
Checking Beliefs in Dynamic Networks
Nuno P. Lopes

Microsoft Research
Nikolaj Bjørner

Microsoft Research
Patrice Godefroid

Microsoft Research
Karthick Jayaraman

Microsoft Azure

George Varghese
Microsoft Research

Abstract Network Optimized Datalog (NoD) is a
tool for checking beliefs about network reachability poli-
cies in dynamic networks. A belief is a high-level invari-
ant (e.g., “Internal controllers cannot be accessed from
the Internet”) that a network operator thinks is true. Be-
liefs may not hold, but checking them can uncover bugs
or policy exceptions with little manual effort. Refuted
beliefs can be used as a basis for revised beliefs. Further,
in real networks, machines are added and links fail; on
a longer term, packet formats and even forwarding be-
haviors can change, enabled by OpenFlow and P4. NoD
allows the analyst to model such dynamic networks by
adding new rules.

By contrast, existing network verification tools (e.g.,
VeriFlow) lack the ability to model policies at a high
level of abstraction and cannot handle dynamic net-
works; even a simple packet format change requires
changes to internals. Standard verification tools (e.g.,
model checkers) easily model dynamic networks but
do not scale to large header spaces. NoD has the ex-
pressiveness of Datalog while scaling to large header
spaces because of a new filter-project operator and a
symbolic header representation. NoD has been released
as part of the publicly available Z3 SMT solver. We de-
scribe experiments using NoD for policy template check-
ing at scale on two large production data centers. For
a large Singapore data center with 820K rules, NoD
checks whether any guest VM can access any controller
(the equivalent of 5K specific reachability invariants) in
12 minutes. NoD checks for loops in an experimental
SWAN backbone network with new headers in a fraction
of a second. The NoD checker generalizes a specialized
system, SecGuru, we currently use in production to catch
hundreds of configuration bugs over the past year.

1 Introduction
Manually discovering any significant number
of rules a system must satisfy is a dispiriting
adventure – Engler et al. [13].

Our goal is to catch as many latent bugs as possi-
ble by static inspection of router forwarding tables and
ACLs without waiting for the bugs to trigger expensive
live site incidents. In our operational network, we see
roughly one customer visible operational outage of more
than one hour every quarter across our major properties;

these live site incidents are expensive to troubleshoot, re-
duce revenue and customer satisfaction. As businesses
deploy services, bug finding using static verification will
become increasingly essential in a competitive world.

We have already deployed an early version of our
checker in our public cloud; it has regularly found bugs
(§ 7). Operators find our checker to be indispensable es-
pecially when rapidly building out new clusters. How-
ever, we wish to go deeper, and design a more useful
verification engine that tackles two well-known [2, 15]
obstacles to network verification at scale.

O1. Lack of knowledge: As Engler and others have
pointed out [12, 14], a major impediment is determining
what specification to check. Reachability policies can be
thought of intuitively as “who reaches who”. These poli-
cies evolve organically and are in the minds of network
operators [2], some of whom leave. How can one use ex-
isting network verification techniques [1, 21–23, 25, 33]
when one does not know the pairs of stations and headers
that are allowed to communicate?

O2. Network Churn: Existing network verification
techniques assume the network is static and operate on
a static snapshot of the forwarding state. But in our ex-
perience many bugs occur in buildout when the network
is first being rolled out. Another particularly insidious
set of bugs only gets triggered when failures occur; for
example, a failure could trigger using a backup router
that is not configured with the right Drop rules. Be-
yond such short term dynamism, the constant need for
cost reduction and the availability of new mechanisms
like SDNs, keeps resulting in new packet formats and
forwarding behaviors. For example, in recent years, we
have added VXLAN [24] and transitioned to software
load balancers in our VM Switches [28]. The high-level
point is that verification tools must be capable of mod-
eling such dynamism and provide insight into the effect
of such changes. However, all existing tools we know of
including Anteater [25], VeriFlow [23], Hassel [22] and
NetPlumber [21] assume fixed forwarding rules and fixed
packet headers, with little or no ability to model faults or
even header changes.

Our approach to tackling these obstacles is twofold,
and is embodied in a new engine called Network Opti-
mized Datalog (NoD).

A1. Specify beliefs: We allow support for specify-
ing and checking higher-level abstract policy specifica-

1

tions that one can think of as operator beliefs [13]. Be-
liefs by and large hold, but may fail because of bugs
or exceptions to a policy we wish to discover. For ex-
ample, a common belief in our network is “fabric con-
trollers, BGP and management ports should not be reach-
able from customer VMs or external Internet addresses”.
This is a specific instance of what we call a Protection Set
policy template: “Stations in Set A cannot reach Stations
in Set B”. For this paper, a belief is a Boolean combi-
nation of reachability predicates that is easily expressed
using Datalog definitions. Rather than the operator enu-
merate the crossproduct of all specific reachability predi-
cates between specific customer VM prefixes and all pos-
sible controllers, it takes less manual effort to state such
beliefs. If the engine is armed with a mapping from the
predicate “customer VM”, “Internet”, etc. to a list of
prefixes, then the tool can unroll this more abstract pol-
icy specification into specific invariants between pairs of
address prefixes. Of course, checks can lead to false pos-
itives (if there are exceptions which then lead to refining
our beliefs) or false negatives (if our list is incomplete)
but we can get started without waiting for perfect knowl-
edge.

We have found five abstract policy templates (Table 1)
cover every policy our operators have enforced and our
security auditors check for: protection sets, reachabil-
ity sets, reachability consistency, middlebox processing,
and locality. An example of a reachability consistency
belief and bug is shown in Figure 2. We will describe
these in detail in the next section but Table 1 summarizes
examples. Most are present in earlier work except for
locality and reachability consistency. Despite this, ear-
lier work in network verification with the exception of
NetPlumber [21] does not allow reachability invariants
to be specified at this higher level of abstraction. Note
that we make no attempt to learn these abstract policies
as in [2,13]. Instead, we glean these templates from talk-
ing to operators, encode them using NoD, and determine
whether violations are failures or bugs by further discus-
sion. Perhaps surprisingly, checking for a general belief
can often be faster than checking for all implied specific
reachability invariants separately because of wider scope
for optimization.

A2. Model dynamism: Our tool offers all the fea-
tures of Datalog augmented with support for large header
spaces. Our Datalog engine has support for bit vectors.
Thus it is easy for users to add support for MPLS or any
new packet header such as VXLAN without changing
internals. Second, we can model new forwarding behav-
iors enabled by programmable router languages such as
P4 [4]. Third, we can model failure at several levels. The
easiest level is not to model the routing protocol. For
example, our links and devices are divided into avail-
ability zones that share components such as wires and

Policy Example Datalog
Template Feature

Needed
Protection Customer VMs cannot Definitions
Sets access controllers of sets
Reachable Customer VMs can Definitions,
Sets can access VMs Negation
Reachability ECMP/Backup routes Negation,
Consistency should have identical Non-

reachability/ determinism,
same path length Bit vectors

Middlebox
processing

Forward path connec-
tions through a mid-
dlebox should reverse

Negation

Locality

Packets between two
stations in the same
cluster should stay
within the cluster

Boolean
combinations
of reachability
predicates

Table 1: 5 common policy templates.

power supplies that can fail together. Will an availability
zone failure disconnect the network? This can be mod-
eled by adding a predicate to each component that mod-
els its availability zone and state, and changing forward-
ing rules to drop if a component is unavailable.

