion and ag-
gregation; however, we augment assignment-like operations
such as dictionary entry insertions and cell bindings with
single assignment semantics, vastly increasing Glitch’s ex-
pressiveness at the expense that some operations can now
fail. In the end, we were able to write YinYang’s compiler in
a fairly mundane programming style using C# and Glitch.

Beyond Glitch, another key to YinYang’s implementa-
tion is the use of execution addresses that are navigable and
coherent across program edits. These addresses are formed
from tokens and are added to as methods are called, e.g.
token t in method f called via the token f' has the address
f'.t; or on each loop iteration where a non-token key, such
as indices, is used to identify an iteration. Execution ad-
dresses are used to record values based on probe annota-
tions; non-probed expression values are not recorded while
adding a new probe will always trigger re-execution so its
value can be recorded. Probe execution addresses are then
reproducible in the code editor so probe values can be ren-
dered inline below their annotations.

The execution address of the call used to create a trace
element enables navigation from the element to the execu-
tion location in the code editor as described in Section 3.
Clicking on a trace element will (a) navigate to the lexical
location of the creating call in the editor and (b) use the exe-
cution address to set the execution context of any loop itera-
tions or method calls that contain it; the address contains all
information needed to set this context. The editor will then
re-render the code, using these execution contexts to render
any probes in the editor, while producing execution address
for further navigation using the structure of the code. Execu-
tion addresses are also keys to preserve state between edits
so trace elements do not need to be recreated after each edit,
avoiding flickering and clobbering any trace pane UI state.

As mentioned, Glitch also forms the basis of YinYang’s
programming model with the same restrictions that prim-
itive imperative operations be undoable and commutative.
YinYang currently gives programmers control of Glitch’s in-
crementalization via a node method annotation; the idea be-
ing that incremental computation has a cost, and so it cannot
be performed transparently, which is a strategy used in other
work [4]. However, programmers must deeply understand
the granularity and modularity characteristics of the compu-
tations being performed by the program. The programmer
may lack such understanding, and, in the case of many pro-
grams, such understanding may be non-existent.

In any case, change can sometimes have a huge impact
on program re-execution time. If significant latency (~50ms)
cannot be avoided and is not managed well, live program-
ming would actually reduce programmer productivity as
programmers depend on but wait for slow feedback. To mit-
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igate this problem, we should explore techniques that guess,
reuse outdated results, or can otherwise give useful, if not
completely correct execution feedback; e.g. consider a low
fidelity “draft mode” used in video editing tools.

6. Dealing with Time

The work presented in this paper does not consider interac-
tive programs involving time-ordered events. Because they
involve state that changes over time, such programs do not
yet fit into the YinYang model. There are two different styles
of how live programming could handle interactivity:

- Edits change program execution in real-time leaving re-
sults of its past code execution untouched; and

- Events are recorded so they can be replayed on code
edits, ensuring that the past and present are consistent.

The real-time style of live programming is used by most
existing live programming systems that handle interactivity,
e.g. [10, 17, 26], with the qualification that some code in the
program is executed continuously and so supports editing
with live feedback. State changes performed by imperative
code are final—code edits cannot change the past and time
travel is impossible—while only the “present” state of the
program is observed by the programmer. Work on TouchDe-
velop [5] formalizes this style of live programming by sep-
arating a “view,” whose code is amenable to live program-
ming, from a “model,” whose initialization and mutation
code is not; we can conceptualize this as:
m = initial;
while (true)

ClearScreen();

m = RenderAndHandle(m);

Here m is the program’s current state while RenderAndHandle
is called continuously to both render this state, as a model,
and handle any events that occur (implicitly) by mutating the
model. This style of live programming has many problems.
First, edited code can depend on state that is not allocated
during initialization. Second, the state of the program, and
hence its behavior, can be inconsistent with the program’s
edited code; i.e. the edited program would behave differ-
ently if re-executed from scratch. Finally, we have no way of
debugging state transitions that are unobservable since they
happen instantaneously. Still, real-time live programming is
useful when changing the past is not sensical; e.g. program-
ming a live performance [26] or physical robot [10].

The recorded style of live-programming turns an interac-
tive program into a batch one by recording input events and
rendering multiple frames of output; i.e.
while (true)

frames.Clear();

m = initial;

foreach (e in events)

(f, m) = RenderAndHandle(m, e);
frames +=f;

Figure 4. Stroboscopic debugging of a bouncing ball; courtesy of
Chris Granger [9].

