
Link Layer–Based TCP Optimisation
for Disconnecting Networks

James Scott ∗

Intel Research Cambridge
15 JJ Thomson Avenue

Cambridge CB3 0FD, UK

james.w.scott@intel.com

Glenford Mapp †

Middlesex University
Bounds Green Road

London N11 2NQ

g.mapp@mdx.ac.uk

ABSTRACT
This paper discusses a link layer approach to improving TCP per-
formance in the face of periodic network disconnections. Network
disconnections are encountered in many scenarios, including being
out-of-range in a wireless network, during network handoff, and
also in the case of Networked Surfaces, a novel LAN technology
which provides the motivation for this work.

A “smart link layer” employing repetition of selected packets at re-
connection time is shown to improve TCP’s utilisation of a discon-
necting network to nearly 100%. This solution is also demonstrated
in the context of a Networked Surface prototype, improving TCP
performance for both bulk transfers and interactive traffic.

The smart link layer solution is lightweight, requiring little pro-
cessing and buffering only one packet per TCP connection. Itis
therefore easily retro-fitted to existing TCP-capable devices, with-
out modifying the internal operation of those devices.

Keywords
TCP, Disconnection, Link Layer, Mobile Networking

1. INTRODUCTION
The Internet Protocol Suite, in particular TCP/IP, has beena run-
away success. However, these protocols were conceived whenall
data communications was carried over wired links. Those days
are long gone and new environments such as mobile telephony and
Wireless LANs are now becoming ubiquitous.

In these new settings some of the original design assumptions of
TCP no longer hold true with respect to the handling of errorssuch
as lost packets. This unfortunately results in a large performance
degradation in these environments. This is because TCP assumes

∗Much of this work was done whilst at the Laboratory for Commu-
nication Engineering, which is part of the University of Cambridge.
†Much of this work was done whilst at AT&T Laboratories Cam-
bridge.

all packet loss is due to network congestion, whereas in these set-
tings it may be due to a number of factors including momentarily
high link error rates and handoffs of mobile devices betweenadja-
cent base stations.

By assuming network congestion is the cause of these errors,TCP
does the wrong thing: it drastically reduces its transmit window
and deploys the slow start algorithm. This results in unutilised net-
work bandwidth and applications experiencing increased network
latency. This behaviour has also been observed in networks where
devices can be disconnected, even when the disconnected interval
is near the human threshold of noticeability (under 1 second), as
well as longer durations (e.g. changing a network cable; 1 minute).
Part of the motivation for this work was the development of a novel
LAN technology called Networked Surfaces [21] which exhibits
disconnections; details of this technology are discussed further in
Section 3. Such disconnections may also be found when using
wireless networking with signal fading (e.g. due to being onthe
limit of the range available), in wireless handoff scenarios, or in
other situations where the network access path changes (e.g. when
a device is removed from a wired docking station and starts touse
a wireless network).

1.1 Related Work
Past attempts to address this problem can be neatly divided into two
distinct camps.

The first group does not attempt to change or modify the TCP pro-
tocol, instead using methods such as injecting, removing ordelay-
ing TCP packets based on a superior understanding about whatis
happening at the link layer. Snoop [6] looks at this problem in
the context of a wireless lossy link on the periphery of a wired net-
work. It requires that base stations have large memory and process-
ing power to store network packets while handoffs take place. The
base station also gives local acks and suppresses duplicateacks.
The ”Delayed Dupacks” scheme [23] looks at the same problem
but in the context of a reliable link layer protocol which acknowl-
edges each packet and performs fast retransmission. The system
allows the TCP receiver to delay acks by a set amount and does not
send them at all if a new packet arrives prior to the timeout. TULIP
(Transport Unaware Link Improvement Layer) [18] also attempts to
recover from retransmission losses before TCP coarse-grain time-
outs occur. AIRMAIL (Asymmetric Reliable Mobile Access In
Link Layer) [2] uses similar ideas.

The second group focusses on modifying how TCP works. Cac-
eres and Iftode [8] were one of the first to examine the problem

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200331

of disconnected periods affecting TCP, which they found to occur
during mobile handoff. They propose a system augmenting TCP
so that, on reconnection, a mobile host would retransmit a number
of duplicate acks, and so that a fast retransmit mode is automati-
cally entered. Other research focuses on the use of proxies to try to
isolate the effects of disconnection to a single link. I-TCP[3] does
TCP proxying at such a gateway and modification must be made
to the non-ideal segment (meaning the wireless side) to improve
performance. The disadvantage is that end-to-end TCP semantics
are not upheld, in that acks are sent for data which has not actually
reached the final endpoint. M-TCP [7] also uses a proxy approach
but maintains end-to-end semantics. It does so by using delayed
acks and by placing TCP in persist mode to avoid losing packets
during handoffs.

Other methods of modifying TCP behaviour use “flags” or con-
trol messages to trigger appropriate responses from TCP. Schemes
based on this general theme including Explicit Loss Notification
(ELN) [5], Explicit Bad State Notification (EBSN) [4], Explicit
Link Failure Notification (ELFN) [13], Route Failure Notification
(RFN) [9], as well as an ICMP-based solution [12].

It is also appropriate to summarise the recent efforts of standards
bodies, in particular the IETF, with regard to this problem.The
Performance Implications of Link Characteristics (PILC) Working
Group is looking at how the IP Protocol Suite works with differ-
ent types of link layers. The latest draft document from thisgroup
[16] attempts to characterise links and come up with best-practice
suggestions for system administrators. The disconnectionproblem,
described by that group as recovery from subnetwork outages, is
addressed by recommending that packets are not discarded during
an outage and an interface (such as those described above) bepro-
vided to allow IP and the higher layers to be notified once the link
has been restored. If this is not feasible, it is recommendedthat the
link layer retains one or more of the packets which could not be
transmitted during the disconnected period, and retransmits these
packets on reconnection. A similar approach was decided upon
when the research presented in this paper was begun, in March
2000, and experimental results concerning the performanceof this
solution are presented below.

