
Real Time Network Policy Checking using Header Space Analysis
Peyman Kazemian†∗, Michael Chang†, Hongyi Zeng†,

George Varghese‡, Nick McKeown†, Scott Whyte§
†Stanford University, ‡UC San Diego & Microsoft Research, §Google Inc.

†{kazemian, mchang91, hyzeng, nickm}@stanford.edu, ‡varghese@cs.ucsd.edu, §swhyte@google.com

Abstract

Network state may change rapidly in response to
customer demands, load conditions or configuration
changes. But the network must also ensure correctness
conditions such as isolating tenants from each other and
from critical services. Existing policy checkers cannot
verify compliance in real time because of the need to col-
lect “state” from the entire network and the time it takes
to analyze this state. SDNs provide an opportunity in this
respect as they provide a logically centralized view from
which every proposed change can be checked for com-
pliance with policy. But there remains the need for a fast
compliance checker.

Our paper introduces a real time policy checking tool
called NetPlumber based on HSA [8]. Unlike HSA,
however, NetPlumber incrementally checks for compli-
ance of state changes, using a novel set of conceptual
tools that maintain a dependency graph between rules.
While NetPlumber is a natural fit for SDNs, its abstract
intermediate form is conceptually applicable to conven-
tional networks as well. We have tested NetPlumber
on Google’s SDN, the Stanford backbone and Internet
2. With NetPlumber, checking the compliance of a typi-
cal rule update against a single policy on these networks
takes 50-500µs on average.

1 Introduction
Managing a network today is mostly a manual process.
When a network administrator adds a new rule to the net-
work – for example, an access-control list entry blocking
access to a server – the administrator must manually lo-
gin to configure each switch and firewall. The process
is cumbersome and error prone; in a recent survey [15]
network administrators reported that configuration errors
are very common in their networks.

The problem is that several entities can modify the for-
warding rules: in addition to manual configuration, dis-
tributed protocols (e.g. OSPF, spanning tree, BGP) write
entries into the forwarding tables. There is no single lo-
cation where all of the state is observable or controllable,
leaving network administrators to use ad-hoc tools like
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ping and traceroute to indirectly probe the current state
of the forwarding rules.

Recently, there has been growing interest in automat-
ing network control, particularly with the emergence of
software-defined networks (SDN). SDN separates the
control plane from the forwarding plane, and a well-
defined interface such as OpenFlow [11] lets the control
plane write < match, action > rules to the switches.
The controller controls the forwarding state because it
decides which rules to write to the switches; and it ob-
serves the forwarding state because it was the sole cre-
ator. SDNs therefore present an opportunity to automate
the verification of correct forwarding behavior. This is
the premise of recent work on automatic analysis of for-
warding state for SDNs [8, 10, 14]. The basic idea is that
if we can analyze the forwarding state — either dynami-
cally as it is written to switches, or statically after it has
been written — then we can check against a set of invari-
ants or policies and catch bugs before or as soon as they
take place.

In principle, methods and tools produced for SDNs
can be applied to traditional networks as well. Indeed,
all of the tools we describe in this paper can and have
been used in current networks. Our evaluations use a
large SDN (Google WAN) and two medium sized IP net-
works (Internet2 and the Stanford Network). For sure,
SDN makes it easier to introduce new tools, because a
tool can observe forwarding rules as the control plane
writes them.

In this paper we describe a verification tool called Net-
Plumber that can check the correctness of the network
forwarding state in conventional networks and SDNs. In
SDNs, NetPlumber sits in line with the control plane,
and observes state changes (e.g. OpenFlow messages)
between the control plane and the switches (Figure 1).
NetPlumber checks every event, such as installation of a
new rule, removal of a rule, port or switch up and down
events, against a set of policies and invariants. Upon de-
tecting a violation, it calls a function to alert the user or
block the change. In conventional networks, NetPlumber
should get state change notifications through a mecha-
nism such as SNMP traps or by frequently polling the
state.

NetPlumber can detect simple invariant violations



such as loops and reachability failures. It can also check
more sophisticated policies (i.e., desires of human oper-
ators), such as: “Web traffic from A to B should never
pass through waypoints C or D between 9am and 5pm.”
Our prototype of NetPlumber introduces a new formal
language (similar to FML [6]) to express policy and in-
variant checks, and is fast enough to perform real-time
checks each time a controller adds a new rule. In exper-
iments with the Stanford backbone, Google’s WAN, and
Internet2’s backbone NetPlumber can typically verify a
rule change in less than 1ms, and can verify a link-up or
link-down event in a few seconds.

NetPlumber’s speed easily exceeds the requirements
for an enterprise network where configuration state
changes infrequently - say once or twice per day. But
in modern multi-tenant data centers, fast programmatic
interfaces to the forwarding plane allow control planes
and control programs to rapidly change the network con-
figuration - perhaps thousands of times per second. For
example, we may move thousands of virtual machines
(VMs) around to balance load, with each change requir-
ing a tenant’s virtual network to be reconfigured.

As one of its foundations NetPlumber uses our ear-
lier work on Header Space Analysis (HSA) [8]. HSA
allows us to model an entire network using a geomet-
ric mapping that is much easier to reason about than the
vendor-specific command line interfaces on switches and
routers. NetPlumber improves upon HSA in two ways:
first, by running HSA checks incrementally it lets us
check updates in real time. Second, it provides a flexi-
ble way to express and check complex policy queries.

The four contributions of this paper are:

1. NetPlumber (section 3): NetPlumber is our real-
time policy checking tool with sub-millisecond av-
erage run time per rule update.

2. Flexible Policy Query Mechanism (section 4):
NetPlumber introduces a flexible way to express
complex policy queries in an extensible, regular-
expression-based language called FlowExp.

3. Distributed NetPlumber (section 5): We show how
to scale NetPlumber to very large networks using a
distributed implementation.

4. Evaluation at Scale (section 6): We evaluate Net-
Plumber on three production networks, includ-
ing Google’s global WAN carrying inter-datacenter
traffic.

