
Learning to Rank on a Cluster using Boosted
Decision Trees (Extended Abstract)

Krysta M. Svore
Microsoft Research
1 Microsoft Way

Redmond, WA 98052
ksvore@microsoft.com

Christopher J. C. Burges
Microsoft Research
1 Microsoft Way

Redmond, WA 98052
cburges@microsoft.com

Abstract

We investigate the problem of learning to rank on a cluster using Web search data
composed of 140,000 queries and approximately fourteen million URLs, and a
boosted tree ranking algorithm called LambdaMART. We compare to a baseline
algorithm that has been carefully engineered to allow training on the full dataset
using a single machine, in order to evaluate the loss or gain incurred by the dis-
tributed algorithms we consider. Our contributions are two-fold: (1) we imple-
ment a method for improving the speed of training when the training data fits in
main memory on a single machine; (2) we develop a training method for the case
where the training data size exceeds the main memory of a single machine that
easily scales to far larger datasets, i.e., billions of examples, and is based on data
distribution. Results of our methods on a real-world Web dataset indicate signifi-
cant improvements in training speed.

1 Introduction

With the growth of the Web, large datasets are becoming increasingly common — a typical com-
mercial search engine may gather several terabytes per day of queries and Web search interaction
information. This opens a wide range of new opportunities, both because the best algorithm for
a given problem may change dramatically as more data becomesavailable [1], and because such
a wealth of data promises solutions to problems that could not be previously approached. We in-
vestigate two synchronous approaches for learning to rank on a distributed computer which target
different computational scenarios. In both cases, the basealgorithm we use is LambdaMART [13, 2],
which is a linear combination of regression trees, and as such lends itself to parallelization in vari-
ous ways. Our approaches are detailed in a forthcoming book on distributed learning [12]. Our first
method applies when the full training dataset fits in main memory on a single machine. In this case,
our approach distributes the tree split computations, but not the data. Note that while this approach
gives a speedup due to parallelizing the computation, it is limited in the amount of data that can be
used since all of the training data must be stored in main memory on every node. This limitation is
removed in our second approach, which applies when the full training dataset is too large to fit in
main memory on a single machine. In this case, our approach distributes the training data samples
and corresponding training computations and is scalable tovery large amounts of training data. We
develop two methods of choosing the next regression tree in the ensemble for our second approach,
and compare and contrast the resulting evaluation accuracyand training speed. In order to accurately
investigate the benefits and challenges of our techniques, we compare to a standalone, centralized
version that can train on the full training dataset on a single node. To this end, the standalone ver-
sion has been carefully engineered (for example, memory usage is aggressively trimmed by using
different numbers of bits to encode different features).

1

2 Approaches to Distributing LambdaMART

We focus on the task of Web search ranking by learning boostedtree ensembles produced using
LambdaMART (see Appendix A and [13, 2] for details). LambdaMART was one of the primary
components of the winning ranking system in the recent Yahoo! Learning to Rank Challenge for
Web search [14]. The final modelf is an ensemble defined as the sumf(x, N) =

∑N
n=1 hn(x),

where eachhn is a weak hypothesis. Moreover,f is constructed incrementally as weak hypotheses
are added one by one.

Our first approach, calledfeature-distributed LambdaMART, is a synchronous algorithm similar
to the approach in [11], where the vertex split computationsare distributed, rather than the data
samples, except that our method has a communication cost that is constant in the number of training
samples as opposed to linear. Our approach targets the scenario where each node can store the full
training dataset in main memory; the goal is to train on a cluster more quickly than on a single
machine and produce a solution which is equivalent to the solution resulting from training on all of
the data on a single machine (called thecentralized model). The algorithm proceeds as follows (see
Appendix B for pseudocode). Let there beK workers and no master, and let each worker store the
full training setS, consisting ofM instance-label pairs, in memory. Let the set of featuresA be
partitioned intoK subsets,A1, . . . , AK , such that each subset is assigned to one of theK workers.
Every worker maintains a copy of the ensemblef(x, n) and updates it after the new regression tree
{Rℓn}

L
ℓ=1 is constructed during each boosting iterationn. Each vertex in the tree is described by an

optimal feature, corresponding split threshold, and change in loss, collectively denoted byϕ. Each
worker k computesϕk based on its set of featuresAk and sendsϕk to all other workers. Every
worker, after it has received all of theϕk’s, determines theϕk with the smallest loss, denoted by
ϕ∗, creates the two new children for the model, and then computes which samples go left and which
go right. Note thatϕ∗ is the same for all workers, resulting in equivalent ensemblesf(x, n) across
all workers. Each worker must wait until it receives allϕk, k = 1, . . . ,K, before determiningϕ∗.
Some workers will be idle while others are still computing their ϕk’s.

