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Abstract

We investigate the problem of learning to rank on a clusterguig/eb search data
composed of 140,000 queries and approximately fourteeliomilURLsS, and a
boosted tree ranking algorithm called LambdaMART. We campa a baseline
algorithm that has been carefully engineered to allow ingion the full dataset
using a single machine, in order to evaluate the loss or gaimried by the dis-
tributed algorithms we consider. Our contributions are-feld: (1) we imple-
ment a method for improving the speed of training when thiaitrg data fits in
main memory on a single machine; (2) we develop a trainindhotefor the case
where the training data size exceeds the main memory of éesmngchine that
easily scales to far larger datasets, i.e., billions of gdas) and is based on data
distribution. Results of our methods on a real-world Welaget indicate signifi-
cant improvements in training speed.

1 Introduction

With the growth of the Web, large datasets are becoming asengly common — a typical com-
mercial search engine may gather several terabytes perfdpiedes and Web search interaction
information. This opens a wide range of new opportunitiethtbecause the best algorithm for
a given problem may change dramatically as more data becawadlgble [1], and because such
a wealth of data promises solutions to problems that coutdagreviously approached. We in-
vestigate two synchronous approaches for learning to rank distributed computer which target
different computational scenarios. In both cases, the&lgseithm we use is LambdaMART [13, 2],
which is a linear combination of regression trees, and als ks itself to parallelization in vari-
ous ways. Our approaches are detailed in a forthcoming boakstributed learning [12]. Our first
method applies when the full training dataset fits in main msnon a single machine. In this case,
our approach distributes the tree split computations, btithre data. Note that while this approach
gives a speedup due to parallelizing the computation, itviged in the amount of data that can be
used since all of the training data must be stored in main mgevery node. This limitation is
removed in our second approach, which applies when ther&iflihg dataset is too large to fit in
main memory on a single machine. In this case, our approathhdites the training data samples
and corresponding training computations and is scalablernplarge amounts of training data. We
develop two methods of choosing the next regression trdeeiehnsemble for our second approach,
and compare and contrast the resulting evaluation accaratiraining speed. In order to accurately
investigate the benefits and challenges of our techniquesompare to a standalone, centralized
version that can train on the full training dataset on a imglde. To this end, the standalone ver-
sion has been carefully engineered (for example, memomyeusaaggressively trimmed by using
different numbers of bits to encode different features).



2 Approachesto Distributing LambdaM ART

We focus on the task of Web search ranking by learning bodstéedensembles produced using
LambdaMART (see Appendix A and [13, 2] for details). Lambd&RT was one of the primary
components of the winning ranking system in the recent Yahearning to Rank Challenge for

Web search [14]. The final mod¢lis an ensemble defined as the sjiix, N) = ZnNzl b (%),

where eacth,, is a weak hypothesis. Moreovef,s constructed incrementally as weak hypotheses
are added one by one.

Our first approach, calletkature-distributed LambdaMART, is a synchronous algorithm similar
to the approach in [11], where the vertex split computatiares distributed, rather than the data
samples, except that our method has a communication caés$s$ tanstant in the number of training
samples as opposed to linear. Our approach targets theriecemh@re each node can store the full
training dataset in main memory; the goal is to train on atelusore quickly than on a single
machine and produce a solution which is equivalent to thetisol resulting from training on all of
the data on a single machine (called destralized model). The algorithm proceeds as follows (see
Appendix B for pseudocode). Let there Beworkers and no master, and let each worker store the
full training set.S, consisting ofM instance-label pairs, in memory. Let the set of featutese
partitioned intoK subsetsAy, ..., Ak, such that each subset is assigned to one okileorkers.
Every worker maintains a copy of the ensemp(&, n) and updates it after the new regression tree
{Ry, }L_, is constructed during each boosting iteratiorEach vertex in the tree is described by an
optimal feature, corresponding split threshold, and ckédndoss, collectively denoted hy. Each
worker k£ computesp, based on its set of featurel, and sendsy,. to all other workers. Every
worker, after it has received all of the,'s, determines the;, with the smallest loss, denoted by
©x, Creates the two new children for the model, and then compuitiéich samples go left and which
go right. Note thatp.. is the same for all workers, resulting in equivalent ensesif{x, n) across

all workers. Each worker must wait until it receives@)l, kK = 1,..., K, before determining...
Some workers will be idle while others are still computingithy,,’s.

