An Online Evolutionary Approach to Developing I nternet Services

Mike Y. Chen, Emre Kiciman, and Eric Brewer
mikechen@cs.berkeley.edu, emrek@cs.stanford.edu, brewer@cs.berkeley.edu

Abstract

High dependability in Internet services is a difficult chal-
lenge: new features are constantly added, the systems are be-
ing scaled to support more users, and these systems are sub-
ject to unpredictable workloads and inputs. To deal with these
challenges, operators must constantly adapt and evolve their
system in response to its dynamic behavior. We argue that
this online evolution is necessary for the development and de-
ployment of dependable Internet services. This paper presents
a conceptual model of online evolution consisting of three
phases—monitoring, analysis, and modification—and present
techniques we have found useful in speeding the process of
online evolution.

1 Introduction

There are many challenges in providing highly depend-
able Internet services. The fast software release cycles and
growth rate of Internet services violate one of the traditional
dependable computing principles of minimizing change. In
practice, the fast release cycles mean that the software is far
from perfect. In addition, the frequent software and hardware
updates to the systems increase the probability of operator
errors. Worse still, Internet services are exposed to unpre-
dictable workloads [1, 7]. The fragility of existing Internet
services is evident in many publicized outages [20, 21], and
there may be many more unreported cases where only capac-
ity or correctness was affected.

Traditional design and testing paradigms which focus on
the pre-deployment phases of a service are not sufficient to
cope with runtime problems caused by immature software,
unexpected workload, and operator errors. In [13], Gribble
argues that robustness based on precognition of the failure
modes of a system is bound to fail. Even the most careful
design will not correctly predict and handle all incarnations
of hardware, software, operator and environmental faults.

To deal with this in practice, service operators and develop-
ers are continually monitoring their system’s dynamic behav-
ior, and adjusting its configuration and code to compensate for
unexpected occurrences. In effect, Internet services are con-
stantly being evolved in response to their operating behavior,
albeit in an often ad hoc manner.

We argue that online evolution, the constant adaptation

and development of online systems, is a necessary part of the
development and deployment of a service—as necessary as
debugging and testing of code. Because we cannot simulate
the unknown environment that a system is subject to, we have
to use the real world as a continual testing environment, and
be prepared to change the system online as we encounter un-
expected occurrences and changing requirements.

Conceptually, online evolution consists of three phases,
suggested by classic control theory:

1. Monitoring collects data on the behavior of a live system.
Logging this information provides an analyzable history
of the system’s behavior.

2. Analysis distills the collected data to provide insights
about the system, such as helping detect and diagnose
faults.

3. Modification of a system is made to recover from a fault
or adapt to meet new system requirements. It can be as
simple as restarting a failed machine, or as complicated
as rolling out a new version of the system software.

Online evolution includes short-term recovery from faults
and adaptation to workload. Here, the evolutionary cycle of
monitoring, analysing and modification can often be fully au-
tomated. Online evolution also extends to long-term devel-
opment of features and architectural design. In these cases,
evolution can only be partially automated with the system pro-
viding as much aid to the developer as possible.

In the second section of this paper we present a thorough
discussion of the online evolutionary model of system devel-
opment. The third section provides detail into the monitor-
ing, analysis, and change techniques we have found useful
in speeding the process of online evolution, and gives a brief
overview of prototypes we have developed. The final sections
discuss related work and summarize.

2 Online Evolutionary Model

Online evolution encompasses both adaptation to short-
term fluctuations in the operating environment, and evolution
to meet long-term trends. Operators and developers of Inter-
net services evolve the system in response to their believed
perception of the service’s efficacy. In effect, they are creat-
ing manual feedback loops, using their knowledge of the sys-
tem’s operation to guide its short-term adaptation and long-
term evolution. Today, this online evolution is at best ad hoc;



Short-term
Adaptation

Long-term
Evolution

Improve Fix
Design Bugs

Figure 1. Short-term and long-term feedback
loops

there is little common methodology for analysis and modifi-
cation of the system—the monitoring, analysis and adaptation
frameworks that do exist tend to be service-specific [22].

To systematize this approach, we use the notion of a “feed-
back loop” to express the relationship between a kind of prob-
lem, monitoring and analysis techniques that detect the prob-
lem, and adaptation or evolution procedures to fix it. For ex-
ample, large spikes in workload can be detected via request
counter. A service can then be adapted to handle this spike by
adding more computing resources to the service. These feed-
back loops operate at various timescales: short-term adapta-
tions may take seconds to minutes, and longer-term evolutions
operate on the order of hours, days or more. As shown in Fig-
ure 1, here are four of the feedback loops that improve the
availability and dependability of a service.