Our second approach, calleddata-distributed LambdaMART, distributes the training data across
the nodes and does not produce a model equivalent to the centralized model. It differs from pre-
vious methods [4, 5, 7, 9, 10] in that we use minimal communication cost that is constant in, as
opposed to scaling with, the number of training samples. Since it distributes by data sample, the
amount of training data can scale with cluster size, which isusually more desirable than scaling
with the number of features since the number of training samples tends to far exceed the number
of features. Within this approach, we consider two weak hypothesis selection methods: (1)full —
the master picks the weak hypothesis that maximizes the evaluation score, and (2)sample — the
master picks a weak hypothesis at random. Let there be a master andK workers. The training set
S is partitioned intoK subsets,S1, . . . , SK , each residing on one of theK workers. Assume that
the master has an ensemblef(x, N − 1) composed ofN − 1 weak hypotheses, and the task is to
choose the next weak hypothesis. In full selection, each worker k has a copy off(x, N − 1) and
trains a candidate weak hypothesis on its datasetSk to generate the next weak hypothesishN,k(x)
and sends it to all other workers. Each workerk now evaluates the set of candidates constructed by
the other workers,{hN,k(x)}[K]\{k}, wherefk(x, N) = f(x, N − 1) + hN,k(x), and calculates
the set of values{Ck(fk(x, N))}[K]\{k} and returns them to the master, whereC is the evaluation
measure. The master then chooses the candidate with the largest evaluation scoreC on the entire
training setS. This cross-validation adds further regularization to thetraining. The master sends
the indexk of the selected weak hypothesis to all workers. Each worker then updates the model:
f(x, N) = f(x, N − 1) + hN,k(x). On the next iteration, all of the workers attempt to add an-
other weak learner tof(x, N). The communication cost depends on the size of the weak hypothesis
and the number of workers, but not the size of the training data. In addition, communication only
occursonce per boosting iteration, removing the need to communicate once per vertex split com-
putation. To further reduce the communication cost, we takeadvantage of the power of sampling
in the sample selection method. Each workerk has the same ensemblef(x, N − 1) and uses its
dataset to constructfk(x, N). The master chooses a random workerk’s hypothesishN,k(x) as
the next hypothesis (replacing Steps 15–17 in Algorithm 3 inAppendix B with random selection
of a hypothesis). The random selection requires only communicating the chosen candidate weak
hypothesis from the master to the workers and eliminates theexpensive evaluation step in the full
method.

2

3 Experiments

We evaluate our proposed methods on a real-world Web datasetthat contains140, 000 queries sam-
pled from a commercial search engine and corresponding URLs(14,533,212 query-URL pairs),
each with a vector of several thousand feature values and a human-generated relevance label
l ∈ {0, 1, 2, 3, 4}, with 0 meaning documentd is not relevant to queryq and4 meaningd is highly
relevant toq. We divide the dataset into train/valid/test sets by selecting a random80%/10%/10%
queries and corresponding URLs, respectively. We ran all ofour experiments on a 40-node MPI
cluster (see Appendix C for details). We swept a range of parameter values for each experiment and
determine the best based on the evaluation accuracy on a validation set: we varied the learning rate
η from 0.05 to 0.5 and the number of leavesL from 20 to 220, and trained forN = 1000 boosting
iterations. We evaluate using NDCG [8] and perform a t-test with a significance level of 0.05.