Our second approach, calledta-distributed LambdaMART, distributes the training data across
the nodes and does not produce a model equivalent to thealieedr model. It differs from pre-
vious methods [4, 5, 7, 9, 10] in that we use minimal commuivoacost that is constant in, as
opposed to scaling with, the number of training samplesceindistributes by data sample, the
amount of training data can scale with cluster size, whictsisally more desirable than scaling
with the number of features since the number of training desnfends to far exceed the number
of features. Within this approach, we consider two weak liypsis selection methods: (full —
the master picks the weak hypothesis that maximizes thei@vah score, and (Zample — the
master picks a weak hypothesis at random. Let there be amzest&” workers. The training set
S is partitioned intoK subsetsSy, ..., Sk, each residing on one of thi€ workers. Assume that
the master has an ensembjlex, N — 1) composed ofV — 1 weak hypotheses, and the task is to
choose the next weak hypothesis. In full selection, eactkevdr has a copy off (x, N — 1) and
trains a candidate weak hypothesis on its datéseb generate the next weak hypothefsis ;. (x)
and sends it to all other workers. Each workerow evaluates the set of candidates constructed by
the other workers{hy 1 (x) }x]\{x}, Wherefi.(x, N) = f(x, N — 1) + hy x(x), and calculates
the set of value$C (fx(x, N)) }x)\{x} @nd returns them to the master, whétés the evaluation
measure. The master then chooses the candidate with tlestangpluation scor€ on the entire
training setS. This cross-validation adds further regularization to titaéning. The master sends
the indexk of the selected weak hypothesis to all workers. Each woltkemn tipdates the model:
f(x,N) = f(x,N — 1) + hy r(x). On the next iteration, all of the workers attempt to add an-
other weak learner tfi(x, V). The communication cost depends on the size of the weak hggist
and the number of workers, but not the size of the training.dht addition, communication only
occursonce per boosting iteration, removing the need to communicate qrer vertex split com-
putation. To further reduce the communication cost, we takentage of the power of sampling
in the sample selection method. Each workérhas the same ensembféx, N — 1) and uses its
dataset to construcf,(x, N). The master chooses a random worké&r hypothesishy 1 (x) as
the next hypothesis (replacing Steps 15-17 in Algorithm 3ppendix B with random selection
of a hypothesis). The random selection requires only conicating the chosen candidate weak
hypothesis from the master to the workers and eliminategxpensive evaluation step in the full
method.



3 Experiments

We evaluate our proposed methods on a real-world Web dadktegetontaind 40, 000 queries sam-
pled from a commercial search engine and corresponding UR4.$33,212 query-URL pairs),
each with a vector of several thousand feature values andnsaimgenerated relevance label
1 €40,1,2,3,4}, with 0 meaning document is not relevant to query and4 meaningd is highly
relevant tog. We divide the dataset into train/valid/test sets by s&lgch randon80%/10%/10%
gueries and corresponding URLSs, respectively. We ran ablunfexperiments on a 40-node MPI
cluster (see Appendix C for details). We swept a range ofrpater values for each experiment and
determine the best based on the evaluation accuracy ondatiali set: we varied the learning rate
n from 0.05 to 0.5 and the number of leave$rom 20 to 220, and trained fa¥ = 1000 boosting
iterations. We evaluate using NDCG [8] and perform a t-tatt @ significance level of 0.05.

We first examine speed improvements and communication negents. Figure 1(a) shows the
difference in total training time between centralized agaltfire-distributed LambdaMART for the
number of workerss = {1,...,32} and 4000 features. For feature-distributed LambdaMAi?ﬁ',
features are assigned to each node. The parameters argysetdtd, N = 500, and = 200. The
total train time is evaluated on two types of clusters: Typaslpreviously described, and Type Il,
which has 32.0 GB RAM and two quad-core Intel Xeon 5430 preaesrunning at 2.67 GHz. As
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Figure 1: Number of Worker&™ versus Total Training Time in seconds for (a) centralizeattédl)
and feature-distributed (solid) LambdaMART, for 4000 fgas and two cluster types. Centralized
was trained on the full dataset for alf. (b) Total data used 3500K queries, for centralized
(dotted), full data-distributed (solid), and sample daistributed (dashed) LambdaMART wifh=

20 leaves. Each experimental setting was run three timesstareshown by the bars around each
point. Invisible bars indicate times are roughly equivalen

seen in Fig. 1(a), feature-distributed LambdaMART on 32kews achieves a factor of 6 speed-up
over centralized LambdaMART when trained on Type Il and &ofiacf 3 speed-up on Type .

