
Scalable Progressive Analytics on Big Data in the Cloud

Badrish Chandramouli1 Jonathan Goldstein1 Abdul Quamar2∗

1Microsoft Research, Redmond 2University of Maryland, College Park
{badrishc, jongold}@microsoft.com, abdul@cs.umd.edu

ABSTRACT
Analytics over the increasing quantity of data stored in the Cloud
has become very expensive, particularly due to the pay-as-you-go
Cloud computation model. Data scientists typically manually ex-
tract samples of increasing data size (progressive samples) using
domain-specific sampling strategies for exploratory querying. This
provides them with user-control, repeatable semantics, and result
provenance. However, such solutions result in tedious workflows
that preclude the reuse of work across samples. On the other hand,
existing approximate query processing systems report early results,
but do not offer the above benefits for complex ad-hoc queries. We
propose a new progressive analytics system based on a progress
model called Prism that (1) allows users to communicate progres-
sive samples to the system; (2) allows efficient and deterministic
query processing over samples; and (3) provides repeatable seman-
tics and provenance to data scientists. We show that one can re-
alize this model for atemporal relational queries using an unmod-
ified temporal streaming engine, by re-interpreting temporal event
fields to denote progress. Based on Prism, we build Now!, a pro-
gressive data-parallel computation framework for Windows Azure,
where progress is understood as a first-class citizen in the frame-
work. Now! works with “progress-aware reducers”- in particular, it
works with streaming engines to support progressive SQL over big
data. Extensive experiments on Windows Azure with real and syn-
thetic workloads validate the scalability and benefits of Now! and
its optimizations, over current solutions for progressive analytics.

1. INTRODUCTION
With increasing volumes of data stored and processed in the

Cloud, analytics over such data is becoming very expensive. The
pay-as-you-go paradigm of the Cloud causes computation costs to
increase linearly with query execution time, making it possible for
a data scientist to easily spend large amounts of money analyzing
data. The problem is exacerbated by the exploratory nature of ana-
lytics, where queries are iteratively discovered and refined, includ-
ing the submission of many off-target and erroneous queries (e.g.,
bad parameters). In traditional systems, queries must execute to

∗Work performed during internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

completion before such problems are diagnosed, often after hours
of expensive compute time are exhausted.

Data scientists therefore typically choose to perform their ad-hoc
querying on extracted samples of data. This approach gives them
the control to carefully choose from a huge variety [11, 28, 27] of
sampling strategies in a domain-specific manner. For a given sam-
ple, it provides precise (e.g., relational) query semantics, repeatable
execution using a query processor and optimizer, result provenance
in terms of what data contributed to an observed result, and query
composability. Further, since choosing a fixed sample size a pri-
ori for all queries is impractical, data scientists usually create and
operate over multiple progressive samples of increasing size [28].

1.1 Challenges
In an attempt to help data scientists, the database community

has proposed approximate query processing (AQP) systems such as
CONTROL [20] and DBO [23] that perform progressive analytics.
We define progressive analytics as the generation of early results to
analytical queries based on partial data, and the progressive refine-
ment of these results as more data is received. Progressive analytics
allows users to get early results using significantly fewer resources,
and potentially end (and possibly refine) computations early once
sufficient accuracy or query incorrectness is observed.

The general focus of AQP systems has, however, been on auto-
matically providing confidence intervals for results, and selecting
processing orders to reduce bias [21, 9, 15, 17, 31]. The premise of
AQP systems is that users are not involved in specifying the seman-
tics of early results; rather, the system takes up the responsibility
of defining and providing accurate early results. To be useful, the
system needs to automatically select effective sampling strategies
for a particular combination of query and data. This can work for
narrow classes of workloads, but does not generalize to complex
ad-hoc queries. A classic example is the infeasibility of sampling
for join trees [10]. In these cases, a lack of user involvement with
“fast and loose” progress has shortcomings; hence, data scientists
tend to prefer the more laborious but controlled approach presented
earlier. We illustrate this using a running example.

Example 1 (CTR) Consider an advertising platform where an an-
alyst wishes to compute the click-through-rate (CTR) for each ad.
We require two sub-queries (Qc and Qi) to compute (per ad) the
number of clicks and impressions, respectively. Each query may
be non-trivial; for example, Qc needs to process clicks on a per-
user basis to consider only legitimate (non-automated) clicks from
a webpage whitelist. Further, Qi may need to process a different set
of logged data. The final query Qctr joins (for each ad) the results
of Qc and Qi, and computes their ratio as the CTR. Figure 1 shows
a toy input sorted by user, and the final results for Qc, Qi, and Qctr.

User Ad . . .
u0 a0 . . .
u1 a0 . . .
u2 a0 . . .

(a)

User Ad . . .
u0 a0 . . .
u0 a0 . . .
u1 a0 . . .
u2 a0 . . .
u2 a0 . . .

(b)

Ad Clicks
a0 3

Ad Imprs
a0 5

(c)

Ad CTR
a0 0.6

(d)
Figure 1: (a) Click data; (b) Impression data; (c) Final result of
Qc and Qi; (d) Final result of Qctr.

Next, Figure 3 (a) and (b) show progressive results for the same
queries Qc and Qi. Without user involvement in defining progres-
sive samples, the exact sequence of progressive counts can be non-
deterministic across runs, although the final counts are precise.
Further, depending on the relative speed and sequence of results
for Qc and Qi, Qctr may compose arbitrary progressive results, re-
sulting in significant variations in progressive CTR results. Fig-
ures 3(c) and (d) show two possible results for Qctr. For example, a
CTR of 2.0 would result from combining the first tuple from Qc and
Qi. Some results that are not even meaningful (e.g., CTR > 1.0)
are possible. Although both results eventually get to the same final
CTR, there is no mechanism to ensure that the inputs being corre-
lated to compute progressive CTRs are deterministic and compara-
ble (e.g., computed using the same sample of users).

The above example illustrates several challenges:
1) User-Control: Data scientists usually have domain expertise that
they leverage to select from a range of sampling strategies [11, 28,
27] based on their specific needs and context. In Example 1, we
may progressively sample both datasets identically in user-order
for meaningful progress, avoiding the join sampling problem [10].
Users may also need more flexibility; for instance, with a star-
schema dataset, they may wish to fully process the small dimension
table before sampling the fact table, for better progressive results.
2) Semantics: Relational algebra provides precise semantics for
SQL queries. Given a set of input tables, the correct output is de-
fined by the input and query alone, and is independent of dynamic
properties such as the order of processing tuples. However, for
complex queries, existing AQP systems use operational semantics,
where early results are on a best-effort basis. Thus, it is unclear
what a particular early result means to the user.
3) Repeatability & Optimization: Two runs of a query in AQP may
provide a different sequence of early results, although they have
to both converge to the same final answer. Thus, without limiting
the class of queries which are progressively executed, it is hard to
understand what early answers mean, or even recognize anomalous
early answers. Even worse, changing the physical operators in the
plan (e.g., changing operators within the ripple join family [16])
can significantly change what early results are seen!
4) Provenance: Users cannot easily establish the provenance of
early results, e.g., link an early result (CTR=3.0) to particular con-
tributing tuples, which is useful to debug and reason about results.
5) Query Composition: The problem of using operational seman-
tics is exacerbated when one starts to compose queries. Example 1
shows that one may get widely varying results (e.g., spurious CTR
values) that are hard to reason about.
6) Scale-Out: Performing progressive analytics at scale exacer-
bates the above challenges. The CTR query from Example 1 is

UserId UserId

AdId

Job
partitioning

keys

Figure 2: CTR; MR jobs.

expressed as two map-reduce
(MR) jobs that partition data by
UserId, feeding a third job that
partitions data by a different key
(AdId); see Figure 2. In a
complex distributed multi-stage
workflow, accurate deterministic
progressive results can be very

Ad Clicks
a0 2
a0 3

(a)

Ad Imprs
a0 1
a0 4
a0 5

(b)

Ad CTR
a0 2.0
a0 0.5
a0 0.6

(c)

Ad CTR
a0 3.0
a0 0.75
a0 0.6

(d)
Figure 3: (a) Progressive Qc output; (b) Progressive Qi output;
(c) & (d) Two possible progressive Qctr results.

useful. Map-reduce-online (MRO) [12] adds a limited form of
pipelining to MR, but MRO reports a heuristic progress metric (av-
erage fraction of data processed across mappers) that does not elim-
inate the problems discussed above (§ 6 covers related work).

To summarize, data scientists prefer user-controlled progressive
sampling because it helps avoid the above issues, but the lack of
system support results in a tedious and error-prone workflow that
precludes the reuse of work across progressive samples. We need a
system that (1) allows users to communicate progressive samples to
the system; (2) allows efficient and deterministic query processing
over progressive samples, without the system itself trying to reason
about specific sampling strategies or confidence estimation; and yet
(3) continues to offer the desirable features outlined above.

