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Abstract
Many services need to survive machine failures, but de-
signing and deploying fault-tolerant services can be dif-
ficult and error-prone. In this work, we present Tardi-
grade, a system that deploys an existing, unmodified bi-
nary as a fault-tolerant service. Tardigrade replicates the
service on several machines so that it continues running
even when some of them fail. Yet, it keeps the service
states synchronized so clients see strongly consistent re-
sults. To achieve this efficiently, we use lightweight vir-
tual machine replication. A lightweight virtual machine
is a process sandboxed so that its external dependencies
are completely encapsulated, enabling it to be migrated
across machines. To let unmodified binaries run within
such a sandbox, the sandbox also contains a library OS
providing the expected API. We evaluate Tardigrade’s
performance and demonstrate its applicability to a vari-
ety of services, showing that it can convert these services
into fault-tolerant ones transparently and efficiently.

1 Introduction
Tolerating machine failure is a key requirement of

many services, but achieving this goal remains frustrat-
ingly complex. Many services that do not otherwise re-
quire a distributed system must, in some form, consis-
tently replicate the critical aspects of their system state
on different hosts. This requirement is particularly bur-
densome for simple applications that could, if not for the
risk associated with a single point of failure, be deployed
on a single machine running commodity software.

Tools exist to support developers writing fault-tolerant
services, such as replicated state machine libraries [6, 22]
and coordination services for consistent metadata stor-
age [5, 18]. However, even when this is possible, sup-
porting the semantics of these tools requires the efforts of
expert systems designers, and puts significant demands
on the service’s design.

A promising alternative is asynchronous virtual ma-
chine replication (VMR), as used in the Remus sys-
tem [11]. This approach transparently protects an arbi-
trary service by running it in a replicated VM. Externally
observable consistency is achieved by buffering network
output until a checkpoint of the system state that created
the output has been replicated. Output buffering means
that client-perceived latency will increase as the time to

capture and disseminate a checkpoint increases, motivat-
ing techniques to reduce the size of these checkpoints.

To address this, we introduce the concept of asyn-
chronous lightweight VM replication (LVMR), which
uses lightweight virtual machines (LVMs) in place of
VMs [3, 30]. A lightweight VM provides encapsulation
with a smaller memory footprint because background
operating system services are outside of the container.
This substantially reduces the time to create and repli-
cate checkpoints, leading to a reduction in both service
latency and replication bandwidth.

An LVM has a higher-level interface between guest
and host than a VM, so some techniques used in VMR
do not directly translate. We implement LVMR as an
extension that interposes on an existing, general binary
interface between an LVM guest and host. This requires
dealing with non-determinism in the interface, using ex-
isting calls to quiesce the system so a consistent snapshot
can be captured, and checkpointing through the interface.

To demonstrate the practicality of our design, we im-
plement it as a system we call Tardigrade. We show that,
through reasonable optimizations like in-memory check-
pointing, identification of hot pages, and delta encoding,
the cost of checkpointing can be made low. We find that
client-perceived latency impact for a simple application
is ∼11 ms on average, with a 99.9th quantile latency un-
der 20 ms. Furthermore, this latency does not skyrocket
when external processes like OS updates run on the host.

Tardigrade uses primary-backup replication to survive
as many faults as there are backups. These faults must be
external to the service, e.g., power loss, disconnection,
or system crash, since replication cannot mask faults that
cause the primary to corrupt replicated state. Instead of
relying on synchrony assumptions, we use a variant of
Vertical Paxos [20] for automatic failure recovery. This
permits the use of an unreliable failure detector to decide
when to fail over the active replica, and allows replicas
to communicate over a standard network.

A key design goal of Tardigrade is that it permits sim-
pler design of fault-tolerant systems. We demonstrate
this by encapsulating and evaluating three existing ser-
vices that were developed without fault tolerance as a
first concern.

In summary, the contributions of this paper are:
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• We introduce the idea of asynchronous LVM repli-
cation (LVMR) and describe a complete design of a
system supporting it.

• We illustrate the practicality of our design by imple-
menting it in the Tardigrade system, applying opti-
mizations to make it performant, and evaluating the
resulting performance.

• We demonstrate how LVMR makes it easy to de-
ploy fault-tolerant services. To show this, we repli-
cate the FDS metadata service [27], ZooKeeper, and
Apache without changing their binaries.

2 Background and Motivation
In this section, we provide background needed to un-

derstand the motivation and design of our system. First,
§2.1 evaluates the cost of replicating OS background
state in VMR. §2.2 describes the concept of a lightweight
VM (LVM), which we use in Tardigrade. Finally, §2.3
overviews the specific LVM system used by Tardigrade,
Bascule [3], which we chose because of its extensibility.

2.1 Overheads in Asynchronous Virtual
Machine Replication

Remus [11] introduced asynchronous virtual machine
replication (VMR). In VMR, the protected guest soft-
ware is encapsulated in a VM, and snapshots of its state
are frequently sent to a backup host across the network.
On the backup, the VM image is resident in memory and
begins execution immediately upon primary failure.

The amount of time the guest is suspended during the
snapshot is minimized using speculative execution [26],
in which the guest executes while the most recent snap-
shot of its state is asynchronously replicated. To prevent
externally-observable inconsistencies, Remus buffers the
output of speculative execution, i.e., network packets,
and releases it only when the state that produced it is
durably replicated. This mechanism bounds the mini-
mum latency of the system observed by clients by the
amount of time required to take and replicate a snapshot.

To understand these overheads, we test two Xen-based
hosts connected by a 1 Gb/s network. We use RemusDB,
the highest performing version of Remus available, to
protect a Windows Server 2012 guest.

First, we measure the cost of the suspend/resume op-
eration Remus uses in isolation—without replication or
network buffering—on an idle guest. We find it is 10 ms
regardless of checkpoint interval. This is due to the over-
head of suspending an unmodified guest VM, which re-
quires the guest and each virtualized device to synchro-
nize its internal state, e.g., flushing processor caches to
RAM via an ACPI interrupt. Note that Linux can be par-
avirtualized to perform this synchronization much more
quickly, in <1 ms.

Next, we measure the effect of common OS back-
ground tasks on latency. Figure 1 evaluates ping response
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Figure 1: Effect of background tasks on ping latency of
Windows Server 2012 under Remus protection

time for both an idle baseline and when a single back-
ground OS task is running. We set a 50-ms checkpoint
interval for each case. This is a conservative choice.
While a lower interval would provide improved latency,
the benefits would be seen across all configurations, and
the workload throughput would suffer because the exper-
iment would spend more time in a suspended state.