2 Header Space Analysis
NetPlumber uses Header Space Analysis (HSA) [8]
as a foundation. HSA provides a uniform, vendor-
independent and protocol-agnostic model of the network
using a geometric model of packet processing. A header
is a point (and a flow is a region) in a {0, 1}L space,
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Figure 1: Deploying NetPlumber as a policy checker in SDNs.

called the header space, where each bit corresponds to
one dimension of this space and L is an upper bound on
header length (in bits). Networking boxes are modeled
using a Switch Transfer Function T , which transforms
a header h received on input port p to a set of packet
headers on one or more output ports: T : (h, p) →
{(h1, p1), (h2, p2), ...}.

Each transfer function consists of an ordered set of
rules R. A typical rule consists of a set of physical input
ports, a match wildcard expression, and a set of actions
to be performed on packets that match the wildcard ex-
pression. Examples of actions include: forward to a port,
drop, rewrite, encapsulate, and decapsulate. Network
topology is modeled using a Topology Transfer Function,
Γ. If port psrc is connected to pdst using a link, then Γ
will have a rule that transfers (h, psrc) to (h, pdst).

HSA computes reachability from source A, via
switches X,Y, ... to destination B as follows. First, cre-
ate a header space region at A representing the set of all
possible packetsA could send: the all-wildcard flow with
L wildcard bits and covering the entire L-dimensional
space. Next, apply switch X’s transfer function to the
all-wildcard flow to generate a set of regions at its out-
put ports, which in turn are fed to Y ’s switch transfer
function. The process continues until a subset of the
flows that left A reach B. While the headers may have
been transformed in the journey, the original headers sent
by A can be recovered by applying the inverse transfer
function. Despite considerable optimization, the Python-
based implementation called Hassel described in [8] re-
quires tens of seconds to compute reachability.

3 NetPlumber
NetPlumber is much faster than Hassel at update time
because instead of rerunning every transformation ev-
ery time the network changes, it incrementally updates
only those transformations affected by the change. Un-
derneath, NetPlumber still uses HSA, but it is careful to
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only perform the calculations it needs to. It inherits from
HSA the ability to verify a wide range of policies includ-
ing reachability between ports, loop freeness, and isola-
tion between groups; while remaining protocol agnostic.

Figure 1 shows NetPlumber checking policies in an
SDN. An agent sits between the control plane and
switches and sends every state update (installation or re-
moval of rules, link up or down events) to NetPlumber
which in turn updates its internal model of the network; if
a violation occurs, NetPlumber performs a user-defined
action such as removing the violating rule or notifying
the administrator.

The heart of NetPlumber is the plumbing graph which
captures all possible flow1 paths in the network and is
used to compute reachability. Nodes in the graph cor-
respond to the rules in the network and directed edges
represent the next hop dependency of these rules:

• A rule is an OpenFlow-like <match, action>
tuple where the action can be forward,2

rewrite, encapsulate, decapsulate, etc.
• Rule A has a next hop dependency to rule B if 1)

there is a physical link from ruleA’s box to ruleB’s
box; and 2) the domain of ruleB has an intersection
with range of rule A. The domain of a rule is the set
of headers that match on the rule and the range is
the region created by the action transformation
on the rule’s domain.

Initialization: NetPlumber is initialized by examining
the forwarding tables to build the plumbing graph. Then
it needs to compute reachability. It finds all the pack-
ets from source port s, that can reach destination port d
by injecting the “all-wildcard flow” at s and propagating
it along the edges of the plumbing graph. At each rule
node, the flow is filtered by the match part of the rule
and then transformed by the action part of the rule.
The resulting flow is then propagated along the outgoing
edges to the next node. The portion of flow, if any, that
reaches d is the set of all packets from s that can reach
d. To speed up future calculations, whenever a rule node
transforms a flow, it remembers the flow. This caching
lets NetPlumber quickly update reachability results ev-
ery time a rule changes.

Operation: In response to insertion or deletion of
rules in switches, NetPlumber adds or removes nodes and
updates the routing of flows in the plumbing graph. It
also re-runs those policy checks that need to be updated.

3.1 The Plumbing Graph
The nodes of the plumbing graph are the forwarding
rules, and directed edges represent the next-hop depen-

1In what follows, a flow corresponds to any region of header space.
2A drop rule is a special case of forward rule with empty set of

output ports.

dency of these rules. We call these directed edges pipes
because they represent possible paths for flows. A pipe
from rule a to b has a pipe filter which is the intersec-
tion of range of a and domain of b. When a flow passes
through a pipe, it is filtered by the pipe filter. Concep-
tually the pipe filter represents all packet headers at the
output of rule a that can be processed by b.

A rule node in the plumbing graph corresponds to a
rule in a forwarding table in one of the network switches.
Forwarding rules have priorities, and when a packet ar-
rives to the switch it is processed by the highest prior-
ity matching rule. Likewise, the plumbing graph needs
to consider the rule priorities when deciding which rule
node will process a flow. For computational efficiency,
each rule node keeps track of higher priority rules in the
same table. It calculates the domain of each higher pri-
ority rule, subtracting it from its own domain. We refer
to this as intra-table dependency of rules.

Figure 2 shows an example network and its corre-
sponding plumbing graph. It consists of 4 switches, each
with one forwarding table. For simplicity, all packet
headers are 8 bits. We will use this example though the
rest of this section.

Let’s briefly review how the plumbing graph of Fig-
ure 2 is created: There is a pipe from rule 1 in table
1 (rule 1.1) to rule 2 in table 2 (rule 2.2) because (a)
ports 2 and 4 are connected and (b) the range of rule 1.1
(1010xxxx) and the domain of rule 2.2 (10xxxxxx) has
an intersection (pipe filter: 1010xxxx). Similarly there is
a pipe from rule 2.2 to rule 4.1 because (a) ports 5 and
8 are connected and (b) the range of rule 2.2 (111xxxxx)
and the domain of rule 4.1 (xxxxx010) has a non-empty
intersection (pipe filter: 111xx010). Also rule 1.1 has an
intra-table influence on rule 1.3 because their domains
and input port sets have a non-empty intersection (inter-
secting domain: 1010xxxx, port: 1). Similarly we can
create the rest of this plumbing graph.