At a second level, we can easily model failure response
where the backup routes are predetermined as in MPLS
fast reroute: when one tunnel in a set of equal cost tun-
nels fails, the traffic should be redistributed among the
live tunnels in proportion to their weights. The next level
of depth is to model the effect of route protocols like
OSPF and BGP as has been done by Fogel et al. [15]
for a university network using an early version of NoD.
All of these failure scenarios can be modeled as Data-
log rules, with routing protocol modeling [15] requiring
that rules be run to a fixed point indicating routing proto-
col convergence. Existing tools for network verification
like VeriFlow and NetPlumber cannot model dynamism
without changing internals. Our tool can be used to ask
analogous “what if” questions for reliability or security
of network paths.

In summary, we need a verification engine that can
specify beliefs and has the ability to model dynamism
such as new packet headers or failures. Existing ver-
ification network tools scale to large networks at high
speeds but with the exception of NetPlumber do not also
add a policy language front-end to specify beliefs. Net-
Plumber’s regular expression language for reachability
predicates, however, is less rich than Datalog; for ex-
ample, it cannot model reachability consistency across
ECMP routes as in Figure 2. More importantly, none of
the existing tools including NetPlumber can be easily ex-
tended to model failures without modifying the internals.

2

On the other hand, the verification community has pro-
duced an arsenal of tools such as model checkers, Data-
log, and SAT Solvers that are extremely extensible, and
can easily model dynamism and beliefs. The catch is that
they tend to work well only with small state spaces. For
example, several Datalog implementations use relational
backends that use tables as data structures. If the solu-
tions are sets of headers and the headers can be 100 bits
long, the standard implementations scale horribly. Even
tools such as Margrave [26] while offering the ability to
ask “what if” questions for firewalls do not scale to enu-
merating large header spaces. Thus, our contributions
are:

1. Modeling Beliefs and Dynamism (§ 3): We show
how to encode higher-level beliefs that can catch con-
crete bugs using succinct Datalog queries.

2. Network Optimized Datalog (§ 4): We modify
the Z3 Datalog implementation by adding new optimiza-
tions such as symbolic representation of packets and a
combined Filter-Project operator. While we will attempt
to convey the high-level idea, the main point is that these
optimizations are crucial to scale to large data centers
with say 100,000 rules. Our code is publicly released as
part of Z3 version 3.4.2 so that others can build network
verification tools on top of our engine.

3. Evaluation (§ 6): We show that the ability to
model dynamism of Network Optimized Datalog comes
at reasonable speeds by running belief checks on existing
benchmarks, synthetic benchmarks where we can vary
parameters, and our own operational networks. We also
report briefly on the performance of other tools such as
model checkers and SAT solvers.

4. Experience (§ 7): We describe our experiences dur-
ing the last year with an existing checker called SecGuru.
We also describe our experience checking for beliefs on
a large data center. Finally, we allude to Batfish [15] that
checks for bugs in the face of failures using our tool as a
substrate.

In addition, § 2 describes our Datalog model, and § 5
describes our benchmarks.

2 Datalog Model
2.1 Why Datalog

Five key features an ideal modeling language/tool for
network verification should possess are:

1. All Solutions: We want to find all packet head-
ers from A that can reach B. In other words, we need
all solutions for a reachability query. Most classical
verification tools such as model checkers [20] and SAT
solvers [3] only provide single solutions; the naive ap-
proach of adding the negation of the solution and iterat-
ing is too slow.

2. Packet Rewrites: Among classical verification log-
ics, Datalog does provide a native way to model routers
as relations over input and output packets. Packet reach-
ability is modeled as a recursive relation. Rewriting few
selected bits or copying a range is also simple to model
in this framework.

3. Large Header Spaces: Both Features 1 and 2 are
challenging when the header space is very large; for ex-
ample with packet headers of 80 bytes, the header space
is of up to 2640 bits. Without a way to compress headers,
naive solutions will scale poorly.

4. Higher-Level Constructs: Encoding beliefs min-
imally requires a language with Boolean operators for
combining reachability sets, and negation to express dif-
ferential queries.

5. Dynamism: Modeling failure response to protocols
such as BGP and OSPF requires the ability to model re-
cursion and running solutions to a fixed point as has been
done by [15]. The language must also allow modeling
simple failure scenarios such as availability zone failures
and packet format changes.

Recent work in network verification including Veri-
Flow [23] and NetPlumber [21] provide all solutions,
while allowing packet rewriting and scaling to large
header spaces (Features 1-3). However, none of these
domain-specific languages support Feature 5 (modeling
any changes to network forwarding requires a change
to tool internals) or Feature 4 (queries are expressed at
a fairly low level of abstraction). While the FlowExp
reachability language in NetPlumber [21] allows combi-
nation of reachability sets using regular expressions, it is
fairly limited (e.g., it cannot do differential queries across
paths) and is missing other higher-level features (e.g., re-
cursion). By contrast, FlowExp queries can be encoded
using Datalog, similar to the way finite automata are en-
coded in Datalog.

Thus, existing network verification languages [21–23,
25] fail to provide Features 4 and 5 while existing ver-
ification languages fail to provide Features 1, 2, and 3.
Out of the box Datalog is the only existing verification
language that provides a solution to Features 1, 4, and
5. Natively, Datalog implementations struggle with Fea-
tures 2 and 3. We deal with these challenges by over-
hauling the underlying Datalog engine (§ 4) to create a
tool we call Network Optimized Datalog (NoD).

2.2 Modeling Reachability in NoD
NoD is a Datalog implementation optimized for large
header spaces. At the language level, NoD is just Dat-
alog. We model reachability in NoD as follows.

Figure 1 shows a network with three routers R1, R2,
and R3, and three end-point nodes A, B and D. The rout-
ing tables are shown below the picture. For this simple

3

A -R1 - R2 -B
J
J
J
JĴ

�

R3 - D
in dst src rewrite out
R1 10? 01? R2
R1 1?? ??? R3
R2 10? ??? B
R3 ??? 1?? D
R3 1?? ??? dst[1] := 0 R2

Figure 1: R1 has a QoS routing rule that routes packets from a video
source on the short route and other packets to destination 1?? along a
longer path that traverses R3. R3 has an ACL that drops packets from
1 ? ?. R3 also rewrites the middle bit in dst to 0. This ensures that
re-routed packets reach B regardless of the value of dst[1].

example, assume packets have only two fields dst and
src, each a bit vector of 3 bits. When there are multiple
rules in a router, the first matching rule applies. The last
rule of Figure 1 includes a packet rewrite operation. We
use dst[1] := 0 to indicate that position dst[1] is set to 0.
(Position 0 corresponds to the right-most bit.)

