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Abstract

We propose a novel technique that can determine both
the host responsible for originating a propagating worm
attack and the set of attack flows that make up the ini-
tial stages of the attack tree via which the worm infected
successive generations of victims. We argue that knowl-
edge of both is important for combating worms: knowl-
edge of the origin supports law enforcement, and knowledge
of the causal flows that advance the attack supports diag-
nosis of how network defenses were breached. Our tech-
nique exploits the “wide tree” shape of a worm propagation
emanating from the source by performing random “moon-
walks” backward in time along paths of flows. Correlating
the repeated walks reveals the initial causal flows, thereby
aiding in identifying the source. Using analysis, simula-
tion, and experiments with real world traces, we show how
the technique works against both today’s fast propagating
worms and stealthy worms that attempt to hide their attack
flows among background traffic.

1 Introduction

In all propagating worms, epidemic spreading attacks, and
other types of attacks that utilize compromised computers to
launch attack traffic, the overwhelming majority of the at-
tack traffic originates from victims of the attack, as opposed
to the true source of the attack. This affords the attacker
a great degree of anonymity, and to date there is little au-
tomated support for identifying the location (computer or
network) from which such an attack is launched. Similarly,
when an intranet succumbs to such an attack, there is little
automated help to determine the internal computer that was
compromised first.

In [21], we have argued that it is important for the net-
work to support automatic forensic analysis abilities after
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an attack has happened. We have proposed a general Drag-
net [8] framework to support network auditing and forensic
capabilities. In this paper, we investigate the specific prob-
lem of crafting an algorithm that determines the origin of
epidemic spreading attacks such as Internet worms. Our
goal is not only to identify the “patient zero” of the epi-
demic, but also to reconstruct the sequence of events during
the initial spread of the attack and identify which communi-
cations were the causal flows by which one host infected the
next. Identifying the causal infection flows allows investi-
gators to study how the attack managed to bypass security
barriers intended to stop attacks, such as firewalls between
departments in an enterprise’s intranet.

Prior research on worm attacks has largely focused on
the detailed study of specific attacks seen in the wild, e.g.,
analyzing their scanning strategies and the vulnerabilities
they exploit in order to develop better signatures for flows
that are likely to be worm infection attempts. In contrast,
our research takes the extreme opposite approach. We ask
a deliberately broad question: is it possible to identify the
worm origin without any a priori knowledge about the at-
tack?

Our algorithm for detecting worm attack origin is based
on the one invariant across all epidemic-style attacks
(present and future): for the attack to progress there must
be communication among attacker and the associated set
of compromised hosts, and the communication flows that
cause new hosts to become infected form a causal tree,
rooted at the source of the attack. While these flows may
be subtle or invisible when observed individually from any
single host, the tree structure will potentially stand out when
viewed collectively. By creating algorithms that work by
identifying the overall structure of an attack’s propagation,
our approach can be agnostic to attack signatures or scan-
ning rates and potentially be applicable to all worm attacks.

The algorithmic challenge is daunting even if, as as-
sumed in this paper, the complete graph of host commu-
nication is available. Our goal is an algorithm that can find
large tree-structured subgraphs, and thus the root of such
trees, of the host contact graph defined in Section 3, where
the edges are all the flows that happened in the network.
We know of no tractable algorithm for finding such sub-



graphs in very large graphs. We are drawn to a formulation
based on finding tree structures as, in addition to finding
fast-spreading worms, we also want to find slow-spreading
worms, where each infected host makes infection attempts
at a rate significantly below the rate of normal traffic. Given
its exponential growth pattern, a slow worm merely requires
a few extra generations to achieve the same spread as a fast
worm, while being significantly harder to catch as it blends
in with normal traffic.

This paper presents the random moonwalk algorithm that
can find the origin and the initial propagation paths of a
worm attack, either within an intranet or on the Internet as
a whole, by performing post-mortem analysis on the traf-
fic records logged by the networks. The algorithm works
by repeatedly sampling paths on the host communication
graph with random walks. Each walk randomly traverses
the edges of the graph backwards in time, and hence the
name random moonwalk.

The algorithm depends only on the assumption that
worm propagation occurs in a tree-like structure from its
origin, where an infection flow from one computer (the
“parent”) to its victim (the “child”) forms a directed “edge”
in this tree. We show that in the presence of a large-tree
structured subgraph, these walks tend to be directed towards
the root of the tree so that correlating many walks reveals
the structure of the initial levels of the tree. We demon-
strate through analysis, simulation, and experiments on real
world traces that this approach can be highly effective in lo-
cating the origin of an attack, without the use of attack sig-
natures for detection. We evaluate the algorithm against a
variety of background traffic patterns and worm spreading-
rates, showing its effectiveness even against slow-spreading
worms.

The primary contribution of this paper is an algorithmic
solution to identify the epidemic attack source and the ini-
tial causal flows. By exploiting attack invariants such as the
globally visible attack structure, our algorithm is agnostic
to attack signatures, port numbers used, or specific software
vulnerabilities exploited. Thus it has the potential to be ro-
bust to future stealthy attacks that have not been seen in
networks today.

2 Related Work

To our knowledge, we are not aware of any previous work
that can automatically pinpoint the origin of an epidemic
attack or the initial causal infection events.

Our algorithm assumes that attack flows do not use
spoofed source IP addresses, since in the types of attacks
we consider here, attack packets are rarely, if ever, spoofed.
The overwhelming majority of attack traffic involved in the
propagation is initiated by victims instead of the original
attacker, so using spoofed addresses would only decrease

the number of successful attacks' without providing extra
anonymity to the attacker.

If attackers do begin to use spoofed addresses, then trace-
back techniques [2,6, 15,19,23] could be used to deter-
mine the true source of each flow sampled by our algorithm.
Traceback alone, however, is not sufficient to track worms
to their origin, as traceback determines only the true source
of the packets received by a destination. In an epidemic
attack, the source of these packets is almost never the ori-
gin of the attack, but just one of the many infected victims.
Some method is still needed to find the hosts higher up in
the causal tree.

Other work on traffic causality analysis has mostly fo-
cused on detecting stepping stones, which is suggested [22]
as a potential solution for worm origin identification to-
gether with IP traceback. Just as we discussed that IP trace-
back cannot be used to trace the origin of epidemic attacks,
stepping stone techniques are not suitable for our objectives
either.

