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Abstract. We show that simultaneous rigid E-unification, or SREU for
short, is decidable and in fact EXPTIME-complete in the case of one
variable. This result implies that the V*3V*" fragment of intuitionistic
logic with equality is decidable. Together with a previous result regarding
the undecidability of the 33-fragment, we obtain a complete classification
of decidability of the prenex fragment of intuitionistic logic with equality,
in terms of the quantifier prefiz. It is also proved that SREU with one
variable and a constant bound on the number of rigid equations is P-
complete. Moreover, we consider a case of SREU where one allows several
variables, but each rigid equation either contains one variable, or has a
ground left-hand side and an equality between two variables as a right-
hand side. We show that SREU is decidable also in this restricted case.
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1 Introduction

In Gallier, Raatz and Snyder [25] and Degtyarev, Gurevich and Voronkov [12], it
is explained why simultaneous rigid F-unification, or SREU for short, plays such
a fundamental role in automatic proof methods in classical logic with equality
that are based on the Herbrand theorem, like semantic tableaux [21], the con-
nection method [2] or the mating method [1], model elimination [37], and others.
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It was shown recently in Degtyarev and Voronkov [15] that SREU is un-
decidable. The strong connections between SREU and intuitionistic logic with
equality have led to new important decidability results in the latter area [16,54].
It follows, for example, that the 3*-fragment of intuitionistic logic with equality
is undecidable [17,18]. This result is improved in Veanes [51] to the following.

The 33-fragment of intuitionistic logic with equality is undecidable.

The decidability of the 3-fragment of intuitionistic logic with equality, or equiv-
alently SREU with one variable, has been an open problem which is settled in
this paper. We prove the following.

SREU with one variable is decidable, in fact EXPTIME-complete.

This result is obtained by a polynomial time reduction of SREU with one variable
to the intersection nonemptiness problem of finite tree automata. The latter
problem is EXPTIME-complete [50]. By using an analogue of a Skolemization
result for intuitionistic logic [16] we can deduce the following result.

The ¥V*3AV*-fragment of intuitionistic logic with equality is decidable.
The above results imply the following main contribution of this paper.

A complete classification of decidability of the prenex fragment of intuitionistic
logic with equality, in terms of the quantifier prefix.

We prove also that rigid E-unification with one variable is P-complete and that
SREU with one variable and a constant bound on the number of rigid equations
is P-complete. One conclusion we can draw from this is that the intractability
of SREU with one variable is strongly related to the number of rigid equations
and not their size. With two variables, SREU is undecidable already with three
rigid equations [29].

Moreover, we consider a case of SREU where one allows several variables,
but each rigid equation either contains one variable, or has a ground left-hand
side and an equality between two variables as a right-hand side. We show that
SREU is decidable also in this restricted case. The proof is by reduction to the
decidable first-order theory of ground rewrite systems, or GRS [10].

In Section 7 we summarize the current status of SREU and list some open
problems.

2 Preliminaries

We will first establish some notation and terminology. We follow Chang and
Keisler [4] regarding first-order languages and structures. For the purposes of
this paper it is enough to assume that the first-order languages that we are
dealing with are languages with equality and contain only function symbols and
constants, so we will assume that from here on. We will in general use X, possibly
with an index, to stand for a signature, i.e., X is a collection of function symbols
with fixed arities. A function symbol of arity 0 is called a constant. We will
always assume that X' contains at least one constant.
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2.1 Terms and Formulas

Terms and formulas are defined in the standard manner. We refer to terms and
formulas collectively as ezpressions. In the following let X be an expression or
a set of expressions or a sequence of such.

We write X(X) for the signature of X, i.e., the set of all function sym-
bols that occur in X, V(X) for the set of all free variables in X. We write
X (z1,x9,...,2,) to express that V(X) C {x1,2a,...,2,}. Let ¢1,ta,...,t, be
terms, then X(t1,t2,...,¢,) denotes the result of replacing each (free) occur-
rence of x; in X by t; for 1 < i < n. By a substitution we mean a function
from variables to terms. We will use 6 to denote substitutions. We write X6 for

We say that X is closed or ground if V(X) = (). By T or simply 7 we denote
the set of all ground terms over the signature X. A substitution is called ground
if its range consists of ground terms. A closed formula is called a sentence. Since
there are no relation symbols all the atomic formulas are equations, i.e., of the

form ¢t & s where t and s are terms and ‘~’ is the formal equality sign.