Other recent work in the IETF includes the development of the
TRIGTRAN framework [10]. This proposal, like the PILC one,
involves a mechanism to alert the transport layer about changes
in individual links along the network path from source to destina-
tion. Under this scheme, hosts may request notification whentrig-
ger events such as Connectivity Interrupted, ConnectivityRestored
and Packets Discarded by Subnet occur. However, this work isvery
recent and is currently lacking in experimental support.

1.2 Paper Structure
This paper describes the implementation and experimental evalu-
ation of a “smart link layer” to solve the problem of TCP perfor-
mance degradation during disconnected periods, as motivated by
the introduction of a new type of LAN named Networked Surfaces,
which is prone to disconnections. Section 2 presents the TCPper-
formance degradation problem in detail. Section 3 then describes
Networked Surfaces and presents the motivation behind the work
as a whole, as well as the impetus for making the specific design
choices present in the smart link layer. Section 4 presents adis-
cussion of the design space for the smart link layer approach, and
identifies a number of candidate algorithms for experimental eval-
uation. Section 5 evaluates these algorithms on a testbed using a

simulated channel and analyses the performance characteristics of
the algorithms, and Section 6 goes on to determine the effective-
ness of the best-performing algorithm on the Networked Surface
platform, under both bulk transfer and interactive traffic patterns.
Finally, Section 7 compares the techniques presented in this paper
with those in the literature, and Section 8 concludes the paper, in-
cluding a discussion of future work.

2. THE EFFECT OF DISCONNECTION ON
TCP

TCP regards all packet losses as indications of congestion.While
working well for wired infrastructure, this has caused manyprob-
lems when combined with wireless access, in which channel errors
causing dropped packets are more common. Distinguishing and
coping with such losses in order to make TCP fully utilise a lossy
channel has been the subject of much research, as described in the
previous section.

However, there are many differences between disconnectionand
lossy channels, which means that the same solutions may not work
well for both cases. Firstly, in the lossy channel case, it isobvi-
ous that discovering the loss and retransmitting quickly isdesir-
able. However, with disconnection, retransmissions are not useful
until the link is re-established. On the contrary, transmitting and
retransmitting packets for a disconnected device is guaranteed to
be a waste of network bandwidth.

Secondly, the timescales for channel losses and disconnections are
very different, with the former operating on a packet-by-packet
basis and in the microseconds range, while disconnections may
last anywhere between milliseconds and minutes, dependingon the
cause. A short disconnection may be due to a Mobile IP handoff
occurring, while a longer disconnection may be due to a modem
connection failing and having to be reconnected. Disconnections
typically last longer than a TCP timeout, while potentiallybeing
shorter than the lifetime of a TCP connection.

In order to illustrate the detailed effects of disconnection on a run-
ning TCP connection, a simple experiment was conducted in which
a file was transferred over a disconnecting link. The TCP “trace”
occurring in this experiment is shown in Figure 1. As the figure
shows, the sender does not react to disconnection, and continues
sending (pointlessly) until its window is full. It then waits for acks,
but times out before any ack arrives and retransmits the firstpacket.
Retransmission occurs two more times, with an increasing timeout
period each time — this is because TCP assumes that the lack ofre-
sponse is due to the network being congested, and so tries to back
off to let the network recover. When reconnection occurs, TCP
does not immediately restart, instead continuing to wait until its
next timeout. When this happens, the packet gets through, causing
an ack to be received and further packet transmission to resume.
Note that over 1.5s of connected time was wasted by TCP in this
case.

3. NETWORKED SURFACES
The motivation behind this work is the introduction of a new type
of network, known as Networked Surfaces [21]. This network is
based on the use of physical surfaces such as desks to performnet-
working. Devices such as laptop computers and PDAs can acquire
network connectivity by simply being placed on top of such a sur-
face, in any position and at any orientation. Networked Surfaces
can also provide power to devices such as mobile phones, theycan

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200332

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5
x 10

6

Time(s)

S
eq

ue
nc

e
N

um
be

r

Figure 1: TCP File Transfer with Disconnection

TCP traces in this paper are presented as follows.

The vertical lines are transmitted segments, the dots are acks
returning. In zoomed-out plots (such as the one above), these
are hard to distinguish individually, and appear as sloped
line.

The shaded portions are periods of disconnection. Segments
dropped during these disconnected periods are shown with
crosses.

Segments and acks inserted by the smart link layer (to be
described) on reconnection are shown with circles and plus
marks, respectively.

support low-speed devices such as keyboards and sensors, and they
can locate devices to within a few centimetres and a few degrees.

The vision behind Networked Surfaces is that they provide the best
of both worlds between wired and wireless paradigms. As with
wired devices, networking is provided at a high bandwidth (5Mbit/s
in the first prototype) and does not have to be shared with other
devices in a physical space, and electrical power is provided. At the
same time, the inconvenience and hassle of carrying and connecting
cables is avoided, thus providing a very user-friendly environment
for mobile computing users.

Networked Surfaces operate by using electrically conductive pads
on the surface and the base of the device. When a device comes
into contact with a surface, a handshaking procedure causesthe
various conducting paths formed to be assigned to functionssuch
as ground, power, and networking buses. Disconnection is detected
by the custom link layer protocol used, and when it occurs, the con-
nected pads are returned to a disconnected state, ready for anew
connection. It is important to note that Networked Surface NIC
functionality is intended to be added to existing devices, including
devices which are not reprogrammable, and which therefore have
hardcoded TCP/IP stacks. Even when devices are reprogrammable,
e.g. with notebook computers, it is not normally expected that in-

stallation of a NIC’s software driver would entail modification of
the TCP/IP stack of the device.