We next consider the case where the training datannot fit in the main memory of a single

machine. We simulate memory constraints by assuming onkeawoan store at most 3500 queries;
in order to exploit more training data, the data must reside@parate workers. As the number
of workers increases, it simulates the case where more angl tnedning data is available, but the

memory capacity of a single worker remains the same. Fig(beshows the number of workers

versus the total training time in seconds, for weak hypahegith varying numbers of leaves, for

centralized, and full and sample data-distributed Lamb&B¥ The parameter settings used are
L = 20, N = 1000, andn = 0.1. The z-axis indicates the number of workefs, where each

worker trains OH%‘ ~ 3500 queries; with respect to centralized LambdaMART,:thexis indicates
the number of training queries residing on the single wor@ﬁ(. The point at’ = 1 represents

training centralized LambdaMART o%' ~ 3500 queries. AsK increases, the total train time
increases since the communication costs grow with the nuoflweorkers K. Since the evaluation
and communication costs are almost negligible in sampla-distributed LambdaMART, the total
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Figure 2: Number of Workerd< versus NDCG@3 for full (solid) and sample (dashed) data-
distributed LambdaMART. Each worker trains on 3500 queriegyure (b) includes centralized
LambdaMART (dotted) trained 03500 K queries at each-axis point. Significant differences are
stated in the text.

train time is roughly equivalent to training on a single noeleen though the amount of training data
across the cluster increases with

We next evaluate the corresponding prediction accuracyiofiata-distributed algorithm using the
full and sample selection strategiegigure 2(a) plots the number of workefs versus NDCG for
full and sample data-distributed LambdaMART. The trainitaga distributed among the workers in
the cluster acts as additional validation data since it &lusr the evaluation and selection of the
weak hypothesis. Full and sample selection strategiedtrésueach’, in similar NDCG scores,
and exhibit NDCG accuracy increasesfsincreases. Having500K queries in the cluster, for
K = {8,16,32}, yields significant gains in NDCG@3 over training on 3500ripe (K = 1).
Thus, additional data, although mostly used for validatggnificantly increases NDCG accuracy.
In Figure 2(b), we analyze the effect of lifting the memorynstraint and plot the centralized al-
gorithm accuracy trained o8b00K queries (dotted line) on a single worker, for increasingigal
of K. For K = {4,8,16,32}, the resulting model is significantly better than the cqroesling
data-distributed models trained 8600K queries, indicating that when able to use additional data
directly for training, it is preferable to using it for cresalidation. Even though the central model
is superior in accuracy to our data-distributed modelsuf@isg memory of a single worker is not
constrained, further discussed in Appendix E), our das&ituted algorithms exhibit significant
gains when the memory of a single worker is exhausted.

4 Conclusions and Future Work

In summary, we have presented two approaches for distndputembdaMART. The feature-
distributed approach requires that the full training sehfihain memory on each node in the cluster
and achieves up to a 6-fold significant speed-up over cézethLambdaMART with the same ac-
curacy. Our data-distributed approach, which can scalédlliorts of training samples, employs
either the full or sample weak hypothesis selection styategd we have shown that both selec-
tion strategies offer significant speed-ups over cengdlizambdaMART. Sample data-distributed
LambdaMART demonstrates no significant accuracy loss coadp@a full data-distributed Lamb-
daMART, and achieves even more significant training timeedpgps. Our data-distributed algo-
rithms, however, indicate that using data for massive evasidation results in significant accuracy
loss. In the future, it is worth determining a distributedthoel that can scale to billions of ex-
amples, but with accuracy that is equivalent or superiordaming on centralized data; we have
developed a first step toward achieving this goal by presgrtimethod where the communication
is independent of the number of samples.