2.2 First-Order Structures

First-order structures will (in general) be denoted by upper case Gothic letters
like 2 and B and their domains by corresponding capital Roman letters like
A and B respectively. A first-order structure in a signature X is called a Y-
structure. For F € X we write F'® for the interpretation of F' in 2.

For X a sentence or a set of sentences, 2 = X means that the structure
2 is a model of or satisfies X according to Tarski’s truth definition. A set of
sentences is called satisfiable if it has a model. If X and YV are (sets of) sentences
then X =Y means that YV is a logical consequence of X, i.e., that every model
of X is a model of Y. We write X =Y when X =Y and YV | X. We write
= X to say that X is valid, i.e., true in all models.

By the free algebra over X we mean the X-structure 2, with domain 7y, such
that for each n-ary function symbol f € ¥ and t1,...,t, € Ts, f2(t1,...,t,) =

Let E be a set of ground equations. Define the equivalence relation =g on
T by s =g tif and only if E |= s ~ t. By Ty/g (or simply 7,g) we denote the
quotient of Tx over =g. Thus, for all s,t € T,

TeFs~t & FEREsxt.

We call T/ the canonical model of E. Structures that are isomorphic with the
canonical model of a finite set of ground equations are sometimes called finitely
presented algebras. Various problems that are related to finitely presented alge-
bras, and their computational complexity, have been studied in Kozen [31,32].
Below, we will make use of some of those results.
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2.3 Simultaneous Rigid F-Unification

A rigid equation is an expression of the form F § s =~ t where E is a finite
set, of equations, called the left-hand side of the rigid equation, and s and ¢ are
arbitrary terms. A system of rigid equations is a finite set of rigid equations. A
substitution @ is a solution of or solves a rigid equation E k s =~ t if

= (N eb) = 50~ 16,

eeF

and 6 is a solution of or solves a system of rigid equations if it solves each
member of that system. The problem of solvability of systems of rigid equations
is called simultaneous rigid E-unification or SREU for short. Solvability of a
single rigid equation is called rigid E-unification. Rigid E-unification is known
to be decidable, in fact NP-complete [24].

2.4 Term Rewriting

In some cases it is convenient to consider a system of ground equations as a
rewrite system. We will assume that the reader is familiar with basic notions
regarding ground term rewrite systems [19]. We will only use very elementary
properties. In particular, we will use the following property of canonical (or
convergent) rewrite systems. Let R be a ground and canonical rewrite system
and consider it also as a set of equations. For any ground term ¢, let t| g denote
the normal form of ¢ with respect to R. Then, for all ground terms ¢t and s,
(cf [19, Section 2.4])
R ‘: t~s << t{gr=slg-

A reduced set of rules R is such that for each rule I — r in R, [ is irreducible
with respect to R\ {I — r} and r is irreducible with respect to R. In the case
of ground rules, a reduced set of rules is also canonical [46]. It is always possible
to find a reduced set of ground rewrite rules that is equivalent to a given finite
set of ground equations [35]. Moreover, this can be done in O(nlogn) time [46].

2.5 Finite Tree Automata

Finite tree automata, or simply tree automata from here on, is a generalization of
classical automata. Tree automata were introduced, independently, in Doner [20]
and Thatcher and Wright [48]. The main motivation was to obtain decidability
results for the weak monadic second-order logic of the binary tree. Here we adopt
the following definition of tree automata, that is based on rewrite rules [5,7].

» A tree automaton or TA A is a quadruple (@, X, R, F') where
e () is a finite set of constants called states,
e Y is a signature that is disjoint from @,
e R is a set of rules of the form f(q1,...,q,) = ¢, where f € X has arity
n>0and q,q1,...,q, € Q,
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e [ C () is the set of final states.
A is called a deterministic TA or DTA if there are no two different rules in
R with the same left-hand side.

Note that if A is deterministic then R is a reduced set of ground rewrite rules
and thus canonical [46]. Tree automata as defined above are usually also called
bottom-up tree automata. Acceptance for tree automata or recognizability is
defined as follows.

» The set of terms recognized by a TA A = (Q, X, R, F) is the set
T(A)={7€Tx|BgeF) T rq)}.
A set of terms is called recognizable if it is recognized by some TA.