One key issue in the usability of Networked Surfaces is the fact
that devices are susceptible to occasional disconnections, since any
movement of a device may cause the connected pads to lose con-
tact. When this happens, the pads must all undergo disconnection
and then re-execute the handshaking protocol before data transfer
can resume, a process typically taking between 200ms and 500ms.
Movement may happen because a user is actively operating thede-
vice (e.g. typing); they may therefore be directly inconvenienced
by the lack of connectivity (e.g. typing into a remote terminal).
The optimisation of TCP performance in these circumstancesis
therefore important to the usefulness of Networked Surfaces. Note
that Networked Surfaces donot suffer from high bit error rates; the
5Mbit/s prototype network offers a bit error rate of10

−10. They
also do not suffer from link-layer packet loss, as the link layer pro-
tocol used avoids losses due to collisions. For more information
see [20].

In considering the implementation of a solution to this problem, a
number of constraining factors are noted. Firstly, the solution must
be applicable to a variety of devices using Networked Surfaces, wh-
ich, as stated above, may not be internally modifiable. Even when
programmable, the device may have limited CPU, memory and/or
battery life, so minimal use of resources is important. The second
factor to be considered is that the solution must also run on the de-
vice acting as IP-level gateway between the Networked Surface and
other networks. A solution which demands high per-connection
processing and memory requirements may therefore limit scalabil-
ity of a Networked Surface to supporting many devices, and should
be avoided. Finally, it is important to be able to communicate with
unmodified corresponding hosts, as otherwise the solution would
be impractical for reasons of deployability.

These factors (in particular the first two) dictate that a solution op-
erating externally to TCP/IP is required. Such a solution, based in
the link layer and known henceforth as the “smart link layer,” is dis-
cussed in the next section, where the requirements above will have
a strong role in guiding the design decisions made. Further dis-
cussion on advantages and disadvantages of a link layer approach
when compared to solutions modifying TCP may be found in Sec-
tion 7.

4. DESIGN OF THE SMART LINK LAYER
The “smart link layer” augments a traditional link layer design with
limited awareness of transport-layer functionality, so that methods
can be applied in order that TCP connections which have stalled
during a disconnected period are promptly “kick-started” on recon-
nection, i.e. the flow of data is promptly resumed.

To illustrate the placement of the smart link layer in the network,
a network connection involving a disconnecting link is depicted in
Figure 2. This diagram shows the general case in which the dis-
connection is occurring on an unspecified link somewhere in the
network path between the end-to-end TCP connection. In practice,
it is expected that most disconnections will occur in the edge links,
e.g. on the access network for a mobile device, such as a Netwo-
rked Surface–enabled PDA. It is also possible that disconnections
may be present on more than one link of the network, for example
during peer-to-peer transmissions between two Networked Surface
devices.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200333

Figure 2: Network Connection including Disconnecting Link

For the purposes of the smart link layer solution, the key locations
in the network path are at either end of the disconnecting link; these
are represented as “Smart Link” in Figure 2. The smart link la-
yer operating at these points may modify the network traffic in a
number of ways. Network packets in transit for a given connec-
tion may be recorded, dropped or modified (the latter being more
computationally expensive than the other two as checksums must
be recalculated). Packets may also be inserted at these points in
one of two ways; as shown in the diagram, inserted packets mayei-
ther be placed in the outgoing queue for the disconnecting link (de-
noted hereon as “re-sending” packets), or in the incoming queue
as if they had just been received on that link (denoted hereonas
“re-receiving” packets).

One key advantage of a smart link layer solution is that disconnec-
tion and reconnection of the link may be automatically detected at
these points and may be used to trigger events. This is not true, in
general, for an end-to-end protocol, which may not be able toeasily
determine link states for individual links on the network path used.
In order for the smart link layer to force a reaction from the end-
to-end TCP engines at reconnection time, the obvious methodis to
insert one or more packets into the network at the moment when
reconnection is detected.

The design space for solutions involving link layer insertion of
packets on reconnection is discussed below. The priority motivat-
ing the particular designs discussed is the minimal use of resources
such as processing and memory, for the reasons described in the
previous section.

4.1 Parameters for Packet Insertion
Irrespective of whether inserted packets are re-sent or re-received,
there are a number of other issues to be solved. In particular, there
is the issue of how the inserted packets are constructed, andthe
issue of how many packets are inserted.

For the issue of the construction of inserted packets, thereare two
possibilities. These packets may either be copies of packets that
have already passed through the network (and were recorded by
the link layer), or they may be constructed afresh by the linklayer,
presumably using information gathered from monitoring previous

traffic. While the latter approach gives the maximum flexibility to
the smart link layer, allowing it to choose precisely the content of
its inserted packets to potentially force the quickest TCP recovery,
it is also resource-intensive in that the inserted packets must be
constructed and checksummed by the link layer itself.

In contrast, although the use of pre-transmitted packets provides
less flexibility, it is also much simpler to implement. Relatively lit-
tle “knowledge” of TCP/IP is required to be duplicated at thelink
layer, and the computation required to construct valid TCP/IP pack-
ets is avoided. In addition, the use of copying assumes less about
the particular TCP implementation being used, in that any unknown
options or parameters present in packets are simply passed on with-
out modification. For these reasons, this research focuses on the use
of copied packets retransmitted at reconnection time.

The next consideration is the number of packets that should be re-
peated on reconnection. While it is possible to have a policysuch
as link layer retransmission of all unacknowledged data on recon-
nection, this would require a large amount of buffer space, may
result in a large waste of bandwidth (as packets may be retransmit-
ted needlessly), and may interfere with TCP’s own retransmissions.
For these reasons, only one packet per TCP connection is buffered.
Under this policy, a quick “back of the envelope” calculation shows
that the overhead is not burdensome; an access router attached to
a disconnecting link would only need 3kb of storage per TCP con-
nection; with 100 edge nodes each using 10 active TCP connec-
tions, this would result in a requirement of 3Mb of extra RAM to
implement smart link layer functionality.

The one-packet policy still leaves the possibility for duplicates of
the buffered packet to be inserted on reconnection. Duplicate pack-
ets may be useful as they can cause the receiving TCP state machine
to be forced into a fast retransmit mode [15], since the packets will
cause duplicate acks to be received. The benefit of repeatingpack-
ets is therefore examined experimentally in this research.