We first examine speed improvements and communication requirements. Figure 1(a) shows the
difference in total training time between centralized and feature-distributed LambdaMART for the
number of workersK = {1, . . . , 32} and 4000 features. For feature-distributed LambdaMART,|A|

K
features are assigned to each node. The parameters are set toη = 0.1, N = 500, andL = 200. The
total train time is evaluated on two types of clusters: Type I, as previously described, and Type II,
which has 32.0 GB RAM and two quad-core Intel Xeon 5430 processors running at 2.67 GHz. As

1 2 4 8 16 32
0

1

2

3

4

5

6

7
x 10

4

Number of Workers K

T
ot

al
 T

ra
in

 T
im

e
(s

ec
)

Type I
Type II

1 2 4 8 16 32
0

2500

5000

7500

10000

12500

15000

Number of Workers K

T
o
ta

l T
ra

in
 T

im
e
 (

se
c)

a) b)

Figure 1: Number of WorkersK versus Total Training Time in seconds for (a) centralized (dotted)
and feature-distributed (solid) LambdaMART, for 4000 features and two cluster types. Centralized
was trained on the full dataset for allK. (b) Total data used =3500K queries, for centralized
(dotted), full data-distributed (solid), and sample data-distributed (dashed) LambdaMART withL =
20 leaves. Each experimental setting was run three times; times are shown by the bars around each
point. Invisible bars indicate times are roughly equivalent.

seen in Fig. 1(a), feature-distributed LambdaMART on 32 workers achieves a factor of 6 speed-up
over centralized LambdaMART when trained on Type II and a factor of 3 speed-up on Type I.

We next consider the case where the training dataS cannot fit in the main memory of a single
machine. We simulate memory constraints by assuming one worker can store at most 3500 queries;
in order to exploit more training data, the data must reside on separate workers. As the number
of workers increases, it simulates the case where more and more training data is available, but the
memory capacity of a single worker remains the same. Figure 1(b) shows the number of workers
versus the total training time in seconds, for weak hypotheses with varying numbers of leaves, for
centralized, and full and sample data-distributed LambdaMART. The parameter settings used are
L = 20, N = 1000, andη = 0.1. Thex-axis indicates the number of workersK, where each
worker trains on|S|

32 ≈ 3500 queries; with respect to centralized LambdaMART, thex-axis indicates

the number of training queries residing on the single worker, |S|
32 K. The point atK = 1 represents

training centralized LambdaMART on|S|
32 ≈ 3500 queries. AsK increases, the total train time

increases since the communication costs grow with the number of workersK. Since the evaluation
and communication costs are almost negligible in sample data-distributed LambdaMART, the total

3

1 2 4 8 16 32
57.5

57.6

57.7

57.8

57.9

58

58.1

58.2

58.3

58.4

N
D

C
G

@
3

Number of Workers K
1 2 4 8 16 32

57.5

58

58.5

59

59.5

60

N
D

C
G

@
3

Number of Workers K

a) NDCG@3. b) NDCG@3 with Centralized.

Figure 2: Number of WorkersK versus NDCG@3 for full (solid) and sample (dashed) data-
distributed LambdaMART. Each worker trains on 3500 queries. Figure (b) includes centralized
LambdaMART (dotted) trained on3500K queries at eachx-axis point. Significant differences are
stated in the text.

train time is roughly equivalent to training on a single node, even though the amount of training data
across the cluster increases withK.

We next evaluate the corresponding prediction accuracy of our data-distributed algorithm using the
full and sample selection strategies1. Figure 2(a) plots the number of workersK versus NDCG for
full and sample data-distributed LambdaMART. The trainingdata distributed among the workers in
the cluster acts as additional validation data since it is used for the evaluation and selection of the
weak hypothesis. Full and sample selection strategies result, for eachK, in similar NDCG scores,
and exhibit NDCG accuracy increases asK increases. Having3500K queries in the cluster, for
K = {8, 16, 32}, yields significant gains in NDCG@3 over training on 3500 queries (K = 1).
Thus, additional data, although mostly used for validation, significantly increases NDCG accuracy.
In Figure 2(b), we analyze the effect of lifting the memory constraint and plot the centralized al-
gorithm accuracy trained on3500K queries (dotted line) on a single worker, for increasing values
of K. For K = {4, 8, 16, 32}, the resulting model is significantly better than the corresponding
data-distributed models trained on3500K queries, indicating that when able to use additional data
directly for training, it is preferable to using it for cross-validation. Even though the central model
is superior in accuracy to our data-distributed models (assuming memory of a single worker is not
constrained, further discussed in Appendix E), our data-distributed algorithms exhibit significant
gains when the memory of a single worker is exhausted.