Two tree automata are equivalent if they recognize the same set of terms. It is
well known that the nondeterministic and the deterministic versions of TAs have
the same expressive power [20,26,48], i.e., for any TA there is an equivalent DTA.
For an overview of the notion of recognizability in general algebraic structures
see Courcelle [6] and the fundamental paper by Mezei and Wright [39].

3 Decidability of SREU with One Variable

In this section we will formally establish the decidability of SREU with one
variable. The proof has two parts.

1. First we prove that rigid F-unification with one variable can be reduced to
the problem of testing membership in a finite union of congruence classes.

2. By using the property that any finite union of congruence classes is recogniz-
able, we then reduce SREU with one variable to the intersection nonempti-
ness problem of finite tree automata.

The decidability of SREU with one variable follows then from the fact that
recognizable sets are closed under boolean operations and that the nonemptiness
problem of finite tree automata is decidable. In Section 4 we will address the
computational complexity of this reduction.

3.1 Reduction to Membership in a Union of Congruence Classes

We start by proving two lemmas. Roughly, these lemmas allow us to reduce
an arbitrary rigid equation S(x) with one variable to a finite collection of rigid
equations { S;(z) | i < n} such that, for all substitutions 6, 6 solves S if and
only if 8 solves some S;. Furthermore, each of the S;’s has the form EF k = = #;
where F is ground and ¢; is some ground term. The set E is common to all the
SfS.

Let E be a set of ground equations and ¢ a ground term. We denote by [t]g
the interpretation of ¢ in 7, g, in other words [¢]g is the congruence class induced
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by =g on T that includes ¢. For a set T' of ground terms we will write [T']g for
{[tle | t € T'}. We write Terms(E) for the set of all terms that occur in E,
in particular Terms(E) is closed under the subterm relation. We will use the
following lemma. Lemma 1 follows also from a more general statement in de
Kogel [11, Theorem 5.11].

Lemma 1. Let t be a ground term, ¢ a constant, E a finite set of ground equa-
tions and e a ground equation. Let T = Terms(E U {e}). If [t|r & [T|r and
EU{t=c}|=ethen E |=e.

Proof. Assume that [t]g € [T)g and that EU {t = ¢} |= e. Let E’ be a reduced
set of rules equivalent to E, such that c|g = c. Let ' = t|g. If t = c then

EUu{t=c}=E' U{txc}=E' U{t' xc}=E

and the statement follows immediately. So assume that t' # c. Let R = E'U{t' —
c}. Let I = r be arule in E'. Neither [ nor r can be reduced with the rule ¢ — ¢
because [t'|g = [t]r & [T]r. Hence R is reduced, and thus canonical [46]. Also,
R =EU{t =~ c}. (Note that ¢’ € [t]g and [Tg = [T]&.)

Let e = tg & sg and let u = tglr = solr. We have that

* *
to —R U, So —R U.

Consider the reduction tg — g u and let #; —> t;+1 be any rewrite step in that
reduction. Obviously, if each subterm of ¢; is in some congruence class in [T]g
then the rule ¢ — ¢ is not applicable since [t']g ¢ [Tk and it follows also that
each subterm of ¢;4; is in some congruence class in [T]g. It follows by induction
on i that the rule # — ¢ is not used in the reduction. The same argument holds
for sg —s g u. Hence

to —m U, So —>m U,

and thus E' = tg & so. Hence E [ e. O

Consider a system S of rigid equations. There is an extreme case of rigid
equations that are easy to handle from the point of view of solvability of S,
namely the redundant ones:

» A rigid equation is redundant if all substitutions solve it.

To decide if a rigid equation E(z) k s(z) =~ t(z) is redundant, it is enough to
decide if E(c) = s(c¢) = t(¢) where ¢ is a new constant.

» The uniform word problem for ground equations is the following decision
problem. Given a set of ground equations F and a ground equation e, is e a
logical consequence of E?

We will use the following complexity result [31,32].

Theorem 2 (Kozen). The uniform word problem for ground equations is P-
complete.
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So redundancy of rigid equations is decidable in polynomial time.

Lemma 3. Let E(z) k e(x) be a rigid equation, ¢ be a new constant and t be a
ground term not containing c. Then

E(c)U{t=~c}=e(c) < E(t)|=el(t).