4.2 Re-receiving Packets
Re-receiving means that the packets are inserted into the incoming
queues of the hosts on either side of the disconnecting link.While
such packets will not traverse the disconnecting link, theymay be

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200334

transmitted across other parts of the end-to-end network. The ad-
vantage of this approach is that, in the likely case that the discon-
necting link is at the periphery of the network, one of the TCPcor-
respondents will receive its kick-start very quickly, as nonetwork
latency will be incurred. A key disadvantage of re-reception is that
such packets are by definition never going to provide the receiving
TCP engines with any data they have not seen before. These pack-
ets are therefore confined to repeating old data, old acks, and/or old
window advertisements.

The choice of data to re-receive is determined by that data which is
most likely to cause TCP to immediately send out more data, and
initiate recovery mechanisms to re-establish data flow as quickly as
possible. Since these mechanisms are governed largely by the re-
ception of acks, the best information to re-receive is obviously the
highest ack already received. To achieve this, it suffices tocom-
pare each packet passing through the link layer with the packet in
the buffer, and replace the buffered packet if the new packethas a
higher ack number.

Finally, in order to ensure that idle connections are not needlessly
kick-started, it is sensible to only re-receive on reconnection if there
was a send attempt on that connection during the disconnected pe-
riod. (Other methods of monitoring connection activity, such as
idle timers, could also be used.)

4.3 Re-sending Packets
The smart link layer is also capable of re-sending packets atre-
connection time, by inserting them in the outgoing queue forthe
disconnecting link. Re-sending has the disadvantage that some
network latency is bound to be incurred before either TCP engine
receives its kick-start. However, the advantage is that there-sent
packets may include new data, new acks, and/or new window up-
dates.

Unlike in the re-receiving case, where the choice of which packet
to buffer is simple (as there is no possibility of providing new data,
merely repeating old data), care must be taken in the choice of
a buffered packet for re-sending. In order to facilitate thequick
restarting of TCP traffic, there are two obvious criteria forbuffer-
ing, and two more subtle criteria. The obvious criteria are that the
packet should have the highest acknowledgement number sentthus
far, for the same reasons as for re-reception. The packet should
also have the lowest unacknowledged sequence number, as this is
the next “in-order” data that the remote TCP engine is expecting,
and is therefore most likely to promote quick recovery of theTCP
traffic flow. It must be noted that this criterion relies on theabil-
ity to monitor the current acknowledgement number, which must
be found by scanning packets going in the opposite direction. This
would not work if the acknowledgements take a different network
path to the data, however, this is unlikely to be the case, as the dis-
connecting link would most often be on the access network forone
of the endpoints.

More subtly, the buffered packet should be chosen as the longest
length packet, and the one advertising the largest receive window.
These criteria are relevant when considering packets retransmitted
during the disconnected period. The former criterion relates to Na-
gle’s algorithm [17], which states that only one packet which is
smaller than the MTU should be unacknowledged at any time; other
data should be queued at source rather than sent as further small
packets. A corollary of using this algorithm is that, when time-
out and retransmission occurs on small packets, the retransmitted

packet may be longer than the original packet, as the retransmit-
ting TCP will put as much data as possible in this packet, up to
the MTU. A larger packet is obviously a better choice for buffering
at the smart link layer, as most or all of the outstanding datacan
be sent immediately at reconnection, rather than incurringmultiple
round trip times for the data to be transferred.

The criterion of having the largest receive window advertisement
is also related to retransmitted packets. During a disconnection
period, it is likely that a host which has received but not processed
some number of packets will be able to conduct some or all of
this processing and therefore be able to send larger receivewindow
advertisements in subsequent retransmissions.

In summary, for the re-sending algorithm, a packet is placedin the
per-connection single packet buffer, if it:

1. Has a larger acknowledgement number than the current buf-
fered packet, or

2. Has the same acknowledgement number but an older unac-
knowledged sequence number, or

3. Has the same acknowledgement and sequence numbers, but
a longer length, or

4. Has the same acknowledgement number, sequence number
and length, but advertises a larger receive window.

Finally, in order to avoid disturbing idle connections withthis pol-
icy, re-sending on reconnection only occurs if there is unacknowl-
edged data outstanding.

5. TESTBED EXPERIMENTS
To analyse the effect of the various link layer methods described
above, an experimental setup using a simulated network channel
was constructed. This allowed tests to be run using real traffic,
but with precise control over the network connectivity, andalso
provided a platform for implementation and bug-fixing of thesmart
link layer algorithms.

5.1 Experimental Setup
To simulate a disconnecting channel, the Linux “ethertap” driver
was used. This allows network packets to be routed to a user-level
program, which simulates the lossy channel, and implementsthe
send and receive components of the smart link layers. This setup is
illustrated in Figure 3.

To implement the simulated channel, a two-state Markov model
was used, with one state having 100% reliability and the other state
having 0% reliability. The mean time spent in each state was con-
figurable to allow different channel characteristics to be simulated.
This is illustrated in Figure 4. The period spent in each state was
modelled by uniform random distributions, between half andone-
and-a-half of the desired means; this ensured that the results were
not subject to interaction between TCP timers and the channel tim-
ing.

In addition to implementing this model, the simulation program
was also made to reverse the IP addresses and TCP port numbers
of all packets, thereby “mirroring” packets so that the local TCP/IP

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200335

Ethertap
 Driver

Linux

TCP/IP

 Stack

Simulated Channel

Smart Link

Layer

Smart Link

Layer

Traffic

Source

Traffic

Sink

Figure 3: Ethertap Experiment Setup

Connected

100% reliability

Disconnected

0% reliability

Figure 4: Simulated Channel Markov Model

stack treats the packets as incoming rather than outgoing. This al-
lows networking tests to be performed on a single machine. Us-
ing this arrangement, networks with various connection anddis-
connection patterns can be simulated, and various smart link layer
algorithms can be tested. One potential disadvantage of this ar-
rangement is that the sender, channel model and receiver areall
competing for CPU and memory bandwidth, however, this is nota
factor in the tests below, since the behaviour being monitored is the
time taken to recover from disconnected periods, during which no
traffic is being sent (apart from retransmissions), and all elements
of the testing machine are idle, with the sender stalled while wait-
ing on TCP timers.