4 Conclusions and Future Work

In summary, we have presented two approaches for distributing LambdaMART. The feature-
distributed approach requires that the full training set fitin main memory on each node in the cluster
and achieves up to a 6-fold significant speed-up over centralized LambdaMART with the same ac-
curacy. Our data-distributed approach, which can scale to billions of training samples, employs
either the full or sample weak hypothesis selection strategy, and we have shown that both selec-
tion strategies offer significant speed-ups over centralized LambdaMART. Sample data-distributed
LambdaMART demonstrates no significant accuracy loss compared to full data-distributed Lamb-
daMART, and achieves even more significant training time speed-ups. Our data-distributed algo-
rithms, however, indicate that using data for massive cross-validation results in significant accuracy
loss. In the future, it is worth determining a distributed method that can scale to billions of ex-
amples, but with accuracy that is equivalent or superior to training on centralized data; we have
developed a first step toward achieving this goal by presenting a method where the communication
is independent of the number of samples.

1Recall that the feature-distributed algorithm outputs the same model as the centralized algorithm and thus
has the same prediction accuracy.

4

5 Acknowledgements

We thank Ofer Dekel for his insightful ideas, his invaluablecontributions to code and cluster devel-
opment, and his assistance in running experiments.

References

[1] M. Banko and E. Brill. Scaling to very very large corpora for natural language disambiguation.
In Association for Computational Linguistics (ACL), pages 26–33, 2001.

[2] C.J.C. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical Report
MSR-TR-2010-82, Microsoft Research, 2010.

[3] C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with non-smooth cost functions. In
Advances in Neural Information Processing Systems (NIPS), 2006.

[4] P. Domingos and G. Hulten. Mining high-speed data streams. In SIGKDD Conference on
Knowledge and Data Mining (KDD), pages 71–80, 2000.

[5] P. Domingos and G. Hulten. A general method for scaling upmachine learning algorithms and
its application to clustering. InInternational Conference on Machine Learning (ICML), 2001.

[6] P. Donmez, K.M. Svore, and C.J.C. Burges. On the local optimality of lambdarank. InACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2009.

[7] W. Fan, S. Stolfo, and J. Zhang. The application of AdaBoost for distributed, scalable and
online learning. InSIGKDD Conference on Knowledge and Data Mining (KDD), pages 362–
366, 1999.

[8] K. Jarvelin and J. Kekalainen. IR evaluation methods forretrieving highly relevant documents.
In ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),
pages 41–48, 2000.

[9] A. Lazarevic. The distributed boosting algorithm. InSIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 311–316, 2001.

[10] A. Lazarevic and Z. Obradovic. Boosting algorithms forparallel and distributed learning.
Distributed and Parallel Databases, 11:203–229, 2002.

[11] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. PLANET: Massively parallel learning
of tree ensembles with MapReduce. InInternational Conference on Very Large Databases
(VLDB), 2009.

[12] K.M. Svore and C.J.C. Burges. Distributed learning to rank using boosted decision trees. In
R. Bekkerman, M. Bilenko, and J. Langford, editors,Large-scale Machine Learning. 2010.

[13] Q. Wu, C.J.C. Burges, K.M. Svore, and J. Gao. Adapting boosting for information retrieval
measures.Journal of Information Retrieval, 2009.

[14] Yahoo! Learning to Rank Challenge.http://learningtorankchallenge.yahoo.com/, 2010.

A LambdaMART

LambdaRank is a general method for learning to rank given an arbitrary cost function, and it cir-
cumvents the problem that most information retrieval measures have ill-posed gradients. It has been
shown empirically that LambdaRank can optimize general IR measures [6]. A key idea in Lamb-
daRank is to define the derivatives (of the cost with respect to the model scores)after the documents
have been sorted by the current model scores, which circumvents the problem of defining a deriva-
tive of a measure whose value depends on the sorted order of a set of documents. These derivatives
are calledλ-gradients. A second key observation in LambdaRank is to note that many training al-
gorithms (for example, neural network training and MART) donot need to know the cost directly;
they only need the derivatives of the cost with respect to themodel scores.