The four background tasks we evaluate are common
and important services for Windows file servers:

1. Safety Scanner protects the OS against malware.
2. Search Indexer manages an index of file contents

and properties to optimize lookups.
3. Windows Update fetches and applies critical patches

to the OS.
4. Single Instance Storage deduplication improves

storage efficiency.
The most costly background activity we measure

is deduplication, which shows maximum incremental
checkpoint sizes of 691 MB after compression. This
causes delays of more than seven seconds to commit
states, during which all communication is buffered. This
is the primary contributor to the high ping times observed
in all tests. Even Safety Scanner, which dirties memory
at the most modest rate, still produces a more than 50%
increase in median latency.

These results support the intuition that checkpointing
the state of non-critical OS background services in a VM
has a significant cost in both replication bandwidth and
service latency.

2.2 Lightweight VMs
A traditional virtual machine provides the abstraction

of a dedicated machine complete with kernel mode, mul-
tiple address spaces, and virtual hardware devices. It
is therefore able to run traditional OSes, perhaps lightly
modified for paravirtualization, and can host multiple ap-
plications. In contrast, a lightweight VM (LVM) is con-

2
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structed from a single isolated user-mode address space,
referred to as a picoprocess [13]. An LVM typically
runs only a single application along with a library OS
(LibOS), which provides the application with the APIs
on which it depends. Past work on Drawbridge [30]
refactored an existing monolithic OS, Windows, to cre-
ate a self-contained LibOS running in a picoprocess yet
still supporting rich desktop applications.

Despite being able to run unmodified applications, an
LVM typically has substantially lower overhead than full
VMs. This is because it elides most OS components
not needed to implement application-facing interfaces,
such as the file system, device drivers, and service pro-
cesses. For example, the Drawbridge authors reported
a disk footprint of 64MB and working set of 16MB for
their Windows 7 LibOS [30]. Compared to typical VM
footprints measured in gigabytes, this small scale makes
lightweight VMs attractive for efficient replication.

2.3 Bascule
Bascule [3] is an architecture for LibOS extensions

based on Drawbridge. It defines a narrow binary inter-
face, the Bascule ABI, consisting of 40 downcalls and 3
upcalls implementing primitive OS abstractions: virtual
memory allocation and protection, exception handling,
threads and synchronization mechanisms, and finally an
I/O stream abstraction used for files and network sock-
ets. All interaction between a LibOS and the host must
traverse the ABI. Bascule extensions, such as our check-
pointer (§3.3), are loaded in-process with the LibOS and
application, and interpose on the ABI. Since the Bascule
ABI is designed to be independent of host OS and guest
LibOS, and to enable arbitrary nesting of implementa-
tions, extensions support a variety of platforms, and may
be composed at runtime.

3 Design
This section presents the design of Tardigrade. We

start with an architectural overview, then discuss each of
the pieces of that architecture in turn. Our design as-
sumes a fail-stop model: server machines will fail only
by stopping, not by acting arbitrarily.

3.1 Overview
Figure 2 illustrates the architecture of the Tardigrade

system. On each machine, we run an instance that will at
various times act as a primary service replica, a backup
service replica, or a spare. The orchestrator coordinates
these instances to ensure they act in concert as a con-
sistent, fault-tolerant service, using a variant of Vertical
Paxos [20]. The orchestrator uses an unreliable failure
detector to get hints about which instances have failed.

Each instance makes use of two subcomponents to do
its job: a Bascule component consisting of a host and
guest, and a network filter. The Bascule component runs
the service in a lightweight VM. The network filter only

releases guest output when the checkpoint of a state fol-
lowing its generation has been durably replicated.

The Bascule guest contains, like typical Bascule
guests, an unmodified application running atop a library
OS mimicking the OS the application expects. We leave
these components unchanged, and add a checkpointer be-
low the library OS that lets the Bascule guest checkpoint
its state or restore its state from a checkpoint.

3.2 Orchestration
The orchestrator manages the instances using the Ver-

tical Paxos protocol [20] and is divided into two compo-
nents: the unreliable failure detector and the view man-
ager. Note that our terminology differs slightly from that
of Vertical Paxos: we call the master an orchestrator and
call ballots views.

A checkpoint is a snapshot of the LVM’s state. A
full checkpoint is a self-contained checkpoint, while an
incremental checkpoint reflects only changes that have
been made to the LVM during an inter-checkpoint inter-
val, also known as an epoch. An incremental checkpoint
thus describes how to go from a pre-state to a post-state.

A view is an assignment of roles to instances; instances
can take on three roles. When primary it runs the service
and responds to client requests. When backup it records
checkpoints of the primary’s state so that it can become
primary if needed. When spare it simply waits until it is
needed as a primary or backup.

The primary of the first view starts a fresh LVM and
disseminates a full checkpoint, then transitions to peri-
odically taking incremental checkpoints. Checkpointing
involves the following steps: quiescing the guest, captur-
ing the checkpoint, resuming guest execution, and send-
ing the checkpoint to backups.

A received checkpoint is applicable at a backup if the
backup can restore it. A full checkpoint is always appli-
cable, and an incremental checkpoint is applicable if the
backup can recreate the incremental checkpoint’s pre-
state. For instance, if a backup has a full checkpoint and
the three incremental ones following it, then all four of
these are applicable.

Once a checkpoint is applicable at all backups, it is
stable. That is, as long as one of the backups or the pri-
mary remains alive, the system can proceed.

When the primary learns that a checkpoint is stable, it
decides the checkpoint. That is, it considers the check-
point to describe the next official state in the sequence
of service states. Thus the service’s logical lifetime is
divided into epochs punctuated by decided checkpoints;
we call an epoch decided when its ending checkpoint is
decided. Once an epoch has been decided, it is safe to
send any network packets the primary generated during
that epoch, because it will never be necessary to roll back
to an earlier state.

3
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Figure 2: Overview of Tardigrade architecture for replicating lightweight virtual machines (LVMs)

When a backup learns that a checkpoint is decided,
it can apply the checkpoint to its state. For a full
checkpoint, the backup starts a new LVM and initializes
its state to match. For an incremental checkpoint, the
backup performs the operations necessary to transform
the current pre-state into the post-state. We implement a
queue of applicable checkpoints at a backup that is pro-
cessed asynchronously with sending acknowledgements
to the primary; the queue size tuning knob balances
latency of checkpoint acknowledgements in the steady
state with recovery time in the relatively rare failover
event.