!Recall that the feature-distributed algorithm outputs the same model asrtiralized algorithm and thus
has the same prediction accuracy.
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A LambdaMART

LambdaRank is a general method for learning to rank givenrhitrary cost function, and it cir-
cumvents the problem that most information retrieval messhave ill-posed gradients. It has been
shown empirically that LambdaRank can optimize general Basares [6]. A key idea in Lamb-
daRank is to define the derivatives (of the cost with respetttd model scoresfter the documents
have been sorted by the current model scores, which circotsitiee problem of defining a deriva-
tive of a measure whose value depends on the sorted ordeebb&documents. These derivatives
are called\-gradients. A second key observation in LambdaRank is to note that maiying al-
gorithms (for example, neural network training and MART) i need to know the cost directly;
they only need the derivatives of the cost with respect taribdel scores.

For example, the\-gradient for NDCG [8] for a pair of documents; and D;, whereD; is more
relevant to query thanD;, can be defined as the product of the derivative of a convex(Gosind



the NDCG gained by swapping the two documents:
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whereo;; is the difference in the model scores of the two document® XFgradient for a single
document is computed by marginalizing over the pairwisgradients:\; = > ._, \;;, where the
sum is over all pairg” for queryq which contain documenit

jEP Mo
MART is a class of boosting algorithms that may be viewed afopming gradient descent in
function space, using regression trees. The final model raapaput feature vectax € R to

a scoref(x) € R. MART is a class of algorithms, rather than a single alganitfbecause it can
be trained to minimize general costs (to solve, for examgligssification, regression or ranking
problems). The final scorg can be written as

N
f(XvN) = Zanfn(x) )

where eaclf, (x) € Ris a function modeled by a single regression tree and.the R are weights.
Both thef,, and then,, are learned during training. We referdq f,, as the weak hypothesis,. A
given f,, maps a giverx to a real value by passingdown the tree, where the path (left or right) at a

given node in the tree is determined by the value of a padidelturez;,j = 1,...,d and where
the output of the tree is taken to be a fixed value associatédeach leafy,,, £ =1,...,L, n =
1,...,N, whereL is the number of leaves anl is the number of trees. For a given task (in

our case, ranking), given training and validation sets, uber-chosen parameters of the training
algorithm are the number of treés, a fixed learning rate) (that multiplies every,,, for every
tree), and the number of leadek. The binary decision functions at each node of each treetand t
ve, are learned during training; the decision functions aresehdo minimize a least-squares loss.

Clearly, since MART models derivatives, and LambdaRankkedy specifying the derivatives at
any point during training, the two algorithms are well sdite each other. LambdaMART is the
marriage of the two, and we refer the reader to [3, 2] for detarhe set ofM scores (one for
each training sample) is computed, and ¥xgradient),,,, m = 1,..., M, of the cost function with
respect to each model score is computed. Thus a single nusrds=ociated to each training sample,
namely, the gradient of the cost with respect to the scoretwtiie model assigns to that sample.
Tree f,, is then just a least-squares regression tree that modsisehiof gradients (so each leaf
models a single value of the gradient). The overall costes tteduced by taking a step along the
gradient. This is often done by computing a Newton stgpfor each leaf, where they,, can be
computed exactly for some costs. Every leaf value is theriiplied by a learning rate. Taking

a step that is smaller than the optimal step size (i.e., the Size that is estimated to maximally
reduce the cost) acts as a form of regularization for the inth@é¢ can significantly improve test
accuracy. The LambdaMART algorithm is outlined in Algoniti, where we have added the notion
that the first model trained can be any previously trainedeh{@tep 3), which is useful for model
adaptation tasks.

B Distributed LambdaM ART

In this section, we give pseudocode for both feature-tisteid (Algorithm 2) and data-distributed
(Algorithm 3) LambdaMART.

C Cluster and Parameter Sweep Details

In this section, we give details about our cluster and theepseconducted for the experiments.
We ran all of our experiments on a 40-node MPI cluster, rummiticrosoft HPC Server 2008 (for
details, see Appendix C). Each node has two 4-core Intel %660 processors running at 2.67GHz
and 48 GB of RAM. Each node is connected to two 1Gb Ethernetarks: a private network
dedicated to MPI traffic and a public network. Each netwonravided by a Cisco 3750e Ethernet
switch. The communication layer between nodes on our alusis written using MPI.NET.

20ne can also allow the number of leaves to vary at each iteration, but met donsider such models here.



Algorithm 1 LambdaMART.