The goal is to compute the set of packets that can reach
from A to B. For this example, the answer is easy to
compute by hand and is the set of 6-bit vectors

10?01? ∪ (10????\???1??)

where each packet is a 6-bit vector defined by a 3-bit
value for dst followed by a 3-bit value for src, ? denotes
either 0 or 1, and \ denotes set difference.

For reachability, we only model a single (symbolic)
packet starting at the source. The current location of a
packet is modeled by a location predicate. For example,
the predicate R1(dst,src) is true when a packet with des-
tination dst and source src is at router R1.

Forwarding changes the location of a packet, and
rewriting changes packet fields. A Datalog rule consists
of two main parts separated by the :- symbol. The part to
the left of this symbol is the head, while the part to the
right is the body of the rule. A rule is read (and can be
intuitively understood) as “head holds if it is known that
body holds”. The initial state/location of a packet is a
fact, i.e., a rule without a body. For example, A(dst,src)
states that the packet starts at location A with destination
address dst and source address src.

We use a shorthand for predicates that represent the
matching condition in a router rule called a guard and
for packet updates. The relevant guards and updates from
Fig. 1 are in equation (1). Notice that G13 includes the
negation of G12 to model the fact that the rule forwarding

G12 := dst = 10?∧ src = 01? (1)
G13 := ¬G12 ∧ dst = 1??
G2B := dst = 10?
G3D := src = 1??
G32 := ¬G3D ∧ dst = 1??

Id := src′ = src ∧ dst′ = dst

Set0 := src′ = src ∧ dst′ = dst[2] 0 dst[0]

B(dst,src) (2)
R1(dst,src) :− G12∧ Id∧R2(dst′,src′)

R1(dst,src) :− G13∧ Id∧R3(dst′,src′)

R2(dst,src) :− G2B∧ Id∧B(dst′,src′)

R3(dst,src) :− G3D∧ Id∧D(dst′,src′)

R3(dst,src) :− G32∧Set0∧R2(dst′,src′)

A(dst,src) :− R1(dst,src)

? A(dst,src)

packets from R1 to R3 has lower priority than the one for-
warding packets from R1 to R2. The update from the last
rule (Set0) sets dst′ to the concatenation of dst[2] 0 dst[0].

Armed with this shorthand, the network of Fig. 1 can
now be modeled as equation (2). To find all the packets
leaving A that could reach B, we pose the Datalog query
?A(dst,src) at the end of all the router rules. The symbol
? specifies that this is a query.

Router FIBs and ACLs can be modeled by Datalog
rules similarly. similar way. A router that can forward
a packet to either R1 or R2 (load balancing) will have a
separate (non-deterministic) rule for each possible next
hop. We model bounded encapsulation using additional
fields that unused when the packet is decapsulated. Dat-
alog queries can also check for cycles and forwarding
loops. A loop detection query for an MPLS network is
described below.

3 Beliefs and Dynamism in NoD
We now describe how to encode beliefs in NoD/Datalog,
which either cannot be expressed succinctly, or at all,
by previous work [22, 23, 25] without changing internal
data structures or code. While the FlowExp reachability
language in NetPlumber [21] allows modification of a
reachability query within a single path, it cannot express
queries across paths as Datalog can. We now show how
to write Datalog queries for the belief templates alluded
to in the introduction.

4

3.1 Protection sets
Consider the following belief: Fabric managers are not
reachable from guest virtual machines. While this can
be encoded in existing tools such as Hassel [22] and Ver-
iFlow [23], since the guest VMs are set of size 5000,
and the fabric manager is a set of around 12 addresses,
and the naive way to express this query is to explode the
query to around 60,000 separate queries. While this can
be reduced by aggregating across routers, it is still likely
to take many queries using existing tools [22, 23]. While
this could be fixed by adding a way to define sets in say
Hassel, this requires subtle changes to the internals. Our
point is that Datalog allows this to be stated succinctly
in a single query by taking advantage of the power of
definitions.

The compact encoding in Datalog is as follows. Let
V M(dst,src) denote the fact that a packet is at one of the
guest virtual machines and destined to a address dst that
belongs to the set of fabric managers. We now query
(based on the rules of the network, encoded for example
as in Figure 2) for a violation of the belief: whether the
fabric manager can be reached (encoded by the predicate
FM) from a customer VM.

V M(dst,src) :− AddrOfVM(src),AddrOfFM(dst).

? FM(dst,src).

Datalog Features: definitions for sets of addresses.

3.2 Reachability sets
Consider the following belief: All Fabric managers are
reachable from jump boxes (internal management
devices).

As before we check for the corresponding violation of
the belief (a bug). Namely we can query for addresses
injected from jump boxes J, destined for fabric manager
FM that nevertheless do not reach FM.

J(dst,src) :− AddrOfJ(src),AddrOfFM(dst).

? J(dst,src)∧¬FM(dst,src).

Datalog Features: Definitions, negation.

3.3 Equivalence of Load Balanced Paths
Consider the following bug:

Load Balancer ACL Bug: In Figure 2, an operator
may set up two routers R2 and R3 that are load balancing
traffic from a source S to destination D. R2 has an ACL
entry that specifies that packets to the SQL port should
be dropped but R3 does not. Assume that ECMP (equal

Drop DNS

 M N D

NAT BoxManagement

Allow SQLDeny SQL

 S

 R2 R3

 R5

 R4 R1

Internet

Figure 2: Bugs encountered in a cloud setting.

cost multipath routing) [31] currently uses a hash func-
tion that routes SQL traffic via R2 where it is (correctly)
dropped. However, the hash function can change to route
packets via R3 and now SQL packets will (incorrectly) be
let through.

In general, this bug violates a belief that reachabil-
ity across load balanced paths must be identical regard-
less of other variables such as hash functions. We can
check whether this belief is true by encoding a differen-
tial query encoded in Datalog. Is it possible that some
packet reaches a destination under one hash function but
not another? Such a query is impossible to answer using
current network verification tools [21–23].

Datalog has the power needed for expressing reacha-
bility over different hashing schemes. We encode a hash-
ing scheme as a bit vector h that determines what hashing
choices (e.g., should R1 forward packets to D via R2 or
R3 in Figure 2) are made at every router. We assume we
have defined a built-in predicate Select that selectively
enables a rule. We can then augment load balancing
rules by adding Select as an extra guard in addition to
the guards modeling the match predicate from the FIB.
For example, if there are rules for routing from R1 to R2
and R3, guarded by G12, G13, then the modified rules
take the form:

R2(dst,h) :− G12∧R1(dst,h)∧Select(h,dst).

R3(dst,h) :− G13∧R1(dst,h)∧Select(h,dst).