This program then appears to be amenable to Section 3’s
probing and tracing. However, consider a physics simula-
tion of one thousand frames (events), where traces are over-
whelming with lots of poorly organized or rarely changing
trace entries that are re-printed on every frame. How can a
trace usably include time? Possible answers include:

- Trace elements for only one time point are shown at a
time, and then we time travel via a slider;

- Trace elements are grouped by time into visual elements
such as timelines (Figure 5 bottom left); and/or

- Trace elements are interposed over time using strobo-
scopic visual elements as shown in Figure 4.

Victor explores time travel and strobing in his work [29, 30]
while our previous work [11] targeting camera-based pro-
gramming explores time travel and timelines (Figure 5).
Such time-based tracing needs more work before live pro-
gramming of interactive programs can be very usable.

Latency is also a large problem for recorded-style live
programming—Ilive programming a one minute physics sim-
ulation involves 3600 simulation frames! Incremental com-
putation is crucial in this case, but if every frame depends on
the last, how to do this is not obvious. Spatial relationships
in a simulation can be used to incrementalize some compu-
tations; e.g. if a change does not interfere with one area, then
processing for that area need not be redone. Further work is
needed to generalize such techniques.

7. Related Work

The concept of live programming was introduced by Han-
cock [10] in his Flogo I and II languages, although the role
of liveness in programming was previously explored for vi-
sual languages [6, 27] as well as in Self’s Morphic [15]. As
mentioned previously, many systems [18, 22, 24, 26] since
have not addressed debugging. SuperGlue [17] is one such
system that focuses on the novelty of interacting with a pro-
gram while editing its code; it was also based on a reactive
data-flow programming model that could not express many
basic computations, while YinYang is fully procedural.
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Figure 5. The DejaVu [11] interface for developing interactive
camera-based programs; the timeline shows values per-frame.

TouchDevelop [5] likewise does not support debugging
but introduces a notion of “navigability” between live ren-
dered UI output and code; YinYang’s notion of navigability
is directly influenced by this and additionally projects execu-
tion context on code navigated to. TouchDevelop also lever-
ages navigability to support bi-directional editing between
UI elements and code; e.g. changing the color of a Ul el-
ement will update code to set its color property, and vice
versa. YinYang does not currently support rendered Uls in
traces, but otherwise could also support this feature.

Our work is heavily influenced by Victor’s recent well-
received demos [29] that focus on making programming
more friendly; specifically what Victor labels as “making
flow visible (and) tangible” in [30] are realized in YinYang.
However, whereas Victor leverages instruction stepping in
his design, YinYang renders execution spatially, simplify-
ing visualization but also obscuring discrete computation
steps. YinYang differs in the same way from previous de-
buggers that support “time travel” [2, 13, 14, 23, 28]. Our
use of replay and light instrumentation is also more prag-
matic than approaches that record all execution details [21],
or approaches that record all object states [20].

The aforementioned Flogo II [10] supports “live text”
that interleaves execution feedback into code being edited,
which is similar to YinYang’s probing. Unlike YinYang, Fl-
ogo code is projected onto expandable program execution.
Code Bubbles [3] also can project code onto execution by
copying code and debugger watch panes into multiple bub-
bles on a large canvas; YinYang is much more compact in
comparison. Perera [19] shows how execution can be visu-
alized in a more compact way by using slicing to elide ir-
relevant execution details according to a specified computa-
tion. In contrast, we have complete control over probing and
tracing but only through manual effort, and the addition of
similar slicing in YinYang could help us diagnose problems
more quickly. Ressia et al. [25] shifts a live debugging focus

away from the execution stack to focus more on individual
objects; though YinYang still focuses on execution locations,
similar functionality can be obtained via navigable tracing.
YinYang is closely related to Edwards” work [7] on uni-
fying code editing and debugging into an ‘“example en-
lightened editor” where code is seen side-by-side with a
visualization of an example’s continuously-refreshed execu-
tion. Selection in visualized execution causes navigation in
the code where probing is then possible via mouse hover.
In contrast, YinYang substitutes visualized execution for
programmer-configured tracing and probing, providing pro-
grammers with feedback that is more focused and visible.

8. Conclusion

Live programming is emerging as the next big step in pro-
gramming environments that will finally allow us to move
beyond our Smalltalk-era IDEs into a more programmer-
friendly future. However, existing live programming experi-
ences are still not very useful—they dazzle us with live feed-
back but that feedback does not really help us write code! We
recasted live programming as a fusion of editing and debug-
ging so that we can leverage live feedback in debugging our
code. Many challenges remain in the realms of latency, UlI,
and interactivity, but this experience is compelling enough
that future work will be worth the effort.
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