1.2 Contributions

1) Prism: A New Progress Model & Implementation
We propose (§ 2) a new progress model called Prism (Progressive
sampling model). The key idea is for users to encode their cho-
sen progressive sampling strategy into the data by augmenting tu-
ples with explicit progress intervals (PIs). PIs denote logical points
where tuples enter and exit the computation, and explicitly assign
tuples to progressive samples. PIs offer remarkable flexibility for
encoding sampling strategies and ordering for early results, includ-
ing arbitrarily overlapping sample sequences and special cases such
as the star-schema join mentioned earlier (§ 2.5 has more details).

PIs propagate through Prism operators. Combined with progres-
sive operator semantics, PIs provide closed-world determinism: the
exact sequence of early results is a deterministic function of aug-
mented inputs and the logical query alone. They are independent of
physical plans, which enables side-effect-free query optimization.
Provenance is explicit; result tuples have PIs that denote the ex-
act set of contributing inputs. Prism also allows meaningful query
composition, as operators respect PIs. If desired, users can encode
confidence interval computations as part of their queries.

The introduction of a new progress model into an existing re-
lational engine appears challenging. However, interestingly, we
show (§ 2.4) that a progressive in-memory relational engine based
on Prism can be realized immediately using an unmodified tem-
poral streaming engine, by carefully reusing its temporal fields to
denote progress. Tuples from successive progressive samples get
incrementally processed when possible, giving a significant perfor-
mance benefit. Note here that the temporal engine is unaware that
it is processing atemporal relational queries; we simply re-interpret
its temporal fields to denote progress points. While it may appear
that in-memory queries can be memory intensive since the final
answer is computed over the entire dataset, Prism allows us to ex-
ploit sort orders and foreign key dependencies in the input data and
queries to reduce memory usage significantly (§ 2.6).
Prism generalizes AQP Our progress semantics are compatible
with queries for which prior AQP techniques with statistical guar-
antees apply, and thus don’t require user involvement. These tech-
niques simply correspond to different PI assignment policies for
input data. For instance, variants of ripple join [16] are different PI
assignments for a temporal symmetric-hash-join, with confidence
intervals computed as part of the query. Thus, Prism is orthogo-
nal to and can leverage this rich area of prior work, while adding

PI User Ad
[0,∞) u0 a0
[1,∞) u1 a0
[2,∞) u2 a0

(a)

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0
[1,∞) u1 a0
[2,∞) u2 a0
[2,∞) u2 a0

(b)

PI Ad Clicks
[0, 1) a0 1
[1, 2) a0 2
[2,∞) a0 3

PI Ad Imprs
[0, 1) a0 2
[1, 2) a0 3
[2,∞) a0 5

(c)

PI Ad CTR
[0, 1) a0 0.5
[1, 2) a0 0.66
[2,∞) a0 0.6

(d)
Figure 4: (a,b) Input data with progress intervals; (c) Progres-
sive results of Qc and Qi; (d) Progressive output of Qctr.

the benefit of repeatable and deterministic semantics. In summary,
Prism gives progressive results the same form of determinism and
user control that relational algebra provides final results.

2) Applying Prism in a Scaled-Out Cloud Setting
The Prism model is particularly suitable for progressive analytics
on big data in the Cloud, since queries in this setting are complex,
and memory- and CPU-intensive. Traditional scalable distributed
frameworks such as MR are not pipelined, making them unsuitable
for progressive analytics. MRO adds pipelining, but does not offer
the semantic underpinnings of progress necessary to achieve the
desirable features outlined earlier.

We address this problem by designing and building a new frame-
work for progressive analytics called Now! (§ 3). Now! runs on
Windows Azure; it understands and propagates progress (based
on the Prism model) as a first-class citizen inside the framework.
Now! generalizes the popular data-parallel MR model and supports
progress-aware reducers that understand explicit progress in the
data. In particular, Now! can work with a temporal engine (we use
StreamInsight [3]) as a progress-aware reducer to enable scaled-out
progressive relational (SQL) query support in the Cloud. Now! is a
novel contribution in its own right, with several important features:
• Fully pipelined progressive computation and data movement across

multiple stages with different partitioning keys, in order to avoid
the high cost of sending intermediate results to Cloud storage.

• Elimination of sorting in the framework using progress-ordered
data movement, partitioned computation pushed inside progress-
aware reducers, and support for the traditional reducer API.

• Progress-based merge of multiple map outputs at a reducer node.
• Concurrent scheduling of multi-stage map and reduce jobs with

a new scheduling policy and flow control scheme.
We also extend Now! (§ 4) with a high performance mode that
eliminates disk writes, and discuss high availability (by leveraging
progress semantics in a new way) and straggler management.

We perform a detailed evaluation (§ 5) of Now! on Windows
Azure (with StreamInsight) over real and benchmark datasets up to
100GB, with up to 75 large-sized Azure compute instances. Exper-
iments show that we can scale effectively and produce meaningful
early results, making Now! suitable in a pay-as-you-go environ-
ment. Now! provides a substantial reduction in processing time,
memory and CPU usage as compared to current schemes; perfor-
mance is significantly enhanced by exploiting sort orders and using
our memory-only processing mode.

Paper Outline § 2 provides the details of our proposed model
for progressive computation Prism. We present Now! in detail in
§ 3; and discuss several extensions in § 4. The detailed evaluation
of Now! is covered in § 5, and related work is discussed in § 6.

2. Prism SEMANTICS & CONSTRUCTION
At a high level, our progress model (called Prism) defines a log-

ical linear progress domain that represents the progress of a query.
Sampling strategies desired by data scientists are encoded into the
data before query processing, using augmented tuples with progress

0

Impression

Input Data

Progress Domain 1 2

1 2 3

2 3 5

0.5 0.66 0.6

Click

Input Data

Early results (on partial data) Final result (on full data)

Progress interval

Figure 5: Input and output progress intervals, query semantics.

intervals that precisely define how data progressively contributes to
result computation. Users express their data analytics as relational
queries that consist of a DAG of progressive operators. An exten-
sion of traditional database operators, progressive operators under-
stand and propagate progress intervals based on precisely defined
operator semantics. The result of query processing is a sequence of
augmented tuples whose progress intervals denote early results and
their associated regions of validity in the progress domain. Each of
these steps is elaborated in the following subsections.

2.1 Logical Progress and Progress Intervals
Prism defines a logical linear progress domain P as the range

of non-negative integers [0,∞). Progress made by a query at any
given point during computation is explicitly indicated by a non-
decreasing progress point p ∈ P. Progress point ∞ indicates the
point of query completion.

Next, we associate a progress interval (PI) from the progress do-
main to every tuple in the input data. More formally, each tuple T
is augmented with two new attributes, a progress-start P+ and a
progress-end P-, that jointly denote a PI [P+, P-). P+ indicates the
progress point at which a tuple T starts participating in the compu-
tation, and P- (if not ∞) denotes the progress point at which tuple
T stops contributing to the computation. PIs enable users to spec-
ify domain-specific progressive sampling strategies. PI assignment
can be controlled by data scientists to ensure quicker and more
meaningful early results, either directly or using a layer between
the system and the user. Figures 4(a) and (b) show PIs for our run-
ning example inputs; they are also depicted in Figure 5 (top). We
provide several concrete examples of PI assignment in Section 2.5.

2.2 Progressive Operators and Queries
Progressive Operators Every relational operatorO has a progres-
sive counterpart, which computes augmented output tuples from
augmented input tuples. Logically, the output at progress point p is
the operation O applied to input tuples whose PIs are stabbed by p.
Figures 4(c) and 5 (bottom) show the results of Qc and Qi, which
behave as Count operators. We see that Qc produces a progressive
count of 1 at progress point 0, which it revises to 2 and 3 at progress
points 1 and 2. As a result, the PIs for these tuples are [0, 1), [1, 2)
and [2,∞) respectively.

The P- for an output tuple may not always be known at the same
time as when the operator determine its P+. Thus, an operator may
output a tuple having an eventual PI of [P+,P-) in two separate
pieces: (1) at progress point P+, it generates a start-edge tuple T1

with a PI [P+,∞) indicating that the tuple participates in the result
forever; (2) at the later progress point P-, it generates an end-edge
tuple T2 with the actual PI [P+,P-). We use the term progress-sync
to denote the progress point associated with a tuple (or its subse-
quent update). The start-edge tuple T1 has a progress-sync of P+,
whereas the end-edge tuple T2 has a progress-sync of P-.

Every operator both processes and generates augmented tuples
in non-decreasing progress-sync order. The eventual P- values for
early results that get refined later are less than ∞, to indicate that
the result is not final. For example, consider an Average operator
that reports a value a0 from progress point 0 to 10, and revises it
to a1 from progress point 10 onwards. Tuple a0 has an eventual PI
of [0, 10). This is reported as a start-edge [0,∞) at progress point
0. At progress point 10, the operator reports an end-edge [0, 10) for
the old average a0, followed immediately by a start-edge [10,∞) for
the revised average a1. Similarly, a progressive Join operator with
one tuple on each input with PIs [10, 20) and [15, 25) – if the join
condition is satisfied – produces a result tuple with PI [15, 20), the
intersection of the two input PIs. Note here that the output tuple’s
PI ends at 20 because its left input is no longer valid at that point.
Progressive Queries Based on the above semantics, operators
can be composed meaningfully to produce progressive queries. We
define Prism output for a relational query Q as:

Definition 1 (Prism Output) Associated with each input tuple is
a progress interval (PI). At every unique progress point p across all
PI endpoints in the input data, there exists a set Op of output results
with PIs stabbed by p. Op is defined to be exactly the result of the
query Q evaluated over input tuples with PIs stabbed by p.