3.2 Source and Sink Nodes
As mentioned at the beginning of this section, Net-
Plumber converts policy and invariants to equivalent
reachability assertions. To find reachability, it inserts
flow from the source port into the plumbing graph and
propagate it all the way to the destination. Therefore we
need to define a “flow generator” node in NetPlumber:
source node is the node that is responsible for generating
flow and pumping it into plumbing graph. Just like rule
nodes, a source node is connected to the plumbing graph
using directed edges (pipes), but instead of processing
and forwarding flows, it generates flow.

Continuing our example we want to find reachability
between port 1 and 10. In Figure 3 we have connected a
source node, generating all-wildcard flow to port 1. We
have also connected a special node called probe node to
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Figure 2: Plumbing graph of a simple network consisting of 4 switches each with one table. Arrows represent pipes. Pipe filters are shown on the
arrows. Dashed lines indicate intra-table dependency of rules. The intersecting domain and input port is shown along the dashed lines.
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Figure 3: Finding reachability between S and P. Source node S is generating all-wildcard flow and inserting it into the plumbing graph. The solid
lines show the path of flow from the source to the destination. Flow expressions are shown along the flows.

port 10. We will discuss probe nodes in the next sec-
tion. The flow generated by the source node first reaches
to rules 1.1, 1.2 and 1.3. Rule 1.1 and 1.2 are not af-
fected by any higher priority rules and they don’t rewrite
flows. Therefore the input flow is simply forwarded to
the pipes connecting them to rule 2.2 (i.e. 1010xxxx and
10001xxx flows reach rule 2.2). However rule 1.3 has an
intra-table dependency to rule 1.1 and 1.2. This means
that from the incoming 10xxxxxx flow, only 10xxxxxx−
(1010xxxx ∪ 10001xxx) should be processed by rule 1.3.
The rest has already been processed by higher priority
rules. Rule 1.3 is a simple forward rule and will forward
the flow, unchanged, to rule 3.1. However, when this
flow passes through the pipe filter between rule 1.3 and
3.1 (101xxxxx), it shrink to 101xxxxxx − 1010xxxx3.

The flows which have reached rule 2.2 continue prop-
agating through the plumbing graph until they reach the
probe node (P), as depicted in Figure 3. However the
other flow that has reached rule 3.1 does not propagate
any further as it cannot pass through the pipe connect-
ing rule 3.1 to rule 4.2: because the intersection of the
flow (101xxxxxx− 1010xxxx = 1011xxxx) and pipe fil-
ter (1010xxxx) is empty.

Sink Nodes: Sink nodes are the dual of source nodes.

3[10xxxxxx − (1010xxxx ∪ 10001xxx)] ∩ 101xxxxx =
101xxxxx − 1010xxxx.

A sink node absorbs flows from everywhere in the net-
work. Equivalently, a sink node generates “sink flow”
which traverses the plumbing graph in reverse direction.
When reaching a rule node, it is processed by inverse
of the rule4. To find reachability using sink nodes, we
should place a sink node at the destination port and ob-
serve the sink flow at the source port. The sink flow at
the source port gives us the set of packet headers that will
reach the destination. Using sink nodes do not increase
the policy expression power of NetPlumber; it only sim-
plifies or optimizes some policy checks (see section 4).

3.3 Probe Nodes
To check policy or invariant in a network, we need to
attach a constraint-checking node, called probe node,
at appropriate locations of the plumbing graph. Probe
nodes can examine the path and header of the received
flows and report any violation of expected behavior. In
section 4, we discuss how to check a policy using a
source (sink) and probe node. As a simple example, if
in our toy example of Figure 2 the policy is “port 1 and
10 can only talk using packets matching on xxxxx010”,
then we need to put a source node at port 1 (S), a probe
node at port 10 (P) and setting P to examine all flows

4The inverse of a rule gives us all input flows that can generate a
given flow at the output of that rule [8]
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received from S to match on xxxxx010 (Figure 3).
Probe nodes can be of two types: source probe nodes

and sink probe nodes. The former can check constraints
on flows generated by source nodes and the latter on sink
flows generated by sink nodes. We simply refer to both
of them as probe nodes.

3.4 Updating NetPlumber State
As events occur in the network, NetPlumber needs to up-
date its plumbing graph and re-route the flows. There are
6 events that NetPlumber needs to handle:

Adding New Rules: When a new rule is added, Net-
Plumber first need to create pipes from the new rule to all
potential next hop rules and from all potential previous
hop rules to the new rule. It also need to find all intra-
table dependency of the new rule to other rules within the
same table. In our toy example in Figure 4, a new rule
is added at the 2nd position of table 1. This creates three
new pipes to rules 2.1, 2.2 and the source node, and one
intra-table dependency for rule 1.4.

Next, NetPlumber updates the routing of flows. To
do so, it asks all the previous hop nodes to pass their
flows on the newly created pipes. The propagation of
these flows then continues normally through the plumb-
ing graph. If the new rule has caused any intra-table de-
pendency for lower priority rules, we need to update the
flows passing through those lower priority rules by sub-
tracting their domain intersection from the flow. Back to
the example in Figure 4, after adding the new rule, the
new flows highlighted in bold color propagate through
the network. Also, the intra-table dependency of the new
rule on rule 1.4 is subtracted from the flow received by
rule 1.4. This shrinks the flow to the extent that it can-
not pass through the pipe connecting it to rule 3.1 (empty
flow on the bottom path).

Deleting Rules: Deleting a rule causes all the flows
which pass through that rule to be removed from the
plumbing graph. Further, if any lower priority rule has
any intra-table dependency on the deleted rule, the effect
should be added back to those rules. Figure 5 shows the
deletion of rule 1.1 in our toy example. Note that delet-
ing this rule causes the flow passing through rule 1.3 to
propagate all the way to the probe node, because the in-
fluence of the deleted rule is now added back.