Each instance periodically sends a heartbeat to the or-
chestrator. After detecting a primary or backup failure,
the orchestrator proposes a new view, which includes the
identity of the new primary and backups. The new pri-
mary is, if available, the primary from the previous view;
otherwise, it is a backup from the previous view.

If the new primary was previously a backup, it stops
accepting checkpoints from the previous view and fin-
ishes applying checkpoints it has acknowledged. The
new primary then takes a full checkpoint, disseminates
it to the new backups, then asks the orchestrator to ac-
tivate the view. The orchestrator activates the view by
deciding that it follows the previous active view; then,
the new primary considers the initial checkpoint stable
and proceeds with further checkpoints.

When a backup is elevated to primary, the initial state
the backup uses is guaranteed to match a state of the
previous view’s primary at or beyond the last state the
primary knew to be stable. However, in the case it is
beyond the last state the primary knew to be stable, the
primary will not have released the network traffic gener-
ated between its last stable checkpoint and the backup’s
initial state. Note that this same technique was used in
Remus [11]; the insight is that losing the network output
of state that was successfully replicated mimics the case
of the actual network dropping packets, and services are
typically written to be robust to unreliable networks.

When a spare gets a message with the initial full
checkpoint of a new view, it saves and acknowledges the
checkpoint. When the primary later tells the spare that
the view is activated, the spare becomes a backup.

Note that an orchestrator may propose a new view but
never activate it. If machines fail during the view change,
the orchestrator may propose a different new view to suc-
ceed the current view. It will eventually activate only
one, and the initial checkpoints of the aborted views can
be discarded.

3.3 Checkpointer
Our checkpointer is designed as a Bascule extension

and is responsible for both capturing and applying check-
points. In Bascule, a guest LibOS uses a PAL to translate
the guest’s ABI calls into underlying system calls. The
checkpointer extends the system by interposing between
the two. In other words, it provides the Bascule ABI to
the guest, and satisfies the requests the guest makes by
passing them on to the PAL. From this position, it can
track all system objects (e.g., files, threads, synchroniz-
ers) that the guest uses, and it can virtualize system ob-
jects so that they are portable across machines.

A naive checkpoint would be a list of all ABI calls
made by the guest and a snapshot of its CPU state and
memory contents. However, this is impractical for two
reasons. First, it would produce extremely large check-
points. Second, ABI calls are not deterministic, so just
replaying them will not necessarily bring about the same
state on the new machine. Instead, the checkpointer in-
spects the current state and produces a list of actions that
can reproduce that state.
3.3.1 Memory tracking

The checkpointer tracks the following information for
each memory region allocated by the LVM: location,
protection, and which pages may have been modified
during the current epoch. This metadata is stored in an
AVL tree where each node represents a memory region.

Identifying a subset of memory that has not been mod-
ified in the preceding epoch is essential for generating ef-
ficient incremental checkpoints. Ideally the checkpointer
would use hardware such as page-table dirty bits for
this, but it is not accessible through the Bascule ABI.
Instead, the checkpointer uses a standard technique for
tracking memory modifications. First, before each epoch
the checkpointer write-protects all writable pages using
the VirtualMemoryProtect ABI call. During the

4
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epoch, when the guest writes a protected page, the check-
pointer intercepts the triggered access violation excep-
tion. The exception handler restores the original page
protection, sets the corresponding dirty bit in the meta-
data tree, and suppresses the exception from the guest.

Many optimizations of this general design are possi-
ble; §4.1 discusses the optimizations we implemented.

One complication is that although we can suppress
access violation exceptions incurred by the guest, we
cannot suppress exceptions incurred by the host. This
can happen when the guest passes the host a pointer to
memory the checkpointer has write-protected. So, before
passing any guest pointers to the host, the checkpointer
ensures that they are not write-protected. For pointers
to small objects, like an integer, the checkpointer sim-
ply substitutes pointers to its own stack, and then copies
the values into the guest-supplied pointers when the call
returns. For pointers to large objects, like a buffer, the
checkpointer touches all the pages in advance so that any
exceptions are incurred by it rather than the host.

3.3.2 File-change tracking
For each mutable private file system (FS) of the LVM,

the checkpointer tracks which parts have potentially
changed during the last epoch. For each file, the check-
pointer tracks possible changes to its existence, its meta-
data, and its blocks. Note that it does not track the actual
contents of those changes, as they can be read directly
from the FS during checkpointing.

Operations that can potentially change a file include
open, delete, rename, map, and write. However, all write
ABI calls are asynchronous, so the checkpointer tracks
changes due to a write only when the call has completed.
Before a write completes, a checkpoint will capture the
ongoing write to replay on restore, so there is no need to
capture the actual change to the file. For similar reasons,
the checkpointer does not track changes due to mapped
files until the region is unmapped.

3.3.3 Quiescence
To take a consistent snapshot of an LVM’s state, each

of its threads must first quiesce, i.e., pause so that it stops
mutating state. Additionally, because the Bascule ABI
does not provide a way for one thread to capture an-
other’s state, each quiescing thread must also capture its
own state with standard x86 instructions and store it in a
location accessible to the checkpointer.

We use different methods to quiesce a thread, depend-
ing on which of three states it is in: the middle of a block-
ing ABI call to the host, in the middle of a non-blocking
but nevertheless uninterruptible operation, or neither. A
thread in the latter state is quiesced by raising an inter-
rupt in the thread; the checkpointer’s interrupt handler
will initiate quiescence. Handling the first two states is
more involved.

Before a thread enters a non-blocking but uninterrupt-
ible state, such as a non-blocking ABI call or a code sec-
tion that mutates checkpointer-tracked state, the thread
acquires a checkpoint guard. This is essentially a per-
thread lock that is re-entrant since a thread holding a
guard may take an exception that itself requires a guard.
We implement the checkpoint guard as a simple atomic
counter. If a quiescence interrupt occurs while a thread
holds the guard, then the interrupt is ignored and the
thread sets a flag to quiesce when the guard is released.
This will happen shortly, since by assumption the thread
is in the middle of only non-blocking operations.

The final case to consider is when the thread has en-
tered a blocking ABI call. Fortunately, there are only two
indefinitely blocking ABI calls: ObjectsWaitAny,
which waits for one of an array of handles to be signaled,
and StreamOpen, which can block when asked to open
an outgoing TCP connection.

When the guest calls ObjectsWaitAny, the check-
pointer adds an additional handle to the list of han-
dles to be waited on; this extra handle is to the
quiescence-requested event. When the checkpointer
initiates quiescence, it sets this event, thereby wak-
ing any such blocked threads. When a thread returns
from ObjectsWaitAny, it quiesces if the quiescence-
requested event is set. Since the wait call was prema-
turely terminated, the thread repeats the call upon resum-
ing; if the wait had a relative timeout, then the thread
reduces it by the amount of time already spent waiting
and/or checkpointing.