2.3 Summary of Benefits of the Prism Model
The results of Qctr for our running example are shown in Fig-

ures 4(d) and 5 (bottom); every CTR is meaningful as it is com-
puted on some prefix of users (for our chosen progress assignment),
and CTR provenance is provided by PIs. The final CTR of 0.6 is
the only tuple active at progress point∞, as expected.

It is easy to see that the output of a progressive query is a de-
terministic function of the (augmented) input data and the logical
query alone. Further, these progressive results are fixed for a given
input and logical query, and are therefore repeatable. Prism en-
ables data scientists to use their domain knowledge to control pro-
gressive samples; Section 2.5 provides several concrete examples.
Early results in Prism carry the added benefit of provenance that
helps debug and reason about early results: the set of output tuples
with PIs stabbed by progress point p denote the progressive result
of the query at p. The provenance of these output tuples is simply
all tuples along their input paths whose PIs are stabbed by p.

One can view Prism as a generalization of relational algebra with
progressive sampling as a first-class concept. Relational algebra
prescribes the final answer to a relational query but does not cover
how we get there using partial results. The Prism algebra explicitly
specifies, for any query, not only the final answer, but every inter-
mediate (progressive) result and its position in the progress domain.

2.4 Implementing Prism
One can modify a database engine to add PI support to all oper-

ators in the engine. However, we can realize Prism without incur-
ring this effort. The idea is to leverage a stream processing engine
(SPE) as the progressive query processor. In particular, the seman-
tics underlying a temporal SPE such as NILE [19], STREAM [4],
or StreamInsight [3] (based on temporal databases [22]) can be
leveraged to denote progress, with the added benefit of incremen-
tal processing across samples when possible. With StreamInsight’s
temporal model, for example, the event validity time interval [6]
[Vs,Ve) directly denotes the PI [P+,P-). T1 is an insertion and T2

is a retraction (or revision [33]). Likewise, T1 and T2 correspond
to Istreams and Dstreams in STREAM, and positive and negative
tuples in NILE. We feed the input tuples converted into events to
a continuous query corresponding to the original atemporal SQL

query. The unmodified SPE operates on these tuples as though they
were temporal events, and produces output events with timestamp
fields that we re-interpret as tuples with PIs.

Note that with this construction, the SPE is unaware that it is
being used as a progressive SQL processor. It processes and pro-
duces events whose temporal fields are re-interpreted to denote
progress of an atemporal (relational) query. For instance, the tem-
poral symmetric-hash-join in an SPE effectively computes a se-
quence of joins over a sequence of progressive samples very ef-
ficiently. The resulting query processor transparently handles all of
SQL, including user-defined functions, with all the desirable fea-
tures of our new progress model.

2.5 PI Assignment
Any progressive sampling strategy at the inputs corresponds to a

PI assignment; several are discussed next.
Inclusive & Non-inclusive Samples With inclusive samples (as
used, for example, in EARL [25]), each sample is a superset of the
previous one. To specify these, input tuples are assigned a P- of∞,
and non-decreasing P+ values based on when tuples become a part
of the sample, as shown in Figure 5 (top). In case of non-inclusive
samples, tuples have a finite P- to denote that they no longer par-
ticipate in computation beyond P-, and can even reappear with a
greater P+ for a later sample (our technical report [7] includes a
concrete example of expressing non-inclusive sampling using PIs).
Reporting Granularity Progress reporting granularity can be
controlled by individual queries, by adjusting the way P+ moves
forward. Data is often materialized in a statistically relevant order,
and we may wish to include k additional tuples in each successive
sample. We use a streaming AlterLifetime [8] operator that sets P+

for the nth tuple to bn/kc and P- to ∞. This increases P+ by 1 after
every k tuples, resulting in the engine producing a new progressive
result every k tuples. We refer to the set of tuples with the same P+

as a progress-batch. Data scientists often start with small progress-
batches to get quick estimates, and then increase batch sizes (e.g.,
exponentially) as they get diminishing returns with more data.
Joins & Star Schemas In case of queries involving an equi-join,
we may apply an identical sampling strategy (e.g., pseudo-random)
over the join key in both inputs as this increases the likelihood of
getting useful early results. With a star-schema, we may set all tu-
ples in the small dimension table to have a PI of [0,∞), while pro-
gressively sampling from the fact table as [0,∞), [1,∞), This
causes a Join operator to “preload” the dimension table before pro-
gressively sampling the fact table for meaningful early results.
Stratified Sampling Stratified sampling groups data on a cer-
tain key and applies a sampling strategy (e.g., uniform) within each
group to ensure that rare subgroups are sufficiently represented.
BlinkDB [2] pre-computes stratified samples of different sizes and
responds to queries within a given error and response time by choos-
ing the correct sample to compute the query on. Stratified sampling
is easy to implement with Prism: we perform a GroupApply opera-
tion [8] by the key, with an AlterLifetime inside the GroupApply to
create progress-batches as before. The temporal Union that merges
groups respects timestamp ordering, resulting in a final dataset with
PIs that exactly represent stratified sampling. Stratified samples of
increasing size can be constructed similarly.
Other Examples For online aggregation, we may assign non-
decreasing P+ values over a pre-defined random order of tuples for
quick result convergence. Active learning [11] changes the sam-
pling strategy based on outcomes from prior samples. Prior propos-
als for ordering data for quick convergence [17, 16, 30, 9] simply
correspond to different PI assignment schemes in Prism.

Blob Blob Blob

Map Stage

Disk Disk Disk

Reduce Stage
Merge Merge Merge

Map Stage

Disk

Reduce Stage
Merge Merge Merge

Blob Blob Blob

Shuffle

Shuffle
Disk Disk

Sort

Blob Blob Blob

Map Stage
(Progress-aware batching)

Progressive Reducer (Gen API)
Progress Aware Merge

Map Stage
(Progress-aware batching)

Progressive Reducer (Gen API)
Progress Aware Merge

Blob Blob Blob

Progressive data
shuffle

No
Sort

Blob Blob Blob
In Memory

data transfer

Progressive data
shuffle

No
Sort

(a) Vanilla MR (b) Now!

PI
annotated

 Input

Progressive
Output

Figure 6: System architecture (MR vs. Now!).

2.6 Performance Optimizations
Query processing using an in-memory streaming engine can be

expensive since the final answer is over the entire dataset. Prism
enables crucial performance optimizations that can improve perfor-
mance significantly in practical situations. Consider computation
Qc, which is partitionable by UserId. We can exploit the compile-
time property that progress-sync ordering is the same as (or cor-
related to) the partitioning key, to reduce memory usage and con-
sequently throughput. The key intuition is that although every tu-
ple with PI [P+,∞) logically has a P- of ∞, it does not contribute
to any progress point beyond P+. Thus, we can temporarily set
P- to P++1 before feeding the tuples to the SPE. This effectively
causes the SPE to not have to retain information related to progress
point P+ in memory once computation for P+ is done. The result
tuples have their P- set back to ∞ to retain the original query se-
mantics (these query modifications are introduced using compile-
time query rewrites). A similar optimization applies to equi-joins;
see [7] for details. We will see in Section 5 that this optimization
can result in orders-of-magnitude performance benefits.

We next discuss our new big data framework called Now!, that
implements Prism for MR-style computation at scale in a distributed
setting (applying Prism to other models such as graphs is an inter-
esting area of future work).

3. Now! ARCHITECTURE AND DESIGN

3.1 Overview
At a high level, Now!’s architecture is based on the Map-Reduce

(MR) [14] computation paradigm. Figure 6 shows the overall de-
sign of Now! (right) as compared to vanilla MR (left), for a query
with two stages and different partitioning keys. Blobs in the figure
indicate the format of input and output data on Windows Azure’s
distributed Cloud storage, and can be replaced by any distributed
persistent storage such as HDFS. The key points are as follows:
1) Progress-aware data flow: Now! implements the Prism progress
model and provides support for data flow (§ 3.2) in strict progress-
sync order. The main components of progress-aware data flow are:
• Batching Now! reads input data annotated with PIs (progres-

sive samples) and creates batches (§ 3.2.1) of tuples with the

same progress-sync. Data movement in Now! is fully pipelined
in terms of these progress-batches, in progress-sync order.

• Sort-free data shuffle MR sorts the map output by key, fol-
lowed by a merge to enable grouping by key at reducers. This
sort-merge operation in MR is a performance bottleneck [26]. In
contrast, the batched map output in Now! is partitioned and shuf-
fled across the network to reducers without sorting (§ 3.2.2), thus
retaining progress-sync order with improved performance.