Link Up: Adding a new link to the network may cause
additional pipes to be created in the plumbing graph, be-
cause more rules will have physical connection (first con-
dition for creating a pipe). NetPlumber will ask the nodes
on the input side of new pipes to propagate their flows
on the new pipes. The propagation of these flow will
continue normally through the plumbing graph. Usually
adding a new link creates a lot of pipes and make signif-
icant changes to the routing of flows. Therefore it is a
slower operation compared to adding new rules.

Link Down: When a link goes down, all the pipes
created on that link is deleted from the plumbing graph,
which in turn removes all the flows that pass through
those pipes.

Adding New Tables: When a new table (or switch)
is discovered, the plumbing graph remains unchanged.
Changes occur only when new rules are added to the new
table.

Deleting Tables: A table is deleted from NetPlumber
by deleting all the rules contained in that table.

3.5 Complexity Analysis
The complexity of NetPlumber for the addition of sin-
gle rule is O(r + spd), where r is the number of entries
in each table and s is the number of source (sink) nodes
attached to the plumbing graph (which is roughly pro-
portional to the number of policies we want to check), p
is the number of pipes to and from the rule and d is the
diameter of the network.

The run time complexity arises as follows: when a new
rule is added, we need to first find intra-table dependen-
cies. These require intersecting the match portion of
the new rule with the match of all the other rules in the
same table. We also need to create new pipes by doing
O(r) intersections of the range of the new rule with the
domain of rules in the neighbor tables (O(r) such rules).

Next, we need to route flows. Let us use the term pre-
vious nodes to denote the set of rules which have a pipe
to the new rule. First, we need to route the flows at previ-
ous nodes to the new rule. There are O(s) flows on each
of these previous nodes because each source (sink) node
that is connected to NetPlumber can add a flow. We need
to pass these flows through O(p) pipes to route them to
new rule. This is O(sp) work. With a linear fragmenta-
tion 5 argument similar to [8], there will be O(s) flows
that will survive this transformation through the pipes 6

(and not O(sp)). The surviving flows will be routed in
the same manner through the plumbing graph, requiring
the same O(sp) at each node in the routing path. Since
there the maximum path length is the diameter d, the
overall run time of this phase is O(spd).

We also need to take care of the intra-table dependency
of this rule to lower priority rules and subtract the do-
main intersection from the flows received by lower pri-
ority rules. This subtraction is done lazily and is there-
fore much faster than flow routing; hence we ignore its

5This assumption states that if we have R flows at the output of
a transfer function, and we apply these flow to the next hop transfer
functions with R rules per transfer function, we will get cR flows at
the output where c << R is a constant. This assumption is based on
the observation that flows are routed end-to-end in networks. They are
usually aggregated, and not randomly chopped in the core of networks.

6An alternate way to reach the same conclusion is as follows: the
new rule, after insertion will look like any other rule in the network,
and should on average have O(s) flows
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Figure 5: Deleting rule 1.1 in table 1 causes the flow which passes through it to be removed from the plumbing graph. Also since the intra-table
dependency of rule 1.3 to this rule is removed, the flow passing through 1.3 through the bottom path is updated.

contribution to the overall run time.

4 Checking Policies and Invariants
A probe node monitors flows received on a set of ports.
In the plumbing graph, it is attached to the output of all
the rules sending out flows on those ports. Each probe
node is configured with a filter flow expression and a test
flow expression. A flow expression or flowexp for short,
is a regular expression specifying a set of conditions on
the path and the header of the flows. The filter flowexp
confines the set of flows that should be examined by the
probe node, and the test flowexp is the constraint that
is checked on the matching flows. Probe nodes can be
configured in two modes: existential and universal. A
probe fires when its corresponding predicate is violated.
An existential probe fires if none of the flows examined
by the probe satisfy the test flow expression. By contrast,
a universal probe fires when a single flow is received that
does not satisfy the test constraint. More formally:

(Universal) ∀{f | f ∼ filter} : f ∼ test. All flows
f which satisfy the filter expression, satisfy the test ex-
pression as well.

(Existential) ∃{f | f ∼ filter} : f ∼ test. There
exist a flow f that satisfies both the filter and test expres-
sions.

Using flow expressions described via the flowexp lan-

guage, probe nodes are capable of expressing a wide
range of policies and invariants. section 4.1 will in-
troduce flowexp language and sections 4.2 and 4.3 dis-
cuss the process of checking for loops, black holes and
reachability-related policies.

4.1 Flowexp Language
Each flow at any point in the plumbing graph, carries
its complete history: it has a pointer to the correspond-
ing flow at the previous hop (node). By traversing these
pointers backward, we can examine the entire history of
the flow and all the rules that have processed this flow
along the path. The flow history always begins at the
generating source (or sink) node and ends at the probe
node checking the condition.

Flowexp is a regular expression language designed to
check constraints on the history of flows received by
probe nodes. Table 1 shows the grammar of flowexp in
a standard BNF syntax. Flowexp consists of logical op-
erations (i.e. and, or and not) on constraints enforced on
the Path or Header of flows received on a probe node.

A PathConstraint is used to specify constraints on the
path taken by a flow. It consists of an ordered list of
pathlets that are checked sequentially on the path of the
flow. For example a flow that originates from source S,
with the path S → A → B → C → P to probe P , will
match on flowexp “ (̂p = A)”, because port A comes
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Constraint→ True | False | !Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint;

PathConstraint→ list(Pathlet);
Pathlet→ Port Specifier [p ∈ {Pi}]

| Table Specifier [t ∈ {Ti}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.∗]
| Beginning of Path [ˆ]

(Source/Sink node)
| End of Path [$]

(Probe node);
HeaderConstraint→ Hreceived ∩ Hconstraint 6= φ

| Hreceived ⊂ Hconstraint

| Hreceived == Hconstraint;

Table 1: Flowexp language grammar

immediately after source node. It also matches on “(p =
A).(p = C)” because the flow passes through exactly
one intermediate port from A to C.