Proof. The only non-obvious direction is ‘=’. Since ¢ does not include ¢, E(c) U
{t ~ ¢} = e(c) holds with ¢ replaced by ¢, but then the equation ¢ & ¢ is simply
superfluous. O

Clearly, S is solvable if and only if the set of rigid equations in S that are not
redundant, is solvable. We will use the following lemma.

Lemma 4. Let E(x) & so(x) = to(z) be a non-redundant rigid equation of one
variable x and let ¢ be a new constant. There exists a finite set of ground terms
T such that, for any ground term t mot containing c¢ the following holds:

E(t) =so(t) ®to(t) < Elc)Etrs for someseT.
Furthermore, T' can be obtained in polynomial time.
Proof. Let T' be the set Terms(E(c) U {sq(c) ~ to(c)}). Let
T={seT |Elc)U{s=c}=s0(c) =tc)}.

Note that T may be empty. Let ¢ be any ground term that does not contain
c. By using Lemma 3, it is enough to prove that the following statements are
equivalent:

1. E(c) U{t ~ c} = so(c) ~ to(c),
2. E(c) Et~sforsomeseT.

(2 = 1) Assume that statement 2 holds. Then there is a term s in T such that
[tle(e) = [5]E(e)- Since s € T', we know that E(c) U {s = c} = so(c) = to(c).
Hence E(c) U {t = c} = so(c) ~ to(c).
(1 = 2) Assume that statement 1 holds. First we prove that [t]g() € [T']g()-
Suppose (by contradiction) that this is not so. But then it follows from Lemma 1
that E(c) = so(c) & to(c), contradicting that the rigid equation is not redundant.
So there is a term s in 7" such that [t]g() = [s]g(), and thus (by statement 1)
E(c)U{s = c} |=so(c) = to(c). Hence s € T and statement 2 follows.

Finally, to prove that T' can be obtained in polynomial time, observe that
the size of T" is proportional to the size of the rigid equation, and to decide if
some term in 7" belongs to T' takes polynomial time by Theorem 2. O

Decidability of SREU with one variable can now be proved by combining
Lemma 4 with a result by Brainerd [3] (that states that, given a set R of a ground
rewrite rules and a set T’ of ground terms, then theset {t | (3s € T) t ——sp s} is
recognizable) and by using elementary finite tree automata theory. However, this
proof would not give us the computational complexity result that is established
below.
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4 Computational Complexity of SREU with One Variable

In this section we show formally that SREU with one variable is decidable, and
in fact EXPTIME-complete. We first introduce the following definition.

» The intersection nonemptiness problem of DTAs or DTAI is the following de-
cision problem. Given a collection { 4; | 1 <i <n} of DTAs, is N, T'(4;)
nonempty?

The EXPTIME-completeness of the intersection nonemptiness problem of finite
tree automata has been observed by other authors [22,27,44] and strictly proved
for DTAs in Veanes [50].

Theorem 5 (Veanes). DTAI is EXPTIME-complete.

We will first show that SREU with one variable reduces to DTAT in polynomial
time. This establishes the inclusion of SREU with one variable in EXPTIME.
We then show that DTAI reduces to SREU with one variable, which shows the
hardness part. The construction that we will use is in fact based on a construction
in de Kogel [11, Theorems 4.1 and 4.2] that is based on Shostak’s congruence
closure algorithm [45]." A similar construction is used also in Gurevich and
Voronkov [30].

4.1 SREU with one variable is in EXPTIME

In the following we will assume that none of the rigid equations are redundant.
Lemma 4 tells us that the set of solutions of a rigid equation E(z) k e(z) with
one variable is given by the union of a finite number of congruence classes

ULt B Es~t),

seT

where T' C Terms(FE(c) U {e(c)}) and ¢ is a new constant. We will now give a
polynomial time construction of a DTA that recognizes the above set of terms.
Our considerations lead naturally to the following definition. Let E be a set of
ground equations and T a subset of Terms(E).

» ADTA A= (Q,X,R,F)is presented by (E,T) if A has the following form
(modulo renaming of states). First, let go be a new state for each C €
[Terms(E)]g.

Q={qc|C € [Terms(E)|g },
Y =X(E),
F={qc|Cellp},

! De Kogel does not use tree automata but the main idea is the same.