When the guest calls StreamOpen with parameters
for opening an outgoing TCP connection, the thread first
captures its state and marks itself as quiesced. The thread
then proceeds with the blocking call since it will not hold
up any checkpoints that occur during the call. Upon re-
turn, the thread waits until any concurrent checkpoint-
ing completes, then rescinds its claim to be quiesced and
proceeds with execution. Note that this approach would
work for arbitrary calls, not just StreamOpen, that do
not mutate guest state. However, it requires an expen-
sive thread capture on each call, so we do not use it for
ObjectsWaitAny where a more lightweight solution
exists.

3.3.4 Dealing with non-determinism of Bascule ABI
The Bascule ABI has several sources of non-

determinism. The checkpointer must hide them so that
restoring a checkpoint results in a replica of the check-
pointed state.

The simplest and most widespread source of non-
determinism is handle identifiers. Because the host can
assign arbitrary identifiers to handles, there is no guar-
antee it will assign the same ones during restoration of
a checkpoint as were used at the time of checkpoint.
So, the checkpointer virtualizes handles by maintaining a

5
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mapping between guest virtual handles and host handles
and by translating handles in ABI calls.

A subtle source of non-determinism is address space
layout randomization (ASLR) [29, 35]. Host ASLR can
rearrange the contents of a read-only binary file, so even
if a primary and backup have duplicate file contents they
may diverge. To handle this, the checkpointer interposes
on the guest ABI call that maps binary files. Before re-
turning to the guest, the checkpointer performs all neces-
sary relocation to reflect the address where the file actu-
ally got mapped. In other words, the checkpointer en-
sures the guest’s binary-mapping ABI is deterministic
even though the host-provided ABI is not.

One source of non-determinism requires a small
change to the ABI. In the original Bascule ABI, when the
guest creates an HTTP request queue, the host assigns it
a non-deterministic ID that is then used by the guest in
subsequent calls to open HTTP requests. We address this
by changing Bascule’s ABI so that the guest assigns the
ID instead. This is the only case where we modify the
ABI. Modifying existing host and LibOS implementa-
tions to support Bascule’s new ABI should be relatively
straightforward: our modifications to the Windows host
and LibOS constitute only ∼250 lines.

3.4 Networking
The IP address clients use to connect to the replicated

service is the service address. Each instance devotes a
NIC to the service that is separate from the NIC it uses to
communicate with the orchestrator and other Tardigrade
instances. We call this the service NIC. Only the primary
sends traffic on the service NIC, including ARP packets,
so the network and clients see only one machine using
the shared address at a time.

To interpose on the service NIC, we implement a
network filter that suppresses non-primary output and
buffers primary output during epochs. The buffered out-
put of the primary is released only when the following
checkpoint is stable.

Buffering interacts with the current ABI in surpris-
ing ways, as discussed in §4.3. One consequence is
that, until the ABI changes from a socket-based to a
packet-based interface, TCP connections are broken on
a failover event.

4 Implementation
Our implementation includes the following compo-

nents, with line counts measured by SLOCCount [34].
• Bascule checkpointer extension: 17,056 lines of C,

plus 1,226 lines of Python to produce automatically-
generated hook functions (not separately counted).

• Network filter, implemented as a Windows kernel-
mode driver: 1,329 lines of C.

• Orchestrator and instance: 683 and 2,718 lines of
C#, respectively, plus 1,346 lines of common code
used by both for inter-communication.

• Plugin to let instance and checkpointer extension
communicate, using Bascule host’s support for ex-
tending the stream namespace: 2,773 lines of C++.

A limitation of our current implementation is that the
orchestrator runs on a single machine, so it is a sin-
gle point of failure for the system. To improve fault-
tolerance, our plan is to divide the orchestrator into two
components: the unreliable failure detector and the view
manager. The failure detector does not require consis-
tent state, so it can be made fault-tolerant using simple
stateless mechanisms; however, the view manager will
be redesigned as a state machine and run with a repli-
cated state machine library [6, 22].

The remainder of this section overviews some lessons
learned during the implementation of Tardigrade.

4.1 Memory checkpointing optimizations
This subsection describes the optimizations we use to

improve the performance of memory checkpointing.
The first optimization reduces checkpoint size by cal-

culating updates to memory at a finer granularity than a
page using a twin-diff-delta technique [2]. In this tech-
nique, the exception handler that executes when a write-
protected page is first written in an epoch stores a copy
of the pre-write contents of the page. Then, the check-
point at the end of the epoch uses delta encoding [17] to
capture the difference in the page content more precisely.

The next optimization selectively disables write-
protection for hot pages. Our heuristic for deciding that
a page is hot is exceeding a threshold for the number of
consecutive epochs that the page has been written to, de-
faulting to three. When write-protection is disabled for
a hot page, the checkpointer simply assumes that it is al-
ways dirty. However, a side-effect of this mechanism is
that the checkpointer cannot detect when the hot page is
no longer being written by the guest, so every epoch we
flip each hot page to cold with a fixed probability. We
found performance to be fairly insensitive to this value
of in a broad range; we default to the value 1/16 which
lies within that range. An alternative would be to use
twin-diff-delta to detect when a hot page has not been
written in a given epoch; we plan to investigate this in
future work.

Another important optimization uses parallelism to re-
duce the time to snapshot memory changes. Our check-
pointer maintains several threads, roughly one per core,
and disseminates independent memory-snapshotting
tasks to them via a shared task queue. We could have par-
allelized other checkpointing operations besides memory
snapshotting, but found it generally not to pay off: other
operations are so quick or rare that queuing and schedul-
ing time overwhelms the benefits of parallelization. So,

6
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the only other snapshotting operation we parallelize is
capturing thread states.

Normally, an epoch ends when (1) the previous
epoch’s checkpoint has been disseminated to the backups
and acknowledged, and (2) the current epoch’s duration
is greater than some minimum, typically set to zero. Our
final optimization, checkpoint capping, can end an epoch
earlier based on the rate of memory dirtying in the guest.
Checkpoint capping mitigates the effect of rapid memory
dirtying on increased time to take a checkpoint, which
is especially problematic for guests running in platforms
with garbage collection. The goal of checkpoint capping
is to automatically end the epoch before the resulting
checkpoint can get too large. However, during the epoch
it is infeasible to efficiently and precisely predict the po-
tential checkpoint size while accounting for additional
optimizations like delta encoding. So, the heuristic we
use is to prematurely end the epoch once the number of
dirtied pages reaches a configurable threshold.