There have been in general two categories of ap-
proaches for detecting stepping stones. Content-based
techniques [24] require expensive packet payload analy-
sis, but cannot track down flows from polymorphic worms
or worms that encrypt payloads. The other class of ap-
proaches [7,29] focus on correlating packet-level character-
istics (e.g., inter-packet timings) to detect if multiple inter-
active connections are part of a single attack session. How-
ever, using fine-grained packet timing characteristics for es-
tablishing causality does not work for worm attacks which
typically do not use interactive sessions. Even in the context
of detecting causality of interactive flows, such techniques
still remain an active area of research especially with re-
spect to the robustness of such timing correlations [4,26].
In contrast, our work ignores packet-level characteristics
and attack signatures, but instead focuses on establishing
causal relationships between flows by exploiting the glob-
ally visible structure of attacks. Thus our algorithm can
potentially be agnostic to specific attack contents, attack
packet sizes, or port numbers used.

While our work does not depend on the generation of
worm signatures, our approach is complementary to these
efforts [12, 13] as well as other efforts in detecting the ex-
istence of attacks [10, 11, 16,28] and traffic anomalies [1].
Finally, our method for correlating random walks is inspired
by link analysis [14], where the authors infer correlations
among social network entities from their activity patterns.

IFor example, spoofed packets are useless for propagating an infection
over TCP-based communications, since the TCP handshake cannot com-
plete, and spoofing addresses for UDP-based attacks in the presence of
egress filters [9] results in the attack flows being discarded.
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Figure 1: Example of host contact graph showing the communication
between hosts. Attack edges are shown as arrows in black (both solid
and dashed). Filled nodes correspond to hosts in an infected state.

3 Problem Formulation

We model the network communication between end-hosts
using a directed host contact graph G = (V, E). The nodes
of the graph V' = H x T, where H is the set of all hosts in
the network and 7" is time. Each directed edge represents
a network flow between two end hosts at a certain time,
where the flow has a finite duration, and involves transfer
of one or more packets. We represent each edge by a tu-
ple e = (u,v,t%,t°) where u € H is the host that initiates
the communication (the source of the flow), v € H is the
host that receives the communication (the destination of the
flow), and %, t¢ € T are the start and end times of the flow.
Edge e is thus from node (u,?*) € V to node (v,t°) € V.
We have found that including time in the model is impor-
tant, as a single host h € H that becomes infected during
an attack behaves differently before the time it is infected
than it does afterwards.

Figure 1 shows the host contact graph of a hypothetical
network undergoing an attack. Time advances left to right.
Each node (marked as a circle) in the graph corresponds to
the state of a host at a certain time. The nodes on the same
horizontal line show how the state of one host changes over
time, and the nodes on the same vertical line represent the
states of different hosts at the same time.

Each directed edge in Figure 1 represents a network flow.
If a flow does not carry an infectious payload, we call that
edge a normal edge. We define an edge as an attack edge
(highlighted in the figure as either dashed or solid arrows) if
it corresponds to a flow that carries attack traffic, whether or
not the flow is successful in infecting the destination host.
While a worm attack may induce a large number of attack
flows in the network, only a few flows actually advance the
attack by successfully infecting a new host. We define an
edge as a causal edge (highlighted as a solid arrow) if it
corresponds to a flow that actually infects its destination.
For example, at time tg, host D has attack edges to both
hosts G and B. However, only the edge from D to G is a
causal edge because G is infected by this contact, whereas
B was infected earlier before time t5.

The causal tree formalizes the concept of epidemic at-

Figure 2: Example showing the causal tree, which
contain causal edges with timestamps from the
host contact graph.

tack spread. The causal tree is formed by extracting the
causal edges from the host contact graph and projecting the
edges along the time axis. To be consistent with the notion
of time in the host contact graph, we consider causal edges
occurring earlier in time as edges in the higher levels of the
causal tree. Figure 2 shows the causal tree for the attack in
Figure 1, with each edge annotated with a timestamp. The
edge with timestamp ¢; from the worm origin A is thus at
the highest level of the tree.

Given a host contact graph, the goal of our algorithm is to
identify a set of edges that, with high probability, are edges
from the top level(s) (i.e., initial in time) of the causal tree.
Among the hosts listed as the sources of these edges will be
the origin of the attack (or the host at which the attack first
entered the intranet). It is critical that the technique have a
reasonably low false-negative rate, so that the returned set
contains at least one top level causal edge that identifies the
attack origin. It is desirable that the technique have a low
false-positive rate, so that the returned set does not include
many normal edges, attack edges that do not infect the des-
tination, or even causal edges that occur lower in the causal
tree, since the sources of these edges are less likely to be the
true origin of the attack.

4 The Random Moonwalk Algorithm

Our algorithm consists of repeatedly sampling paths from
the host contact graph and then correlating these samples.
The edges that occur most frequently among the samples
are selected as the edges most likely to be causal edges from
levels higher up in the causal tree. The first key to the tech-
nique is that we do not sample individual edges — rather,
each sample is a contiguous path of edges in the graph. The
second key is that we create the path by starting at a ran-
domly chosen edge, and then walking backwards in time
along the graph, randomly choosing among potential pre-
decessor edges at each step in the moonwalk.

The sampling process is controlled by three parame-
ters: W - the number of walks (i.e., samples) performed,
d - the maximum length of the path traversed by a sin-
gle walk, and At - the sampling window size defined as



the maximum time allowed between two consecutive edges
in a walk. Each walk starts at an arbitrarily chosen edge
er = (u1,v1,t5,t5) representing a flow from host u; to
host v1. We then pick a next step backward in time uni-
formly from the set of edges that arrived at u; within the
previous At seconds. That is, an edge ex = (us, va, 5, t5)
such that v, = wu; and t5 < ¢§ < t§ + At. Each walk
stops when there is no edge within A¢ seconds to continue
the path, or the path has traversed the specified maximum
number of hops d.

As the sampling is performed, a count is kept of how
many times each edge from the host contact graph is tra-
versed. After W walks have been performed, the algorithm
returns the Z edges with the highest counts. Here, Z is
a user specified parameter to determine how many edges
are to be returned for further investigation. These edges are
most likely to be top-level causal edges from the causal tree.
As defined and used in this paper, the algorithm operates
off-line with the parameters and host contact graph as in-
puts. As future work, we are investigating on-line versions
that may also dynamically tune parameters.

Each random moonwalk made by the algorithm samples
a potential causal chain of events. Because the walks wan-
der into the past, the edge at step ¢ (time = %;) in a walk
could be potentially caused by the edge at step ¢ + 1 (time
= to, where t5 < t1). Since the walks begin at different
randomly chosen edges, an edge that shows up frequently
among many walks has the potential to be indirectly respon-
sible for causing a large number edges in the host contact
graph. Worm attacks have the property that a small num-
ber of edges (those high up in the causal tree) are indirectly
responsible for causing a large number of edges in the host
contact graph (the attack edges lower in the tree). Thus the
edges implicated by our sampling algorithm are likely to be
those high in the causal tree.

Two factors appear to aid in the convergence of the sam-
pling algorithm, although it remains future work to deter-
mine the relative importance of each factor.