1:

QuahwN

7.
8:
9:
10:
11:

12:
13:

14:

Input: Training Data:{x,,, ym}, m=1,..., M;
Number of TreesV;

Number of Leavesi;

Learning Raten;

: Output: Model: f(x, N);
f(x,0) = BaseModel(x) { BaseModel may be empty.
forn =1to N do
for m =1to M do
Am = G(gq,%,y,m) {CalculateX-gradient for samplen as a function of the query and
the documents and labets y associated witly. }
Wy = % {Calculate derivative ok-gradient for samplen.}
end for
{Re, }E_, {CreateL-leaf regression tree ofx,,, A, } 2.
for/=1to L do N
Ve = % {Find the leaf values based on approximate Newton step.
end for "
f(xm,n) = f(Xm,n —1) +1> ,ve1(xm € Ryyn) {Update model based on approximate
Newton step and learning raje.
end for

Algorithm 2 Feature-distributed LambdaMART.

1:

Noahrwn

8:

9:
10:
11:
12:
13:
14:
15:
16:

17:

18:
19:

20:
21:

Input: Training Data:{x.,, ym},m=1,--- , M;
Number of TreesV;

Number of Leavesi;

Learning Ratey;

Number of WorkersK;

: Output: Model: f(x, N);

for k=1to K do
f(x,0) = BaseModel(x) { Base M odel may be empty.
forn=1to N do
form=1to M do
Am = G(q,x,y,m) {Calculate\-gradient for samplen as a function of the query
and the documents and labelsy associated witlg. }

wm = gy {Calculate derivative of-gradient for samplen. }

end for
for{=1toL —1do
v {Compute the optimal feature and split,, over featuresi;, on workerk.}
Broadcast(py) {Broadcastp to all other workers.
o, = {argmaxy(¢r) } i, {Find optimaly, across allp;’s.}
Ry, {Create regression tree @n and{x,,, A\, }M_,.}
end for
for {=1to L do

, Am (s .
Vo = 2“”67% {Find the leaf values based on approximate Newton step.

@m €Rpyp,
end for ’
J(xm,n) = f(Xm,n—1)+n1>,vm1(xn € Rey) {Update model based on approximate
Newton step and learning raje.
end for
end for




Algorithm 3 Data-distributed LambdaMART.

1: Input: Training Data:{@.,, ym}, m=1,..., M,

Number of TreesV;
Number of Leavesi;
Learning Ratey;
Number of WorkersK;

2: Output: Model: f(x, N);
3: for k=1to K do

NoahR

8:
9:
10:
11:

12:

13:
14:

15:
16:

17:

18:

f(x,0) = BaseModel(x) { Base M odel may be empty.
forn =1to N do

for all m € S}, do
Am = G(q,%,y, m) {Calculatex-gradient for sample: as a function of the queryand
the documents and labets y associated witly, wherem is in the fraction of training
dataSj, on workerk.}

2 {Calculate derivative of-gradient for samplen. }

_ o)
W = af(x,
end for
{Rp,}E_, {CreateL-leaf regression tre€R,,; } 2, on{x,, Am }, m € Si.}
for /=1 %(:) Ldo \
Vg = st " fFind the leaf values based on approximate Newton step.

xmE€Rypy
end for ‘
JeXm,n) = f(Xm,n— 1)+ 1>, vm1(Xn € Reni) {Update model based on approxi-
mate Newton step and learning rate.
{Cr(fr(x,n)) } &)\ 1%} {Compute candidate weak hypotheses cost vajues.
C(fe(x,n)) = > ey Ci(fr(x,n)) {Evaluate candidate weak hypotheses from all other
workers}

f(x,n) = argmax C(fr(x,n)) {Choose best weak hypothesis and update mpdel.
fk(xvn)

end for

19: end for




Table 1 gives the parameters that gave the best accuracyg ealttation set for each experiment.

Table 1: The learning ratgand the number of leavdsfor centralized LambdaMART, and full and
sample data-distributed LambdaMART, respectively. Thet Bet of columns are the parameters
when training on 3500 queries per worker; in the central casgngle worker trains 08500 K
gueries. The second set of columns are the parameters vaieimgron 7000 overlapping queries
per worker; in the central case, a single worker traing@v K queries. The final columns contain

the parameters when training éﬁ queries per worker; in the central case, a single workengrai
S .
on '—K‘ queries.