• Progress-aware merge A progress-aware merge at reducers is
key to enabling the Prism model for progressive query results.
Each reducer groups together batches received from different
mappers, that belong to the same PI, into a single progress-batch,
and ensures that all progress-batches are processed in strict progress-
sync order (§ 3.2.3) along all data flow paths.
Data flow between map and reduce in Now! uses TCP connec-

tions which guarantee FIFO delivery. Since the input data is read
in progress-sync order and all components retain this invariant, we
are guaranteed global progress-sync order for progress-batches.
2) Progress-aware reducers: Now! introduces the notion of a progress-
aware reducer (Section 3.2.4), that accepts and produces augmented
tuples in progress-sync order, and logically adheres to the Prism
query model. The progress-aware merge generates progress-batches
in progress-sync order; these are fed directly to reducers that pro-
duce early results in progress-sync order. While one could write
custom reducers, we use an unmodified SPE (§ 2.4) as a progress-
aware reducer for progressive relational queries.
3) Multi-stage support: Now! supports concurrent scheduling of
all jobs in a multi-stage query and co-location of mappers of de-
pendent jobs with the reducers of feeding jobs on the same slave
machine (Section 3.3). Data transfer between jobs is in-memory
providing significant savings in a Cloud deployment where blob
access is expensive.
4) Flow control: Now! provides end-to-end flow control to avoid
buffer overflows at intermediate stages such as mapper output, re-
ducer input and reducer output for multi-stage MR. The flow con-
trol mechanism ensures data flows at a speed that can be sustained
by downstream consumers. We use a blocking concurrent queue
(BCQ), a lock-free data structure which supports concurrent en-
queue and dequeue operations, for implementing an end-to-end
flow control mechanism for Now! (our technical report [7] has more
details on flow control in Now!).
5) In-memory data processing: By default, Now! materializes map
output on disk to provide better data availability during failure re-
covery. For better interactivity, we also support a high-performance
in-memory mode (see Section 4).

3.2 Progress-aware data flow & computation
Data flow in Now! is at the granularity of progress-batches and

governed by PIs. This section describes the generation and flow of
these progress-batches in the framework.

3.2.1 Progress-aware batching
The input data is partitioned into a number of input splits (one for

each mapper), data tuples in each of which are assigned progress
intervals in progress-sync order. The mapper reads its input split as
progress annotated tuples (progressive samples), and invokes the
user’s map function.The resulting augmented key-value pairs are
partitioned by key to produce a sequence of progress-batches for
each partition (downstream reducer). A progress-batch consists of
all tuples with the same progress-sync value (within the specific
partition) and has a unique ID. Each progress-batch sequence is
in strictly increasing progress-sync order. The input text reader
appends an end-of-file (eof) marker to the mapper’s input when it

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0
[1,∞) u1 a0
[1,∞) u1 a1
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1

(a)

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0

PI User Ad
[1,∞) u1 a0
[1,∞) u1 a1

PI User Ad
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1

(b)

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0
[0,∞) u1 a0
[0,∞) u1 a1

PI User Ad
[1,∞) u2 a1
[1,∞) u2 a1
[1,∞) u2 a1
[1,∞) u2 a1

(c)

Figure 7: (a) Input data annotated with PIs; (b) Progress-
batches according to input data PI assignment; (c) Progress-
batches with modified granularity using a batching function.

reaches the end of its input split. The mapper, on receipt of the eof
marker, appends it to all progress-batch sequences.
Batching granularity. The batching granularity in the framework
is determined by the PI assignment scheme (§ 2.5) of the input
data. Now!, also provides a control knob to the user, in terms of a
parameterized batching function, to vary the batching granularity
of the map output as a factor of the PI annotation granularity of the
actual input. This avoids re-annotating the input data with PIs if the
user decides to alter the granularity of the progressive output.

Example 2 (Batching) Figure 7(a) shows a PI annotated input split
with three progressive samples. Figure 7(b) shows the correspond-
ing batched map output, where each tuple in a batch has the same
progress-sync value. Figure 7(c) shows how progress granularity is
varied using a batching function that modifies P+. Here, P+ = b P+

b c

is the batching function, with the batching parameter b set to 2.

3.2.2 Progressive data shuffle
Now! shuffles data between the mappers and reducers in terms

of progress-batches without sorting. As an additional performance
enhancement, Now! supports a mode for in-memory transfer of data
between the mappers and reducers with flow control to avoid mem-
ory overflow. We pipeline progress-batches from the mapper to the
reducers using a fine-grained signaling mechanism, which allows
the mappers to inform the job tracker (master) the availability of a
progress-batch. The job tracker then passes the progress-batch ID
and location information to the appropriate reducers, triggering the
respective map output downloads.

The download mechanism on the reducer side has been designed
to support progress-sync ordered batch movement. Each reducer
maintains a separate blocking concurrent queue (BCQ) for each
mapper associated with the job. As mentioned earlier, the BCQ is a
lock-free in-memory data structure which supports concurrent en-
queue and dequeue operations and enables appropriate flow control
to avoid swamping of the reducer. The maximum size of the BCQ
is a tunable parameter which can be set according to the available
memory at the reducer . The reducer enqueues progress-batches,
downloaded from each mapper, into the corresponding BCQ as-
sociated with the mapper, in strict progress-sync order. Note that
our batched sequential mode of data transfer means that continuous
connections do not need to be maintained between mappers and re-
ducers, which aids scalability.
3.2.3 Progress-aware merge

Now! implements the Prism model using a progress-aware merge
mechanism which ensures flow of data in progress-sync order along
all paths in the framework. Figure 8 shows the high level design of
the progress-aware merge module within each reducer. Once a map
output is available in each of the map output queues, the reducer
invokes the progress-aware merge mechanism the details of which

M0 M1 M2 M3 Mn

Download Manager

Map output
queues

Progress ordered
download

Mappers

Merged
map output

Progress-
Aware

Reducer
Progressive

output

Progress-aware
merge

Figure 8: Progress-aware merge.

are given in Algorithm 1. The algorithm takes as input the number
of mappers M, a set of BCQs B where qi ∈ B denotes the blocking
concurrent queue for mapper i, the current progress-sync value cmin

of the merged batch that needs to be produced (cmin is initialized to
the minimum progress-sync across the heads of the BCQs), andH ,
where hi ∈ H is the progress-sync value currently at the head of qi

(hi is initialized to the progress-sync value at the head of qi).
The algorithm initializes an empty setO as output. It iterates over

all mapper queues to find and dequeue the batches whose progress-
sync values match cmin, adds them to O and updates hi to the new
value at the head of qi. It finally updates cmin and returns O, a
merged batch with all tuples having the same progress-sync value.
O is then fed to the progressive reducer. If O = ∅, indicating end
of input on all BCQs, the framework passes an eof marker to the
progressive reducer signaling termination of input.

Algorithm 1: Progress-aware merge
input : # of Mappers M,B = {q1, . . . , qM}, cmin,H = {h1, . . . , hM}

output : Merged batch O
begin
O = ∅;
for each qi ∈ Q do

if (hi==∞) then continue;
progress-sync = peek(qi); // peek blocks if qi = ∅
if (progress-sync==eof) then

hi = ∞; continue;

hi =progress-sync;
if (hi == cmin) then
O = O

⋃
dequeue(qi);

progress-sync = peek(qi);
if (progress-sync==eof) then hi = ∞;
else hi =progress-sync;

cmin = min(H); return O;
end

3.2.4 Progress-aware reducer
Let partition denote the set of keys that a particular reducer is

responsible for. In traditional MR, the reducer gathers all values
for each key in the partition and invokes a reduce function for each
key, passing the group of values associated with that key. Now!
instead uses progress-aware reducers whose input is a sequence of
progress-batches associated with that partition in progress-sync or-
der. The reducer is responsible for per-key grouping and computa-
tion, and produces a sequence of progress-batches in progress-sync
order as output. We use the following API to achieve this:

Unchanged map API:
void map(K1 key, V1 value, Context context

Generalized Reduce API:
void reduce(Iterable<K2, V2> input, Context context)

Algorithm 2: Scheduling
input : R f ,Ro,Mi,Md , dependency table

begin
for each r ∈ R f do

Dispatch r;
if Dispatch successful then Make a note of tracker ID;

for each r ∈ Ro do Dispatch r;
for each m ∈ Md do

Dispatch m, co-locating it with its feeder reducer;

for each m ∈ Mi do
Dispatch m closest to input data location;

end

Here, V1 and V2 include PIs. Now! also supports the traditional
reducer API to support older workflows, using a layer that groups
active tuples by key for each progress point, invokes the traditional
reduce function for each key, and uses the reduce output to generate
tuples with PIs corresponding to that progress point.
Progressive SQL While users can write custom progress-aware
reducers, we advocate using an unmodified temporal streaming en-
gine (such as StreamInsight) as a reducer to handle progressive re-
lational queries (§ 2.4). Streaming engines process data in times-
tamp order, which matches with our progress-sync ordered data
movement. Temporal notions in events can be reinterpreted as
progress points in the query. Further, streaming engines naturally
handle efficient grouped subplans using hash-based key partition-
ing, which is necessary to process tuples in progress-sync order.