First, an infected host generally originates more flows
than it receives. If the worm makes attack attempts very
rarely this difference may be slight, but sending attack flows
increases the rate of outgoing flows without increasing the
rate of incoming flows. The result is that there are more
edges that can lead a walk to an infected host than there
are edges that lead away from it. This tends to concentrate
walks towards the root of the tree.

Second, in normal communication patterns today, most
hosts are clients that initiate communication with servers,
and so are the originators of flows in the host contact graph.
Since hosts receive relatively few flows, random moon-
walks in a host contact graph without an ongoing worm
attack tend to be very short, as many edges have no pre-
decessors within the At sampling window. Worms, port

scanning, and peer-to-peer systems are among the few ap-
plications that cause hosts to receive flows, and port scan-
ning or peer-to-peer systems tend to lack the tree-structure
that cause random moonwalks to concentrate.

5 Evaluation Methodology

We evaluate the random moonwalk algorithm using an an-
alytical study, real trace experiments, and simulations, with
different models of background traffic and different worm
propagation rates. We first present in Section 6 analyti-
cal results with a simplified traffic model, showing that the
random moonwalk technique has promise, and give analyt-
ical estimates on the performance of the algorithm. Sec-
tion 7 presents experimental results with a large real net-
work trace, to demonstrate the success of the algorithm in
discovering the initial causal edges under various attack sce-
narios including worms propagating at very slow rates. We
also discuss how to select the best parameter values for
maximum walk length d and sampling window At for an
arbitrary network trace. For completeness, we present in
Section 8 a set of simulation experiments to show the per-
formance of the algorithm under different background traf-
fic models.

As discussed earlier, the output of the random moonwalk
algorithm is a set of the Z edges that were traversed most
frequently during the W moonwalks. Given the Z returned
edges, we use three performance metrics to evaluate the per-
formance of the algorithm: (1) the detection accuracy in
terms of the number of causal edges and attack edges re-
turned, (2) the false positive rate of the set of edges returned,
and (3) the number of suspect hosts identified by the algo-
rithm as potential origins of the worm.

As our goal is to identify the initial causal edges whose
source is the worm origin, attack edges and even causal
edges from lower levels of the causal tree are considered as
false positives. In the analytical study, we develop a model
for reasoning about the false positive rates associated with
finding only the fop-level causal edges. In real attacks, the
notion of fop-level edges loses meaning, since the assump-
tions simplifying the notion of time and the unit duration
of a flow (made in the analysis) no longer hold. Therefore,
in the simulation and real trace studies, we evaluate per-
formance using detection accuracy of the number of causal
edges among the Z top frequency edges. We then use ex-
periments to show that the majority of the returned causal
edges are from the highest levels of the causal tree, with the
worm origin as one of the sources of the edges.

6 Analytical Model

In this section, we present an analytical model that explains
how well the random moonwalk sampling process works
and why. Using the analytical model, we show how we can



v

T

C /
u e = <u,v,k>

To + (k-1) To+k Ty + (k+1)

Figure 3: An edge at time & in the host contact graph.

predict the sampling performance achieved from W walks
with maximum length d and given At.

6.1 Assumptions

To enable tractable analysis of the random moonwalk sam-
pling, we make simplifying assumptions about the struc-
ture of the host contact graph and the attack. Although our
model is an over-simplification of real network traffic, it en-
ables an estimation predicting the performance of the tech-
nique and sheds light on the intuition behind the effective-
ness of the technique.

First, we assume the host contact graph is known, and it
contains | E| edges and | H| hosts.

Second, we discretize time into units. We assume every
flow has a length of one unit, and each flow starts at the
beginning of a unit and finishes before the start of the next
unit.

Third, we define the start time of the first attack flow, 1p,
to be the origin of the time axis. Combined with the second
assumption, this means that rather than describing both the
start and end times of an edge in terms of continuous time
variables, we can refer to its “time” as k = t¢ — Tp using
just the flow end time ¢°. The first attack edge is then at
time ¥ = 1, and an edge e = {(u,v,t°,t) is at time k if
t® = Ty + k (illustrated in Figure 3). In the analysis below,
we use e to denote an edge at time k, e* = (u, v, k). Edges
that occurred before Tj will have negative k values.

Fourth, we assume a normal host initiates B concurrent
outgoing flows at each time unit. Once a host is infected, it
starts malicious scanning by initiating a total of A outgoing
flows at each subsequent time unit. The A outgoing flows
include B normal flows and A — B attack flows. Both the
normal hosts and the infected hosts randomly select a desti-
nation host for every flow. Unlike a normal flow, not every
attack flow will go to a valid host address. Suppose only
fraction r of the address space is being used, then among the
A — B concurrent outgoing attack flows, R = (A — B) x r
will go to existing hosts, while the rest A — B — R will go
to invalid destinations. This results in an infected host initi-
ating a total of B + R flows to valid destinations each time
unit. The rate at which the worm spreads is thus determined

by both A, the rate of scanning, and R, the effectiveness of
the scans.

Finally, we assume that flows and packets are not lost or
blocked, so that flows sent to a valid host are received by
that host. This means that the total number of flows sent to
valid hosts at time k& — 1 will be the total number of flows
received at time k. If the fraction of infected hosts at time
k — 1is given by f(k — 1), then each host at time & will
receive an average of I(k) flows, where

1(k) =(B+R) x f(k—1) +Bx(1—f(k—1)) ¢Y)

Flows from infected hosts  Flows from normal hosts

With the notions introduced above, we can simplify the
random moonwalk algorithm described in Section 4. For
each walk, once we select an edge e; = (uy, vy, k1) as our
current step, we consider an edge es = (uo,vo,ks) as a
candidate next step only if v = u; and ks + 1 = kq, ie.,
At =1.

6.2 Edge Probability Distribution

With the above assumptions and notation, we show ana-
Iytically that the initial causal flows are more likely to be
traversed by a random moonwalk, and thus be selected for
identifying the ultimate source or entry point of the attack.
We do so by estimating P(e) — the probability of an edge e
being traversed in a random moonwalk on the host contact
graph.

We classify edges into two categories based on their des-
tinations. We define an edge e, = (u, v, k) as a malicious-
destination edge if v is infected before or at time k. Other-
wise, we define the edge as a normal-destination edge de-
noted as ef. Since a causal edge will successfully infect
the destination host immediately, a causal edge is always
a malicious-destination edge. With the two categories of
edges, we have the following approximations:

1 A (B+R)x 3477 Thqi .
. Eﬂ1+ﬁﬂ+’ Iwum%k+] w=m;
Peh) ~ -
B Bx3 2] Tryi
i 1+ B + S5 w=mn

where T, = Af(k) + B[1 — f(k)]. We present how we

derive the above estimates in the Appendix. Based on the
above observations, the probability difference between the
two categories of edges is estimated as:

1
—P(ei)“m

A—B  RY“] Ty
IR T Tk +1)

(@)

For fast propagating worms, A >> B and R > 0, soitis
clear malicious-destination edges (hence causal edges) have



higher probability of being selected by the random moon-
walks than normal-destination edges. The difference be-
tween the two probabilities (hence the effectiveness of ran-
dom moonwalks) increases as the path length d increases
and as the scanning rate A increases (i.e., the worm is more
aggressive).