4.2 In-memory checkpoints
We found that writing checkpoints to files on a Win-

dows host dominated the cost of checkpoint capture and
dissemination, even when the files are not stored on disk.
So, instead of using files, each instance shares a mem-
ory region with the checkpointer extension. The check-
pointer captures checkpoints directly to this shared mem-
ory, and the instance copies checkpoints received over
the network directly into it as well. The section defaults
to 1 GB; if this is too small for a particular checkpoint it
uses a file instead.

4.3 Breaking connections
The Bascule ABI supports networking through a

socket interface. To open a TCP or UDP socket, the guest
opens a specially-named stream. To send or receive on
that socket, the guest writes or reads the stream handle.

This socket-based interface presents a challenge: since
TCP session state is in the host rather than in the guest, it
cannot be seen or modified by the checkpointer. There-
fore, when restoring an LVM on a new machine, the
TCP state will be different and the guest will not be able
to communicate over existing connections. To address
this problem, the checkpointer breaks all TCP connec-
tions before restoring the guest. This is implemented
by restoring TCP and HTTP streams as a handle to a
special event that is always signalled. When the re-
stored guest starts running and calls an operation on
such a handle, the operation will return immediately with
STATUS CONNECTION RESET.

Our hypothesis is that services are written to recover
from such transient disconnections, and we find that this
hypothesis holds for the services evaluated in §5. A
cleaner solution would be to modify the ABI to support

checkpointing guest networking state so that connections
can be transparently migrated across hosts.

This has taught us a lesson about the design of Bas-
cule. The socket ABI was chosen for expedience, since it
obviated the need to build a network stack in the LibOS.
The ABI designers were aware that this choice was prob-
lematic for compatibility and portability; our work on
Tardigrade demonstrates that it also interferes with mi-
gration. We believe that the path forward for the Bascule
networking interface is to use packets rather than sock-
ets as the interface between guest and host, and we are
working with the Bascule development team to realize
this goal. An additional benefit of a packet-based inter-
face is to enable packet buffering within the checkpointer
extension itself instead of requiring an external network
filter.

4.4 Network buffering
Network buffering effectively increases the round-

trip time of connections to the server, increasing the
bandwidth-delay product of each connection. For TCP
connections, this necessitates both a large window size
and a large buffer for sent but unacknowledged packets.
A Windows host detects this high delay and adjusts the
TCP window size in response, but it does not automati-
cally increase the send buffer size.

To fix this, we update the DefaultSendWindow
registry setting so the send buffer size exceeds the ex-
pected bandwidth-delay product. Note that this setting
should also be managed on any client that sends signifi-
cant traffic, because network buffering on the server de-
lays acknowledgment of client packets, causing the client
to buffer sent packets for up to two epochs.

5 Evaluation
5.1 Methodology

The machines we use in our experiments are Dell
PowerEdge R710 rack servers. Each is configured with
two quad-core 2.26 GHz Xeon E5520s, 24 GB RAM,
two Broadcom BCM5709C NetXtreme II Gigabit Eth-
ernet NICs, and a Seagate Constellation ST9500530NS
500 GB SATA disk. All the NICs are connected to a sin-
gle 48-port switch.

Except when otherwise specified, we use four ma-
chines: the primary and orchestrator. the backup, the
spare, and the client. On each machine, Tardigrade uses
one NIC and the replicated service uses the other. The
client machine runs Windows Server 2008 R2 Enterprise,
and the other machines run Windows Server 2012 R2
Datacenter. To minimize latency, we configure the sys-
tem to checkpoint as frequently as possible, i.e., to initi-
ate a checkpoint as soon as the previous one is stable.

Our evaluation covers a range of microbenchmarks
and real-world services. The microbenchmarking exper-
iments use a simple ping server that listens on a UDP
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Figure 3: CDF of latency seen by ping client, alongside
CDF of checkpoint interval

port and responds with pongs. This ping server can be
configured to dirty memory at a given rate by looping
through a 100 MiB region one byte at a time, increment-
ing each byte modulo 256. To ensure the ping service
achieves this dirtying rate, the microbenchmarks disable
the checkpoint-capping optimization described in §4.1.
Also, the memory-dirtying algorithm accounts for real
time: e.g., when it is unscheduled, it makes up for the lost
time by dirtying memory until caught up. The client of
the ping service sends 100,000 requests, one every 2 ms.

5.2 Latency impact
Our first experiment evaluates the base latency over-

head of Tardigrade by running the ping server without
memory dirtying and measuring the ping response times
seen by the client. Figure 3 shows the CDF of this la-
tency.

Running the service in Tardigrade increases the aver-
age latency from 0.5 ms to 11.6 ms, but the 99.9% quan-
tile latency is not substantially higher, only 17.5 ms. The
proximate cause of this latency is the interval between
consecutive checkpoints, whose CDF is also shown in
Figure 3. As expected, the average service latency is the
baseline service latency plus 1.5 times the average check-
point interval. After all, if the server sends a packet at
time t, Tardigrade will release that packet when the in-
cremental checkpoint covering t is stable, i.e., at the end
of the subsequent interval.

We also measured CPU utilization during this experi-
ment to evaluate CPU overhead. We found that the base-
line utilization of the unprotected service was 7.3%, that
running the service in Bascule slightly increases utiliza-
tion to 7.9%, and that running it in Tardigrade modestly
increases utilization to 13.5%. Most of the observed uti-
lization increase in Tardigrade is from the orchestrator
and primary instance processes.

5.3 Effect of dirtying rate on latency
Next, we evaluate the effect of memory-dirtying rate

on latency; we expect that higher memory-dirtying rates
will increase checkpoint size, thereby increasing the time
required to replicate each checkpoint over the network.
Figure 4 shows the latency observed by the client as the
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memory-dirtying rate increases from 0% to 50% of the
network speed, i.e., from 0 to 512 Mb/s.

When the dirtying rate is 10% of the network band-
width, i.e., 100 Mb/s, the client latency is reasonable,
even at the 99.9th quantile. However, as the rate of mem-
ory dirtying rises, the latency seen by clients rises non-
linearly. Indeed, Figure 4 only goes to 50% because a
dirtying rate of 60% gives average latency over half a
second.

This latency is not due to CPU time. The primary ma-
chine’s CPU utilization generally decreased as the dirty-
ing rate increased, presumably since more time was spent
waiting for the network and the backup.