To check for inconsistent hashing, we pose a query that
asks if there exists an intermediate node A at which pack-
ets to destination dst arrive using one hash assignment h1
but are dropped using a different hash assignment h2:

? A(dst,h1)∧¬A(dst,h2). (3)

By adding an ordering across routers, the size of h can

5

be encoded to grow linearly, not exponentially, with the
path length.

Datalog Features: Negation, bit vectors, non-
determinism, Boolean combinations of reachability
predicates.

3.4 Locality
Consider the following bug:

Cluster reachability: In our Hong Kong data center,
we found a locality violation. For example, it would be
odd if packets from S to M in Figure 2 flowed through
R2.

Putting aside the abstruse details of the wiring issues
during buildout that caused this bug, the bug violates a
belief that routing preserves traffic locality. For exam-
ple, traffic within one rack must not leave the top-of-rack
switch. Datalog definitions let us formulate such queries
compactly.

Consider packets that flow between S and M in Fig-
ure 2. Observe that it would be odd if these packets
flowed through R2, or R3, or R5 for that matter. The abil-
ity to define entire sub-scopes in Datalog comes in handy
in this example. For example, we can define a predicate
DSP (for Data center SPine) to summarize packets arriv-
ing at these routers:

DSP(dst) :− R2(dst).

DSP(dst) :− R3(dst).

DSP(dst) :− R5(dst).

Conversely, local addresses like S and M that can be
reached via R1 can be summarized using another pred-
icate LR1 (Local R1 addresses), that we assume is given
as an explicit set of IP address ranges.

LR1(dst) :− dst = 125.55.10.0/24.

Assume a packet originates at S and sends to such a lo-
cal address; we ask if DSP is reached indicating that the
packet has (incorrectly) reached the spine.

S(dst) :− LR1(dst).

? DSP(dst). (4)

Note the power of Datalog definitions. The query can
also be abstracted further to check whether traffic be-
tween N and D (that sit on different racks and could be
in a different cluster) have the same property in a single
query, without writing separate queries for each cluster.
For example, we could add rules, such as:

LR4(dst) :− dst = 125.75.10.0/24.
D(dst) :− LR4(dst).

N(dst) :− LR4(dst).

This query can be abstracted further by defining lo-
cality sets and querying whether any two stations in the
same locality set take a route outside their locality set.

Datalog Features: Scoping via predicates.

3.5 Dynamic Packet Headers

Going beyond encoding beliefs, we describe an example
of dynamism. Network verification tools such as Has-
sel [22] and NetPlumber [21] support IP formats but do
not yet support MPLS [29].

However, in Datalog one does not require a priori defi-
nitions of all needed protocols headers before starting an
analysis. One can easily define new headers post facto
as part of a query. More importantly, one can also de-
fine new forwarding behaviors as part of the query. This
allows modeling flexible routers whose forwarding be-
havior can be ”metamorphosed” at run-time [4, 5]

To illustrate this power, assume that the Datalog en-
gine has no support for MPLS or the forwarding behav-
ior of label stacking. A bounded stack can be encoded
using indexed predicates. For example, if R1 is a router,
then R13 encodes a forwarding state with a stack of 3
MPLS labels and R10 encodes a forwarding state with-
out any labels. Using one predicate per control state we
can encode a forwarding rule from R5 to R2 that pushes
the label 2016 on the stack when the guard G holds as:

R21(dst,src,2016) :− G,R50(dst,src).

R22(dst,src, l1,2016) :− G,R51(dst,src, l1).

R23(dst,src, l1, l2,2016) :− G,R52(dst,src, l1, l2).

Ovfl(dst,src, l1, l2, l3) :− G,R53(dst,src, l1, l2, l3).

We assume that l1, l2, l3 are eight bit vectors that model
MPLS labels. The first three rules model both MPLS
label stacking procedure and format. Predicates, such
as R13, model the stack size. The last rule checks for a
misconfiguration that causes label stack overflow.

SWAN [19] uses an MPLS network updated dynami-
cally by an SDN controller. To check for the belief that
the SDN controller does not create any loops, we use
standard methods [35]. We use a field to encode a partial
history of a previously visited router. For every routing
rule, we create two copies. The first copy of the rule sets
the history variable h to the name of the router. The other
copy of the rule just forwards the history variable. There
is a loop (from R5 to R5) if R5 is visited again where the
history variable holds R5. We omit details.

Further, router states [19] may be in flux during up-
dates. Nevertheless, a reasonable belief is even during
updates ‘rules don’t overlap”, to avoid forwarding con-
flicts. Similarly, another reasonable belief is that any rule

6

that sends a packets out of the MPLS network should pop
the last element from the MPLS label stack.

3.6 Middleboxes and Backup Routers

While ensuring that all traffic between a source and des-
tination goes through a middlebox M is a well-studied
invariant in past work [21], we found a more subtle bug
across paths:

Incorrect Middlebox traversal: Once again, refer to
Figure 2. A management box M in a newer data cen-
ter in Brazil attempted to start a TCP connection to a
local host D. Newer data centers use a private address
space and internal hosts must go through a Network Ad-
dress Translator (NAT) before going to external public
services. The box M sent the TCP connection request to
the private address of D, but D sends the packet to M via
the NAT which translates D’s source address. TCP at M
reset the connection because the SYN-ACK arrived with
an unexpected source.

This bug violates a belief that packets should go
through the same set of middleboxes in the forward and
reverse path. This is a second example of an invariant
that relates reachability across two different paths, in this
case the forward and reverse paths, as was reachability
across load balanced paths. This is easily encoded in
Datalog by adding fictitious bit to packets that is set when
the packet passes through a middlebox. We omit details
to save space.

Consider next the following bug:
Backup Non-equivalence: Two data centers D1 and

in the same region are directly connected through a bor-
der network by a pair of backup routers at the border of
D1 and D2. The border routers are also connected to the
core network. The intent is that if a single failure oc-
curs D1 and D2 remain directly connected. However, we
found after a single failure, because of an incorrect BGP
configuration, the route from D1 to D2 went through a
longer path through the core. While this is an inefficiency
bug, if it is not fixed and then if the route to the core sub-
sequently fails, then D1 and D2 lose connectivity even
when there is a physical path.

This bug suggests the belief that all paths between a
source and destination pair passing through any one of
a set of backup routers should have the same number of
hops. We omit the encoding except to note that we en-
code path lengths in Datalog as a small set of control bits
in a packet, and query whether a destination is reached
from the same source across one of the set of backup
routers, but using two different path lengths. Once again
this query appears impossible to state with existing net-
work verification tools except NetPlumber [21]. Net-
Plumber, however, cannot handle the range of queries
NoD can, especially allowing dynamic networks.

4 Network Optimized Datalog
While Datalog can express higher-level beliefs and
model dynamism (Features 4 and 5 in Section 2.1) and
computes all solutions (Feature 1), naive Datalog imple-
mentations struggle with Features 2 and 3 (scalably ex-
pressing large header spaces and packet rewrites). While
we describe our experience with modifying µZ (the Dat-
alog framework in Z3), there are two general lessons that
may apply to other Datalog tools: the need for a new
table data structure to compactly encode large header
spaces, and a new Select-Project operator. We will try
to convey the high-level ideas for a networking reader.