The analytic model presented in this section makes a
worst-case assumption that both normal and attack traffic
choose the destination for each flow uniformly from among
all possible hosts. Therefore, it cannot predict the perfor-
mance of the algorithm on worms that send attack flows
less frequently than normal flows (i.e., setting A < B is
meaningless). In the sections that follow, we show experi-
mental evidence that the algorithm is effective even for very
stealthy worms where infected hosts send attack flows more
slowly than the rate at which normal flows are sent.

Interestingly, the effectiveness of the random moonwalk
algorithm increases as the scan rate to valid hosts R in-
creases. This means that the fewer packets the worm sends
to invalid addresses, the easier it is to catch, which nicely
complements honey-pot techniques that detect worms that
send many packets to non-existent destinations.

To estimate how P(e) distributes as an attack evolves,
we need to estimate both I(k), the expected number of in-
coming edges at a host at time k, and f(k), the fraction of
infected hosts in the network. The fraction of infected hosts
f(k) can be estimated using a logistic equation [25] that
models the growth rate of epidemics. Since an infected host
randomly scans the network to propagate the attack, among
the total R concurrent outgoing attack flows to valid hosts,
R x [F — f(k — 1)] flows will infect vulnerable hosts that
have not been infected before, where F' is the fraction of
vulnerable hosts in the network. Thus

o= { 3

Figure 5 shows the growth of the fraction of infected
hosts as a fast propagating worm progresses on the host
contact graph described by parameters in Figure 4. We ob-
serve that as the attack advances, the number of infected
hosts grows quickly until all vulnerable hosts are compro-
mised and the attack saturates. This rapid growth results
in a non-uniform probability distribution of the edges being
traversed.

Figure 6 shows how P(ek ) and P(e*) change over time
in an attack scenario as described in Figure 4 with d set to
10 hops. The attack starts at time 0 and ends at time 15,
so there are no values for P(ek ) shown outside this range.
The graph shows that the probability P(e) is highest for
malicious-destination edges at times close to the start of the
attack. This occurs because the rapid spread of the worm
and its zealous scanning means that for time k£ > 2, the ma-
jority of the edges received by a host are from infected hosts

k=0

D[L+Rx(F—fk—1)] k>0

(e, (B+R)x f(k—1) > Bx[1— f(k—1)]fork > 2).
This results in almost all walks started at times & > 2 se-
lecting an attack edge as the next step backward. Further,
as the total number of infected hosts increases with time,
I(k) increases monotonically in the time interval [0, 5] (the
attack saturates at k = 4). Therefore, random moonwalks
tend to traverse edges between infected hosts, and converge
to the topmost levels of the causal tree. The probability of
traversing a normal edge at time k, P(e”), is a constant un-
til & = —5 at which point it grows until £ = 2, shortly after
the attack starts. This growth occurs because walks started
at times 0 < k£ < 10 tend to concentrate as they walk back-
ward in time along the attack edges until they walk past the
beginning of the attack, at which point they begin diffus-
ing through the normal edges. Thus normal edges received
by nodes infected early in the causal tree are sampled more
frequently than normal edges that occurred at k < —5.

Equation 2 and Figure 6 suggest that random moonwalks
will be most effective in selecting the malicious-destination
edges that occur at the highest levels of the causal tree.
Identifying these edges, in particular the £ = 1 edges, re-
veals the origin or entry point of the attack.

6.3 False Positives and False Negatives

The output of the random moonwalk process is a set con-
taining the Z edges with the highest frequency counts after
W walks. From this set, we are particularly interested in
finding the k£ = 1 causal edges, because the source of these
edges is the origin of the attack. In this section, we analyti-
cally study the effectiveness of our algorithm by calculating
the expected false positive and false negative rate for the
k =1 causal edges using the definitions below:

e false positive rate is the number of non-causal edges
and the number of £ > 1 causal edges in the set divided
by the total number of non-causal edges; and

e false negative rate is the number of k = 1 causal edges
not identified divided by the total number of causal
edges.

Notice with this definition, we consider failed infection
attempts (those scans that reach non-vulnerable hosts), re-
peated infection attempts (those scans that reach already in-
fected hosts), and even lower level causal flows (those scans
that successfully infect hosts at time ¢¢ > 1) as false posi-
tives, if identified by our algorithm.

The number of times a k = 1 causal edge appears in W
random moonwalks can be represented as a random vari-
able X that follows a binomial distribution withp = P(el ).
For large W, X can be approximated by a normal distribu-
tion [27] with mean © = p x W and standard deviation

o= +/p(1- . To ensure the £ = 1 causal edges are

included in the output set with a false negative rate of o, we
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Figure 4: The parameters of a host
contact graph with a fast propagating
worm.

need to select all the edges whose sample frequencies are
above a threshold value of Z,, such that Pr(X < Z,) = a.

Among the selected edges will be the desired £ = 1
causal edges and three types of false positives: (1) normal-
destination edges, (2) malicious-destination edges with k& >
1 (both causal and non-causal edges), and 3) & = 1
malicious-destination, but non-causal edges (i.e., a normal
flow sent to a host at £ = 1 which was also infected at
k = 1). The last type of false positives arise because these
normal edges have the same probability of being sampled
as a k = 1 causal edge. These errors are unavoidable, but
false positives from the first two categories can be reduced
by increasing W.

To illustrate the performance of the algorithm, we use the
same host contact graph described by Figure 4 where there
are in total 10* causal flows out of the 4.9 x 107 flows.
Among the 42 malicious-destination edges at k = 1, 20 are
causal edges while the remaining 22 fall under the third cat-
egory of false positives (i.e., normal edges sent to a host that
was infected at £ = 1); which means that in the ideal case 1
out of 2 edges selected will be causal edges. To estimate the
false positives arising from the first two categories, we need
to compute the probability of an edge e with P(e) = p’
having sample frequency X'(e) > Z, over the W random
moonwalks, where e is either a normal-destination edge or
a malicious-destination edge with & > 1. Again, X'(e) is
a random variable approximated by a normal distribution.
With a threshold value of Z,, used to select edges, suppose
Pr(X'(e) > Z,) = (. Let |E(p')| be the total number of
edges with P(e) = p', then 8| E(p')| edges will have sam-
ple frequencies larger than the threshold Z, and be falsely
included in the output set.