5.2 Optimisations Tested
From the design space discussed in the previous section, fivepo-
tential optimisations were identified for experimental evaluation.
These optimisations, known as “smartlvls,” are outlined below:

Smartlvl 0 This is the control case, and represents unaided TCP.

Smartlvl 1 Re-receiving is used as defined in Section 4.2, and the
buffered packet is re-received once upon reconnection.

Smartlvl 2 As for smartlvl 1, but the packet is re-received five
times on reconnection.

Smartlvl 3 Re-sending is used as defined in Section 4.3, and the
buffered packet is re-sent once upon reconnection.

Smartlvl 4 As for smartlvl 3, but re-sending five times on recon-
nection.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Availability of Channel (Percent)

P
er

ce
nt

 o
f T

ra
ns

fe
rs

 S
uc

ce
ed

in
g

Smartlvl 0 : raw TCP (leftmost)
Smartlvl 1 : rerecv last pkt
Smartlvl 2 : rerecv last pkt x5
Smartlvl 3 : resend approp pkt
Smartlvl 4 : resend approp pkt x5 (rightmost)

Figure 5: TCP File Transfer Tests over Simulated Disconnect-
ing Channel

5.3 Results
In order to determine the relative performance of the various op-
timisations outlined above, timed bulk transfers were sentusing
the disconnecting channel described above. These were conducted
with the following parameters.

• The transfer size was 50Mbyte.

• Mean “uptime” was set to 0.5s, while mean “downtime” was
varied from to 0.0s to 4.5s to simulate channel availabilities
from 10% to 100%.

• Fourteen trials were conducted at each of the ten availability
levels and five smartlvls.

• The success or failure of each trial, and the time it took if
successful, was noted.

As Figure 5 shows, the trials all succeed when availability is high.
For availabilities below 50%, smartlvls 0, 1 and 2 begin to fail.
Smartlvl 0 (raw TCP) fails most quickly, and at 10% availability
experiences no successful transfers. Smartlvls 1 and 2, which use
re-reception of packets, show some improvement, but smartlvls 3
and 4 are the definite “winners,” with 100% of transfers completed
successfully, even when the channel is only available 10% ofthe
time.

Figure 6 shows the mean transfer time for the successful transfers,
with an unmarked line indicating the minimum transfer time,wh-
ich would occur if the channel were used optimally. As expected,
unaided TCP degrades most quickly, and smartlvls 1 and 2 exhibit
some improvement. Smartlvls 3 and 4, however, stay very close
to the optimal line, providing good performance even on a channel
with 10% availability.

This is further illustrated in Figure 7, which shows the low standard
deviation of the trials, as compared to those of unaided TCP.This
plot also allows the observation that, even at 80% or 90% availabil-
ity, unaided TCP has already diverged from optimal performance,

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200336

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Availability of Channel (Percent)

M
ea

n
E

la
ps

ed
 T

im
e

fo
r

T
ra

ns
fe

rs
 (

N
or

m
al

is
ed

)

Projected minimum transfer time
Smartlvl 0 : raw TCP
Smartlvl 1 : rerecv last pkt
Smartlvl 2 : rerecv last pkt x5
Smartlvl 3 : resend approp pkt
Smartlvl 4 : resend approp pkt x5

Figure 6: Mean Duration of Successful TCP File Transfer Tests
over Simulated Disconnecting Channel

with degradations of about 100% and 50% respectively from the
optimal case.

5.4 Analysis using TCP Traces
To further explore the behaviour above, traces of file transfers were
taken with various smartlvls. These are shown in Figures 8 to11.
(Figure 1 showed a trace for unaided TCP, and includes a key useful
for interpreting the traces.)

The traces for smartlvls 1 and 21 show that TCP does not respond
immediately when receiving repeated acks. Although repeated acks
are used as a signal to TCP to start fast-retransmit of a packet, this
is not successfully invoked in either case. This can be explained
by noting that the fast-retransmit mechanism is designed tobe used
before retransmission takes place due to timeout. If such a timeout
has already occurred, then the congestion window has been reset
to one packet. Hence, re-receptions of an old ack do not causeany
response, as the window is not advanced by this event.

The traces for smartlvls 3 and 4,2 on the other hand, show that
TCP is immediately restarted after reconnection. This is because
the packet re-sent on reconnection is chosen so that it sendsun-
acknowledged data. When this packet is acknowledged, the con-
gestion window is opened and slow-start proceeds as normal.Re-
sending five packets at a time with smartlvl 4 does not seem to
have any added effect; although they may cause multiple acksof
that packet, the fast-retransmit mechanism is not useful inthis case,
due to the congestion window being reset as described previously.