4.1 Compact Data Structures

One can pose reachability queries as in Figure 2 to µZ
(our Datalog framework) to compute the set of packets
that flow from A to B. Think of the Datalog network
model as expressing relations between input and output
packets at each router: the router relation models the for-
warding behavior of the router including all forwarding
rules and ACLs. The router is modeled not as a func-
tion but as a relation, to allow multicast and load balanc-
ing, where several output packets can be produced for the
same input packet. Whenever the set of input packets at
a router change, the corresponding set of output packets
are recomputed using the router relation. Thus for a net-
work, eventually sets of packets will flow from the inputs
of the network to the endpoints of the network.

The main abstract data structure to encode a relation
in Datalog is a table. For example, a table is used to store
the set of input packets at a router, and a table is used
to store output packets. To update the relationship be-
tween input and output tables at a router, under the cov-
ers, µZ executes Datalog queries by converting them into
relational algebra, as described elsewhere [9]. Network-
ing readers can think of µZ as providing a standard suite
of database operators such as select, project and join to
manipulate tables representing sets of packet headers in
order to compute reachability sets. Figure 3 – which rep-
resents a single router that drops HTTP packets using an
ACL that drops Port 80 packets – makes this clearer.

In our toy example, Figure 3, assume that the set
of packets that reach this router have source addresses
whose first bit is 1 because of some earlier ACLs. Thus
the set of packet headers that leave the router are those
that have first bit 1 and whose TCP destination port is
not 80. As we have seen, the natural way for Datalog to
represent a set of packet headers is as a table. Represent-
ing all source addresses that start with a 1 would require
2127 rows if 128-bit packet headers are represented by ar-
rays. None of the existing table data structures (encapsu-
lated in what are called backends) in µZ performed well
for this reason. Hence, we implemented two new table

7

Drop HTTP Packets

Packets with

Source starting

with 1
?

JOIN SELECT (hard to compress) PROJECT

SELECT-PROJECT

100 X Performance Lift

1** 1** 1** 1**\10* 1**\10*

All 1** packets non-HTTP

packets

project on

output

Figure 3: Manipulating tables of packet headers with a
combined select-project operator.

backends.
The first backend uses BDDs (Binary Decision Dia-

grams [7]) for Datalog tables. BDDs are a classic data
structure to compactly represent a Boolean function, and
widely used in hardware verification to represent cir-
cuits [8]. A classic program analysis paper also aug-
ments Datalog with BDDs [32] for program analysis, so
our use of BDDs for Datalog tables is natural.

The second backend is based on ternary bit vectors,
inspired by Header Space Analysis (HSA) [22, 23], but
placed in a much more general setting by adding a new
data structure to Datalog. This data structure we added
was what we call difference of cubes or DoC. DoC rep-
resents sets of packets as a difference of ternary strings.
For example, 1 ? ? \ 10? succinctly represents all pack-
ets that start with 1 other than packets that start with 10.
Clearly, the output of Figure 3 can be compactly repre-
sented as the set difference of all 1 ? ? packets and all
packets whose destination port is 80.

More precisely, for ternary bit vectors vi and v j, a dif-
ference of cubes represents a set

⋃
i

(
vi \

⋃
j

v j

)
The difference of cubes representation is particularly

efficient at representing router rules that have dependen-
cies. For example, the second rule in Figure 1 takes ef-
fect only if the first rule does not match. More precisely,
difference of cubes is particularly efficient at represent-
ing formulas of the form ϕ ∧¬ϕ1 ∧ ·· · ∧ ¬ϕn, with ϕ

and ϕi of the form
∧

i φi and φi having no Boolean op-
erators. This form is precisely what we obtain in the
transfer functions of routing rules, with ϕ being the route
matching formula, and the ¬ϕi being the negation of the
matching formula of the dependencies of the rule. Again,
in networking terminology dependencies of a forwarding
rule or ACL are all higher priority matching rules.

Code: The Datalog backends added to Z3 were imple-
mented in C++. The BDD backend takes 1,300 LoC, and

the difference of cubes backend takes almost 2,000 LoC.

4.2 Combining Select and Project

We needed to go beyond table compression in order to
speedup Datalog’s computation of reachability sets as
follows. Returning to Figure 3, µZ computes the set of
output packets by finding a relation between input pack-
ets and corresponding output packets. The relation is
computed in two steps: first, µZ joins the set of input
packets I to the set of all possible output packets A to
create a relation (I,A). Next, it selects the output packets
(rows) that meet the matching and rewrite conditions to
create a pruned relation (I,O). Finally, it projects away
input packets and produces the set of output packets O.

Thus, in Figure 3, the output of the first join is the set
of all possible input packets with source addresses that
start with 1, together with all possible output packets.
While this sounds like a very indirect and inefficient path
to the goal, this is the natural procedure in µZ. Joins
are the only way to create a new relation, and to avail
of the powerful set of operators that work on relations.
While the join with all possible output packets A appears
expensive, A is compactly represented as a single ternary
string/cube and so its cost is small.

Next, after the select, the relation is “trimmed” to be
all possible input packets with source bit equal to 1, to-
gether with all output packets with source bit equal to 1
and destination port not equal to 80. Finally, in the last
step, the project step removes all columns corresponding
to the input packets, resulting in the correct set of output
packets (Figure 3) as desired. Observe that the output of
the join is easily compressible (a single ternary string)
and the output of the final project is also compressible
(difference of two ternary strings).

The elephant in the room is the output of the select
which is extremely inefficient to represent as a BDD or
as a difference of ternary strings. But the output of the
select is merely a way station on the path to the output; so
we do not need to explicitly materialize this intermediate
result. Thus, we define a new combined select-project
operator whose inputs and outputs are both compressible.
This is the key insight, but making it work in the presence
of packet rewriting requires more intricacy.

4.3 Handling Packet Rewriting

The example in Figure 3 does not include any packet
rewrites. In Figure 1, however, rule R3 rewrites the first
destination address bit to a 0. Intuitively, all bits except
the first are to be copied from the input packet to the out-
put. While this can be done by a brute force enumeration
of all allowed bit vectors for this 6-bit toy example, such

8

an approach does not scale to 128 bit headers. We need,
instead, an efficient way to represent copying constraints.

Back to the toy example, consider an input packet 1?
???? at router R3 that is forwarded to router R2. Recall
that the first 3 bits in this toy example are the destination
address, the next 3 are the source address. We first join
the table representing input packets with a full table (all
possible output packets), obtaining a table with the row
1???????????, where the first six bits correspond to
the input packet at R3, and the remaining six bits belong
to the output destined to R2.

Then we apply the guard and the rewrite formulas and
the negation of all of the rule’s dependencies using a gen-
eralized select). Since we know that the 5th rule in Fig-
ure 1 can only apply if 4th rule does not match, we know
that in addition to the first destination address bit being
1, the “negation of the dependencies” requires that bit 2
of the source address should also be 0.