Figure 5 shows the cause: as expected, average check-
point size increases as dirtying rate increases. We see
that the non-linearity of the increase in client latency
tracks the non-linearity of the increase in average check-
point size. This non-linear effect occurs because larger
checkpoints take longer to disseminate, leading to to
longer periods the service running asynchronously with
checkpoint dissemination, which leads to even larger
checkpoints. Note that this feedback loop stabilizes to
an equilibrium; we do not see it increase with time and
cause the distribution to diverge. We expect equilibrium
as long as the memory-dirtying rate does not exceed the
rate of checkpoint capture and dissemination.

These results suggest that asynchronous replication is
a poor fit for workloads with sustained memory-dirtying
rates that are a significant fraction of the network band-
width. Fortunately, as shown later in this section, there
are useful services with tractable memory-dirtying rates.

8



USENIX Association 	 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)  583

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80

C
D

F
 %

Latency (ms)

1 backup, no dirtying
2 backups, no dirtying

1 backup, dirty rate 10%
2 backups, dirty rate 10%
1 backup, dirty rate 20%

2 backups, dirty rate 20%

Figure 6: Effect on client latency of adding a backup.
Memory-dirtying rate is represented as a percentage of
network bandwidth.

 0
 5

 10
 15
 20
 25
 30
 35

50th
quantile

95th
quantile

99th
quantile

99.9th
quantile

L
at

en
cy

 (
m

s)

Baseline

12
15 16 17

Safety Scan

12
16 18

22
Search Indexer

11
15 16 18

Update

12
16 17 18Deduplication

12
15 17

22

Figure 7: Effect of external processes on latency seen by
ping client. Format mirrors that of Figure 1.

5.4 Effect of additional backup
Tardigrade can use multiple backups to tolerate over-

lapping failures of more than one machine; however,
replicating to multiple backups increases the time needed
for a checkpoint to be stable. To evaluate this effect, we
measure the effect on latency of running the ping service
with two backups instead of one. Note that our current
implementation does not use IP multicast; if it did, this
effect would be significantly reduced.

Figure 6 shows ping latency as a function of both
dirtying rate and number of backups. Without dirtying,
adding a backup increases latency by only a few mil-
liseconds, which is still quite manageable. With a dirty-
ing rate equivalent to 10% of the network bandwidth,
the latency increase is higher than that incurred when
adding the same amount of memory dirtying using a sin-
gle backup. This non-linearity occurs for the same rea-
son as in §5.3; as in those experiments, this acceleration
reaches a stable equilibrium: we do not see the check-
point interval increase with time.

5.5 Impact of external processes
Next, we evaluate the latency impact from resource-

intensive processes running on the host, external to the
LVM. This experiment uses the ping server without
memory dirtying. Recall that we evaluated Remus us-
ing this experimental setup in §2, with results shown in
Figure 1.

As expected, Figure 7 shows that the impact of ex-
ternal processes on the latency of a service running in
Tardigrade is dramatically reduced compared with run-

ning in Remus. Indeed, the impact is nearly undetectable
for the 99th quantile and below, and hardly noticeable
at the 99.9th quantile. We find that external processes
cause occasional higher checkpoint periods, likely due
to scheduling contention. However, the checkpoint sizes
remain unaffected, resulting in 99.9th-quantile latencies
in Tardigrade under 25 ms despite external processes that
caused 99.9th-quantile latencies of multiple seconds in
Remus.

5.6 Failover time
To evaluate the time to recover the service when an in-

stance fails, we use a variant of the client that measures
failover times as a long period with no response, i.e., a
period with zero service bandwidth. We run the experi-
ment 100 times in each of two scenarios: primary failure
and backup failure.

The median recovery time is 500 ms in the backup-
failure scenario and 700 ms in the primary-failure sce-
nario. The difference between these two scenarios re-
flects the time for the new primary to start running; be-
cause we keep each backup’s in-memory state and ob-
jects up to date, this startup cost is only 200 ms. The
remaining time is largely due to the 100 ms failure-
detection timeout and the time to take a full checkpoint
and disseminate it to the new backup. The median size of
this full-checkpoint transfer is 26.9 MB, which the new
backup takes 225 ms to download.

Note that many services will have larger memory foot-
prints and thus commensurately longer failover times.
For instance, the remainder of this section evaluates three
real services in Tardigrade. Interruption with a failure at
a random point induced full checkpoints of 36 MB for
the metadata service, 170 MB for the coordination ser-
vice, and 636 MB for the web service. Sending the latter
over a 1 Gb/s link would take at least 5 s.

An operation that is not on the critical path for recov-
ery is the new backup initializing its LVM. This is be-
cause we let the backup acknowledge checkpoints, in-
cluding full ones, after queueing them for later applica-
tion. When we prevent this by substantially decreasing
the queue size, median response time for the backup-
failure scenario becomes 8.8 s. This high figure demon-
strates that checkpoint queueing and keeping the backup
up-to-date significantly reduce failover delay.

5.7 FDS metadata service
In this and the following two subsections, we evalu-

ate Tardigrade’s performance on real services. First, we
evaluate a custom configuration metadata service writ-
ten by colleagues for the FDS research project [27]. In
normal operation, this service experiences low traffic be-
cause it simply sends and receives periodic heartbeats
and informs clients and disk servers when failures occur.

9
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Figure 8: Distribution of checkpoint periods when run-
ning the FDS metadata service, during various phases

This experiment uses the FDS cluster’s 10 Gb/s net-
work so that the FDS cluster can run as normal but use
our fault-tolerant metadata service. However, Tardigrade
still uses a 1 Gb/s port for checkpoint dissemination so
that the results are comparable to other results presented
in this paper.

This experiment proceeds in several phases. First, the
metadata service starts up and then idles for one minute.
Then, the FDS cluster with 70 disk servers starts up, each
of which must communicate with the metadata service to
receive a role assignment. Then, ten clients begin exe-
cuting FDS’s stock write-intensive load-testing tool, and
the cluster runs normally for two minutes. Finally, we
kill one disk server process every ten seconds, provoking
the metadata service to react to the departures.

Figure 8 shows the resulting distribution of check-
point interval. Initially, the checkpoint interval averages
17.4 ms, reflecting an average checkpoint size of 0.9 MB.
As the cluster comes online and requests assignments,
the checkpoint interval increases but never goes above
64 ms. When the cluster is up and handling requests from
disk servers and clients, checkpoint interval maintains a
modest average of 35.2 ms, reflecting checkpoint sizes
averaging 1.8 MB. This low activity is not surprising,
since FDS was designed to reduce load on its metadata
service by caching the metadata at participating parties.
It is thus an ideal candidate for Tardigrade.