Workload Variance: Adapting to workload variance helps
the service avoid overload or minimize resource con-
sumption. Typically the performance of the system is an-
alyzed and standby capacity is added to the service under
saturation. Also, graceful degradation techniques such as
harvest/yield trade-offs [11] and admission control can
help the service maintain acceptable service quality.

Faults: Because hardware faults and software bugs will al-
ways occur, it is important that a system be ready to
quickly mask and recover from faults as they occur. One
of the biggest challenges is fault detection and diagnosis
(i.e., to pinpoint what and where the faults are in the sys-
tem) in order to recover. Simple faults, such as hard disk
failures and fail-stop frontends are easily detected and re-
covered automatically through built-in redundancy, such
as RAID. Other faults require more sophisticated mon-
itoring, analysis and recovery techniques, and often re-
quire human intervention.

SoftwareBugs: In addition to short-term recovery from
faults, it is often desirable to take more time to fix the
source of the failure. Staged rollout [22] enables devel-
oper to use server logs, bug reports, and real user feed-
back to help detect and fix bugs before the software is

deployed across the whole service. A more observable
system complements this practice because it helps the
developers understand the internals of a system and re-
duces debugging time.

Design: On a longer time-scale, developers are interested
in improving the architectural design of the system.
Through online monitoring and analysis, developers can
verify their own assumptions against the behavior of the
deployed system, and improve on problematic designs.

In addition to these feedback loops for making systematic
improvements to a service, there are feedback loops guiding
the development of the service content, user interface, and
feature list. This kind of development uses another kind of
systematic feedback, analysis of user behavior and user feed-
back. Though of obvious importance, these other feedback
loops are outside the scope of this paper.

3 TowardsRapid Evolution

In this section, we discuss the systematic introspection and
analysis techniques that we have found useful in aiding rapid
online evolution. In addition, we discuss how some feed-
back loops can be fully automated using known adaptation
techniques. Finally, we present some initial results from in-
development prototypes of these techniques.

3.1 Monitoring

Building measurement infrastructure into a system is the
first step in enabling developers and operators to monitor and
diagnose a live system [4]. As argued in [9], the introspec-
tion framework should be built in an application-independent
fashion to simplify application development, eliminating the
need for programmers to insert explicit logging calls.

Though most systems have some concept of logging their
actions and state, most do not log enough information to
fully understand a system’s dynamic behavior. For exam-
ple, Apache logs externally visible events such as URL, IP
address, and timestamp but does not record the internal com-
ponents used. It relies on programmer-inserted error messages
to aid fault diagnosis.

The following are three classes of information that we be-
lieve are useful to record to help expose a system’s behavior.
Most monitoring systems today only focus on performance,
ignoring other useful information.

I nter-component and inter-request relationships. By trac-
ing a service request through a system and logging all
components used, we can discover the dynamic func-
tional dependencies between the components. Also, in
Internet services where end-user interactions span mul-
tiple HTTP requests, we must track state dependencies
between these HTTP requests to understand how the sys-
tem behaves end-to-end in a session. By logging reads



and writes to state, we can discover many of these inter-
request dependencies. This information can be used
to catch unintended interactions among components, as
well as to aid fault diagnosis, debugging and system re-
design.

Inputsto the system: Logging the inputs to a system is use-
ful for discovering failures due to pathological inputs,
and for use in future regression tests. Logging can be
done efficiently as a circular buffer to keep only those
inputs that co-occur with failures. Another use of this
information is for anomaly detection. For example, dif-
ferent browsing behavior from users of a particular ver-
sion of web browser might indicate HTML compatibility
problems.

Performance characteristics: Logging performance infor-
mation, such as throughput and response time, is useful
for detecting resource exhaustion, configuration errors,
or workload spikes.

3.2 Analysis

The goal of analysis is to distill large amounts of data into
useful information that help automate adaptation or help de-
velopers and operators understand the systems to evolve them
correctly.

Anomaly detection: Statistical and machine learning tech-
niques can be used to detect unusual situations, such
as performance degradations, unexpected interactions
or behaviors, that most likely indicate faults or bugs
[10, 14, 19, 15]. Today, these systems are used to detect
anomalies in the behavior of a single node across time.
In a replicated Internet service, we can extend these same
techniques to compare replicated peers in the system to
detect anomalies.