A HeaderConstraint checks if 1) The received header
has any intersection with a specified header. This is use-
ful when we want to ensure that some type of packets
are reachable to the probe. 2) The received header is a
subset of a specific header. This is useful when we want
to put a limit on the types of headers reachable to the
probe. 3) The received header is exactly equal to a speci-
fied header, which is useful when we want to check if the
received packets at the probe are exactly what we expect.

Since flowexp is very similar to (but much simpler
than) standard regular expression language, any standard
regexp checking technique can be used at probe nodes.

4.2 Checking Loops and Black Holes
As flows are routed through the plumbing graph, each
rule by default (i.e., without adding probe nodes for this
purpose) checks received flows for loops and black holes.
To check for a loop, each rule node examines the flow
history to determine if the flow has passed through the
current table before. If it has, a loop-detected callback
function is invoked7.

Similarly, a black hole is automatically detected when
a flow is received by a non-drop-rule R that cannot pass
through any pipes emanating from R. In this case, a
black-hole-detected callback function is invoked.

4.3 Checking Reachability Policies
In this section, we describe how to express reachability-
related policies and invariants such as the isolation of two
ports, reachability between two ports, reachability via a
middle box and a constraint on the maximum number of
hops in a path. We express and check for such reachabil-

7The callback function can optionally check to see if the loop is
infinite or not; an algorithm to check for infinite loops is described
in [8].

ity constraints by attaching one or more source (or sink)
nodes and one or more probe nodes in appropriate loca-
tions in the plumbing graph. The probe nodes are pro-
grammed to check the appropriate filter and test flowexp
constraints on received flows as shown in the examples
below.

Basic Reachability Policy: Suppose we wish to en-
sure that a server port S should not be reachable from
guest machine ports {G1, ...Gk}.

Solution using source node: Place a source node that
generates a wildcarded flow at each of the guest ports.
Next, place a source probe node on port S and config-
ure it to check for the flow expression: ∀f : f.path ∼
![ ˆ (p ∈ {G1, ...Gk})] - i.e., a universal probe with no
filter constraint and a test constraint that checks that the
source node in the path is not a guest port.

If, instead, the policy requires S to be reachable from
{G1, ...Gk}, we could configure the probe node as fol-
lows: ∃f : f.path ∼ [ ˆ (p ∈ {G1, ...Gk})] . Intuitively,
this states that there exists some flow that can travel from
guest ports to the server S. Note that the server S is not
specified in the flow expression because the flow expres-
sion is placed at S.

Dual Solution using a sink probe: Alternately, we can
put a sink node at port S and a sink probe node in each of
the Gi ports. We also configure the probes with Flowexp
∀f : f.path ∼ [ ˆ (p ∈ {S})].

Reachability via a Waypoint: Now suppose we wish
to ensure all traffic from port C to port S should pass
through a “waypoint” node M .

Solution: Put a source node at C that generates a wild-
carded flow and a probe node at S. Configure the probe
node with the flow expression: ∀{f | f.path ∼ [ ˆ (p ∈
{C})]} : f.path ∼ [ ˆ .∗(t = M)]. This is a univer-
sal probe which filters flows that originate from C and
verifies that they pass through the waypoint M .

Path length constraint: Suppose we wish to ensure
that no flow from port C to port S should go through
more than 3 switches. This is a policy that was desired
for the Stanford network for which we found violations.
The following specification does the job assuming that
each switch has one table.

Solution: Place a probe at S and a source node at C
as in the previous example. Configure the probe node
with the following constraint: ∀{f | f.path ∼ [ ˆ (p ∈
{C})]} : f.path ∼ [ ˆ .$ | ˆ ..$ | ˆ ...$ ]. The filter
expression ensures that the check is done only for flows
from C, and the test expression only accepts a flow if it
is one, two or three hops away from the source.

Source probes versus Sink probes: Some of the
examples above use source probes and others use sink
probes. Roughly speaking, if a policy is checking some-
thing at the destination, regardless of where the traffic
comes from, then using sink probes is more efficient. For
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example, suppose a manager wished to specify that all
flows arriving at a server S pass through waypoint M .
Using source probes would require placing one source
probe at every potential source. This can be computa-
tionally expensive as the run time of NetPlumber grows
linearly with number of source or sink nodes. On the
other hand, if the policy is about checking a condition
for a particular source, such as computer C should be
able to talk to all the servers in the network, then using
source node will be more efficient− e.g. for this example
we can do it with only one source node. Intuitively, we
want to generate the least amount of flow in the plumb-
ing graph that is required for checking of the policy, as
generating flow is computationally expensive.

4.4 Policy translator
So far we have described a logical language called Flow-
Exp which is convenient for analysis and specifying pre-
cisely how flows are routed within the network. FlowExp
is, however, less appropriate as a language for network
managers to express higher level policy. Thus, for higher
level policy specification, we decided to reuse the pol-
icy constructs proposed in the Flow-based Management
Language (FML) [6], a high-level declarative language
for expressing network-wide policies about a variety of
different management tasks. FML essentially allows a
manager to specify predicates about groups of users (e.g.,
faculty, students), and specifies which groups can com-
municate. FML also allows additional predicates on the
types of communication allowed such as the need to pass
through waypoints.

Unfortunately, the current FML implementation is
tightly integrated with an OpenFlow controller, and so
cannot be easily reused in NetPlumber. We worked
around this by encoding a set of constructs inspired by
FML in Prolog. Thus, network administrators can use
Prolog as the frontend language to declare various bind-
ings inspired by FML, such as hosts, usernames, groups
and addresses. Network administrators can also use Pro-
log to specify different policies. For example, the follow-
ing policy describes 1) the guest and server groups,
and 2) a policy: ”Traffic should go through firewall if it
flows from a guest to a server”.

guest(sam).
guest(michael).
server(webserver).
waypoint(HostSrc, HostDst, firewall):-

guest(HostSrc),
server(HostDst).

We have written a translator that converts such high
level policy specifications written in Prolog to 1) the
placement of source nodes, 2) the placement of probe

nodes, and 3) the filter and test expressions for each
probe node. In the example above,the translator gener-
ates two source nodes at Sam and Michael’s ports and
one probe node at the web server’s port. The waypoint
keyword is implemented by flowexp: .*(t=firewall).