The conclusion of these experiments is that a “smart link layer” em-
ploying re-sending of a well-chosen packet on reconnectioncan im-
prove the performance of TCP on disconnecting channels. Whereas
unaided TCP experiences bad performance even when the channel

1The five individual plus marks for the five re-receptions usedin
smartlvl 2 are not distinguishable at this scale, and look like a single
plus mark.
2The five individual circles for the five re-sent packets used in
smartlvl 4 are not distinguishable at this scale, and look like a single
circle.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Availability of Channel (Percent)

M
ea

n
E

la
ps

ed
 T

im
e

fo
r

T
ra

ns
fe

rs
 (

N
or

m
al

is
ed

)

Projected minimum transfer time
Smartlvl 0 : Raw TCP
Smartlvl 3 : resend approp pkt
Smartlvl 4 : resend approp pkt x5

Figure 7: Detail of Figure 6 for Selected Smartlvls, with Stan-
dard Deviations

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7
x 10

6

Time(s)

S
eq

ue
nc

e
N

um
be

r

Figure 8: TCP File Transfer with Disconnection and Smart
Link Layer (Smartlvl 1)

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200337

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8
x 10

5

Time(s)

S
eq

ue
nc

e
N

um
be

r

Figure 9: TCP File Transfer with Disconnection and Smart
Link Layer (Smartlvl 2)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Time(s)

S
eq

ue
nc

e
N

um
be

r

Figure 10: TCP File Transfer with Disconnection and Smart
Link Layer (Smartlvl 3)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Time(s)

S
eq

ue
nc

e
N

um
be

r

Figure 11: TCP File Transfer with Disconnection and Smart
Link Layer (Smartlvl 4)

is 90% available, the use of the smart link layer gives nearly100%
channel utilisation at availabilities down to 10%.

6. EVALUATION OF THE SMART LINK LA-
YER ON THE PROTOTYPE NETWOR-
KED SURFACE

This section describes the effects of the smart link layer described
above, when deployed in the context of the prototype Networked
Surface. The smart link layer was deployed at both the device
and the node acting as the Networked Surface IP gateway, i.e.on
both sides of the disconnecting link. Two types of test were then
conducted. The first was similar to the experiments described in
the previous section, and evaluated the bulk transfer performance
of TCP. The second characterises the interactive response of TCP
over a disconnecting Surface network, by using the Virtual Net-
work Computing (VNC) remote desktop tool.

In order to conduct these tests, the prototype Networked Surface
hardware was augmented with a testing mode to allow a device to
disconnect at random intervals, with an adjustable mean connected
period. The “uptime” and “downtime” of the network was also
recorded, so that its availability could be calculated.

6.1 Performance for Bulk Transfers
In order to examine TCP performance for bulk transfers over adis-
connecting Networked Surface, experiments were conductedac-
cording to the following parameters:

• The Networked Surface prototype was configured to provide
a 1Mbit/s network.

• Disconnections were caused at various rates, producing var-
ious channel availabilities.

• Smartlvls 0 and 3 were used; smartlvl 0 is the unaided TCP
case, and smartlvl 3 is the best-performing smart link layer
optimisation, as shown previously.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200338

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Availability of Networked Surface (percent)

P
er

ce
nt

 o
f T

ra
ns

fe
rs

 S
uc

ce
ed

in
g

Smartlvl 0 : raw TCP
Smartlvl 3 : resend approp pkt

Figure 12: TCP File Transfer Tests over Disconnecting Networ-
ked Surface

• Ten transfers of 5Mbyte were conducted at each availability
and smartlvl, and the elapsed times were recorded.

As Figure 12 shows, the smart link layer completed 100% of trans-
fers, down to an availability of 23%, while unaided TCP did not
reliably transfer the data at 50% availability or less. Figure 13 illus-
trates that the smart link layer stays relatively close to the “ideal”
transfer time, even down to 20% availability. Unaided TCP has
twice the overhead of the smart link layer at 65% availability, and
very bad performance at lower availabilities.

6.2 Interactive Performance
While bulk transfer performance is important for some applica-
tions, the user of a networked device may also wish to commu-
nicate interactively. Examples of interactive applications are re-
mote terminal programs, web interfaces, and real-time multimedia
applications such as streaming audio or video. Such applications
may not stress the bandwidth of the network available, so thetests
in Section 6.1 are not necessarily applicable in this case. What is
applicable, however, issynchronisation, i.e. the need for a local in-
terface and the remote application to be representing the same state
as much as possible. An example of bad synchronisation is when a
user clicks on a webpage link, but only after a number of seconds
does the page change to reflect this action. Another example might
be a remote desktop mouse icon not following the local mouse icon
closely while it is being moved.

In order to test the smart link layer’s benefits for interactive ap-
plications, a quantitative metric must be found for synchronisation
performance. As described below, the “frame rate” of a remote
desktop application is one such metric.

6.2.1 Testing Method
The VNC [19] remote desktop application allows a user of one
computer to interact with a remote computer, by “forwarding” the
remote display across a network, and similarly relaying keyboard
and mouse input. The VNC protocol operates as follows. When the
client connects to the server, it issues an “update request”to that

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Availability of Networked Surface (Percent)

M
ea

n
E

la
ps

ed
 T

im
e

fo
r

T
ra

ns
fe

rs
 (

N
or

m
al

is
ed

)

Projected minimum transfer time
Smartlvl 0 : raw TCP
Smartlvl 3 : resend approp pkt

Figure 13: Mean Duration of Successful TCP File Transfer
Tests over Disconnecting Networked Surface

server. The server responds by waiting until its display differs from
its record of the client’s display, and then sending a “framebuffer
update” containing changes to the client’s display. On receiving
this update, the client applies it and immediately sends another “up-
date request.”

Since the server only sends updates in response to requests from the
client, the protocol is self-clocking. The requests and updates are
sent over TCP, which retransmits the data if it arrives corrupted or is
lost in transit, providing the guarantee that all messages eventually
get delivered correctly (if channel conditions permit).

Due to the protocol outlined above, only one update is sent atany
time. This implies that, for small updates, the frame rate achieved
is determined by the latency of the TCP connection used and not
by its bandwidth. The frame rate is therefore a good measure of
interactive performance.

6.2.2 Experiments and Results
In order to gather frame rate data, tests were conducted using to the
following parameters.

• A VNC desktop session was set up on a machine on the net-
work.

• A program was run on the remote desktop, which caused a
small dot to appear and disappear at regular intervals. The
effect of this program was to cause the display to require a
small update every 200ms.

• The Networked Surface was configured to have various avail-
abilities, as described previously.

• Smartlvls 0 and 3 were used.