For example, theλ-gradient for NDCG [8] for a pair of documentsDi andDj , whereDi is more
relevant to queryq thanDj , can be defined as the product of the derivative of a convex cost Cij and

5

the NDCG gained by swapping the two documents:

λij ≡

∣

∣

∣

∣

∆NDCG
δCij

δoij

∣

∣

∣

∣

(1)

whereoij is the difference in the model scores of the two documents. The λ-gradient for a single
document is computed by marginalizing over the pairwiseλ-gradients:λi =

∑

j∈P λij , where the
sum is over all pairsP for queryq which contain documenti.

MART is a class of boosting algorithms that may be viewed as performing gradient descent in
function space, using regression trees. The final model mapsan input feature vectorx ∈ R

d to
a scoref(x) ∈ R. MART is a class of algorithms, rather than a single algorithm, because it can
be trained to minimize general costs (to solve, for example,classification, regression or ranking
problems). The final scoref can be written as

f(x, N) =
N

∑

n=1

αnfn(x) ,

where eachfn(x) ∈ R is a function modeled by a single regression tree and theαn ∈ R are weights.
Both thefn and theαn are learned during training. We refer toαnfn as the weak hypothesishn. A
givenfn maps a givenx to a real value by passingx down the tree, where the path (left or right) at a
given node in the tree is determined by the value of a particular featurexj , j = 1, . . . , d and where
the output of the tree is taken to be a fixed value associated with each leaf,vℓn, ℓ = 1, . . . , L, n =
1, . . . , N , whereL is the number of leaves andN is the number of trees. For a given task (in
our case, ranking), given training and validation sets, theuser-chosen parameters of the training
algorithm are the number of treesN , a fixed learning rateη (that multiplies everyvℓn for every
tree), and the number of leaves2 L. The binary decision functions at each node of each tree and the
vℓn are learned during training; the decision functions are chosen to minimize a least-squares loss.

Clearly, since MART models derivatives, and LambdaRank works by specifying the derivatives at
any point during training, the two algorithms are well suited to each other. LambdaMART is the
marriage of the two, and we refer the reader to [3, 2] for details. The set ofM scores (one for
each training sample) is computed, and theλ-gradientλm, m = 1, ...,M , of the cost function with
respect to each model score is computed. Thus a single numberis associated to each training sample,
namely, the gradient of the cost with respect to the score which the model assigns to that sample.
Treefn is then just a least-squares regression tree that models this set of gradients (so each leaf
models a single value of the gradient). The overall cost is then reduced by taking a step along the
gradient. This is often done by computing a Newton stepvℓn for each leaf, where thevℓn can be
computed exactly for some costs. Every leaf value is then multiplied by a learning rateη. Taking
a step that is smaller than the optimal step size (i.e., the step size that is estimated to maximally
reduce the cost) acts as a form of regularization for the model that can significantly improve test
accuracy. The LambdaMART algorithm is outlined in Algorithm 1, where we have added the notion
that the first model trained can be any previously trained model (Step 3), which is useful for model
adaptation tasks.

B Distributed LambdaMART

In this section, we give pseudocode for both feature-distributed (Algorithm 2) and data-distributed
(Algorithm 3) LambdaMART.

C Cluster and Parameter Sweep Details

In this section, we give details about our cluster and the sweeps conducted for the experiments.
We ran all of our experiments on a 40-node MPI cluster, running Microsoft HPC Server 2008 (for
details, see Appendix C). Each node has two 4-core Intel Xeon5550 processors running at 2.67GHz
and 48 GB of RAM. Each node is connected to two 1Gb Ethernet networks: a private network
dedicated to MPI traffic and a public network. Each network isprovided by a Cisco 3750e Ethernet
switch. The communication layer between nodes on our cluster was written using MPI.NET.

2One can also allow the number of leaves to vary at each iteration, but we donot consider such models here.