3500 7000 All
K | n L n L n L
1 0.1,0.1,0.1 20, 20, 20 0.1,0.1,0.1 80, 80, 80 0.1,0.1,0.1 20, 20, 20
2 0.1, 0.05, 0.05] 80, 80, 80 0.1,0.1,0.1 180, 180, 180| 0.1,0.1,0.1 80, 190, 200
4 | 0.1,0.1,0.05 | 180, 80, 80 0.1, 0.05, 0.05| 200, 200, 200| 0.1, 0.05, 0.05 | 180, 170, 200
8 0.1, 0.05, 0.05] 200, 120, 120| 0.1, 0.05, 0.05] 200, 200, 200| 0.05, 0.05, 0.05 200, 180, 200
16 | 0.1, 0.05, 0.05| 200, 140, 140| 0.1, 0.05, 0.05| 200, 200, 200| 0.1, 0.05, 0.05 | 200, 170, 160
32 | 0.1, 0.05, 0.05| 200, 140, 140| 0.1, 0.05, 0.05] 200, 140, 140| 0.1, 0.05, 0.05 | 200, 100, 140

D Additional Experimental Results

D.1 Training Time Results

Figures 3(a)-(d) show the difference in total training tifetween centralized and feature-
distributed LambdaMART. We vary the number of workérérom 1-32, and the number of features

|A| from 500—4000. For feature-distributed LambdaMAR% features are assigned to each node.
We employ the same set of parameters for each algorithm taderéair training time comparisons;
the parameters are setije= 0.1, N = 500, andL = 200.

As shown in Figure 3, feature-distributed LambdaMART @adihes) achieves significantly faster
training times than centralized LambdaMART (dotted lin@s)poth clusters. When trained on Type
Il with 500 features, feature-distributed LambdaMART w&hworkers achieves almost a two-fold
speed-up over centralized LambdaMART (Fig. 3(a)). When tivaber of features is small, as the
number of workers increases, the cost of communication grttoeworkers outweighs the speed-
ups due to feature distribution, as seen by the increasemmihenk” > 8 for Type Il (Fig. 3(a)—
(b)). However, as the number of features increases, conuatimm occupies a smaller percentage
of the training time, resulting in decreasing training tsn&or example, feature-distributed Lamb-
daMART on Type Il with 4000 features (Fig. 3(d)) exhibits dessing training times as the number
of workers increases and achieves a factor of 6 speed-upceveralized LambdaMART when
trained on 32 workers. When trained on Type |, feature-dhisted LambdaMART exhibits de-
creasing training times as the number of workers grows; 8&tlvorkers training on 4000 features,
roughly a3-fold speed-up is obtained.

We evaluate the time required to train (&} queries, where the queries are split améngvorkers.
For the centralized algorithm, a single worker traing®jmueries. We sef = 0.1, L = {100, 200},
andN = 1000. Figure 4 plots the number of workefS versus the total train time in seconds; every
point represents a model trained on|&l| queries. For the data-distributed algorithms, the trgnin

K2 (

datasS is split amongK workers: ask increases, the number of queries on a single wor
decreases, but the total number of queries across all nedesns constant.{|). The two points at
K =1 represent the training times of centralized LambdaMARih&d on fourteen million URLSs.
The central model ai’ = 1 is plotted at allKX" values for reference (shown by the dotted lines).
When K > 1, the train times of full and sample data-distributed LamWARKT are significantly
less than the centralized algorithm. Particularly notébtae reduction in train time obtained by the
sample data-distributed LambdaMART algorithm.
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Figure 3: Number of Worker& versus Total Training Time in seconds for centralized @tand
feature-distributed (solid) LambdaMART, for 500—4000tteas and two cluster types. Centralized
was trained on the full dataset for dil. Each experimental setting was run three times; times are
shown by the bars around each point. Invisible bars inditates are roughly equivalent.