One might be tempted to believe that 1?????10?0?
? compactly represents the input-output relation as “All
input packets whose second destination address bit is 1”
(the first six bits) together with “All output packets for
which bit 2 of destination address bit is 1, bit 1 of the
destination address has been set to 0, and for which bit
2 of the source address bit is 0”. But this incorrectly
represents the copying relation! For example, it allows
input packets where bit 1 of the source address of the
input packet is a 0, but bit 1 of the source address of the
output packet is a 1. Fortunately, we can rule out these
exceptions fairly compactly using set differences which
are allowed in difference of cubes notation. We obtain
the following expression (in difference of cubes notation;
the expression in union of cubes notation would be even
larger):

1?????10?0?? \
(??0?????1???∪??1?????0???∪
????0?????1?∪????1?????0?∪
?????0?????1∪?????1?????0)

While this looks complicated, the key idea is effi-
ciently representing copying using a difference of ternary
strings. The unions in the difference are ruling out cases
where the “don’t care” ? bits are not copied correctly.
The first term in the difference states that we cannot have
bit 0 of destination address bit be a 0 in the input packet
and bit 0 of destination address bit in the output packet
be a 1; the next term disallows the bits being 1 and 0 re-
spectively. And so on for all the bit positions in dst and
src whose bits are being copied.

After the select operation, we perform a projection to
remove the columns corresponding to the input packet
(the first 6 bits) and therefore obtain a table with only
the output packets. Again, in difference of cubes repre-

sentation, we obtain 10?0??. The final result is signifi-
cantly smaller than the intermediate result, and this effect
is much more pronounced when we use 128 bit headers!

Generalizing: To make select-project efficient, we
need to compute the projection implicitly without explic-
itly materializing intermediate results. We did this using
a standard union-find data structure to represent equiva-
lence classes (copying) between columns. When estab-
lishing the equality of two columns, if both columns (say
bit 3 of the Destination address in both input and out-
put packets) contain “don’t care” values and one of them
(bit 3 in the input packet) will be projected out, we ag-
gregate the two columns in the same equivalence class.
While this suffices for networking, we added two more
rules to generalize this construction soundly to other do-
mains besides networking. In verification terminology,
this operation corresponds to computing the strongest
post-condition of the transition relation. However, it
takes some delicacy to implement such an operator in a
general verification engine such as Z3 so it can be used
in other domains besides network verification.

Code: Besides select-project, we made several addi-
tional improvements to the Datalog solver itself, which
were released with Z3 4.3.2, reducing Z3’s memory us-
age in our benchmarks by up to 40% .

5 Benchmarks
We use four benchmarks:

Stanford: This is a publicly available [30] snapshot
of the routing tables of the Stanford backbone, and a set
of network reachability and loop detection queries. The
core has 16 routers. The total number of rules across
all routers is 12,978, and includes extensive NAT and
VLAN support.

Generic Cloud Provider: We use a parameterizable
model of a cloud provider network with multiple data
centers, as used by say Azure or Bing. We use a fat tree
as the backbone topology within a data center and sin-
gle top-of-rack routers as the leaves. Data centers are
interconnected by an all-to-all one-hop mesh network.
Parameters include replication factor, router ports, data
centers, machines per data center, VMs per machine, and
number of services. These parameters can be set to in-
stantiate small, medium, or large clouds. This bench-
mark is publicly available [27].

Production Cloud: Our second source comes from
two newer live data centers located in Hong Kong and in
Singapore whose topology is shown in Figure 4. They
consist of a hundred routers each ranging over border
leaves, data center and cluster spines, and finally top-
of-rack switches. In the Hong Kong data center, each
router has roughly 2000 ECMP forwarding rules adding
up to a combined 200K rules. In the Singapore data cen-
ter there are about 820K combined forwarding rules. The

9

text files for these rules take from 25MB to 120MB for
the respective data-centers.

This infrastructure services three clusters and thou-
sands of machines. We extracted routing tables from the
Arista and Cisco devices using a show ip route com-
mand. This produced a set of routing tables including
the ECMP routing options in Datalog format. To handle
longest prefix match semantics, the translation into Dat-
alog uses a trie to cluster ranges with common prefixes,
avoiding redundancy in the Datalog rules. The range of
private and public IP addresses assigned to each cluster
was extracted from a separate management device.

Experimental Backbone: We check an SDN back-
bone based on the SWAN design [19]. To maximize
bandwidth utilization, the SDN controller periodically
recomputes routing rules that encapsulate packets with
an MPLS labels stack encoding tunnels. Our tool takes
the output from the controller: a set of routing tables,
a network topology and configurations that map IP ad-
dresses to end-points. We check selected beliefs, such as
loop freedom and absence of stack overflow.

Experimental Toolkit: In addition to the publicly
available Hassel C code [16], for comparison we used
two classic model checking algorithms (BMC and PDR),
a Datalog framework µZ [18], and a state-of-the-art
SAT/SMT solver, all implemented in the Z3 [11] en-
gine. Our engines are publicly available [27] so other
researchers can extend our results.

6 Evaluation
We first describe the results for checking beliefs on
a production cloud IP network, followed by examples
of checking for loops in an experimental MPLS back-
bone. Finally, for completeness, we compare the perfor-
mance of our tool to the performance of existing tools
in network verification and standard verification (model
checkers, SAT solvers).

6.1 Protection Sets in a Production Cloud
We checked whether two policies based on the Protec-
tion sets template (see Table 1) hold in the Singapore data
center. The two queries were to verify that neither Inter-
net addresses or customer VMs can access the protected
fabric controllers for security reasons.

Both experiments took around 12 minutes. While this
may seem slow, the sets of addresses are very large. For
the power of exploring a very general belief, the per-
formance seems acceptable and easily incorporated in a
checker that runs every hour.

Both queries failed, thus the beliefs of the network de-
signers and operators were not being realized in practice.
Closer inspection showed that these were not bugs in the
network, but actually incorrect beliefs. There are two

ranges of IPs of fabric controllers that are supposed to be
reachable (and they are), and certain ICMP packets are
also allowed to flow to fabric controllers. Although no
bugs were found in the network, these queries allowed
network operators to refine their beliefs about the net-
work and its correct operation.

6.2 Reachable Sets on a Production Cloud

As in the previous experiment, we also checked whether
two policies from the reachable sets template hold in the
same Singapore data center. The first query checked if
all of “utility boxes” can reach all “fabric controllers”.
The second query is similar, but checks whether “service
boxes” can reach “fabric controllers”.

The first query took around 4 minutes to execute,
while the second took 6 minutes. Both queries passed
successfully, guaranteeing that the beliefs of the network
designers hold in practice.

6.3 Locality on a Production Cloud

Figure 4 shows our public cloud topology which has
more levels of hierarchy than the simple example of Fig-
ure 2. These levels motivate more general queries than
the simple locality query (4) used in [§3.4].