• For each test, the VNC viewer program was run on a com-
puter using the Networked Surface for 100s, and record was
made of the number of updates received over this time pe-
riod.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200339

40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Availability of Networked Surface (Percent)

P
er

ce
nt

 o
f U

pd
at

es
 R

ec
ei

ve
d

Smartlvl 0 : Raw TCP
Smartlvl 3 : resend approp pkt

Figure 14: VNC Interactivity Tests over Disconnecting Networ-
ked Surface

• Ten tests were conducted for each smartlvl and availability.

Figure 14 shows the results of these tests. The smart link layer is
shown to perform well, providing 80% of the frame updates even
when the channel availability is halved, as opposed to 40% for the
unaided TCP case. These results show that interactive performance
of TCP over the Networked Surface channel is significantly im-
proved when a smart link layer is used.

7. COMPARISON OF THE SMART LINK
LAYER WITH OTHER SOLUTIONS

The link layer–based nature of the smart link layer allows itto en-
joy several advantages when compared with solutions involving
the modification of IP, ICMP and/or TCP that were described in
Section 1.1. Link layer solutions can be independent of the TCP
implementation used, and can therefore be deployed withoutcon-
cern for the devices’ particular TCP implementations. In contrast,
a TCP-based solution would have to be added to many different
TCP implementations that are in use, some of which may be hard
or impossible to modify (e.g. hardware-based TCP implementa-
tions). Also, link layer solutions may only affect nodes local to the
disconnecting link. Deployment of such solutions is therefore eas-
ily carried out concurrently with deployment of the disconnecting
network type.

In addition, the smart link layer’s particular attributes allow it to
enjoy some further advantages. As it is very lightweight, itcan
be deployed in modest hardware as part of a NIC for mobile com-
puting devices, thus allowing it to avoid use of the scarce CPU
and memory resources of those devices. Also, since it uses only a
small amount of network bandwidth, it is relatively easy to secure
it against malicious use, e.g. for denial of service attacks. Fur-
thermore, because the smart link layer operates unilaterally, it does
not require the use of authentication methods that might be nec-
essary in solutions which communicate state information, e.g. for
signalling a disconnected state to the TCP endpoints. Lastly, since
the smart link layer only resends traffic that has already been sent,
it is easy to see that no data security issues are created whenusing

this solution.

However, there are also disadvantages to using link layer solutions,
some of which are relevant to the smart link layer. To begin with,
such solutions may experience bad interactions between TCP’s re-
transmissions and retransmissions at the link layer [11]. The smart
link layer, however, does not try to usurp TCP’s role of ensuring
data delivery; the retransmitted packets are solely used tokick-start
TCP’s own recovery mechanisms, and the fact that the data con-
tained in this packet is delivered is a (welcome) side-effect. Bad
interactions between retransmissions are therefore avoided.

Another disadvantage of link layer solutions is that they donot pre-
vent TCP transmitting during the disconnected period. Thismay be
seen in the first diagram, Figure 2, which shows that a full window
of packets is transmitted fruitlessly during disconnection, and a pe-
riodic retransmission of the first packet in this window alsooccurs.
In contrast, a TCP implementation which is “aware” of disconnec-
tion would halt transmission whilst in a disconnected state, thus
saving network bandwidth.

The next disadvantage is that, not being integrated with TCP, it is
not certain that a link layer solution will perform well withevery
version of TCP currently deployed, or with future versions of TCP
that may become available. The smart link layer solution mayin-
cur this problem, however, as it only retransmits a single packet on
reconnection, the network overhead imposed is low. Therefore, if
the smart link layer solution fails to kick-start a given TCPconnec-
tion, the network will not be significantly burdened, and TCPwill
simply assume its normal, if suboptimal, behaviour.

The final disadvantage to be highlighted is that the use of end-to-
end encryption [1] may hinder or even disable link layer solutions
which rely on being able to “sniff” packets. To handle encrypted
TCP connections, the smart link layer could simply buffer the most
recent packet per source and destination IP addresses, and retrans-
mit this on reconnection. However, this technique would notcope
with multiple TCP connections between two IP addresses (which it
would be unable to distinguish), and may not send result in the best
kick-start packet being buffered.

It must be noted that the smart link layer doesnot attempt to by-
pass the slow-start procedure of TCP [14], nor does it try to induce
a raising of the congestion window. This policy is in contrast to
many of the link layer solutions presented for TCP problems (and
described in Section 1.1), which attempt to keep the congestion
window wide despite bad channel characteristics. This difference
is largely due to the timescales for which the solutions are designed;
single packet losses happen on a microsecond scale, while discon-
nections may last a number of seconds. Also, during disconnection,
devices may be moved to a different network; this may cause the
congestion characteristics to change, so a slow-start is appropriate
to discover the correct new value of the congestion window.

Finally, the relevance of the smart link layer to the currentIETF
proposals is now discussed. The smart link layer technique is in ac-
cord with the PILC working group’s recommendation [16] for dis-
connecting networks to buffer and resend one or more of the pack-
ets arriving during the disconnected period. The validity of that
technique is confirmed experimentally here, and different buffering
criteria and retransmission techniques are examined.

Both PILC and the TRIGTRAN [10] proposal indicate that a pre-

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200340

ferred solution for disconnection handling is the end-to-end noti-
fication of disconnections (and other network events) so that TCP
(or another transport layer protocol) can react appropriately. These
proposals would avoid the disadvantages highlighted above, how-
ever, they require much more intrusive modifications of boththe
nodes attached to the disconnecting network and the edge nodes,
as well as cooperation between these nodes, in order to solvethis
problem. This paper has shown that it is possible to work around
the disconnecting network problem, at least in some circumstances.
The techniques used in this research may prove a useful “stop-gap”
solution for use while more thorough solutions involving modifi-
cation of many entities in the network can be standardised and de-
ployed.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented the “smart link layer” solution forthe
problem of TCP’s bad performance in the face of disconnecting
links. Various algorithms repeating packets on reconnection were
explored using an experimental testbed. Re-sending packets on re-
connection proved to be more effective than re-receiving packets,
and repetition of packets was shown to offer no additional improve-
ment.