6

7

Algorithm 1 LambdaMART.
1: Input: Training Data:{xm, ym}, m = 1, . . . ,M ;

Number of Trees:N ;
Number of Leaves:L;
Learning Rate:η;

2: Output: Model: f(x, N);
3: f(x, 0) = BaseModel(x) {BaseModel may be empty.}
4: for n = 1 to N do
5: for m = 1 to M do
6: λm = G(q,x, y,m) {Calculateλ-gradient for samplem as a function of the queryq and

the documents and labelsx, y associated withq.}
7: wm = ∂λm

∂f(xm) {Calculate derivative ofλ-gradient for samplem.}
8: end for
9: {Rℓn}

L
ℓ=1 {CreateL-leaf regression tree on{xm, λm}M

m=1.}
10: for ℓ = 1 to L do
11: vℓn =

P

xm∈Rℓn
λm

P

xm∈Rℓn
wm

{Find the leaf values based on approximate Newton step.}

12: end for
13: f(xm, n) = f(xm, n − 1) + η

∑

ℓ vℓn1(xm ∈ Rℓn) {Update model based on approximate
Newton step and learning rate.}

14: end for

Algorithm 2 Feature-distributed LambdaMART.
1: Input: Training Data:{xm, ym}, m = 1, · · · ,M ;

Number of Trees:N ;
Number of Leaves:L;
Learning Rate:η;
Number of Workers:K;

2: Output: Model: f(x, N);
3: for k = 1 to K do
4: f(x, 0) = BaseModel(x) {BaseModel may be empty.}
5: for n = 1 to N do
6: for m = 1 to M do
7: λm = G(q,x, y,m) {Calculateλ-gradient for samplem as a function of the queryq

and the documents and labelsx, y associated withq.}
8: wm = ∂λm

∂f(xm) {Calculate derivative ofλ-gradient for samplem.}
9: end for

10: for ℓ = 1 to L − 1 do
11: ϕk {Compute the optimal feature and split,ϕk, over featuresAk on workerk.}
12: Broadcast(ϕk) {Broadcastϕk to all other workers.}
13: ϕ∗ = {arg maxk(ϕk)}K

k=1 {Find optimalϕ∗ across allϕk ’s.}
14: Rℓn {Create regression tree onϕ∗ and{xm, λm}M

m=1.}
15: end for
16: for ℓ = 1 to L do
17: vℓn =

P

xm∈Rℓn
λm

P

xm∈Rℓn
wℓ

{Find the leaf values based on approximate Newton step.}

18: end for
19: f(xm, n) = f(xm, n−1)+η

∑

ℓ vℓn1(xm ∈ Rℓn) {Update model based on approximate
Newton step and learning rate.}

20: end for
21: end for

8

Algorithm 3 Data-distributed LambdaMART.
1: Input: Training Data:{xm, ym}, m = 1, . . . ,M ;

Number of Trees:N ;
Number of Leaves:L;
Learning Rate:η;
Number of Workers:K;

2: Output: Model: f(x, N);
3: for k = 1 to K do
4: f(x, 0) = BaseModel(x) {BaseModel may be empty.}
5: for n = 1 to N do
6: for all m ∈ Sk do
7: λm = G(q,x, y,m) {Calculateλ-gradient for samplem as a function of the queryq and

the documents and labelsx, y associated withq, wherem is in the fraction of training
dataSk on workerk.}

8: wm = ∂λm

∂f(xm) {Calculate derivative ofλ-gradient for samplem.}
9: end for

10: {Rℓn}
L
ℓ=1 {CreateL-leaf regression tree{Rℓnk}

L
ℓ=1 on{xm, λm}, m ∈ Sk.}

11: for ℓ = 1 to L do
12: vℓn =

P

xm∈Rℓn
λm

P

xm∈Rℓn
wm

{Find the leaf values based on approximate Newton step.}

13: end for
14: fk(xm, n) = f(xm, n − 1) + η

∑

ℓ vℓn1(xm ∈ Rℓnk) {Update model based on approxi-
mate Newton step and learning rate.}

15: {Ck(fk(x, n))}[K]\{k} {Compute candidate weak hypotheses cost values.}
16: C(fk(x, n)) =

∑

i∈V Ci(fk(x, n)) {Evaluate candidate weak hypotheses from all other
workers.}

17: f(x, n) = argmax
fk(x,n)

C(fk(x, n)) {Choose best weak hypothesis and update model.}

18: end for
19: end for

Table 1 gives the parameters that gave the best accuracy on the validation set for each experiment.