SREU with One Variable 9

It is clear that the above automaton is well defined. It follows from elementary
properties of congruence relations that A is deterministic and thus R is reduced.
Note that for each constant ¢ in Y'(E), there is a rule ¢ — g, in R. Note also
that for any equation s & t in E, both s and ¢ reduce to the same normal form
q[s]» = Q1) With respect to R, since they belong to Terms(E). We will use the
following lemma.

Lemma 6. Let E be a set of ground equations and T C Terms(E). Let A be a
DTA presented by (E,T). Then

L. TA)={teTyp | FseT)Extrs},

2. A can be constructed in polynomial time from E and T.

Proof. To prove the first statement, consider a X-structure 2 with the universe
{tlr | t € Tsusx } and the interpretation function such that t* = t|p for all
t € Tyx. Clearly, it is enough to prove that, for all ¢,s € Ty,

E=trs & U=trs.

For a proof of this statement see de Kogel [11].

The second part is proved as follows. The number of terms in Terms(E) is
proportional to the size of E. It follows by Theorem 2 that the time complexity
of the construction of @), i.e., the time complexity to partition Terms(E) into
congruence classes, is polynomial. The rest is obvious. O

We prove now that SREU with one variable is in EXPTIME.

Lemma 7. SREU with one variable is in EXPTIME.

Proof. Let S(z) = {Si(z) | 1 <i <n} be a system of rigid equations. Assume,
without loss of generality, that none of the rigid equations is redundant. Let
Si(z) = Ei(z) k e;(x). Let X' be the signature of S. Use Lemma 4 to obtain, for
each i, 1 <14 <, a set of ground terms 7T; in polynomial time such that, for all
t in TE;

E;(t) Fei(t) & Eic)Et=sforsomeseT;.
Use now Lemma 6 to obtain (in polynomial time) a DTA A; that presents

(Ei(e),T;), for 1 < i < n. It follows by Lemma 4 and the first part of Lemma 6
that

T(A) ={teTs | Eit) Eei(t)} (for1<i<mn).
Thus, 6 is a solution to S(z) if and only if z6 is recognizable by all T'(A;).

Consequently, S(z) is solvable if and only if (!, T'(4;) is nonempty. The lemma
follows, since DTAI is in EXPTIME. O
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4.2 SREU with one variable is EXPTIME-complete

We will reduce DTAI to SREU with one variable to establish the hardness part.
First, let us state some simple but useful facts.

Lemma 8. Let A = (Q,X,R,F) be a DTA, f be a unary function symbol not
in X, and ¢ be a constant not in ) or X. Let

S(x)=(RU{f(q) 2 clgeF}kzmc).
Then, for all 6 such that x0 € Txyysy,
0 solves S(x) < x6 = f(t) for somet € T(A).

Proof. Let E = RU{ f(q) = c¢| g € F'}. From the fact that R is reduced and
that f(q) is irreducible in R and ¢ is irreducible in E, follows that E is reduced
and thus canonical. So, for any 6 € Txyyysy, € solves S(x) if and only if (since

E is ground) E |= 26 ~ ¢ if and only if 26 —— 5 c. But

0 —pce 2 5 f(q) — c for some g € F
& 6 = f(t) for some t € Ty, and t =5 ¢
< x6 = f(t) for some t € T(A).
O

For a given signature X, and some constant ¢ in it, let us denote by Sy (z) the
following rigid equation:

The following lemma is elementary [18].
Lemma 9. For all 8, 6 solves Sx(x) if and only if 26 € Tx.

We have now reached the point where we can state and easily prove the following
result.

Theorem 10. SREU with one variable is EXPTIME-complete.

Proof. Inclusion in EXPTIME follows by Lemma 7. Let {A4; |1 <i<n}bea
collection of DTAs with a signature Y. Let f be a new unary function symbol
and X' = YU{f}. For each A;, let S;(x) be the rigid equation given by Lemma 8.
So, for all 6 such that 260 € T,

f solves S;(z) <&  x6 = f(t) for some t € T'(4;).

Let
S() = {Si(x) | 1<i <n}U{Ssi ()}

It follows by Lemma 9 that for any 6 that solves S(z), 6 is in Tyx:. Hence, by
Lemma 8, S(z) is solvable if and only if ();-_, T'(A4;) is nonempty. Obviously, S(z)
has been constructed in polynomial time. The statement follows, since DTAT is
EXPTIME-complete. O
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So in the general case, SREU is already intractable with one variable. It
should be noted however that the exponential behavior is strongly related to the
unboundedness of the number of rigid equations. (See Section 4.3.)