Dynamic visualization: dynamic dependency graphs help
developers and operators understand the real behavior
of a system during testing and deployment. Func-
tional dependency graph represents inter-component re-
lationships and state dependency graph represents inter-
request relationship.

Fault diagnosis: once we have detected a believed failure,
either using anomaly detection or through direct obser-
vation, we can use statistical analysis techniques such
as data clustering to correlate the failures with logged
events in the system. For example, we can correlate fail-
ures with physical components or interactions between
components to quickly identify the root-cause of failures
automatically. [9]

3.3 Modification

The ability to modify systems online without bringing
down the services is critical for services that requires high

availability. In practice, modification only happens online and
automatically for simple workload variance and simple faults,
such as failed disks. Most failures and performance degra-
dation still involve operators and developers in the feedback
loop.

After analyzing and forming a hypothesis of the system’s
behavior, we can close some of the feedback loops by pro-
viding a trigger for dynamic adaptation techniques. For soft-
ware bugs, recursive restarts [6] bring the system back to a
known, functioning state. For configuration errors, undo [5]
helps the system configuration rollback to a previous working
configuration. For an overloaded system, dynamic connection
management [8] allows it to degrade gracefully by performing
admission control or by making harvest/yield trade-offs.

3.4 Initial Results

As an initial step towards an infrastructure that supports
rapid online evolution, we have built two tools, Pinpoint and
Connection Manager, to improve the monitoring and modifi-
cation stages of the fault recovery feedback loop.

Pinpoint is a tool that uses aggressive logging and data
clustering analysis to automate fault diagnosis in Internet ser-
vices [9], thus improving the monitoring stage of the fault re-
covery loop by speeding the time to detect and diagnose faults.

The Pinpoint prototype is implemented on the Java 2 En-
terprise Edition (J2EE) platform for Internet services, and re-
quires no modifications to be made to a J2EE application. It
dynamically traces real client requests through the system. We
were able to automatically identify the root causes of single-
component failures 80-90% of the time with an average rate of
40-50% false positives without any application-level knowl-
edge of the components and the requests. This rate of false
positives is significantly better than other common approaches
that achieve similar accuracies.

Connection Manager (CM) [8] is a management layer on
top of load-balancing switches that enables applications and
the infrastructure to control how external connections are
mapped to internal resources. CM improves the modifica-
tion stage of the fault recovery loop by quickly unmapping
failed resources, and allowing online reinsertion of repaired
resources.

We have used our CM prototype to implement several
service-independent adaptation techniques. We are able to au-
tomatically perform dynamic resource allocation and rolling
reboots for several real Internet services, including web,
email, and instant messeging, with no dropped connections.
In addition to unmapping failed resources in less than 2 sec-
onds, CM also helps services degrade gracefully under over-
load by using admission control to limit incoming connec-
tions.

We are currently working on merging the two tools to-
gether to further automate the fault recovery loop, as well as
investigating how the improvements Pinpoint and Connection
Manager make to the monitoring and modification stages of
the fault recovery loop might also be applied to improve other



feedback loops as well.

4 Reated Work

Online evolution in Internet services has important simi-
larities to the spiral model of software development [3]. Both
emphasize the feedback loop from system behavior and re-
quirements to development. There are two important differ-
ences between the two, however. First, there is an order of
magnitude difference in the rate of change under the two mod-
els. Change in an Internet service has to happen constantly:
adaptation to changing workloads and faults must often oc-
cur within minutes; bug-fixes are propagated daily; and new
features are added almost as often. The second major differ-
entiator is that online evolution provides for the existence of
multiple concurrent feedback loops.

Though several projects have focused on engineering of
web services, most consider service development as being
separate from deployment and maintenance [17], and only a
few acknowledge the need for constant, online change [16]. In
[12] Gaedke presents a model of Web Engineering, evolution
of web applications using component-based software, but fo-
cuses on component reuse and enabling the web service code
to be changed and extended over time. We are not aware of
any work that recognizes the existence of multiple feedback
cycles in Internet service development and deployment.

Several projects share our view in helping systems adapt
and evolve online, with each focusing on a subset of the
feedback loops we have identified in section 2. OceanStore
[18] and Hippodrome [2] are storage systems with automated
adaptation. Focusing on the workload and fault feedback
loops, OceanStore adapts to changes in the system, such as
server addition and removal, to minimize management over-
head and maintain data persistence. Hippodrome closes the
workload feedback loop by automating the design and config-
uration process of a storage system to iteratively reconfigure
itself in response to workload requirements. [23] automates
the workload feedback loop and applies admission control to
improve the performance of Lotus Notes under saturation.