D.2 Accuracy Comparison

The first experiment evaluates the change in accuracy ofatardistributed algorithms as the num-
ber of workers increases. We simulate memory constraintassyming one worker can store at
most 3500 queries — in order to exploit more training data,data must reside on separate work-
ers. As the number of workers increases, it simulates the wasre more and more training data
is available, but the memory capacity of a single worker iem#he same. The training sétis
randomly partitioned into 32 disjoint subsets and eachetulesides on one of the 32 nodes in our
cluster. Each partition contains roughly 3500 queries antesponding URLs. WhekK = 1, a
single worker trains on 3500 queries, wh&n= 2, two workers train on 3500 queries each, and so
on.

Figure 5 plots the number of workefs versus NDCG for full and sample data-distributed Lamb-
daMART The training data distributed among the workers endluster acts as additional validation
data since it is used for the evaluation and selection of tsakvihypothesis. Full and sample selec-
tion strategies result, for eadh, in similar NDCG scores, and exhibit NDCG accuracy increase
K increases. Havin8500K queries in the cluster, fak' = {8, 16, 32}, yields significant gains in
NDCG@3 and 10 over training on 3500 queriés & 1). Thus, additional data, although mostly
used for validation, significantly increases NDCG accuracy

In Figure 5(d), we analyze the effect of lifting the memorynstraint and plot the centralized al-
gorithm accuracy trained osb00K queries (dotted line) on a single worker, for increasingigal
of K. For K = {4,8,16,32}, the resulting model is significantly better than the cqroesling
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Figure 4. Number of Workerg< versus Training Time in seconds for centralized (dottedl, f
data-distributed (solid), and sample data-distributeaslj@éd) LambdaMART on fourteen million
samples (query-URL pairs). Each experimental setting waghree times; times are shown by the
bars around each point.

data-distributed models trained 8800 K queries, indicating that when able to use additional data
directly for training, it is preferable to using it for cresalidation.

Somewhat surprisingly, as the amount of data increases,theegh the data is highly distributed,
the optimal values of the learning rateand number of leaveg change dramatically for data-
distributed LambdaMART (see Table 1). Even though it is dhly amount of validation data that
increases a¥’ increases, the parameters behave similarly to increabm@rmount of centralized
training data.

For our next experiment, we investigate how training on laypging sets of data affects NDCG
accuracy. Assume that a single worker can store at most 70€teg and let the amount of training
data available b8500 K queries. We construct our overlapping sets as follows:rdirihg dataS is
divided into K sets,Sy, ..., Skx. Workerk stores sef and setS; 1, resulting in 7000 queries. For
example, wherk = 4, 51 4+ .55, S5+ S5, S5+ Sy, Sy + 57 reside on workers, 2, 3, 4, respectively.
The total number of unique queries in the cluster rema#i9 K. This approach can easily scale to
larger datasets.

Figure 6 plots the number of workef§ versus NDCG, where each worker contains an overlapping
set of 7000 queries, compared to 3500 queries. The accuaatyfgom training on 7000 queries per
worker instead of 3500 are significant for &llat NDCG@3 and 10, further indicating that training
on more data is better than validating over more data, amdmdicating that the samples need not
be unique across the workers. In particular, trainihg= 8 workers on overlapping 7000-query sets
results in similar accuracy to training = 32 workers on 3500-query sets. In all cases, full and
sample selection strategies result in similar accuracies.

In Figure 6(d), we again lift the memory constraint, and pat NDCG@3 accuracy of the central
model on 350& queries (dotted line). The results highlight the benefinaféasing the amount of
training data per worker over using additional validatieted as seen by the significant gap between
the central and data-distributed models.

Even though the central model is superior in accuracy to ata-distributed models (assuming
memory of a single worker is not constrained), our datardBisted algorithms exhibit significant
gains when the memory of a single worker is exhausted. Indtesario, a benefit of our data-
distributed algorithm is not only parallelized trainingitkalso that the amount of information com-
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municated between the master and the workers is indepentidre amount of training data; it is
dependent on the number of workers and the size of a weak lggist Our full data-distributed
algorithm relies on the diversity of each weak hypothessypon examination of the NDCG scores
of the weak hypotheses, we found that during early round®o$ting the weak hypotheses exhib-
ited diversity, but after only a few rounds of boosting, theak hypotheses achieved almost identical
NDCG scores on the large validation data, indicating thainag be able to eliminate the evaluation
step entirely and select a worker at random to produce th& twgaothesis at each iteration.