4.3 Bounded SREU with One Variable

The exponential worst case behavior of SREU with one variable is strongly
related to the unboundedness of the number of rigid equations, and not to the
size or other parameters of the rigid equations. This behavior is explained by the
fact that the intersection nonemptiness problem of a family of DTAs is in fact
the nonemptiness problem of the corresponding direct product of the family. The
size of a direct product of a family of DTAs is proportional to the product of the
sizes of the members of the family, and the time complexity of the nonemptiness
problem of a DTA is polynomial.

» Bounded SREU is SREU with a number of rigid equations that is bounded
by some fixed positive integer.

We will use the following definition.

» The nonemptiness problem of TAs is the following decision problem. Given
a TA A, is T(A) nonempty?

The nonemptiness problem of DTAs is basically the problem of generability of
finitely presented algebras. The latter problem is P-complete [32] and thus, by a
very simple reduction, also the DTA nonemptiness problem is P-complete [50].2
For bounded SREU with one variable we get the following result.

Theorem 11. Bounded SREU with one variable is P-complete.

Proof. Let the number of rigid equations be bounded by some fixed positive
integer n. P-hardness follows from Theorem 2. Without loss of generality consider
a system

S@) = {Si(x) [1<i<n}

of exactly n rigid equations. For each S; construct a DTA A; in polynomial time,
like in Lemma 7. Let A be the DTA that recognizes ()}, T'(A4;). For example,
A can be the direct product of { 4; | 1 < i < n} (Gécseg and Steinby [26]). It
is straightforward to construct A in time that is proportional to the product of
the sizes of the A;’s. Hence A is obtained in polynomial time (because n is fixed)
and T'(A) is nonempty if and only if S(z) is solvable. O

? The book of Greenlaw, Hoover and Ruzzo [28] includes an excellent up-to-date survey
of around 150 P-complete problems, including generability.
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4.4 Monadic SREU with One Variable

When we restrict the signature to consist of function symbols of arity < 1,
i.e., when we consider the so-called monadic SREU then the complexity bounds
are different. We can note that DTAs restricted to signatures with just unary
function symbols correspond to classical deterministic finite automata or DFAs.
It was proved by Kozen that the computational complexity of the intersection
nonemptiness problem of DFAs is PSPACE-complete [33]. So, by using this fact
we can see that Theorem 10 proves that monadic SREU with one variable is
PSPACE-complete.

Monadic SREU is studied in detail elsewhere [30]. We can note that, in
general, the decidability of monadic SREU is still an open problem. There is
also a very close connection between monadic SREU and the prenex fragment, of
intuitionistic logic with equality restricted to function symbols of arity < 1 [16].

5 United One Variable Case

In this section we extend the decidability result of SREU with one variable to
SREU with multiple variables with the following syntactical restriction on the
structure of each rigid equation. We say that a system of rigid equations has
the united one variable property if each rigid equation E k e in it satisfies the
following conditions:

1. Either F K e includes at most one variable, or
2. FE is ground and e has the form x = y for two variables = and y.

SREU restricted to systems with the united one variable property is called united
one variable SREU. The main result of this section is that the united one variable
SREU is decidable. The proof is by reduction to the decidable first-order theory
of ground rewrite systems [10].

5.1 The Decidable Theory GRS

Now we formally define the theory of ground rewrite systems or GRS. Consider
a signature X that contains all the function symbols and constants that we are
going to need in the sequel. Let I' be the following signature constructed from
X

— For each term ¢ in Ty, let £ be a constant in I".
— For each ground rewrite system E over Tg, let Ry be a new binary relation
symbol in I".3

Now, let 2 be the following I'-structure. The universe of 2 is 7y and the inter-
pretation function of 2 is defined as follows. Note that the only ground terms
in the signature of 2 are the constants t for ¢ € Tx, since there are no function
symbols in I" of positive arity.

% In the original definition of GRS [10] there are two more relation symbols for each
E, but we do not use them here.
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1. For each constant £ € I, t* = t.
2. For each relation symbol Ry € I, R% is the rewrite relation — .