3.3 Support for Multi-stage
We find that most analytics queries need to be expressed as multi-

stage MR jobs. Now! supports a fully pipelined progressive job
execution across different stages using concurrent job scheduling
and co-location of processes that need to exchange data across jobs.
Concurrent Job Scheduling The scheduler in Now! has been
designed to receive all the jobs in a multi-stage query as a job graph,
from the application controller. Each job is converted into a set of
map and reduce tasks. The scheduler extracts the type information
from the job to construct a dependency table that tracks, for each
task within each job, where it reads from and writes to (a blobs
or some other job). The scheduler uses this dependency table to
partition map tasks into a set of independent map tasks Mi which
read their input from a blob/HDFS, and a set of dependent map
tasks Md whose input is the output of some previous stage reducer.
Similarly, reduce tasks are partitioned into a set of feeder tasks R f

that provide output to mappers of subsequent jobs, and a set of
output reduce tasks Ro that write their output to a blob/HDFS.

Algorithm 2 shows the details of how the map and reduce tasks
corresponding to different jobs are scheduled1. First, all the re-
duce tasks in R f are scheduled on slave machines that have at least
one map slot available to schedule a corresponding dependent map
task in Md which would consume the feeder reduce task’s output.
The scheduler maintains a state of the task tracker IDs of the slave
machines on which these feeder reduce tasks have been scheduled.
Second, all the reducers in Ro are scheduled depending on the avail-
ability of reduce slots on various slave machines in a round robin
manner. Third, all the map tasks in Md are dispatched, co-locating

1If the scheduler is given additional information such as the stream-
ing query plan executing inside reducers, we may be able to lever-
age database cost estimation techniques to improve the scheduling
algorithm. This is a well studied topic in prior database research,
and the ideas translate well to our setting.

J3

J2

J1

Data input

Final output

Data flow

Initial Job

Intermediate
 Job

Final Job

M1 M2 M3

R1 R2

M1 M2

R1 R2

M1 M2

R1 R2

F1 F2 F3 Input Files

O1 O2 Output Files

Blocking
Concurrent

Queue

Blocking
Concurrent

Queue

(a) (b)
Task placement

J2

J1

J3

Figure 9: Multi-stage map reduce data flow.
them with the reducers of the previous stage in accordance with the
dependency table and using the task tracker information retained in
step 1 of the algorithm. Finally, all the map tasks in Mi are sched-
uled closest to the input data location. Placing tasks in this order
ensures that if there exists a feasible placement of all MR tasks that
would satisfy all job dependencies, we will find such a placement.
Data flow between jobs Figure 9 shows a sample placement of
map and reduce tasks for processing a query that constitutes three
jobs, J1, J2 and J3. Figure 9(a) shows the data flow between jobs
and Figure 9(b) shows the placement of map and reduce tasks as
per Now!’s scheduling algorithm (Ref Algorithm 2). The shaded
portions in the figure indicate that the corresponding map and re-
duce tasks have been co-scheduled on the same slave machine. The
scheduler also verifies that the number of dependent map tasks are
equal to the number of feeder reduce tasks of a preceding job, thus
ensuring that there is one dependent map task for each feeder re-
duce task that is co-scheduled on the same slave machine.

Data flow between jobs is modeled on the producer-consumer
paradigm using a BCQ and takes place completely in memory avoid-
ing data materialization and shuffling overheads. Further, co-location
of the reducers and mappers of dependent jobs does away with the
overhead of data serialization, de-serialization and expensive net-
work I/O between stages in a Cloud setting.

4. DISCUSSION AND EXTENSIONS

4.1 High Availability (HA)
Upadhyaya et al. [35] have recently shown how a multi-stage

pipelined map-reduce system can support hybrid strategies of re-
play and checkpointing; these solutions are applicable in our set-
ting. Specifically, the failure semantics for Now! are:
Map task failure: Any map task in progress or completed on a
failed worker node needs to be rescheduled as in vanilla MR.
Reduce task failure: After a reduce task fails, one can replay its
input starting from the last checkpoint (map output is materialized
on local storage to allow replay). Interestingly, Prism can further
reduce the cost of replay after a failure. The key insight is that
processing at progress point p depends only on input tuples whose
PIs are stabbed by p. We can leverage this in two ways:

• We can filter out tuples with P-≤ p during replay to significantly
reduce the amount of data replayed and prune the intermediate
map output saved on local storage2.

2This optimization does not apply to external input which has P-

set to∞, but can apply to intermediate results in multi-stage jobs.

• During replay, we can set P+= max(p, P+) for replayed tuples
so that the reducer does not need to re-generate early results for
progress points earlier than p.
Prior research [32] has reported that input sizes on production

clusters are usually less than 100GB. Further, progressive queries
are usually expected to end early. Therefore, Now! supports an ef-
ficient no-HA mode, where intermediate map output is not materi-
alized on local storage and no checkpointing is done. This requires
a failure to cascade back to the source data (we simply restart the
job). Restarting the job on failure is a cheap and practical solu-
tion for such systems as compared to traditional long-running jobs.
That said, we acknowledge that high availability with low recovery
time (e.g., by restarting only the failed parts of the DAG) is impor-
tant in some cases. Prior work [35, 38] has studied this problem;
these ideas apply in our setting. We leave the implementation and
evaluation of such fine-grained HA in Now! as future work.

4.2 Straggler and Skew Management
Stragglers A consequence of progress-sync merge is that if a
previous task makes slow progress, we need to slow down overall
progress to ensure global progress-sync order. While progress-sync
order is necessary to derive the benefits of Prism, there are fixes
that avoid sacrificing semantics and determinism:
• Consider n nodes with 1 straggler. If the processing skew is a

result of imbalanced load, we can dynamically move partitions
from the straggler to a new node (we need to also move reducer
state). We may instead fail the straggler altogether and re-start its
computation by partitioning its load equally across the remaining
n − 1 nodes. The catch-up work gets done n − 1 times faster,
resulting in a quicker restoration of balance 3.

• We could add support for compensating reducers, which can
continue to process new progress points, but maintain enough
information to revise or compensate their state once late data is
received. Several engines have discussed support for compensa-
tions [6, 33], and fit well in this setting.

As we have not found stragglers to be a problem in our experiments
on Windows Azure VMs, the current version of Now! does not ad-
dress this issue. A deeper investigation is left as future work.
Data Skew Data skew can result from several reasons:
• Some sampling strategies encoded using PIs may miss out on

outliers or rare sub-populations within a population. This can
be resolved using stratified sampling which can be easily imple-
mented in Prism as discussed in Section 2.5.

• Skew in the data may result in some progress-batches being larger
than others at the reducers. However, this is no different from
skew in traditional map-reduce systems, and solutions such as [24]
are applicable here.

Since skew is closely related to the straggler problem, techniques
mentioned earlier for stragglers may also help mitigate skew.

5. EVALUATION
5.1 Implementation Details

Now! is written in C# and deployed over Windows Azure. Now!
uses the same master-slave architecture as Hadoop [36] with Job-
Tracker and TaskTracker nodes. TaskTracker nodes are allocated a
fixed number of map and reduce slots. Heartbeats are used to en-
sure that slave machines are available. We modified and extended

3If failures occur halfway through a job on average, jobs run for
2.5/(n − 1) times as long due to a straggler with this scheme.

this baseline to incorporate our new design features (see Section 3)
such as pipelining, progress-based batching, progress-sync merge,
multi-stage job support, concurrent job scheduling, etc. Now! de-
ployed on the Windows Azure Cloud platform, uses Azure blobs
as persistent storage and Azure VM roles as JobTracker and Task-
Tracker nodes. Multi-stage job graphs are generated by users and
provided to Now!’s JobTracker as input; each job consists of input
files, a partitioning key (or mapper), and a progressive reducer. Al-
though Now! has been developed in C# and evaluated on Windows
Azure, its design features are not tied to any specific platform. For
example, Now! could be implemented over Hadoop using HDFS
and deployed on the Amazon EC2 cloud.

Now! makes it easy to employ StreamInsight as a reducer for pro-
gressive SQL, by providing an additional API that allow users to
directly submit a graph of 〈key, query〉 pairs, where query is a SQL
query specified using LINQ [34]. Each node in this graph is auto-
matically converted into a job. The job uses a special progressive
reducer that uses StreamInsight to process tuples. The Now! API
can be used to build front-ends that automatically convert larger
Hive, SQL, or LINQ queries into job graphs. Although the system
has been designed for the Cloud and uses Cloud storage, it also
supports deployment on a cluster of machines (or private Cloud).
Now! includes diagnostics for monitoring CPU, memory, and I/O
usage statistics. These statistics are collected by an instance of a
log manager running on each machine which outputs these in the
form of logs which are stored as blobs in a separate container.