Figure 7 plots the false negative rate vs. false positive
rate for identifying the k£ = 1 causal edges as the number of
walks W varies using the parameters described in Figure 4.
In general, the false positive rates are low even for small
false negative rates. With 10° walks, the false positive rate
is 0.5 x 10~% with a false negative rate of 0.1. This means

Time

Figure 5: Fraction of infected hosts as
an attack advances. The total fraction
of vulnerable hosts is 0.1.
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Figure 6: Estimated probability of an
edge being traversed in one random
moonwalk.

that the chance of a non-causal edge or a lower-level causal
edge being selected by the technique, when 90% of the k& =
1 causal edges are identified, is about 0.5 in a million. The
false positive rate drops with increased number of walks,
but the rate of decrease slows when the number of walks is
larger than 106.

We are primarily interested in identifying the worm ori-
gin, and the source of every flow returned by the algorithm
is a candidate for the origin of the worm. Thus it would
be ideal to present to a network administrator a small set of
suspect hosts that need to be investigated further. We define
the origin identification false positive rate as the number of
innocent hosts among the sources of the flows selected by
the algorithm divided by the total number of hosts minus
one (we assume the worm has a single origin). We compute
a conservative upper bound by assuming every selected flow
returned by the algorithm is from a unique source.

Figure 8 plots the origin identification false positive rate
vs. causal edge false negative rate for different numbers of
walks. Since there are multiple causal edges from the worm
origin, identifying the origin should work well even if there
is a slightly higher false negative rate for causal edges. In
this example, if we wish to select 70% of the £ = 1 causal
edges to confirm the attack origin, then after 10® walks there
will be at most 16 candidate hosts for the worm origin from
a total of 10° hosts, greatly reducing the suspect set for fur-
ther investigation.

6.4 Parameter Selection

Understanding the impact of the choice of input parame-
ters d and W on the performance of the random moonwalks
is important as these parameters determine the amount of
sampling effort required. ~ Figure 9 shows the false pos-
itive rate for different values of d (the maximum length of
the random moonwalk) and W (the number of walks) with
the false negative rate held constant at 0.1. We observe that
longer walks generally result in lower false positive rates.
This is also suggested by Equation 2, where the difference
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between P(ek)) and P(el) increases as d increases. The
reason is that when random moonwalks start from lower
level edges of the attack tree, they may end before reaching
the origin of the attack, increasing the false positive rate.
We will further address the impact of parameters d and the
sampling window size At on performance using real-world
traces in Section 7.4.

7 Real Trace Study

In this section, we present our experimental results using
real world traces collected from a university network. The
objective of the trace based study was to both test the effec-
tiveness of our algorithm using real traffic and to study the
performance of the algorithm in different attack scenarios.
As our analytical study argues the effectiveness of the algo-
rithm for fast propagating attacks, we focus the real trace
study on stealthy attacks that generate low traffic volumes
that might escape traditional scanner and super-spreader de-
tection mechanisms.

The traffic trace was collected over a four hour period
at the backbone of a class-B university network, where we
can observe a significant fraction of the intra-campus net-
work traffic. Each record in the trace corresponds to a di-
rectional flow between two hosts with timestamps. We ex-
cluded flow records between campus hosts and non-campus
hosts to study the performance of our technique on worm
propagation inside an intranet. The resulting trace has about
1.4 million flows involving 8040 campus hosts.

With the four hour trace serving as real-world back-
ground traffic, we add flow records to the trace that rep-
resent worm-like traffic with varying scanning rates. We
vary the fraction of vulnerable hosts F', by randomly select-
ing the desired fraction of hosts from the set of 8040 total
internal hosts. For the following experiments, except Sec-
tion 7.7, we choose F' = 0.1. Each worm outbreak starts
roughly 2800 seconds into the trace, and lasts for 8000 sec-
onds. Once a host is infected, it generates one attack flow
every t seconds to a randomly selected destination from

0.4 .
Edge alse negative rate

Figure 8: Estimation of the maximum
false positive rate of identifying the at-
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Figure 9: False positive rate of finding
k = 1 causal edges vs. maximum path
length d.

among the 8040 hosts. In the real trace, 90% of the hosts
send fewer than one flow every 20 seconds. To describe how
aggressive a worm is, we define the normalized worm rate
as the ratio of the rate an infected host sends attack flows to
the 90 percentile of the normal connection rate (e.g., a worm
sending one flow per 20 second has a normalized worm rate
of 1, and a worm sending one flow every 200 seconds has
a normalized rate of 0.1). Figure 10 lists the characteristics
of the worms we introduced to the real world trace. We use
“Trace-x” to refer a trace with worm rate of one attack flow
per x seconds.

We introduce two additional metrics to compare the per-
formance across worms of different scanning rates. Given
the set of the top Z frequency edges after sampling, the de-
tection accuracy of causal edges is the number of causal
edges in the set divided by Z, and the detection accuracy of
attack edges is the number of attack edges in the set divided
by Z.

For each experiment, we use the parameter values se-
lected from Figure 10, and discuss how we compute the op-
timal parameter values in Section 7.4. We repeat each ex-
periment run 5 times with each run consisting of 10* walks
(unless otherwise specified) and plot the mean of the 5 runs
for the following results.

7.1 Detecting the Existence of an Attack

To determine whether the random moonwalk technique can
detect if an attack is present, 10* random moonwalks were
performed on Trace-10. Figure 11 shows the number of
times each edge was sampled, and the outline of the plot
indicates the count of the most frequently sampled edge for
each second. The dashed lines indicate the actual attack
start time, saturation time, and the attack finish time. The
figure shows that edges occurring before and after the at-
tack have a relative evenly distributed sampling frequency.
Edges between time 2700 and 10000 are sampled more fre-
quently, with a peak frequency as high as 800. This strongly
suggests the existence of abnormal structures in the host
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Figure 10: Description of traces with different rate worm traffic artificially

added into a real traffic trace collected from the backbone of a university

network.

contact graph, which may potentially constitute an epidemic
spreading attack.

In particular, the peak of the frequency counts occurring
around 2800 seconds corresponds to the onset of the at-
tack (the worm was introduced at T = 2807s) with initial
causal flows having highest probability of being traversed.
The turning point after the peak (4200 seconds in this case)
corresponds to the attack saturation time when all vulner-
able hosts are infected. Knowledge that an attack is tak-
ing place and the information on precisely when it started
is useful to network operators, and could be used to focus
resources (such as random moonwalks) on the portions of
the trace that are most likely to yield information about the
attack origin.

7.2 Identifying Causal Edges and Initial Infected
Hosts
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Figure 12: Detection accuracy of causal edges and attack
edges vs. number of top frequency edges (Z) returned for
Trace-10 and Trace-50. Note there are only 800 causal
edges from among approximately 1.5-2 x 10° total flows.