We can now define GRS as the first-order theory of 2, i.e.,
GRS ={¢p asentencein I | A = ¢ }.

We use the following result [10].

Theorem 12 (Dauchet—Tison). GRS is decidable.

The proof of Theorem 12 is by reduction to finite tree automata. In particular,
it involves, for each ground rewrite system, a construction of a “ground tree
transducer” that is a pair of a bottom-up and a top-down finite tree automaton,
and defines the rewrite relation that is related with that rewrite system [8,9].
When GRS is restricted to reduced ground rewrite systems (which is enough
in our case) one can give an easier proof of Theorem 12 by reduction to the
decidable weak monadic second-order theory of the binary tree or WS2S.# See
Thomas [49] for a survey of related topics.

5.2 Reduction to GRS

We use the following lemma. In the following we consider rigid equations in a
fixed signature X' that contains at least one constant. We also assume that we
have a sufficiently large supply of new constants.

Lemma 13. Let E(z) k e(z) be a non-redundant rigid equation with one vari-
able x. There is a formula @(x) in the language of GRS such that, for all ground
terms t,

AE=pt) & E@i)=e(t) andte Ts.

Proof. Let ¢ be a new constant and use Lemma 4 to obtain a finite set T' (C
Txugey) of ground terms such that, for all ground terms # not containing c,

E(t)=e(t) < E(c)E=t=sforsomeseT.

Let Ex = {f(c1,...,c1) ® &1 | f € ¥}° where ¢; is some constant in X.
Consider both E(c¢) and Eyx as rewrite systems, with equations as rules in both
directions. Let ¢(z) be the following formula:

(p(T) = ( \/ RE‘(C) ('7:7 é)) A REE (T/ El)'

seT
It follows by definition of 2 that, for all ground terms ¢,
A= pl0) & A= \/ R () and A = R (.01

seT

St %E(C) s for some s € T, and t =5, ¢

& E(c) =t~ sforsomeseT,and t € Ty

< E(t) =e(t) and t € Ty,

* Such a proof has been given by Gurevich and Veanes.
® Note that f(c1,...,c1) stands for f whenever f is a constant.
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where the last equivalence holds by the above, because ¢ is not in X. O

We can now prove the following.

Theorem 14. United one variable SREU is decidable.

Proof. Let S = {S; | 1 < i < n} be a system of rigid equations with the
united one variable property. Assume, without loss of generality, that none of
the rigid equations in S is redundant. For each rigid equation S;(z) in S with
one variable z let ¢;(z) be the formula given by Lemma 13. For each rigid
equation S;(z,y) = E; k§ © ~ y in S, where E; is ground, and z and y are
variables, consider E; as a ground rewrite system with equations as rules in
both directions and let ¢;(z,y) = Rg;(z,y). So, for all ground terms ¢ and s,

FE; |:t%S = t—*)Ei s & Q[‘: RE1(£§)

Finally, let ¢ be the existential closure of the conjunction of all the ¢;’s. It is
straightforward to verify that ¢ is a theorem in GRS if and only if S is solvable.
The statement follows by Theorem 12. O

The computational complexity of the united one variable SREU is not known, we
know only that it is at least EXPTIME-hard. It also remains to be investigated
if there are other decidable extensions of the one variable case. We can also note
the following result. The 3-fragment of GRS is the set of prenex formulas in
GRS with one existential quantifier.

Corollary 15. The 3-fragment of GRS is EXPTIME-hard.

Proof. From the proof of Theorem 14 it is clear that the reduction from SREU
with one variable to GRS can be performed in polynomial time and that the
resulting formula is a prenex formula with one existential quantifier. The state-
ment follows now from Theorem 10. O

6 Implications to the Prenex Fragment of Intuitionistic
Logic

The prenex fragment of intuitionistic logic is the collection of all intuitionisti-
cally provable prenex formulas. Many new decidability results about the prenex
fragment have been obtained quite recently by Degtyarev and Voronkov [16 18]
and Voronkov [53]. Some of these results are:

1. Decidability, and in particular PSPACE-completeness, of the prenex frag-
ment of intuitionistic logic without equality [53].

2. Prenex fragment of intuitionistic logic with equality but without function
symbols is PSPACE-complete [16]. Decidability of this fragment was proved
in Orevkov [42].
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3. Prenex fragment of intuitionistic logic with equality in the language with
one unary function symbol is decidable [16].
4. F*-fragment of intuitionistic logic with equality is undecidable [17,18].