Table 1: The learning rateη and the number of leavesL for centralized LambdaMART, and full and
sample data-distributed LambdaMART, respectively. The first set of columns are the parameters
when training on 3500 queries per worker; in the central case, a single worker trains on3500K
queries. The second set of columns are the parameters when training on 7000 overlapping queries
per worker; in the central case, a single worker trains on7000K queries. The final columns contain
the parameters when training on|S|

K
queries per worker; in the central case, a single worker trains

on |S|
K

queries.
3500 7000 All

K η L η L η L

1 0.1, 0.1, 0.1 20, 20, 20 0.1, 0.1, 0.1 80, 80, 80 0.1, 0.1, 0.1 20, 20, 20
2 0.1, 0.05, 0.05 80, 80, 80 0.1, 0.1, 0.1 180, 180, 180 0.1, 0.1, 0.1 80, 190, 200
4 0.1, 0.1, 0.05 180, 80, 80 0.1, 0.05, 0.05 200, 200, 200 0.1, 0.05, 0.05 180, 170, 200
8 0.1, 0.05, 0.05 200, 120, 120 0.1, 0.05, 0.05 200, 200, 200 0.05, 0.05, 0.05 200, 180, 200
16 0.1, 0.05, 0.05 200, 140, 140 0.1, 0.05, 0.05 200, 200, 200 0.1, 0.05, 0.05 200, 170, 160
32 0.1, 0.05, 0.05 200, 140, 140 0.1, 0.05, 0.05 200, 140, 140 0.1, 0.05, 0.05 200, 100, 140

D Additional Experimental Results

D.1 Training Time Results

Figures 3(a)–(d) show the difference in total training timebetween centralized and feature-
distributed LambdaMART. We vary the number of workersK from1–32, and the number of features
|A| from 500–4000. For feature-distributed LambdaMART,|A|

K
features are assigned to each node.

We employ the same set of parameters for each algorithm to provide fair training time comparisons;
the parameters are set toη = 0.1, N = 500, andL = 200.

As shown in Figure 3, feature-distributed LambdaMART (solid lines) achieves significantly faster
training times than centralized LambdaMART (dotted lines)on both clusters. When trained on Type
II with 500 features, feature-distributed LambdaMART with8 workers achieves almost a two-fold
speed-up over centralized LambdaMART (Fig. 3(a)). When the number of features is small, as the
number of workers increases, the cost of communication among the workers outweighs the speed-
ups due to feature distribution, as seen by the increase in time whenK ≥ 8 for Type II (Fig. 3(a)–
(b)). However, as the number of features increases, communication occupies a smaller percentage
of the training time, resulting in decreasing training times. For example, feature-distributed Lamb-
daMART on Type II with 4000 features (Fig. 3(d)) exhibits decreasing training times as the number
of workers increases and achieves a factor of 6 speed-up overcentralized LambdaMART when
trained on 32 workers. When trained on Type I, feature-distributed LambdaMART exhibits de-
creasing training times as the number of workers grows; with32 workers training on 4000 features,
roughly a3-fold speed-up is obtained.

We evaluate the time required to train on|S| queries, where the queries are split amongK workers.
For the centralized algorithm, a single worker trains on|S| queries. We setη = 0.1, L = {100, 200},
andN = 1000. Figure 4 plots the number of workersK versus the total train time in seconds; every
point represents a model trained on all|S| queries. For the data-distributed algorithms, the training
dataS is split amongK workers: asK increases, the number of queries on a single worker (|S|

K
)

decreases, but the total number of queries across all nodes remains constant (|S|). The two points at
K = 1 represent the training times of centralized LambdaMART trained on fourteen million URLs.
The central model atK = 1 is plotted at allK values for reference (shown by the dotted lines).
WhenK > 1, the train times of full and sample data-distributed LambdaMART are significantly
less than the centralized algorithm. Particularly notableis the reduction in train time obtained by the
sample data-distributed LambdaMART algorithm.

9

1 2 4 8 16 32
5000

6000

7000

8000

9000

10000

11000

Number of Workers K

T
o
ta

l T
ra

in
 T

im
e
 (

se
c)

Type I
Type II

1 2 4 8 16 32
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Number of Workers K

T
ot

al
 T

ra
in

 T
im

e
(s

ec
)

Type I
Type II

a) 500 Features. b) 1000 Features.