We first examine the detection accuracy of causal edges
and the size of the suspect set identified for further inves-
tigation. Figure 12 (a) shows the detection accuracy, vary-
ing the number of top frequency Z edges, with different
number of walks. First, we observe random moonwalks
achieve high detection accuracy of causal edges, in partic-
ular when Z is small. Although there are only 800 causal
edges out of the approximately 1.5-2 x 105 flows, as high

Figure 11: Stem plot of edge frequency
counts with W = 10* walks on Trace-10.

as 7-8 out of the top 10 flows are causal flows, regardless of
the worm propagating rate. Second, the causal edge accu-
racy decreases sub-linearly as we increase Z, demonstrating
the capability of finding causal flows beyond the few initial
ones. These edges may additionally reveal the attack prop-
agation paths, and help reconstruct the causal tree. Finally,
increasing the number of walks results in higher causal edge
accuracy in general, but a small number of samples can al-
ready achieve comparable performance when we focus on
the small number of top flows, i.e., when Z < 100. As
a contrast, we show the detection accuracy of attack edges
in Figure 12 (b). We find that as expected the accuracy of
attack edges is fairly high. But a high detection accuracy
of attack edges does not always imply high detection accu-
racy of causal edges. For example, the attack edge accuracy
for Trace-10 increases with larger Z, while the causal edge
detection accuracy decreases. In Section 7.5, we will fur-
ther address the comparison between causal edge and attack
edge accuracies with alternative edge selection strategies.
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Figure 13: (a) Fraction of initial causal edges among the ac-
tual returned causal edges. (b) The number of source hosts
involved as suspect top level hosts vs. number of top fre-
quency edges (Z) returned.

We proceed to examine whether the detected causal
edges correspond to the initial causal edges. We focus on
the initial 80 causal flows (10% of the total causal flows) in
the attack and plot the fraction of such flows among the ac-
tual returned causal edges in Figure 13 (a). As expected, the
majority of the causal flows actually detected correspond to



the initial ones that can be traced back to the attack origin,
confirming the results in our analytical study.

Given the selected top frequency flows, we examine how
many hosts are involved with initiating these flows. Since
the identified flows are likely to be top level causal flows,
these hosts are good candidates as hosts on the top level
causal tree that can be chosen for further investigation. We
assume that the source host of every selected flow is poten-
tially the worm origin, and plot the total number of such
hosts as we vary the number of selected flows Z in Fig-
ure 13 (b). These numbers thus give an upper bound on the
amount of further effort required for worm origin identifica-
tion (without explicitly exploiting the structure of the graph
composed of the selected flows). Although the number of
hosts grows linearly as Z increases, the slope is less than
one, suggesting the existence of a small number of sources
contributing to a large number of flows. For example, after
10* walks, if we plan to use the top 50 flows for reconstruct-
ing the top level causal tree, we will have in total only 30
source hosts out of the 8040 hosts even with a slowly prop-
agating worm that generates one scan per 50 seconds. In
the next section, we show how the structure of the graph
composed of these returned high frequency flows can addi-
tionally help to identify the worm origin.

7.3 Reconstructing the Top Level Causal Tree

Once we obtain the worm origin suspect set and the Z se-
lected flows, a number of methods could be used to pinpoint
the exact attack source. Potential methods include corre-
lating the contents or sizes of the selected flows, or using
additional out-of-band information regarding the set of in-
fected hosts. Alternately one can exploit the structure of the
graph composed of the Z flows. We simply take the 60 top-
frequency flows selected from Trace-50 after 10* walks and
construct a graph of these flows (Figure 14).

The artificially introduced worm in Trace-50 starts at
host 8033, and each infected host sends only one attack flow
every 50 seconds. Among the top 60 flows found by random
moonwalks and shown in Figure 14, there are 35 causal
flows and 17 flows that carry attack traffic but are not the
flows that actually caused their destinations to become in-
fected. The random moonwalks identify host 8033 as the
actual worm origin and show the large tree branching struc-
ture below it. We also observe quite a few flows with des-
tination host 281. It turned out that in the background trace
we collected, host 281 was infected by some variant of the
Blaster worm [3], and it generates scans with a peak rate
of 72 flows per second. Manual investigation into the real
trace revealed no successful infection events associated with
such scan traffic. As aresult, there is no causal tree actually
induced by host 281. However, due to the high scanning
rate, the few flows sent to host 281 are frequently selected
by random moonwalks that trace back to host 281, and this

explains why these normal flows to host 281 appear. Even
though there is unrelated aggressive scanning taking place,
the random moonwalks still cull out the top levels of the
causal tree automatically. Such results show the effective-
ness of random moonwalks at extracting the tree structure
of slow worm propagation patterns (in our example, one
scan every 50 seconds) to identify the worm source, even
in the presence of aggressive scanners and other patholog-
ical background traffic events. We are currently pursuing
refinement techniques to further improve the accuracy of
identifying the worm origin(s) and to reconstruct the higher
levels of the causal tree.

7.4 Parameter Selection

Given a network trace that may contain worm traffic, we
need to select the best parameter values without prior
knowledge of worm propagating characteristics. This sec-
tion studies the performance impact of the input parameters
d (maximum path length) and At (sampling window size).
We use Trace-20 and Trace-50 as representative traces for
the following study.

We first fix At to 800 seconds for both traces (800 sec-
onds may not be the optimal value for each trace) and vary
the maximum path length d in terms of hop counts. Fig-
ure 15 (a) shows the detection accuracy of the top 100 fre-
quency edges (i.e., Z = 100). We observe that the detection
accuracy for both attack edges and causal edges increases
with longer path length. As discussed earlier in our analy-
sis in Section 6.4, longer paths tend to walk across a larger
portion of the attack tree. As we further increase the path
length, the detection accuracy saturates as the path length
of each walk is bounded by the start of the trace. A longer
maximum path length improves detection accuracy, but also
implies greater sampling overhead since more edges will be
involved in each walk.

Next, we vary the sampling window size At with the
maximum path length d set equal to co so each walk can
continue as far as possible. Figure 15 (b) shows the impact
of At on the detection accuracy of the 100 top frequency
edges. In both traces, when we increase At, the detection
accuracy of the causal edges first increases and then de-
creases. The detection accuracy of attack edges, however,
is highest for smaller At’s and becomes lower with a larger
At. We also observe that with the slowly propagating worm
in Trace-50, we need a larger At to achieve the best detec-
tion accuracy compared with the faster propagating worm
in Trace-20.