By eliminating the evaluation step at each iteration, th@ning time decreases dramatically, since
the cost of evaluation is linear in the size of the largest $fl, and the accuracies are equivalent
to choosing the best weak hypothesis based on NDCG evatuafious, our sample selection al-
gorithm can be efficiently applied to billions of samples amwthieve comparable accuracy to the
full selection strategy. The sample selection algoritheo gdoints to the advantages that an asyn-
chronous distributed approach may have over a synchronmisSince each workér trains on a
random subse$, of the training data, then an asynchronous algorithm cosdiga idle workers
different tasks, such as evaluating or training a regressie for a future iteration. Such an ap-
proach could possibly yield improvements in speed or aoyuby taking advantage of the large
number of workers available at any given time.

Our sample approach can also be applied to centralizedngaiat each round of boosting, sample
the training data and train a weak hypothesis on that sanffilee complete training dataset fits in
memory on a single machine, then the training time will dasegby training on a sample of the data
during each boosting iteration. However, if the trainingedaust reside on separate machines, then
to train on a single machine, at each round of boosting, thmkamust be sent to the machine and
then loaded into memory on the machine. The sample must bgledmcross all of the machines.
The process of communicating the data samples from the maagsnthat store the data will be
costly and prohibit the use of the algorithm on very largeadats.

E Additional Remarkson Data-distributed LambdaM ART

We have shown that our data-distributed approach is a viabtbod for exploiting additional train-
ing data when the main memory of a single machine is exceddetthis section, we consider the
case where the main memory of the workers is not exhaustedartive a fixed amount of train-
ing data. One goal of a distributed learning algorithm is¢bieve comparable or better accuracy
compared to the centralized algorithm, but with much shdrgning times. We conduct a series
of experiments to determine if our data-distributed apghoachieves comparable accuracy with
shorter training times compared to the centralized allgorit

We first determine the effect of decreasing the training @é#&a on the centralized algorithm’s

accuracy. Let the size of the training set residing on théraemachine decrease é% with
increasing values oK. Figure 7 plots the training set size versus NDCG for theredimed model
(dotted line). When training 050% of the training data, the NDCG@1, 3, 10 accuracy compared to
training on100% of the data is statistically similar. It is also notewortlnat as the training set size
decreases, the optimal number of leaves decreases, whileptimal learning rate stays constant
across the training data sizes (Table 1).

We next determine the accuracy of full and sample dataioliged LambdaMART, where the train-

ing data$ is split acrossK” workers and each worker contai:% queries. Figure 7 contains the
centralized and full and sample data-distributed accuresyits. In the central case, theaxis indi-
cates the size of the training set on the single node. In tteedlatributed cases, theaxis indicates

the number of workerd( and correspondingly the amount of training d@i&aon a given worker.
The results indicate that choosing a weak hypothesis antenfy thodes, either by full or sample
selection, is better than choosing the same weak hypotfresisthe same node at each iteration.
This is seen by looking at a given value &f. the data-distributed NDCG scores are consistently
higher than the centralized NDCG scores and statisticahjifecantly higher forK” > 16. However,
there is not a single point on the data-distributed curvasdhtperforms training on the full data set
using the centralized algorithm (the pointfat= 1). Splitting the data across an increasing number
of workers K causes a gradual and continual drop in accuracy, with siginifilosses compared to
the point atk’ = 1 whenK > 4.
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Figure 7: Number of Worker& vs. NDCG@1, 3, 10 for centralized (dotted) and full (solidpga
sample (dashed) data-distributed LambdaMART. Each wdriadmns on% queries. The central
model was trained oﬁ%' queries on a single worker. Significant differences aredtat the text.



The experiment additionally shows that choosing a singlakisypothesis from a worker at random
(sample selection) performs similarly to choosing the besdk hypothesis among th€ workers
based on the evaluation step.

Finally, we determine if training on larger overlappingsset data achieves comparable accuracy to
the central model, but with less training time. We consille= 4 workers and divide the training
dataS into 4 setsS1, Ss, S3, S4. Each set contairzb % of the full training set. Workek: is assigned
setsSy + Skr1 + Ski2, and thus produces a weak hypothesis base@éh of the full training
set. At each iteration, we use sample selection to prodwecedkt weak hypothesis in the ensemble.
We find that training orT5% of the training queries per node yields equivalent NDCG esto the
central model trained oh00% of the training data, but trains in less than half of the time.
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