5.2 Experimental Setup
System Configuration The input and final output of a job graph
are stored in Azure blobs. Each Azure VM role (instance) is a large-
sized machine with 4 1.6GHz cores, 7GB RAM, 850GB of local
storage, and 400Mbps allocated I/O bandwidth. Each instance was
configured to support 5 map slots and 2 reduce slots. We experi-
ment with up to 75 instances in our tests4.
Datasets We use the following datasets in our evaluation, with
dataset sizes based upon the aggregate amount of memory needed
to run our queries over them:

• Search data. This is a real 100GB search dataset from Bing, that
consists of userids and their search terms. The input splits were
created by sharding the data into a number of files/partitions, and
annotating with fine-grained PI values.

• TPC-H data. We used the dbgen tool to generate a 100GB TPC-
H benchmark dataset, for experiments using TPC-H queries.

• Click data. This is a real 12GB dataset from the Microsoft Ad-
Center advertising platform, that comprises of clicks and impres-
sions on various ads over a 3 month period.

Queries We use the following progressive queries:

• Top-k correlated search. The query reports the top-k words that
are most correlated with an input search term, according to a
goodness score, in the search dataset. The query consists of two
Now! jobs, one feeding the other. The first stage job uses the
data set as input and partitions by userid. Each reducer com-
putes a histogram that reports, for each word, the number of
searches with and without the input term, and the total number of
searches. The second stage job groups by word, and aggregates
the histograms from the first stage, computes a per-word good-
ness, and performs top-k to report the k most correlated words to
the input term. We use “music” as the default term.

4Our Windows Azure subscription allowed no more than 300
cores; this limited us to 75 4-core VM instances.

0 20 40 60 80 100

0

50

100

150

200

Progress %

Ti
m

e
ta

ke
n

 (
m

in
s)

Effect of progressive computation

SMR: 8GB

Now!: 8GB

SMR: 6GB

Now!: 6GB

(a)

80 600 1200 6000

0

20

40

60

80

100

Batch Size (MB)

Q
u

er
y

p
ro

ce
ss

in
g

ti
m

e
(m

in
s)

Effect of batch size

MR

SMR

Now!

Time to first batch (Now!)

(b)

30GB 15GB

0

20

40

60

80

100

%
 T

im
e

ta
ke

n

Performance Analysis
Write to Blob

2nd Stage Reduce

2nd Stage Map D/n loads

2nd Stage Map

1st Stage Reduce

1st Stage Map D/n loads

1st Stage Map

Input enumeration

(c)

0

10

20

30

40

50

3 5 6 8 9 13 15 30

1

10

100

1000

10000

Sc
al

e-
U

p
 f

ac
to

r

Data size (GB)

Q
u

er
y

p
ro

ce
ss

in
g

ti
m

e
(m

in
s)

Lo

g
sc

al
e

Scalability with increase in data size

SMR

Now!

Scale-up

(d)

20
(1X)

30
(1.5X)

45
(2.25X)

60
(3X)

74
(3.7X)

1
2
3
4
5
6

Machines

Th
ro

u
gh

p
u

t
sc

al
e

-u
p

fa

ct
o

r

Throughput Scalability

Scale up: Now!

(e)

0

25

50

75

100

M
ap

 o
u

tp
u

t
sh

u
ff

le
 t

im
e

(i
n

 s
ec

s)

Effect of map output materialization

Map o/p in-memory

Map o/p on disk

(f)

Figure 10: Performance analysis.(a) Time taken to process a query in progress-sync order; (b) Effect of batching granularity; (c)
Analysis of time taken by different elements for a two-stage Map-Reduce query. Scalability: (d) Effect of data size on query processing
time; (e) Throughput scalability with increase in #machines; (f) Overheads of disk I/O (Map output materialization).

• TPC-H Q3. We use a generalization of TPC-H query 3:
SELECT L_ORDERKEY, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS
REVENUE, O_ORDERDATE, O_SHIPPRIORITY FROM ORDERS, LINEITEM
WHERE L_ORDERKEY = O_ORDERKEY
GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY

• CTR. The CTR (click-through-rate) query computes the MR job
graph shown in Figure 2 (our running example). It consists of
three queries (Qc, Qi, and Qctr) where Qc is a click query which
computes the number of clicks from the click dataset, Qi is an
impressions query which computes the number of ad impressions
from the impression data set and Qctr computes the CTR.

Baselines We evaluate Now! against several baseline systems:

• Map-Reduce (MR). For standard map-reduce, we use Daytona [13],
a C# implementation of vanilla hadoop for Windows Azure. This
baseline provides an estimate of time taken to process a parti-
tioned query without progressive results.

• Stateful MR (SMR). Stateful MR is an extension of MR for it-
erative queries [5], that maintains reducer state across MR jobs.
We use it for progressive results by chunking the input into batches,
and submitting each chunk (in progress-sync order) as a separate
MR job. Subsequent chunks use reducers that retain the prior
job’s state. For each chunk, we run each MR stage as a vanilla
MR job. With multi-stage jobs, we process one chunk through
all stages before submitting the next chunk to the first stage.

• MRO [12]. MRO pipelines data between the mappers and re-
ducers, but is unaware of progress semantics and does not use
progress-sync merge at the reducers. This can lead to different
nodes progressing at different speeds. We approximate MRO in
Now! by replacing the progress-aware merge with a union5.

Job configuration and parameter settings. The configuration
for a two-stage job (with one job feeding another) is depicted as
M1−R1−M2−R2 where M and R represent the number of mappers

5This baseline benefits from our other optimizations such as con-
current job scheduling, no sorting, and pipelining across stages.

and reducers and their subscripts (1, 2) represent the stage to which
they belong (note that R1 = M2). A single stage job is depicted as
M1 −R1. In our experiments, the number of mappers is equal to the
number of input splits (stored as blobs). The number of reducers is
chosen based on the memory capacity of each worker node (7GB
RAM) and the number of mappers feeding the reducers.

5.3 Experiments and Results
5.3.1 Effect of Progressive Computation

We evaluate Now!’s performance vs. SMR in terms of time
taken to produce progressive results. The first experiment (see Fig-
ure 10(a)) plots the time taken to run the top-k correlated search
query which provides the top 100 words that were searched with
“weather”, in terms of progress-batches plotted in progress-sync or-
der. The input data set was batched by the mapper into 75 progress-
batches by Now!. For the SMR baseline, the data was ordered and
split into 75 chunks (one per PI). Each chunk representing one PI,
was processed as a separate MR job and the time taken taken for
the same was recorded. Each point on the plot represents an aver-
age of five runs. We used datasets of two sizes (6 and 8GB). The
experimental results show that Now! performs much better (6X im-
provement) than SMR, which processes each progress batch as a
separate job and resorts to expensive intermediate output material-
ization, hurting performance, particularly in a Cloud setting. Also,
the time taken for the first 50% of the progress batches is under
20mins as opposed to 105mins for SMR, for the 8GB dataset, high-
lighting the benefit of platform support for progressive early results.

5.3.2 Effect of Batching
We evaluate the performance of Now! for different progress-

batch sizes and compare the same with SMR and MR. The MR
baseline processes the entire input as a single batch. The granu-
larity of batch size controls the number of progress batches. The
dataset size used in this experiment is 6GB and the configuration is
94-26-26-4. The experiment shows the results for 3 different batch
sizes: 80MB (75 batches), 600MB (10 batches) and 1200MB (5

0

50

100

150

200

250

300

0 20 40 60 80 100

0

500

1000

1500

2000

%
 C

P
U

 U
ti

l

Progress (% Time elasped)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Util: Now! (94-26-26-4)
Memory Util Mean (Memory Util)
CPU Util Mean (CPU Util)

Time taken : 19 mins 4secs

(a)

0

50

100

150

200

250

300

0 20 40 60 80 100

0

500

1000

1500

%
 C

P
U

 U
ti
liz

a
ti
o

n

Progress (% Elapsed time)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Utilization: SMR (94-26-26-4)
Memory Util Mean (Memory Util)
CPU Util Mean (CPU Util)
Normalized CPU Util

Time taken : 86 mins 20 secs

(b)

0

50

100

150

200

250

300

0 20 40 60 80 100

0

1000

2000

3000

4000

5000

%
 C

P
U

 U
ti

liz
at

io
n

Progress (% Elapsed time)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Util: Now! (No Mem opt)
Memory Util Mean (Mem Util)

CPU Util Mean (CPU Util)

Normalized CPU Util Time taken: 53 mins

(c)

0

50

100

150

200

250

300

0 20 40 60 80 100

0

100

200

300

400

%
 C

P
U

 U
ti

liz
at

io
n

Progress (% Elapsed time)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Util: Now! (Mem opt)
Memory Util Mean (Mem Util)

% CPU Util Mean (CPU Util)

Time taken: 4 mins 26 secs

(d)

0

200

400

600

800

1000

1200

10GB (10 machines) 60GB (60 machines)

0

1

2

3

4

%
 C

P
U

 U
ti

l

M
em

o
ry

 U
ti

l (
G

B
)

Effect of sort order: Resource Util
Memory Util* Normalized CPU Util

Memory Util Normalized CPU Util *

* With memory optimization

(e)

1

10

100

1000

10GB (10 m/cs) 60GB (60 m/cs) 100GB (74 m/cs)

Ti
m

e
ta

ke
n

 (
m

in
s)

 L
o

g
sc

al
e

Effect of Sort Order: X-put scalability
Time taken * Time taken

* With memory optimization

4.43mins

53mins

14.83mins

189mins

18.15mins

Out of
memory

Scale-up:12X Scale-up:12.8X

(f)

Figure 11: Resource Utilization. (a) CPU and memory utilization Now!; (b) CPU and memory utilization SMR;(c) CPU and memory
utilization without memory optimization; (d) CPU and memory utilization with memory optimization. (e) Effect of sort order on
memory and % CPU utilization for different data sizes; (f) Memory optimization effects on query processing time.

batches), and compares them against vanilla MR which processes
the entire input of 6GB at once.