The output of the translator is, in fact, a C++ struct
that lists all source, sink, and probe nodes. The source
probes and sink probes are encoded in flowexp syntax
using ASCII text. Finally, NetPlumber translates flowexp
into C++ code that it executes.

Note that because FML is not designed to declare path
constraints that can be expressed in flowexp, we found it
convenient to make the translator extensible. For exam-
ple, two new policy constructs we have built-in beyond
the FML-inspired constructs are ”at most N hops” and
“immediately followed by” — but it is easy to add fur-
ther constructs.

5 Distributed NetPlumber
NetPlumber is memory-intensive because it maintains
considerable data about every rule and every flow in the
plumbing graph. For very large networks, with millions
of rules and a large number of policy constraints, Net-
Plumber’s memory requirements can exceed that of a sin-
gle machine. Further, as shown in section 3.5, the run
time of NetPlumber grows linearly with size of the ta-
bles. This can be potentially unacceptable for very large
networks.

Thus a natural approach is to run parallel instances of
NetPlumber, each verifying a subset of the network and
each small enough to fit into the memory of a single ma-
chine. Finally, a collector can be used to gather the check
results from every NetPlumber instance and produce the
final result.

One might expect to parallelize based on switches:
i.e., each NetPlumber instance creates a plumbing graph
for a subset of switches in the network (vertical distribu-
tion). This can address the memory bottleneck, but need
not improve performance, as the NetPlumber instances
can depend on each other. In the worst case, an instance
may not be able to start its job unless the previous in-
stance is done. This technique can also require consider-
able communication between different instances.

A key observation is that in every practical network
we have seen, the plumbing graph looks like Figure 6:
there are clusters of highly dependent rules with very few
dependencies between rules in different clusters. This
is caused by forwarding equivalent classes (FECs) that
are routed end-to-end in the network with possible ag-
gregation. The rules belonging to a forwarding equiva-
lent class have a high degree of dependency among each
other. For example, 10.1.0.0/16 subnet traffic might be a
FEC in a network. There might be rules that further di-
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Figure 6: A typical plumbing graph consists of clusters of highly de-
pendent rules corresponding to FECs in network. There may be rules
whose dependency edges cross clusters. By replicating those rules, we
can create clusters without dependencies and run each cluster as an iso-
lated NetPlumber instance running on a different machine.

vide this FEC into smaller subnets (such as 10.1.1.0/24,
10.1.2.0/24), but there are very few rules outside this
range that has any interaction with rules in this FEC (an
exception is the default 0.0.0.0/0 rule).

Our distributed implementation of NetPlumber is
based on this observation. Each instance of NetPlumber
is responsible for checking a subset of rules that belong
to one cluster (i.e. a FEC). Rules that belong to more
than one cluster will be replicated on all the instances
they interact with (see Figure 6). Probe nodes are repli-
cated on all instances to ensure global verification. The
final probe result is the aggregate of results generated by
all the probes — i.e., all probe nodes should meet their
constraints in order for the constraint to be verified. The
instances won’t depend on each other and can run in par-
allel. The final result will be ready after the last instance
is done with its job.

The run time of distributed NetPlumber, running on
n instances for a single rule update, is O(mavg(r/n +
spd/m)) where m is the number of times that rule get
replicated and mavg is the average replication factor for
all rules. This is because on each replica, the size of ta-
bles are O(mavgr/n) and the number of pipes to a rule
that is replicated m times is O(mavgp/m). Note that if
we increase n too much, most rules will be replicated
across many instances (m,mavg → n,) and the addi-
tional parallelism will not add any benefits.

How should we cluster rules? Graph clustering is hard
in general; however for IP networks we generated nat-
ural clusters heuristically as follows. Start by creating
two clusters based on the IP address of the network; if
the IP address of hosts in the network belong to subnet
10.1.0.0/16, create two clusters: one for rules that match
this subnet, and one for the rest (i.e. 10.1.0.0/16 and
0.0.0.0/0 - 10.1.0.0/16 subnets). Next, divide the first
cluster into two clusters based on bit 17 of the destina-
tion IP address. If one of the resulting clusters is much
larger than the other, we divide the larger cluster based
on the next bit in IP destination address. If two clus-
ters are roughly the same size, we divide both clusters

Figure 7: Google inter-datacenter WAN network.
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Figure 8: Stanford backbone network.

further. This process continues until division does not
reduce cluster size further (because of replication) or the
specified number of clusters is reached.

6 Evaluation
In this section we evaluate the performance and func-
tionality of our C++ based implementation8 of Net-
Plumber on 3 real world networks: the Google inter-
datacenter WAN, Stanford’s backbone network and the
Internet 2 nationwide network. All the experiments are
run on Ubuntu machines, with 6 cores, hyper-threaded
Intel Xeon processors, a 12MB L2-cache and 12GB of
DRAM.

To feed the snapshot data from these networks into
NetPlumber, we wrote 3 parsers capable of parsing
Cisco IOS, Juniper Junos and OpenFlow dumps in pro-
tobuf [12] format. We use a json-rpc based client to
feed this data into NetPlumber. NetPlumber has the json-
rpc server capability and can receive and process updates
from a remote source.

6.1 Our data set
Google WAN: This is a software-defined network, con-
sisting of OpenFlow switches distributed across the
globe. It connects Google data centers world-wide. Fig-
ure 7 shows the topology of this network. Overall there

8source code available at [5].
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Figure 9: CDF of the run time of NetPlumber per update, when check-
ing the all-pair reachability constraint in Google WAN with 1-5 in-
stances and in Stanford backbone with a single instance.

#instances: 1 2 3 4 5 8
median (ms) 0.77 0.35 0.23 0.2 0.185 0.180
mean (ms) 5.74 1.81 1.52 1.44 1.39 1.32

Table 2: Average and median run time of distributed NetPlumber,
checking all-pair connectivity policy on Google WAN.

are more than 143,000 OpenFlow rules installed in these
switches. Google WAN is one of the largest SDNs de-
ployed today; therefore we stress-test NetPlumber on this
network to evaluate its scalability.