Figure 4 also shows the boundaries of traffic local-
ity in our public cloud. Based on these boundaries, we
formulate the following queries to check for traffic lo-
cality. First, C2C requires that traffic within a cluster
not reach beyond the designated cluster spines. Next,
B2DSP, B2DSP, B2CSP, and B2CSP require that traffic
targeting public addresses in a cluster must reach only
designated data center spines, not reach other data cen-
ter spines belonging to a different DC, must reach only
designated cluster spines, and not reach cluster spines be-
longing to other clusters, respectively.

Table 2 shows the time spent for these five different
kinds of queries over three clusters. They check correct-
ness of routing configurations in all network devices.

For the Hong Kong cluster we identified some vio-
lated locality queries due to bugs during buildout. An
example output for a C2C query was 100.79.126.0/23
suggesting that an address range got routed outside the
cluster it was said to be part of. On the other hand, our
tool produced public address ranges from a B2CSP query
which were supposed to reach the cluster spine but did
not: 192.114.2.62/32 ∪ . . .∪ 192.114.3.48/29 .

6.4 An Experimental MPLS backbone

We checked loop-freedom, absence of black holes, and
rule disjointness on configurations for an experimental

10

Data Center Router

Border Leaves

Data Center Spines

Cluster Spines

Host Leaves

Virtual Machines

Inter Cluster

Traffic

Inter Data Center

Traffic

Figure 4: Production Cloud Layout

Query Cluster 1 Cluster 2 Cluster 3
C2C 17 (3) 18 (3) 15 (3)
B2DSP 15 (3) 16 (3) 14 (3)
B2DSP 7 (1) 7 (1) 7 (1)
B2CSP 15 (3) 16 (3) 14 (3)
B2CSP 15 (3) 16 (3) 14 (3)

Table 2: Query times are in seconds, times in parenthe-
ses are for a snapshot where only one of the available
ECMP options is part of the model (20% the size of the
full benchmarks).

backbone based on the SWAN design [19]. Note the ver-
satility of Datalog. Both the packet formats and forward-
ing behaviors are completely different from those in the
production cloud queries we used earlier. We report on
a selected experiment with a configuration comprising of
80 routers, for a total of 448 forwarding rules. To model
label stacks, this resulted in 3400 Datalog rules over a
header-space of 153 bits (64 for IP and remaining for
the label stack). The loop check is very fast and takes a
fraction of a second for the configurations we checked.
Checking for black holes takes under 5 seconds, iden-
tifying 56 flows out of 448 as black holes. The same
configuration had 96 pairs of overlapping rules. All were
enumerated in less than 1 second. This experience bodes
well for scaling this validation throughout the develop-
ment lifecycle of the backbone and to larger backbone
sizes with more checks.

6.5 Comparison with existing Tools

We ran the benchmarks with multiple tools to benchmark
our speeds against existing work. Besides the differ-
ence of cubes backend described in § 4, we also used a
BDD-based Datalog backend, a bounded model checker
(BMC) [10], an SMT solver that uses an unrolled rep-
resentation of the network as in [35], and a state-of-
the-art solver based on the IC3 [6, 17] algorithm. The

benchmarks were run on a machine with an Intel Xeon
E5620 (2.4 GHz) CPU. We also used an SMT algorithm
that was modified to return all solutions efficiently. The
model checkers, however, return only one solution so the
speed comparison is not as meaningful.

Table 3 is a small sampling of extensive test results
that can be found in [27]. It shows time (in seconds) to
run multiple tools on a representative subset of the Stan-
ford benchmarks, including reachable and unreachable
queries, and a loop detection query. The tests were given
a timeout of 5 minutes and a memory limit of 8 GBs.

Note that the model checkers only compute satisfiabil-
ity answers (i.e., “is a node reachable or not?”), while
Datalog computes all reachable packets at the destina-
tion. For the SMT technique, we provide results for both
type of queries. All the SMT experiments were run with
the minimum TTL (i.e., an unrolling) for each test; for
example, the TTL for Stanford was 3 for reachability and
4 for loop detection. Higher TTLs significantly increase
the running time. We do not provide the running time
for reachability sets with SMT for the cloud benchmarks,
since our prototype AllSAT algorithm does not support
non-determinism. We were unable to run the Hassel C
tool [16] on the cloud benchmarks, since Hassel C has a
few hardwired assumptions, such as router port numbers
following a specific naming policy.

The first takeaway is that Z3’s NoD implementation
of Datalog is faster at computing reachability sets (all
solutions) than its model checkers or SAT solvers are at
computing a single solution. This is not surprising as
the model checkers make multiple copies of each router
transfer function and stitch them together which is quite
wasteful. The performance of model checkers also seems
to degrade exponentially with path length (see row 3 ver-
sus row 2 where the model checkers run out of mem-
ory). Similarly, unrolling seems to exact a price for SMT
solvers. Even our efficient AllSAT generalization algo-
rithm is around 200× slower than Datalog (row 7). Dat-
alog with difference of cubes is the most competitive im-
plementation we have tested. Datalog with a BDD back-
end shows good performance as well.

Clearly, the Hassel C tool takes under a second
for Stanford, faster than Datalog. Tools like Net-
Plumber [21] and VeriFlow [23] can be even faster for
incremental analysis. Further, Yang and Lam [34] have
used predicate abstraction to speed up reachability test-
ing even further. However, none of these tools have the
ability to model higher-level beliefs and model dynamic
networks as NoD can. We believe the speed penalty
is worth the greatly increased expressiveness. Further,
NoD speeds are still acceptable for an offline network
checker, which is what the vast majority of customers
need in their networks today.

11

Test Model Checkers SMT Datalog Hassel CBMC PDR Reach. All sols. BDDs DoC
Small Cloud 0.3 0.3 0.1 – 0.2 0.2 –
Medium Cloud T/O 10.0 0.2 – 1.8 1.7 –
Medium Cloud Long M/O M/O 4.8 – 7.4 7.2 –
Cloud More Services 7.2 8.5 12.5 – 5.3 4.8 –
Large Cloud T/O M/O 2.8 – 16.1 15.7 –
Large Cloud Unreach. T/O M/O 1.1 n/a 16.1 15.7 –
Stanford 56.2 13.7 11.5 1,121 6.6 5.9 0.9
Stanford Unreach. T/O 12.2 0.1 n/a 2.6 2.1 0.1
Stanford Loop 20.4 11.7 11.2 290.2 6.1 3.9 0.2

Table 3: Time (in seconds) taken by multiple tools to solve network benchmarks. Model checkers only check for
satisfiability, while Datalog produces reachability sets. T/O and M/O are used for time- and memory-out.