5.8 ZooKeeper coordination service
Our next real service is ZKLite, a custom in-memory

implementation of the ZooKeeper server API, written in
Java by one of the co-authors for a separate research
project. We initialize the server state for the benchmark
by creating a balanced binary znode tree of depth 10.
The benchmark then executes 100,000 operations, where
each operation either reads or writes the data of a ran-
dom znode. Writes are done with probability 1/3, and
write a uniformly random amount of data between 0 and
10 KB. Operations are launched in parallel, with at most
100 outstanding at once. We report results for the last
90% of operations to reflect steady-state performance.

Since this service is written in a garbage-collected lan-
guage, it experiences occasional periods of fast memory
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dirtying. So, we enable checkpoint capping as discussed
in §4.1. A key parameter here is the number of pages
dirtied in an epoch before triggering quiescence. If this
parameter is low, the service spends a lot of time qui-
esced instead of processing client requests. On the other
hand, a high parameter value results in large checkpoints
and thus increased buffering time for outbound packets.
Both manifest as high client latency. Figure 9 shows the
effect on latency of various parameter settings; infinity
means that checkpoint capping is turned off. We see
that performance is improved substantially by the use of
checkpoint capping, is best when quiescence occurs after
about 1,000 pages dirtied per epoch, and is fairly insen-
sitive to this parameter value over the range 750–1,500.

Note that other services and workloads may have dif-
ferent ideal values for this parameter. For instance, if
a service has low load, it can accommodate being fre-
quently unscheduled, and thus may perform better with
a low cap. If a service has high baseline latency, then
the effect of network buffering will be relatively incon-
sequential, and a higher cap may be best.

Having established what parameter to use for check-
point capping, we compare performance under Tardi-
grade to baseline performance. Figure 10 shows the re-
sults of benchmarks run under three setups: unreplicated;
unreplicated, but running in Bascule; and in Tardigrade.
The Bascule-only line shows that the overhead of run-
ning in Bascule contributes little to the higher latency
seen, so as expected it is asynchronous replication that
contributes most to latency.

As discussed in §5.2, outbound buffering causes de-
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Figure 11: Performance of MediaWiki in Apache with
different numbers of client threads

lay of 1.5 times checkpoint interval duration. That dura-
tion, also shown in Figure 10, accounts for most of the
increased latency; the rest is due to overhead of repli-
cation such as handling access-violation exceptions due
to memory tracking. The effect of checkpoint capping
manifests at the high end of the latency distribution; dur-
ing periods of high memory dirtying, the service is fre-
quently quiesced, delaying client requests.

The lessons we draw are as follows. Tardigrade can
replicate ZKLite under modest load, but at a noticeable
latency cost, on the order of 60 ms. The service’s use
of garbage collection leads to periods of high memory
dirtying, which temporarily cause even higher latency.
Checkpoint capping can mitigate this problem but not
eliminate it, by reducing the time spent buffering packets
at the cost of delaying execution of the service.

5.9 Web service
Our web service is the popular MediaWiki running on

Apache. Its use of dynamic PHP-generated pages instead
of static content is typical for a modern website, and
stresses Tardigrade by causing mutation of the service’s
in-memory state. We use Apache version 2.4.7, PHP
v5.5.11, and MediaWiki v1.22.5 backed by a SQLite
database. We enable the Alternative PHP Cache for in-
termediate code and MediaWiki page data.

We operate the server in three modes: normal, within
Bascule, and within Tardigrade. We benchmark the ser-
vice using multiple worker threads on the client, each of
which repeatedly fetches the 14-KiB main page over a
persistent HTTP connection, waiting for the completion
of each fetch before initiating the next. We measure the
system once it has reached steady state.

Figure 11 shows results under two load conditions: ei-
ther 10 or 50 client threads. We see that some of the
overhead of Tardigrade comes from running in an LVM
and some is due to replication. In particular, the Bas-
cule LVM adds significant latency to this workload be-
cause each request issues many small file I/Os, primarily
stat calls, each of which requires an RPC to a separate
security monitor process. This overhead is effectively
amortized through batching and pipelining at 50 client
threads, giving a significant increase in throughput with
little added latency. In contrast, the latency overhead due

to replication does increase with load: as load increases,
so does the memory-dirtying rate and thus the checkpoint
size and interval. With 10 client threads, the checkpoint
interval average is 54.4 ms, but with 50 client threads it
balloons to 475 ms. We conclude that web services may
need modest load to be amenable to LVMR.

5.10 Complexity of services
The real services we use require no modifications to

run under Tardigrade, supporting our hypothesis that
Tardigrade can make unmodified binaries into fault-
tolerant services. In the cases of the FDS metadata ser-
vice and ZKLite, this also supports our hypothesis that
Tardigrade can reduce code complexity and developer ef-
fort. According to the CodePro plugin for Eclipse, ZK-
Lite is 24,082 lines of code, less than the 30,889 lines for
the Apache ZooKeeper server. The smaller count reflects
the fact that ZKLite does not have any code for deal-
ing with failures. Further, FDS’s metadata service was
written two years ago on the assumption that someday it
could be rearchitected for fault tolerance, but in that time
no one at Microsoft has found the time to do so. Running
it within Tardigrade makes the service fault-tolerant with
no developer effort.

6 Discussion and Future Work
§6.1 distills the results of our evaluation into a cate-

gorization of services that may be good candidates for
LVMR. Then, §6.2 discusses directions for future work.

6.1 Candidate service characteristics
Providing fault tolerance at the virtualization layer

saves development effort at the expense of runtime per-
formance. Based on our evaluation, we offer some guid-
ance on the classes of applications for which the over-
head of Tardigrade may or may not be reasonable.

An important characteristic to consider is the rate and
magnitude of memory dirtying. If the memory-dirtying
rate is significant relative to the network bandwidth, then
LVMR will spend too much time taking checkpoints
and transmitting them to backups. Our evaluation sug-
gests that memory-dirtying rates above ∼40% of net-
work bandwidth will cause significant delays. Also, as
shown in §5.8, occasional bursts of memory dirtying,
e.g., due to garbage collection, manifest as occasional
periods of high latency even with checkpoint capping.

There are other reasons a service may not be a good
candidate for LVMR. If a service must remain avail-
able despite software bugs within the service itself, then
LVMR is not applicable. Also, if the service can tolerate
very high latencies, then LVMR’s main benefit relative
to VMR is moot.