Stanford University Backbone Network. With a
population of over 15,000 students, 2,000 faculty, and
five /16 IPv4 subnets, Stanford represents a mid-size en-
terprise network. There are 14 operational zone (OZ)
Cisco routers connected via 10 Ethernet switches to 2
backbone Cisco routers that in turn connect Stanford to
the outside world (Figure 8). Overall, the network has
more than 757,000 forwarding entries, 100+ VLANs and
1,500 ACL rules. Data plane configurations are collected
through CLI. Stanford has made the entire configuration
rule set public and it can be found in [5].

Internet2 is a nationwide backbone network with 9
Juniper T1600 routers and 100 Gb/s interfaces, support-
ing over 66,000 institutions in United States. There
are about 100,000 IPv4 forwarding rules. All Internet2
configurations and FIBs of the core routers are publicly
available [7], with the exception of ACL rules, which are
removed for security reasons. We only use the IPv4 net-
work of Internet 2 in this paper.

6.2 All-pair connectivity of Google WAN
As an internal, inter-datacenter WAN for Google, the
main goal of Google WAN is to ensure connectivity be-
tween different data centers at all times. Therefore in
our first experiment, we checked for the all-pair connec-
tivity policy between all 52 leaf nodes (i.e. data center

switches). We began by loading a snapshot of all the
OpenFlow rules of Google WAN — taken at the end of
July 2012 — into NetPlumber. NetPlumber created the
initial plumbing graph in 33.39 seconds (an average per-
rule runtime of 230µs). We then attach one probe and
one source node at each leaf of the network and set up the
probes to look for one flow from each of the sources. If
no probes fire, it means that all data centers are reachable
from each other. The initial all-pair connectivity test took
around 60 seconds. Note that the above run times, are
for the one-time initialization of NetPlumber. Once Net-
Plumber is initialized, it can incrementally update check
results much faster when changes occur. Note that the
all-pair reachability check in Google WAN corresponds
to 522 or more than 2600 pair-wise reachability checks.

Next, we used a second snapshot taken 6 weeks later.
We found the diff of the two snapshots and applied them
to simulate incremental updates. The diff includes both
insertion and deletion of rules. Since we did not have
timing information for the individual updates, we knew
the set of updates in the difference but not the sequence
of updates. So we simulated two different orders. In the
first ordering, we applied all the rule insertions before
the rule deletions. In the second ordering, we applied all
deletions before all insertions.

As expected, the all-pair connectivity policy was
maintained during the first ordering of update events, be-
cause new reachable paths are created before old reach-
able paths are removed. However the second ordering re-
sulted in violations of the all-pair connectivity constraint
during the rule deletion phase. Of course, this does not
mean that the actual Google WAN had reachability prob-
lems because the order we simulated is unlikely to have
been the actual order of updates. At the end of both or-
derings, the all-pair connectivity constraint was met.

NetPlumber was able to check the compliance of each
insertion or deletion rule in an average time of 5.74ms
with a median time of 0.77ms. The average run time
is much higher than the median because there are a few
rules whose insertion and deletion takes a long time
(about 1 second). These are the default forwarding rules
that have a large number of pipes and dependencies
from/to other rules. Inserting and deleting default rules
require significant changes to the plumbing graph and
routing of flows. The solid line in Figure 9 shows the
run time CDF for these updates.

To test the performance of distributed NetPlumber we
repeated the same experiment in distributed mode. We
simulated9 the running of NetPlumber on 2−8 machines

9To simulate, we run the the instances in serial on the same ma-
chine and collected the results from each run. For each rule inser-
tion/deletion, we reported the run time as the maximum run time across
all instances, because the overall job will be done only when the last
instance is done.
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and measured the update times (dashed lines in Figure 9).
Table 2 summarizes the mean and median run times.
This suggests that most of the benefits of distribution is
achieved when the number of instances is 5. This is be-
cause in the plumbing graph of the Google WAN, there
are about 5 groups of FECs whose rules do not influence
each other. Trying to put these rules in more than 5 clus-
ters will result in duplication of rules; the added benefit
will be minimal.

6.3 Checking policy in Stanford network
Unlike the Google WAN, there are a number of reach-
ability restrictions enforced in the Stanford network by
different ACLs. Examples of such policies include isola-
tion of machines belonging to a particular research group
from the rest of the network, or limitation on the type of
traffic that can be sent to a server IP address. For ex-
ample, all TCP traffic to the computer science depart-
ment is blocked except for those destined to particular
IP addresses or TCP port numbers. In addition, there is
a global reachability goal that every edge router be able
to communicate to the outside world via the uplink of
a specified router called bbra rtr. Finally, due to the
topology of the network, the network administrators de-
sired that all paths between any two edge ports be no
longer than 3 hops long to minimize network latency.

In this experiment we test all these policies. To do so,
we connect 16 source nodes, one to each router in the
plumbing graph. To test the maximum-3-hop constraint,
we connected 14 probe nodes, one to each OZ router. We
also placed a probe node at a router called yoza rtr to
check reachability policies at the computer science de-
partment. NetPlumber took 0.5 second to create the ini-
tial plumbing graph and 36 seconds to generate the initial
check results. We found no violation of the reachabil-
ity policies of the computer science department. How-
ever NetPlumber did detect a dozen un-optimized routes,
whose paths take 4 hops instead of 3. We also found 10
loops, similar to the ones reported in [8]10.

We then tested the per-update run time of NetPlumber
by randomly selecting 7% of rules in the Stanford net-
work, deleting them and then adding them back. Figure 9
shows the distribution of the per-update run time. Here,
the median runtime is 50µs and the mean is 2.34ms. The
huge difference between the mean and the median is due
to a few outlier default rules which take a long time to
get inserted and deleted into NetPlumber.

6.4 Performance benchmarking
The previous two experiments demonstrated the scalabil-
ity and functionality of NetPlumber when checking ac-
tual policies and invariants of two production networks.

10We used the same snapshots.