Figure 10(b) shows the change in total query processing time
with change in batch size. As the batch-size decreases from 1200MB
to 80MB, the number of batches processed by the system increases
from 5 to 75. The query processing time of SMR increases dras-
tically with the increase in the number of batches, which can be
attributed to the fact that it processes each batch as a separate MR
job and resorts to intermediate data materialization. The MR base-
line which processes the entire input as a single batch does better
than SMR , but does not provide early results.

On the other hand, the query processing time for Now! does not
vary much with increase in number of batches as it is pipelined,
does not start a new MR job for each batch, and does not material-
ize intermediate results between jobs. We do see a slight increase in
query processing time when the number of batches increases from
10 to 75, which can be attributed to a moderate increase in batching
overheads. However, the smallest batch-size provides the earliest
progressive results and at the finest granularity. The figure shows
the time to generate the first progress batch i.e., the time when the
user starts getting progressive results. The time to first batch in-
creases with increase in batch size (or progressive sample size), but
is significantly lower than the total query processing time.

5.3.3 Performance Breakdown
We analyzed the performance of Now! using our diagnostic mon-

itoring module which logs CPU, memory, and I/O usage. Fig-
ure 10(c) analyses the performance of the two-stage top-k corre-
lated search query with k = 100, and plots the % time taken by dif-
ferent components in Now!. Each data point in the figure is an av-
erage over 10 runs, for two different datasets (15GB and 30GB) on
30 machines. The results indicate that the maximum time is spent
in the first stage reducer followed by the second stage reduce and
writing the final output to the blobs. The framework does not have
any major bottlenecks in terms of pipelining of progress-batches.
The time taken by the two reduce stages would vary depending on

the choice of progressive reducer and the type of query. Our current
results use StreamInsight as the progressive reducer.

5.3.4 Scalability
Figure 10(d) evaluates the effect of increase in data size on query

processing time in Now! as compared to SMR. We used the top-
k correlated search query for the experiment and varied the data
size from 2.8GB to 30GB. The results show that Now! provides a
scale-up of up to 38X over SMR in terms of the ratio of their query
processing times. This can be attributed to pipelining, no sorting
in the framework and no intermediate data materialization between
jobs. Figure 10(e) shows the scale-up provided by Now! in terms of
throughput (#rows processed per second) with the increase in #ma-
chines. For the top-k correlated search query (top 100 words corre-
lated to “music”), we achieved a 6X scale-up with 74 machines as
compared to the throughput on 20 machines, for 15GB data.

5.3.5 Data Materialization Overheads
Writing map outputs on the local disk, has a significant perfor-

mance penalty, while on the other hand, intermediate data material-
ization provides higher availability in presence of failures . Figure
10(f) shows the overhead of disk I/O in materializing map output
on disk and subsequent disk access to shuffle the data to the reduc-
ers within a job. Our results show an overhead of approx 90 secs
for a dataset of 8GB for the 94-26-26-4 configuration.

Now! is tunable to work in both modes (with and without disk
I/O) and can be chosen by the user depending on the application
needs and the execution environment. It is also pertinent to note
here that there is no data materialization on persistent storage (HDFS
or Cloud) between different Map-Reduce stages in Now! which
provides a similar performance advantage for multi-stage jobs over
MR/SMR as seen in section 5.3.1.

5.3.6 Resource Utilization
We evaluated Now! for its resource utilization in terms of mem-

ory and CPU. Figures 11(a,b) compare the memory and CPU uti-
lization of Now! and SMR for the 94-26-26-4 configuration for a

dataset size of 8GB. The figures show the average real time memory
and CPU utilization over 30 slave machines each running 4 map-
pers and 1 reducer plotted against time. The results indicate that
there is no significant difference in the average memory utiliza-
tion for both platforms, and the average CPU utilization of Now!
is actually higher than that of SMR. However, we also show the
normalized %CPU utilization for SMR which is the product of the
average CPU utilization and the normalization factor (ratio of time
taken by SMR to the time taken by Now!.) The normalized %CPU
utilization is much higher as SMR takes approx 4.5X more time to
complete as compared to Now!. Thus, Now! is ideal for progressive
computation on the Cloud, where resources are charged by time.

5.3.7 Memory Optimization using Sort Orders
The next experiment investigates the benefit of our memory op-

timization (cf. Section 2.6) in case the progress-sync order is cor-
related with the partitioning key. Our TPC-H dataset uses progress
in terms of the L ORDERKEY attribute, and TPC-H Q3 also parti-
tions by the same key. An optimized run can detect this at compile-
time and set P-=P++1, allowing the query to “forget” previous tu-
ples when we move to the next progress-batch. An unoptimized
run would retain all tuples in memory in order to compute future
join and aggregation results. We experiment with 10GB, 60GB and
100GB TPC-H datasets. Figures 11(c) and 11(d) show the varia-
tion of memory and CPU utilization with progress with and with-
out memory optimization for the 10GB dataset. Figure 11(e) shows
that the memory footprint of the optimized approach is much lower
than the unoptimized approach, as expected. Further, it indicates
that the lower memory utilization directly impacts CPU utilization
since the query needs to maintain and lookup much smaller join
synopses. Figure 11(f) shows that memory optimization gives an
orders of magnitude reduction in time taken to process the TPC-
H Q3 for all the three datasets providing a throughput scale-up of
approx 12X in two cases (10GB and 60GB). As indicated in the fig-
ure, the 100GB run without memory optimization ran out of mem-
ory (OOM) as the data per machine was much higher.

5.3.8 Qualitative Evaluation
Result Convergence In order to determine the speed of conver-
gence we compute the precision (for the top-k correlated search
query) of the progressive output values that we get as intermediate
results. Figure 12(a) varies k and plots precision against the number
of progress-batches processed for a data size of 15GB, with a con-
figuration of 60-43-43-1 and 200 progress batches. The precision
metric measures how close progressive results are to the final top-k.
We see that precision quickly reaches 90%, after a progress of less
than 20% as the top k values do not change much after sampling
20% of the data (lower k values converge quicker as expected).
This shows the utility of early results for real-world queries where
the results converge very quickly to the final answer after process-
ing small amounts of data.
Progress Semantics We compare result quality against an MRO-
style processing approach using the clicks dataset to compute CTR
(Figure 2) progressively. We model variation in processing time us-
ing a skew factor that measures how much faster Qi is, as compared
to Qc. A skew of 1 represents the hypothetical case where perfect
CTR information is known a priori, and queries follow this relative
processing speed. Figure 12(b) shows the % error in CTR esti-
mation plotted against % progress. The experiment shows that if
different queries proceed at different speeds, early results without
user-defined progress semantics can become inaccurate (although
all techniques converge to the same final result). We see that even
moderate skew values can result in significant inaccuracy. On the

0.4

0.6

0.8

1

0 20 40 60 80 100

P
re

ci
si

o
n

% Progress

Top-k Convergence

k-1000 k-500

k-100 k-50

k-10

(a)

0 25 50 75 100

-100

0

100

200

300

400

% Progress (Progressive Output)

%
 C

TR
 E

rr
o

r

CTR Estimation error
Now! MRO (Skew 0.2) MRO (Skew 0.5)

MRO (Skew 2) MRO (Skew 5)

(b)

Figure 12: Qualitative analysis. (a) Top-k Convergence; (b)
Error estimation of progressive results.
other hand, progress semantics ensure that the data being correlated
always belongs to the same subset of users, which allows CTR to
converge quickly and reliably, as expected.
6. RELATED WORK
Approximate Query Processing Online aggregation was orig-
inally proposed by Hellerstein et al. [21], where the focus was
on grouped aggregation with statistically robust confidence inter-
vals based on random sampling. This was extended to handle join
queries using the ripple join [17] family of operators. Specialized
sampling techniques have been widely studied in subsequent years
(e.g., see [9, 20, 30]). Laptev et al. [25] propose iteratively com-
puting MR jobs on increasing data samples until a desired approx-
imation goal is achieved. BlinkDB [2] constructs a large number
of multi-dimensional samples offline using a particular sampling
technique (stratified sampling) and chooses samples automatically
based on a user-specified budget.