7 Experience
SecGuru: The SecGuru tool has been actively used in
our production cloud in the past years for continuous
monitoring and validation, and for maintaining legacy
edge ACLs. In continuous validation, SecGuru checks
policies over ACLs on every router update as well as
once a day. This is more than 40,000 checks per month,
where each check takes 150-600 ms. It uses a database
of predefined common beliefs. For example, there is a
policy that says that SSH ports on fabric devices should
not be open to guest virtual machines. While these poli-
cies themselves rarely change, IP addresses do change
frequently, which makes using SecGuru as a regression
test useful. SecGuru had a measurable positive impact
in prohibiting policy misconfigurations during build-out,
raising in average of one alert per day; each identifies 3-
5 buggy address ranges in the /20 range, e.g., 1̃6K faulty
addresses. We also used SecGuru to reduce our legacy
corporate ACL from roughly 3000 rules to 1000 without
any derived outages or business impact.

Belief Refinement: As described in § 6.1, our opera-
tor’s belief in a protection set policy (customer VMs can-
not reach fabric controllers) was subtly incorrect. The
correct belief required new reachability exceptions. We
currently code this at the level of Datalog in lieu of a GUI
interface to the 5 policy templates from Table 1.

Batfish: Fogel et al. [15] developed a tool called Bat-
fish that models routing protocols like BGP and OSPF
in the face of link failures. For example, Batfish can be
used to find whether two stations remain reachable across
any set of single link failures. Batfish models the effects
of OSI and BGP as a set of Datalog rules; Datalog re-
cursion is used to model routing convergence. Batfish
specifically uses NoD for reachability analysis because
it was more expressive than other tools such as Hassel C
or VeriFlow. The final stage of the Batfish pipeline [15]
also uses Z3 to find concrete packet headers. This con-
firms our intuition that supplying NOD in a general tool
setting allows unexpected uses, in this case, of the Z3

constraint solver. Batfish has found several consistency
bugs in a university network.

8 Conclusion

Network Optimized Datalog (NoD) is more expressive
than existing verification tools in its ability to encode be-
liefs to uncover true specifications, and to model network
dynamism without modifying internals. NoD is much
faster than existing (but equally expressive) verification
tools such as model checkers and SMT solvers. Key to
the efficiency are ternary encoding of tables and a Select-
Project operator.

By contrast, current verification network verification
tools operate at a low level of abstraction. Properties
such as cluster scoping (Figure 4) expressible in a single
Datalog query would require iterating across all source-
destination pairs. Further, existing work cannot easily
model new packet formats, new forwarding behaviors,
or failures [15]. We were pleased to find we could model
MPLS and label stacking succinctly. It took a few hours
to write a query to find loops in SWAN.

As in Engler et al.’s work [13], our work shows how
fragile the understanding of the true network specifica-
tion is. Even when working with an experienced network
operator, we found that simple beliefs (e.g., no Internet
addresses can reach internal controllers) had subtle ex-
ceptions. Our belief templates in Table 1 abstract a vast
majority of specific checks in our network and probably
other networks. A GUI interface for belief templates will
greatly assist operators.

If network verification is to mature into a network-
ing CAD industry, its tools must evolve from a collec-
tion of ad hoc software into principled and extensible
techniques, built upon common foundations that are con-
stantly being improved. We suggest NoD as a candidate
for such a foundation.

12

References
[1] E. Al-Shaer and S. Al-Haj. FlowChecker: configu-

ration analysis and verification of federated Open-
Flow infrastructures. In SafeConfig, 2010.

[2] T. Benson, A. Akella, and D. A. Maltz. Mining
policies from enterprise network configuration. In
IMC, 2009.

[3] A. Biere, A. Biere, M. Heule, H. van Maaren, and
T. Walsh. Handbook of Satisfiability. IOS Press,
2009.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-
eown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4: Pro-
gramming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87–95,
July 2014.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hard-
ware for SDN. In SIGCOMM, 2013.

[6] A. R. Bradley. SAT-based model checking without
unrolling. In VMCAI, 2011.

[7] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput.,
35(8):677–691, Aug. 1986.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L.
Dill, and L. J. Hwang. Symbolic model checking:
1020 states and beyond. In LICS, 1990.

[9] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about Datalog (and never dared
to ask). IEEE Trans. on Knowl. and Data Eng.,
1(1):146–166, Mar. 1989.

[10] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded
model checking using satisfiability solving. Form.
Methods Syst. Des., 19(1):7–34, 2001.

[11] L. de Moura and N. Bjørner. Z3: an efficient SMT
solver. In TACAS, 2008.

[12] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In OSDI,
2000.

[13] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as
deviant behavior: A general approach to inferring
errors in systems code. In SOSP, 2001.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for java. In PLDI, 2002.

[15] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-
Sullivan, R. Govindan, R. Mahajan, and T. Mill-
stein. A general approach to static analysis of net-
work configurations. Submitted, Sept. 2014.

[16] Hassel C. http://goo.gl/esnZrA.

[17] K. Hoder and N. Bjørner. Generalized property di-
rected reachability. In SAT, 2012.

[18] K. Hoder, N. Bjørner, and L. De Moura. µZ: an
efficient engine for fixed points with constraints. In
CAV, 2011.

[19] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achiev-
ing high utilization with software-driven WAN. In
SIGCOMM, 2013.

[20] R. Jhala and R. Majumdar. Software model check-
ing. ACM Comput. Surv., 41(4):21:1–21:54, Oct.
2009.

[21] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network
policy checking using header space analysis. In
NSDI, 2013.

[22] P. Kazemian, G. Varghese, and N. McKeown.
Header space analysis: static checking for net-
works. In NSDI, 2012.

[23] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: verifying network-wide invari-
ants in real time. In NSDI, 2013.

[24] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,
L. Kreeger, T. Sridhar, M. Bursell, and C. Wright.
Virtual extensible local area network (VXLAN): A
framework for overlaying virtualized layer 2 net-
works over layer 3 networks. RFC 7348, Aug.
2014.

[25] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the data plane
with Anteater. In SIGCOMM, 2011.

[26] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler,
and S. Krishnamurthi. The Margrave tool for fire-
wall analysis. In LISA, 2010.

[27] Network verification website. http://goo.gl/

UK0rKS.

13

[28] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, C. Kim, and N. Karri. Ananta: Cloud scale
load balancing. In SIGCOMM, 2013.

[29] E. Rosen, A. Viswanathan, and R. Callon. Multi-
protocol label switching architecture. RFC 3031,
Jan. 2001.

[30] Stanford benchmark. http://goo.gl/FtzxRr.

[31] D. Thaler and C. Hopps. Multipath issues in unicast
and multicast next-hop selection. RFC 2991, Nov.
2000.

[32] J. Whaley and M. S. Lam. Cloning-based context-
sensitive pointer alias analysis using binary deci-
sion diagrams. In PLDI, 2004.

[33] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. G.
Greenberg, G. Hjálmtýsson, and J. Rexford. On
static reachability analysis of IP networks. In IN-
FOCOM, 2005.

[34] H. Yang and S. Lam. Real-time verification of net-
work properties using atomic predicates. In ICNP,
2013.

[35] S. Zhang, S. Malik, and R. McGeer. Verification
of computer switching networks: An overview. In
ATVA, 2012.

14