Network: Google Stanford Internet 2
Run Time mean median mean median mean median

Add Rule (ms) 0.28 0.23 0.2 0.065 0.53 0.52
Add Link (ms) 1510 1370 3020 2120 4760 2320

Table 3: Average and median run time of NetPlumber, for a single
rule and link update, when only one source node is connected to Net-
Plumber.

However, the performance of NetPlumber depends on s,
the number of sources in the network which is a direct
consequences of the quantity and type of policies spec-
ified by each network. Thus it seems useful to have a
metric that is per source node and even per policy, so
we can extrapolate how run time will change as we add
more independent policies, each of which require adding
a new source node.11 We provide such a unit run time
benchmark for NetPlumber running on all three data sets:
Google WAN, Stanford and Internet 2.

To obtain this benchmark, we connect a single source
node at one of the edge ports in the plumbing graph of
each of our 3 networks. Then we load NetPlumber with
90% of the rules selected uniformly at random. Finally,
we add the last 10% and measure the update time. We
then repeated the same experiment by choosing links in
the network that are in the path of injected flows, delet-
ing them and then adding them back and measuring the
time to incorporate the added link. The results are sum-
marized in Table 3. As the table suggests, link up events
take much longer (seconds) to incorporate. This is in fact
expected and acceptable, because when a link is added,
a potentially large number of pipes will be created which
changes routing of flows significantly. Fortunately, since
the link up/down event should be rare, this run time ap-
pears acceptable.

7 Discussion
Applying to Conventional Networks: Conceptually
NetPlumber can be used with conventional networks as
well, as long as we implement a notification mechanism
for getting updated state information. One way to im-
plement such mechanism is through SNMP traps, where
every time a forwarding entry or link state changes, Net-
Plumber gets a notification. The drawback of such mech-
anism is resource consumption at the switch side.

Handling Transient Violations: Sometimes, during
a sequence of state updates, it is okay to have a transient
violations. To handle these cases, NetPlumber probes
can be turned off during the transition and turned back
on once the update sequence is complete, at which point
the violations will be detected and reported.

Handling Dynamic Policies: In multi-tenant data
centers, the set of policies might change dynamically

11By contrast, dependent policies can be checked using a single
source node.
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upon VM migration. NetPlumber can handle dynamic
policy changes easily: in the plumbing graph, we attach
a source node to every edge port (as we did in the case
of Google WAN), then we can update policies by chang-
ing the location and test condition of probe nodes. This
update is fast as the structure of the plumbing graph and
routing of flows doesn’t change.

Limitations of NetPlumber: NetPlumber, like HSA
relies on reading the state of network devices and there-
fore can’t model middleboxes with dynamic states. To
handle such dynamic boxes, the notion of “flow” should
be extended to include more states beyond header and
port. For example, to handle load balancers we can add
probability to each flow: each flow will carry with itself,
its probability and probe nodes can also include it in their
checks.

Another limitation of NetPlumber is its slower link up-
date time. As a result, it is not suitable for networks
with a high rate of link up/down events such as energy-
proportional networks.

8 Related Work
Recent work on network debugging, especially on trou-
bleshooting SDNs, focuses on the following directions.

Programming foundations: Frenetic [3] provides
several high-level abstractions and modular constructs to
free programmers from worrying about low level details.
Specifically, Reitblatt et al. provide a way to achieve
per-packet and per-flow consistency during network up-
dates [13]. NetPlumber, on the other hand, treats a con-
trol program as a blackbox to be checked.

Offline checking: Once a control program is writ-
ten, tools can periodically check for network correctness.
Control plane checking is done by rcc [2] to verify BGP
configurations. NICE [1] applies model checking tech-
niques to explore the state space of OpenFlow control
programs to discover bugs. HSA [8] uses a geometrical
model to abstract the data plane of network boxes and
checks for correctness against invariants. Anteater [10]
uses boolean expressions and SAT solvers for network
modeling and checking. However, offline checking can-
not prevent bugs from damaging the network until the
periodic check runs.

Online monitoring: Several tools help troubleshoot
network programs at run-time. OFRewind [14] captures
and reproduces the sequence of problematic OpenFlow
command sequence. ATPG [16] systematically gener-
ates test packets against router configurations, and mon-
itors network health by perioidically sending these tests
packets. NDB [4] is a network debugger that sets break-
points and packet backtraces in SDN, so that the abnor-
mal behavior can be analyzed step-by-step. These tools
complement but not replace the need for real-time policy

verification.
VeriFlow [9], is the work most closely related to Net-

Plumber. VeriFlow also verifies the compliance of net-
work updates with specified policies in real time. It uses
a trie structure to search rules based on equivalent classes
(ECs), and upon an update, finds out the affected ECs and
update the forwarding graph for that class. This in turn
triggers a rechecking of affected policies. With similar
run time performance, NetPlumber has the advantage of
being protocol independent and capable of handling ar-
bitrary modification action to header, including rewrite
and encapsulation (Veriflow can only handle forward ac-
tion).

9 Conclusions
This paper introduces NetPlumber as a real time policy
checker for networks. In other words, unlike earlier work
in static checking that runs on periodic snapshots of the
network, NetPlumber is fast enough to pass every update
through a validation process before allowing it to actu-
ally take place. We also introduced an extensible regular-
expression like language, called Flowexp, for expressing
a wide range of policies. Since Flowexp may be too intri-
cate for administrators to use, we have also implemented
a higher level policy language (inspired by FML) imple-
mented in Prolog.

NetPlumber is useful as a foundation that goes be-
yond static policy checking. For example, it can be used
in ATPG [16] to allow the suite of ATPG tests packets
to be updated swiftly when the configuration changes.
Also NDB [4] may benefit from NetPlumber. Like GDB,
NDB allows setting break points in the system when a
specified condition is met. To achieve this goal, NDB
adds a ”postcard generating action” that captures and
sends samples of matching packets to a central database.
Here, again NetPlumber can be used to notify NDB when
a rule that requires postcard action is about to be added
to the network. While these are only two examples,
we believe that the ability to incrementally and quickly
do header space analysis will be a fundamental building
block for network verification tools going forward.
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