The best-performing solution was shown to achieve nearly 100%
utilisation of a disconnecting channel, at availabilitiesdown to 10%.
Unaided TCP, on the other hand, shows a 50% degradation at 90%
availability, and fails to complete some of the tests below 50%
availability. The effect of this solution was also tested onthe pro-
totype Networked Surface, with good results shown for both bulk
transfers and interactive traffic. In summary, this paper has shown
the effectiveness of a simple and lightweight link layer–based so-
lution for enhancing TCP performance in the face of disconnecting
networks.

Future work involving the smart link layer may include testing of
the link layer solution in a broader variety of circumstances. This
may include tests involving connections over high-bandwidth high-
latency networks, and tests where disconnection occurs in the mid-
dle of the network, or at multiple places in the network. Next, the
current solution relies on the “kick-start” packet not being lost; this
is valid given the assumption that the network is reliable when con-
nected. In order to avoid this assumption, the smart link layer could
be made to monitor the round-trip time of the connection, andthen
automatically retransmit the kick-start packet if it does not cause a
reply within a suitable time. Thirdly, this solution might be ported
to other situations where disconnected periods occur. For example,
Mobile IP handoffs may take a significant time, during which the
network appears to be disconnected at the TCP level. Fourthly, the
use of this solution in the presence of encryption might be explored.
Lastly, the viability of this solution with other transport-level pro-
tocols, e.g. SCTP [22], may be examined.

9. ACKNOWLEDGEMENTS
The authors are grateful to Frank Hoffmann, Andy Hopper and
Mike Addlesee of the Networked Surfaces project at the LCE for
indirect contribution to this work. The authors would also like to
thank James Weatherall for helpful discussions concerningthe op-
eration of VNC, Mike Hazas and Tom Kelly for proofreading this
paper, and John Wroclawski and the anonymous reviewers for their
helpful comments.

This research was funded by the Schiff Foundation of Cambridge
and by AT&T Laboratories Cambridge.

10. REFERENCES
[1] R. Atkinson. IP encapsulating security payload (ESP). RFC

1827, August 1995.

[2] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D.
Gitlin. AIRMAIL: A link-layer protocol for wireless
networks.ACM Wireless Networks, 1(1):47–60, 1995.

[3] A. V. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for
mobile hosts. InProceedings of the 1995 International
Conference on Distributed Computing Systems, pages
136–143, 1995.

[4] B. S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan.
Improving performance of TCP over wireless networks. In
Proceedings of the 1997 International Conference on
Distributed Computing Systems, 1997.

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.
Katz. A comparison of mechanisms for improving TCP
performance over wireless links.IEEE/ACM Transactions on
Networking, 5(6):756–769, 1997.

[6] H. Balakrishnan, S. Seshan, and R. H. Katz. Improving
reliable transport and handoff performance in cellular
wireless networks.ACM Wireless Networks, 1(4):469–481,
1995.

[7] K. Brown and S. Singh. M-TCP: TCP for mobile cellular
networks.ACM Computer Communication Review,
27(5):19–43, 1997.

[8] R. Caceres and L. Iftode. Improving the performance of
reliable transport protocols in mobile computing
environments.IEEE Journal of Selected Areas in
Communications, 13(5):850–857, 1995.

[9] K. Chandran, S. Raghunathan, S. Venkatesan, and
R. Prakash. A feedback-based scheme for improving TCP
performance in ad-hoc wireless networks. InProceedings of
the 1997 International Conference on Distributed Computing
Systems, pages 472–479, 1997.

[10] S. Dawkins, C. E. Williams, and A. E. Yegin. Framework
and requirements for trigtran. Internet-Draft
draft-dawkins-trigtran-framework-00.txt,
February 2003.

[11] A. DeSimone, M. Chuah, and O. Yue. Throughput
performance of transport-layer protocols over wireless
LANs. In Proceedings of GLOBECOM ’93. IEEE, 1993.

[12] S. Goel and D. Sanghi. Improving TCP performance over
wireless links. InProceedings of TENCON ’98, pages
332–335. IEEE, December 1998.

[13] G. Holland and N. H. Vaidya. Analysis of TCP performance
over mobile ad hoc networks. InProceedings of the Fifth
International Conference on Mobile Computing and
Networking, pages 219–230. ACM/IEEE, August 1999.

[14] V. Jacobsen. Congestion avoidance and control. In
Proceedings of SIGCOMM ’98. ACM, 1988.

[15] V. Jacobsen. Modified TCP congestion avoidance algorithm.
Email onend2end-interest mailing list (ftp:
//ftp.ee.lbl.gov/email/vanj.90apr30.txt),
April 1990.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200341

[16] P. Karn, Editor. Advice for internet subnetwork developers.
Performance Implications of Link Characteristics (PILC)
Working Group: Internet-Draft
draft-ietf-pilc-link-design-13.txt,
February 2003.

[17] J. Nagle. Congestion control in IP/TCP internetworks.RFC
896, January 1984.

[18] C. Parsa and J. J. Garcia-Luna-Aceves. Improving TCP
performance over wireless networks at the link layer.ACM
Mobile Networks and Applications, 5(1):57–71, March 2000.

[19] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing.IEEE Internet
Computing, 2(1):33–38, February 1998.

[20] J. Scott.Networked Surfaces: A Novel LAN Technology. PhD
thesis, University of Cambridge, 2002.

[21] J. Scott, F. Hoffmann, G. Mapp, M. D. Addlesee, and
A. Hopper. Networked Surfaces: A new concept in mobile
networking.ACM Mobile Networks and Applications, 7(5),
October 2002.

[22] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol. RFC
2960, October 2000.

[23] N. Vaidya, M. Mehta, C. Perkins, and G. Montenegro.
Delayed duplicate acknowledgements: A TCP-unaware
approach to improve performance of TCP over wireless.
Technical report, Computer Science Department, Texas
A&M University, 1999.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200342