One class of promising candidate services for LVMR
is metadata and coordination services. These critical ser-
vices are usually required to be both highly available and
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strongly consistent because entire distributed systems de-
pend on them. Also, because these services tend to be
centralized and therefore a potential bottleneck, system
designers often use techniques such as client caching and
coarse-grained synchronization to minimize service load.
Another favorable characteristic is that the rate of state
mutation in such services tends to be low; e.g., the ratio
of read to write operations in a typical ZooKeeper work-
load varies between 10:1 and 100:1 [18].

Another class of good candidate services is niche web
applications with a small number of users, e.g., web sites
internal to an organization such as requisitioning systems
and charity event managers.

An example of a service that is not a good candidate
for LVMR is a DBMS. We ran SQL Server inside Tardi-
grade but found its performance to be poor due to large
checkpoints. For such workloads, customization may be
necessary, as done by RemusDB [24].

6.2 Future work
Our experience building Tardigrade has highlighted

areas for improvement in the underlying LVM technol-
ogy, Bascule. For instance, we discussed the difficulties
caused by having a non-deterministic ABI in §3.3.4 and
how Bascule would be improved by offering a packet-
based network interface in §4.3. We hope that these
lessons can inform the design of lightweight process con-
tainer technologies to support migration.

There are a number of potential future directions for
Tardigrade. First, we believe we can improve perfor-
mance of guests by making slow operations appear to
complete before they actually have, as done by Specu-
lator [26]. Tardigrade already supports buffering output
until a speculative operation has completed, and could
be extended to support rollback in the case of opera-
tion failure. A second direction is exploring how to tune
the library OS to improve Tardigrade performance: es-
sentially, this would be to LVMs what paravirtualiza-
tion [33] is to VMs. Third is grouping multiple LVMs
into checkpoint domains to coordinate checkpointing
among them, thereby essentially performing distributed
snapshots [7] for LVMs. This may improve performance
as we would not have to buffer network traffic between
LVMs in the same checkpoint domain.

7 Related Work
This section first surveys related work that transpar-

ently provides fault tolerance using encapsulation, then
briefly discusses alternate approaches to designing and
implementing fault-tolerant services.
Encapsulation-based fault-tolerance

The key insights of Bressoud and Schneider [4] were
that a VM is a well-defined state machine, and that im-
plementing state machine replication [32] at the VM
level is attractive in terms of engineering and time-to-

market costs compared to implementations at the hard-
ware, operating system, or application levels. Their sys-
tem enforced deterministic execution of a primary and
backup VM in lock-step through capture and replay of
input events by the hypervisor.

VMware’s server virtualization platform vSphere [31]
provides high availability for a VM using primary-
backup replication. Supporting multiprocessors can in-
cur a high performance cost in a deterministic record-
and-replay approach; instead, the most recent release
of vSphere, 6.0, executes the same instruction sequence
simultaneously in both VMs. This approach enables
vSphere 6.0 to add support for up to 4 virtual CPUs in
a protected VM.

Napper et al. [25] and Friedman and Kama [15] im-
plemented fault-tolerant Java virtual machines using an
approach similar to that of Bressoud and Schneider. This
choice of hypervisor reduces overhead compared to vir-
tual machine monitors that execute desktop operating
systems, but also limits the class of applications.

Replication may be achieved by copying the state of
a system instead of replaying input deterministically.
State copying applies to multiprocessors and does not re-
quire control of non-determinism, but replicating state
typically requires higher bandwidth than replicating in-
puts. In contrast to the replaying VM replication systems
discussed above, Cully et al. [11] implemented state-
copying primary-backup VM replication in Remus by
building on live migration in the Xen virtual machine
monitor [10]. Remus uses techniques such as pipelin-
ing execution with replication to address the high over-
heads of checkpointing VM state. Later work [24] estab-
lished still further gains by compressing the replicated
data, and other gains specific to paravirtualized systems.
Tardigrade builds on the approach used in Remus and
further reduces overhead.

Additional optimizations to VM replication have been
proposed [23, 36, 37]. Although some optimizations are
specific to a virtualization platform, others, such as spec-
ulative state transfer, may apply to Tardigrade and are
topics for future work.

An LVM is similar in many regards to the con-
tainers actively being developed for Linux, including
Docker [12] and its associated kernel support from
LXC/LXD [21]. While there has been previous work on
process-level migration in a research context [14, 28], the
current popular interest in Linux containers makes us be-
lieve LVMR may be valuable outside the research com-
munity. Container interfaces appear to be closing the gap
between the strong but efficient runtime isolation that is
achieved by LVM and LXC/LXD and the desire to more
easily deliver and manage the lifecycles of entire applica-
tion stacks in production environments. There is already
active open-source work on providing live container mi-
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gration for Linux [8], and the work described in this pa-
per is a natural next direction. Containers are actively
used to manage large-scale distributed applications to-
day, so integrating LVMR into those environments would
ease the development complexity associated with criti-
cal, central components like those described in §6.1.
Designing services to be fault-tolerant

Virtualization-based fault tolerance is useful not only
for protecting unmodified legacy applications, but also
for reducing the cost and effort of developing new fault-
tolerant services. In this section we overview some alter-
nate, non-transparent approaches and their complexities.

One approach is to write the service as a serializable,
deterministic state machine and rely on a library such as
BFT [6] or SMART [22] for replication. However, there
are several common errors the developer can make that
will invisibly undermine the library’s consistency guar-
antees, such as failing to serialize all relevant data, or
writing non-deterministic code [1]. More recent work
on Eve [19] has shown how to lift the requirement of
determinism, but still requires annotation of which ob-
jects need serialization and, for performance, which op-
erations are likely to commute.

Another approach is to micromanage the persistence
of state to a reliable storage backend at the application
level. One class of systems exemplifying this approach is
transactional databases. Such customization is likely to
yield good performance but requires careful engineering,
including non-trivial checkpointing and recovery mech-
anisms [16]. A range of backend solutions are available,
from locally-administered disk arrays [9] and distributed
file systems to cloud-hosted services.

8 Conclusions
This paper describes asynchronous lightweight virtual

machine replication, a technique for automatically con-
verting an existing service into one that will tolerate ma-
chine failures. Using LVMs instead of VMs has the ad-
vantage that only changes to the application’s state need
to be replicated to backups before network output can be
released. This leads to reasonable client-perceived laten-
cies, even at the 99.9th quantile, and even when external
processes share the host. To demonstrate the practicality
of LVMR, we implemented it in the Tardigrade system.
Tardigrade is not suitable for services that require ex-
tremely low latency or that modify memory at high rates.
But, for many other services, the benefit of transparent
fault tolerance will be a welcome aid to developers who
lack the time, inclination, or expertise to correctly make
their services consistent and fault tolerant.
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