To understand the reason, we show in Figure 15 (c) the
variation of the actual path lengths (in terms of hop-count)
with At. When At is small, walks terminate at shorter path
lengths, as a walk is more likely to reach a host that received
no flows within the previous At seconds. While shorter
walks cannot reach the top levels of the causal tree, they
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are more likely to stumble across attack edges at lower lev-
els, resulting in high detection accuracy for attack edges but
low accuracy for causal edges. Increasing At gives a ran-
dom moonwalk a greater chance to traverse top level edges,
in particular the causal ones, but these long paths also in-
volve more normal flows since they can walk backward to
before the start of the attack, reducing the number of at-
tack edges involved. Thus the detection accuracy of causal
edges increases while that of attack edges decreases. Fi-
nally, further increasing At has a negative impact on the
actual lengths of walks as each walk tend to be shorter by
jumping across a larger portion of the trace every step. The
walks also involve more normal traffic, since attack flows
are generally clustered in time and a large At can skip over
large portions of the attack. As a result, we observe low
detection accuracy for both types of edges when At is too
large.

For both Trace-20 and Trace-50, we achieve the best de-
tection accuracy for causal edges when actual path lengths
are maximally long. For worms that generate flows with a

slower rate, a larger At maximizes the actual path lengths
and achieves better performance.

In summary, given a trace with unknown worm proper-
ties, the best sampling performance is obtained by choosing
the At that gives the longest actual path lengths, in terms
of number of hops that the moonwalks traverse. For all our
experiments, we used the above guideline to choose an op-
timal At for each trace (see Figure 10). An adaptive version
of random moonwalk sampling could launch walks with
different values of At and choose one that maximizes the
observed path lengths.

7.5 Performance vs. Worm Scanning Rate

In this experiment we compare the random moonwalk al-
gorithm with other common methods for identifying poten-
tially anomalous behavior, while varying the rate at which
infected hosts scan new victims. Again, we use the detec-
tion accuracy of both causal and attack edges as our per-
formance metrics, and we compare the following five tech-
niques:
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Figure 15: Impact of parameter selection on performance using both Trace-20 and Trace-50.

¢ Random moonwalk selection: Pick the Z = 100
edges with the highest frequency after performing 10*
random moonwalks.

o Heavy-hitter detection: Find the 800 hosts that gen-
erated the largest number of flows in the trace (the
“heavy-hitters”). Randomly pick 100 flows between
two heavy-hitters. (We select 800 hosts as we know
there are about 800 infected hosts in the traces.)

e Super-spreader detection: Find the 800 hosts that
contacted the largest number of distinct destination
hosts (the “super-spreaders”). Randomly pick 100
flows between two super-spreaders.

e Oracle selection: Assume an oracle that identifies the
set of infected hosts with zero false positive rate. The
oracle randomly selects 100 flows between these hosts.

¢ Random selection: Randomly pick 100 flows from
each trace.

Both heavy-hitter and super-spreader heuristics have
been traditionally used to detect patterns of malicious ac-
tivity in IDSes [17, 18].
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Figure 16: Detection accuracy vs. worm scanning rate. The
X-axis represents the worm inter-scan duration. For exam-
ple, a window of x = 20 means an infected host generates
an infection flow every 20 seconds.

As expected, the detection accuracy for attack edges de-
creases with an increased worm inter-scan duration (Fig-
ure 16 (a)), since a worm that sends attack traffic at a slower
rate will create fewer attack edges in the host contact graph.
Random moonwalk selection and oracle selection have sim-
ilar performance and perform substantially better than the
other strategies. Perhaps surprisingly, heavy-hitter detec-
tion performs even worse than random selection, as the
heavy-hitter method is likely to select servers, and most of
the communication between servers is legitimate traffic.

The real success of the random moonwalk algorithm,
however, is not in picking attack edges. Rather it lies in
its ability to extract causal edges from a large noisy host
contact graph. This is evident from Figure 16 (b), where we
notice that all other techniques, including oracle selection,
have a low detection accuracy for causal edges across all
worm scanning rates. For attacks that spread at rates of one
scan every 10-30 seconds, the causal edge detection accu-
racy of random moonwalk selection is greater than 0.5, im-
plying that roughly 50 out of the top 100 edges are always
causal edges. This establishes the capability of finding the
causal edges by globally correlating the host traffic patterns
for very stealthy attacks using the random moonwalk algo-
rithm. On the other hand, the poor performance of even the
oracle selection suggests that detecting infected hosts alone
does not help extracting the causal edges to reconstruct the
top level causal tree and trace back the worm origin.

7.6 Performance vs. Worm Scanning Method

In this experiment, we study the effectiveness of random
moonwalks using worms with different scanning methods.
Since many existing techniques identify worm scanners by
looking at only flows sent to non-existent hosts [11,28],
a smart worm can evade such detection by carefully tar-
geting only valid addresses. We therefore evaluate the
performance of our technique using two worms with dif-
ferent scanning methods. The first scanning method ran-
domly scans only valid host addresses, while the second
method randomly scans both existent and non-existent host



1
Hl Scan method 1
[ Scan method 2 09

Accuracy

S+ Causal edges
o Attack edges

0.15 0.2 0.25 0.3
Fraction of hosts vulnerable (F)

0 %05 o1
C-100 C-500 A-100  A-500

(a) (b)

035 04
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addresses with 50% of host address space being used. For
both worms, an infected host starts scanning at the rate of
one attack flow every 20 seconds.

Figure 17 (a) compares the detection accuracy of the top
Z = 100and Z = 500 frequency edges for the two different
worms. For both causal edges (represented by C-100 and
C-500) and the attack edges (represented by A-100 and A-
500), random moonwalks achieve better detection accuracy
for the “smart-scanning” worm, which is consistent with our
analytical study in Section 6.2. As random moonwalk sam-
pling identifies the subtle global tree patterns of worm prop-
agation, instead of relying on the scanning behavior of each
specific infected host, it is inherently more robust to other
worm scanning strategies [25,28]. Such results are also en-
couraging for detecting those worms that may evade detec-
tion techniques employed by many existing scan-detectors,
which essentially use the number of connections to unused
address chunks as a metric of interest [11, 12, 20].

7.7 Performance vs. Fraction of Hosts Vulnerable

This section studies the performance of the random moon-
walk algorithm with different fraction of hosts infected (i.e.,
we vary F'). With a greater number of hosts infected by an
attack, the degree of anonymity provided to the true attacker
is also greater. In this experiment, we fix the worm scanning
rate to be one attack flow per 20 seconds, and vary the frac-
tion of hosts vulnerable F' during each attack. Figure 17 (b)
shows the performance in terms of the detection accuracies
of both causal edges and attack edges. Within the range of
F = 10.05,0.4], we observe that the detection accuracies
increase as we increase the fraction of hosts infected. Em-
pirically, our experiments also show that the detection ac-
curacy increases for more slowly propagating attacks (e.g.,
one scan per 50 seconds) as they infect more hosts in the
network along time. We plan to further quantify the impact
of F' on performance as future work.