In some of the above results, the corresponding result has first been obtained
for a fragment of SREU with similar restrictions. For example, the proof of the
last statement is based on the undecidability of SREU. The undecidability of
the 3*-fragment is improved in Veanes [51] where it is proved that, already the

5. d3-fragment of intuitionistic logic with equality is undecidable.

With the following result we obtain a complete characterization of decidability of
the prenex fragment of intuitionistic logic with equality with respect to quantifier
prefix.

Theorem 16. The V*3IV*-fragment of intuitionistic logic with equality is decid-
able and EXPTIME-hard.

Proof. Intuitionistic provability of any formula in the V*3V*-fragment can be
reduced to solvability of SREU with one variable [16]. Conversely, solvability
of a system of rigid equations with one variable reduces trivially to provability
of a corresponding formula in the 3-fragment [16]. The statement follows by
Theorem 10. O

Remark The undecidability of the 33-fragment holds if there is one binary func-
tion symbol in the signature. The reduction in Theorem 16 from a V*3v*-formula
to SREU with one variable may take exponential time, so the precise computa-
tional complexity for this fragment is unknown at this moment.

Other fragments Decidability problems for other fragments of intuitionistic logic
have been studied by Orevkov [41,42], Mints [40], Statman [47] and Lifschitz [36].
Orevkov proves that the -—V3-fragment of intuitionistic logic with function sym-
bols is undecidable [41]. Lifschitz proves that intuitionistic logic with equality and
without function symbols is undecidable, i.e., that the pure constructive theory of
equality is undecidable [36]. Orevkov shows decidability of some fragments (that
are close to the prenex fragment) of intuitionistic logic with equality [42]. Stat-
man proves that the intuitionistic propositional logic is PSPACE-complete [47].

7 Current Status of SREU and Open Problems

Here we briefly summarize the current status of SREU. The first decidability
proof of rigid E-unification is given in Gallier, Narendran, Plaisted and Sny-
der [24]. Recently a simpler proof, without computational complexity consider-
ations, has been given by de Kogel [11]. We start with the solved cases:

— Rigid E-unification with ground left-hand side is NP-complete [34]. Rigid
E-unification in general is NP-complete and there exist finite complete sets
of unifiers [24,23].
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Rigid E-unification with one variable is P-complete. Or, more generally,
SREU with one variable and a bounded number of rigid equations is P-
complete (Theorem 11).

If all function symbols have arity < 1 (the monadic case) then it follows that
SREU is PSPACE-hard [27]. If only one unary function symbol is allowed
then the problem is decidable [14,13]. If only constants are allowed then the
problem is NP-complete [14] if there are at least two constants.

About the monadic case it is known that SREU with more than two unary
function symbols is decidable if and only if it is decidable with just two unary
function symbols [14].

If the left-hand sides are ground then the monadic case is decidable [30].
Monadic SREU with one variable is PSPACE-complete [30].

The word equation solving [38] (unification under associativity), which is an
extremely hard problem with no interesting known computational complex-
ity bounds, can be reduced to monadic SREU [13].

Monadic SREU is equivalent to a non-trivial extension of word equations [30].
Monadic SREU is equivalent to the provability problem of the prenex frag-
ment of intuitionistic logic with equality with function symbols of arity
<1 [16].

In general SREU is undecidable [15]. Moreover, it is undecidable with ground
left-hand sides [43]. Furthermore, SREU is undecidable with three rigid equa-
tions with ground left-hand sides and two variables [51,29].

SREU with one variable is decidable, in fact EXPTIME-complete (Theo-
rem 10).

There is a logspace reduction from second-order unification to SREU [18].
In fact, SREU is logspace equivalent to second-order unification [52].

Note also that SREU is decidable when there are no variables, since each rigid
equation can be decided for example by using any congruence closure algorithm
or ground term rewriting technique. Actually, the problem is then P-complete
because the uniform word problem for ground equations is P-complete [32]. Fur-

ther problems that are related to SREU are discussed in Voronkov [56,55]. The

main unsolved cases are:

? Decidability of monadic SREU [30].
? Decidability of SREU with two rigid equations.

Both problems are highly non-trivial.
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