We follow a different approach: instead of the system taking
responsibility for query accuracy (e.g., as sampling techniques)
which may not be possible in general, we involve the query writer
in the specification of progress semantics. A query processor using
Prism can support a variety of user-defined progressive sampling
schemes; we view prior work described above as part of a layer be-
tween our generic progress engine and the user, that helps with the
assignment of PIs in a semantically appropriate manner.
MR Framework Variants Map-Reduce Online (MRO) [12] sup-
ports progressive output by adding pipelining to MR. Early result
snapshots are produced by reducers, each annotated with a rough
progress estimate based on averaging progress scores from differ-
ent map tasks. Unlike our techniques, progress in MRO is an op-
erational and non-deterministic metric that cannot be controlled by
users or used to formally correlate progress to query accuracy or to
specific input samples. From a data processing standpoint, unlike
Now!, MRO sorts subsets of data by key and can incur redundant
computations as reducers repeat aggregations over increasing sub-
sets (see [7] for more details).

Li et al. [26] propose scalable one pass analytics (SOPA), where
they replace sort-merge in MR with a hash based grouping mecha-
nism inside the framework. Our focus is on progressive queries,
with a goal of establishing and propagating explicit progress in

the platform. Like SOPA, we eliminate sorting in the framework,
but leave it to the reducer to process progress-sync ordered data.
Streaming engines use efficient hash-based grouping, allowing us
to realize similar performance gains as SOPA inside our reducers.
Distributed Stream Processing SPEs answer real-time tempo-
ral queries over windowed streams of data. We tackle a different
problem: progressive results for atemporal queries over atempo-
ral offline data, and show that our new progress model can in fact
be realized by leveraging and re-interpreting the notion of time
used by temporal SPEs. Now! is an MR-style distributed frame-
work for progressive queries; it is markedly different from dis-
tributed SPEs [1] as it leverages the explicit notion of progress to
build a batched-sequential data-parallel framework that does not
target real-time data or low-latency queries. The use of progress-
batched files for data movement allows Now! to amortize transfer
costs across reducer per-tuple computation cost. Now!’s architec-
ture is designed along the lines of MR with extended map and re-
duce APIs, and is designed for a Cloud setting.
Interactive Full-Data Analytics Dremel [29] and PowerDrill [18]
are distributed system for interactive analysis of read-only large
columnar datasets. Spark [37] provides in-memory data structures
to persist intermediate results in memory, and can be used to in-
teractively query big data sets or get medium-latency batchwise re-
sults on real-time data [38]. These engines have a different goal
from us; by fully committing memory and compute resources a
priori, they provide full results to queries on hot in-memory data in
milliseconds, for which they use careful techniques such as colum-
nar in-memory data organization for the (smaller) subset of data
that needs such interactivity. On the other hand, we provide generic
interactivity over large datasets, in terms of early meaningful re-
sults on progressive samples and refining results as more data is
processed. Based on the early results, users can choose to poten-
tially end (or possibly refine) computations once sufficient accuracy
or query incorrectness is observed.

7. CONCLUSIONS
Data scientists typically perform progressive sampling to extract

data for exploratory querying, which provides them user-control,
determinism, repeatable semantics, and provenance. However, the
lack of system support for such progressive analytics results in a
tedious and error-prone workflow that precludes the reuse of work
across samples. We proposed a new progress model called Prism
that (1) allows users to communicate progressive samples to the
system; (2) allows efficient and deterministic query processing over
samples; and yet (3) provides repeatable semantics and provenance
to data scientists. We showed that one can realize this model for
atemporal relational queries using an unmodified temporal stream-
ing engine, by re-interpreting temporal event fields to denote progress.
Based on this model, we built Now!, a new progressive data-parallel
computation framework for Windows Azure, where progress is un-
derstood and propagated as a first-class citizen in the framework.
Now! works with StreamInsight to provide progressive SQL sup-
port over big data in Azure. Large-scale experiments showed orders-
of-magnitude performance gains achieved by our solutions, without
sacrificing the benefits offered by our underlying progress model.
While we have studied the application of Prism to MR-style com-
putation, applying it to other computation models (e.g., graphs) is
an interesting area of future work.

8. REFERENCES
[1] D. Abadi et al. The design of the Borealis stream processing engine.

2005.
[2] S. Agarwal et al. Blinkdb: Queries with bounded errors and

bounded response times on very large data. In EuroSys, 2013.

[3] M. Ali et al. Microsoft CEP Server and Online Behavioral
Targeting. 2009.

[4] B. Babcock et al. Models and issues in data stream systems. 2002.
[5] R. Barga, J. Ekanayake, and W. Lu. Iterative mapreduce research on

Azure. In SC, 2011.
[6] R. Barga et al. Consistent streaming through time: A vision for

event stream processing. 2007.
[7] B. Chandramouli et al. Scalable progressive analytics on big data in

the cloud. Technical report, MSR. http://aka.ms/Jpe5f5.
[8] B. Chandramouli et al. Temporal analytics on big data for web

advertising. In ICDE, 2012.
[9] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of block-level

sampling in statistics estimation. In SIGMOD, 2004.
[10] S. Chaudhuri et al. On random sampling over joins. In SIGMOD,

1999.
[11] D. Cohn et al. Improving generalization with active learning. Mach.

Learn., 15, 1994.
[12] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears. Mapreduce online. In NSDI, 2010.
[13] Daytona for Azure. http://aka.ms/unkcbq.
[14] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on

large clusters. OSDI’04.
[15] A. Doucet, M. Briers, and S. Senecal. Efficient block sampling

strategies for sequential monte carlo methods. Journal of
Computational and Graphical Statistics, 2006.

[16] P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation.
In SIGMOD 1999.

[17] P. J. Haas and J. M. Hellerstein. Join algorithms for online
aggregation. In IBM Research Report RJ 10126, 1998.

[18] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and M. Nunkesser.
Processing a trillion cells per mouse click. PVLDB July 2012.

[19] M. Hammad et al. Nile: A query processing engine for data streams.
2004.

[20] J. M. Hellerstein and R. Avnur. Informix under control: Online query
processing. Data Mining and Knowledge Discovery Journal, 2000.

[21] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
SIGMOD, 1997.

[22] C. Jensen and R. Snodgrass. Temporal specialization. 1992.
[23] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable

approximate query processing with the dbo engine. SIGMOD ’07.
[24] Y. Kwon et al. Skewtune: mitigating skew in mapreduce

applications. In SIGMOD, 2012.
[25] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for

advanced analytics on mapreduce. PVLDB 2012.
[26] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J. Shenoy. A platform

for scalable one-pass analytics using mapreduce. In SIGMOD 2011.
[27] O. Maron et al. Hoeffding races: Accelerating model selection

search for classification and function approximation. In NIPS, 1993.
[28] M. D. McKay et al. Comparison of Three Methods for Selecting

Values of Input Variables in the Analysis of Output from a Computer
Code. Technometrics, 21, 1979.

[29] S. Melnik et al. Dremel: interactive analysis of web-scale datasets.
PVLDB 2010.

[30] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online
aggregation for large mapreduce jobs. PVLDB, 2011.

[31] V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic
reordering for interactive data processing. VLDB ’99.

[32] A. Rowstron et al. Nobody ever got fired for using hadoop on a
cluster. In HotCDP, 2012.

[33] E. Ryvkina et al. Revision processing in a stream processing engine:
A high-level design. In ICDE, 2006.

[34] The LINQ Project. http://aka.ms/rjhi00.
[35] P. Upadhyaya, Y. Kwon, and M. Balazinska. A latency and

fault-tolerance optimizer for online parallel query plans. In
SIGMOD, 2011.

[36] T. White. Hadoop: The Definitive Guide. 2009.
[37] M. Zaharia et al. Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing. NSDI’12.
[38] M. Zaharia et al. Discretized streams: An efficient and fault-tolerant

model for stream processing on large clusters. In HotCloud, 2012.

http://aka.ms/Jpe5f5

	Introduction
	Challenges
	Contributions

	Prism Semantics & Construction
	Logical Progress and Progress Intervals
	Progressive Operators and Queries
	Summary of Benefits of the Prism Model
	Implementing Prism
	PI Assignment
	Performance Optimizations

	Now! Architecture and Design
	Overview
	Progress-aware data flow & computation
	Progress-aware batching
	Progressive data shuffle
	Progress-aware merge
	Progress-aware reducer

	Support for Multi-stage

	Discussion and Extensions
	High Availability (HA)
	Straggler and Skew Management

	Evaluation
	Implementation Details
	Experimental Setup
	Experiments and Results
	Effect of Progressive Computation
	Effect of Batching
	Performance Breakdown
	Scalability
	Data Materialization Overheads
	Resource Utilization
	Memory Optimization using Sort Orders
	Qualitative Evaluation

	Related Work
	Conclusions
	References