8 Simulation Study

The goal of our simulation study is to evaluate the effec-
tiveness of random moonwalks using different background
traffic models of normal host communication. Our hypothe-
sis is that the simplified traffic model in our analytical study,
where background (i.e., normal) traffic, modeled as uniform
scanning, is a worst case model for performance of our algo-
rithm. Realistic host contact graphs tend to be much sparser,
meaning the chance of communication between two arbi-
trary hosts is very low since host connectivity patterns usu-
ally display locality in the set of destinations contacted. An
epidemic “tree” structure will more easily stand out in such
scenarios, and thus be detected with higher accuracy.

In particular, we model the host connectivity patterns in
terms of both the out-degree of normal hosts and the con-
nection locality. The out-degree of each normal host is the
size (denoted as D) of the contact set, which represents the
set of destinations the host originates flows to under nor-
mal circumstances. Connection locality is modeled by as-
suming each host selects destinations preferentially (within
the contact set) according to either a uniform or power-law
distribution. Figure 18 lists the background traffic gener-
ated using different combinations of the host out-degree and
connection locality. All the simulations run with |H| = 10*
nodes for 3000 seconds of simulated time. We introduce
worm attacks lasting 500 seconds with a fixed propagating
rate (A/B ~ 7) thatinfect F' = 0.1 fraction of hosts. Recall
that A is the connection rate of an infected host (including
normal connections), and B is the connection rate of a nor-
mal host. The resulting traces have about 10° total flows
with 1000 causal flows. For each trace, we perform 10*
random moonwalks and compute the detection accuracy of
causal edges among the returned top Z = 100 frequency
flows.

Overall, the random moonwalks achieve high detection
accuracy across all background traffic models. As expected,
the power-law distribution of the host out-degree results in
best performance as the corresponding normal host con-
tact graphs are sparse. The power-law distribution con-
nection locality has similar performance impact since each
host tends to talk only to a few hosts within the contact set
more frequently, resulting in a relatively sparser host con-
tact graph too. In contrast, uniform destination selection
with constant contact set size (i.e., D = C, or D = |H|)
models random scanning background traffic, and yields the
worst performance.

9 Deployment and Future Work

Similar to single-packet IP traceback [23], we envision an
architecture in which distributed collection points log flow
records and corresponding timestamps, and store them in
repositories for querying. In addition to the source and des-
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Figure 18: Detection accuracy of causal edges using different background traffic models. “Power-law” means the controlled
variable follows a power-law distribution (with a coefficient set to 3). “Uniform” means the controlled variable follows a
uniform distribution. |H| denotes the total number of hosts in the network, and C' is a constant number smaller than |H|.

tination IP addresses, each flow record contains an identifier
for distinguishing two flows between the same source and
destination at roughly the same time, for which we can use,
e.g., the 13-bit identifier field of the initial packet in the flow
in the case of IPv4. Though this is not strictly necessary, it
permits us to relax the degree of clock synchronization nec-
essary among collection points and can improve the accu-
racy of our search. At each individual collection point, we
require two causally related flows be logged in their causal
order and timestamped with a common clock.

As in single-packet IP traceback [23], a concern for traf-
fic logging is whether the storage capacity required will be
excessive. A back-of-the-envelope calculation in [21] sug-
gests that the amount of flow level storage requirement is
not inconceivable, even for a large Tier-1 ISP. We also note
that by the time a worm infection becomes so pervasive,
that the induced traffic potentially outpaces these logging
capabilities, the records most important for finding the at-
tack origin, namely those close to the origin, have already
been recorded.

Our approach is effective for the class of attacks that
propagate via “tree” structured communication patterns.
Future work includes the development of algorithms to per-
form post-mortem analysis of a larger class of attacks. Our
current implementation assumes that the semantic direction
of the flow is consistent with the network notion of flow
directionality. Attacks may try to obfuscate the notion of
causality among network flows. We are currently exploring
ways to make the algorithm robust to such attacks. Our ap-
proach currently assumes the availability of complete data.
It is likely that traffic auditing will be deployed incremen-
tally across different networks. We are investigating the im-
pact of missing data on performance, and also the potential
for incremental deployment of the algorithm. Our initial
results in this direction have been promising.

10 Conclusions

In this paper, we present the random moonwalk algorithm to
identify the origin or the entry point of epidemic spreading
attacks by identifying the initial successful infection flows.
Our approach explores the globally visible tree-like struc-
ture of worm propagation using flow-level records logged
by the networks. By ignoring packet-level characteristics

and attack signatures, our algorithm is potentially agnostic
to attack specific characteristics such as payload contents,
port numbers used, or specific software vulnerabilities ex-
ploited. Our analysis, simulation based experiments, and
real trace study demonstrate that the algorithm is effective
in identifying the causal relationships between initial infec-
tion events to reveal the worm origin with low false pos-
itive rates. We also demonstrated that the algorithm is ro-
bust to low-rate attacks trying to masquerade as normal traf-
fic, or smart scanning worms that may evade known scan-
detection techniques.
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Appendix:
tion 6.2

Probability Estimation in Sec-

An edge e = (u,v, k) can occur at different steps of a
random moonwalk. We use P;(e*) to denote the probability
of an edge at time k being traversed by the i-th step of a
walk. Then we have P(e*) = 27:1 P;(e®).

We use O(v, k) to denote the number of concurrent out-

going flows from host v at time k. With |E| edges in the
host contact graph, we have

P;(e*) :{

k+1

1/|E| i=1
(Z,-O:(T’k“) Pi—1(6k+1’j)) /I(v, k) i>1

where e**1J is the jth flow generated by host v at time
k+1, and I (v, k) is the number of incoming flows into host
v at time k. The above equation holds for any host contact
graph, without any assumptions. Under the uniform scan-
ning assumption for both normal and attack traffic, a second

order approximation for E( ﬁ) is,

B (I(vl, k)) = E(I(i;, ) (1 + [E((T;E:),kli)) ] 2) , from [5].
1 1
B(I(v,k) ~ 1(k)

The above approximation holds for large enough |H| and
A, since I(v, k) is binomially distributed.

Under the simplified assumptions discussed in Sec-
tion 6.1, if e¥, = (u,v, k) is a malicious-destination edge,
we have O(v, k+1) = A, otherwise, O(v,k+1) = B. Us-
ing the approximate form for 1/I(v, k) above, for an edge
at time k we have:

Py ek ~ 1 & PRty A
2em) & oy 2 P =
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By induction, we can easily show that Vd' (4 < d' < d),

(B+ R)Tyyar_»
|E|T(k)I(k+ 1)
BTy a2
|E|I(k)I(k+ 1)

Py (el)

Py (9:)

Taking the sum of all P;(e) (1 < i < d), we have

Ky L A (B+R) X T Thyi
Plem) = 15 {1 oM I(k)I(k+1)
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