5 Summary

Online evolution is a necessary part of making Internet ser-
vices robust to unexpected occurrences and changes in system
requirements. In this paper, we presented a conceptual model
for online evolution based on monitoring, analysis, and mod-
ification; and discussed techniques for improving the online
evolutionary process through aggressive logging, and system-
atic analysis and modification techniques.

We have built our initial prototypes and evaluated these
strategies. Our early results are promising. We are currently
working on extending our prototypes to encompass our com-
plete model of online evolution; and providing support for the
online evolution process as part of the management infrastruc-
ture for Internet services.

References

[1]

[2]

[3]

[4]

[5]

(6]

[71

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

(18]

[19]
[20]
[21]

[22]

[23]

S. Adler. The Slashdot Effect: An Analysis of Three Internet Publica-
tions. Linux Gazette, 38, March 1999.

E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, , and
A. Veitch. Hippodrome: running circles around storage administration.
In Conference on File and Storage Technology. USENIX, 2002.

B. Boehm. A Spiral Model of Software Development and Enhance-
ment. |EEE Computer, 21(2):61-72, May 1988.

A. Brown, D. Oppenheimer, K. Keeton, R. Thomas, J. Kubiatowicz,
and D. Patterson. ISTORE: Introspective Storage for Data-Intensive
Network Services. In HotOS-VII, 1999.

A. B. Brown and D. A. Patterson. Rewind, Repair, Replay: Three R’s
to Dependability. In 10th ACM SIGOPS European Workshop, 2002.

G. Candea and A. Fox. Recursive Restartability: Turning the Reboot
Sledgehammer into a Scalpel. In HotOS-VIII, 2001.

Computer Emergency Response Team (CERT). CERT Advisory CA-
2000-01: Denial-of-service developments, 2000. htt p://www.
cert.org/advisories/ CA-2000- 01. htni .

M. Chen and E. Brewer. Active Connection Management in Internet
Services. In Eighth IFIP/IEEE Network Operations and Management
Symposium, 2002.

M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint:
Problem Determination in Large, Dynamic Internet Services. In Sym-
posium on Dependable Networks and Systems (IPDS Track), 2002.

D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant
behavior: A general approach to inferring errors in systems code. In
18th ACM Symposium on Operating Systems Principles, 2001.

A. Fox and E. Brewer. Harvest Yield and Scalable Tolerant Systems.
In HotOS V1, 1999.

M. Gaedke and G. Graef. Development and Evolution of Web-
Applications using the WebComposition Process Model. In Interna-
tional Workshop on Web Engineering at the 9th International World-
Wde Web Conference, Amsterdam, the Netherlands, May 2000.

S. Gribble. Robustness in Complex Systems. In HotOS-VII1, 2001.

S. Hangal and M. S. Lam. Tracking Down Software Bugs Using Au-
tomatic Anomaly Detection. In International Conference on Software
Engineering, June 2002.

Joseph L. Hellerstein. A General-Purpose Algorithm for Quantitative
Diagnosis of Performance Problems. Journal of Network and Systems
Management, 2001.

D. B. Ingham, S. J. Caughey, and M. C. Little.
Manageable Web Services. In WMAG, April 1997.

E. Kirda, M. Jazayeri, and C. Kerer. Experiences in Engineering Flexi-
ble Web Services. IEEE Multimedia, 8(1):58-65, January 2001.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-scale Persistent Storage. In
Proceedings of ACM ASPLOS. ACM, 2000.

W. Lee and S. Stolfo. Data mining approaches for intrusion detection.
In Proceedings of the 7th USENIX Security Symposium, 1998.

News.com. E-tail sites crash over holiday weekend, 2001. htt p:
/I news. com com 2100- 1017- 249048. ht ni .

News.com. Ebay stumbles with outage, 2002. htt p: // news. com
conf 2100- 1017- 860703. ht i .

D. Oppenheimer and D. A. Patterson. Architecture operation and de-
pendability of large-scale Internet services. In Submission to |EEE In-
ternet Computing, 2002.

S. Parekh, N. Gandhi, J. L. Hellerstein, D. Tilbury, T. S. Jayram, and
J. Bigus. Using Control Theory to Achieve Service Level Objectives in
Performance Management. In IFIP/IEEE International Symposium on
Integrated Network Management, 2001.

Supporting Highly