1 2 4 8 16 32
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Workers K

T
ot

al
 T

ra
in

 T
im

e
(s

ec
)

Type I
Type II

1 2 4 8 16 32
0

1

2

3

4

5

6

7
x 10

4

Number of Workers K

T
ot

al
 T

ra
in

 T
im

e
(s

ec
)

Type I
Type II

c) 2000 Features. d) 4000 Features.

Figure 3: Number of WorkersK versus Total Training Time in seconds for centralized (dotted) and
feature-distributed (solid) LambdaMART, for 500–4000 features and two cluster types. Centralized
was trained on the full dataset for allK. Each experimental setting was run three times; times are
shown by the bars around each point. Invisible bars indicatetimes are roughly equivalent.

D.2 Accuracy Comparison

The first experiment evaluates the change in accuracy of our data-distributed algorithms as the num-
ber of workers increases. We simulate memory constraints byassuming one worker can store at
most 3500 queries — in order to exploit more training data, the data must reside on separate work-
ers. As the number of workers increases, it simulates the case where more and more training data
is available, but the memory capacity of a single worker remains the same. The training setS is
randomly partitioned into 32 disjoint subsets and each subset resides on one of the 32 nodes in our
cluster. Each partition contains roughly 3500 queries and corresponding URLs. WhenK = 1, a
single worker trains on 3500 queries, whenK = 2, two workers train on 3500 queries each, and so
on.

Figure 5 plots the number of workersK versus NDCG for full and sample data-distributed Lamb-
daMART The training data distributed among the workers in the cluster acts as additional validation
data since it is used for the evaluation and selection of the weak hypothesis. Full and sample selec-
tion strategies result, for eachK, in similar NDCG scores, and exhibit NDCG accuracy increases as
K increases. Having3500K queries in the cluster, forK = {8, 16, 32}, yields significant gains in
NDCG@3 and 10 over training on 3500 queries (K = 1). Thus, additional data, although mostly
used for validation, significantly increases NDCG accuracy.

In Figure 5(d), we analyze the effect of lifting the memory constraint and plot the centralized al-
gorithm accuracy trained on3500K queries (dotted line) on a single worker, for increasing values
of K. For K = {4, 8, 16, 32}, the resulting model is significantly better than the corresponding

10

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5
x 10

4

Number of Workers K

T
ot

al
 T

ra
in

 T
im

e
(s

ec
)

100 Leaves
200 Leaves

Figure 4: Number of WorkersK versus Training Time in seconds for centralized (dotted), full
data-distributed (solid), and sample data-distributed (dashed) LambdaMART on fourteen million
samples (query-URL pairs). Each experimental setting was run three times; times are shown by the
bars around each point.

data-distributed models trained on3500K queries, indicating that when able to use additional data
directly for training, it is preferable to using it for cross-validation.

Somewhat surprisingly, as the amount of data increases, even though the data is highly distributed,
the optimal values of the learning rateη and number of leavesL change dramatically for data-
distributed LambdaMART (see Table 1). Even though it is onlythe amount of validation data that
increases asK increases, the parameters behave similarly to increasing the amount of centralized
training data.

For our next experiment, we investigate how training on overlapping sets of data affects NDCG
accuracy. Assume that a single worker can store at most 7000 queries and let the amount of training
data available be3500K queries. We construct our overlapping sets as follows: the training dataS is
divided intoK sets,S1, . . . , SK . Workerk stores setSk and setSk+1, resulting in 7000 queries. For
example, whenK = 4, S1 +S2, S2 +S3, S3 +S4, S4 +S1 reside on workers1, 2, 3, 4, respectively.
The total number of unique queries in the cluster remains3500K. This approach can easily scale to
larger datasets.

Figure 6 plots the number of workersK versus NDCG, where each worker contains an overlapping
set of 7000 queries, compared to 3500 queries. The accuracy gains from training on 7000 queries per
worker instead of 3500 are significant for allK at NDCG@3 and 10, further indicating that training
on more data is better than validating over more data, and also indicating that the samples need not
be unique across the workers. In particular, trainingK = 8 workers on overlapping 7000-query sets
results in similar accuracy to trainingK = 32 workers on 3500-query sets. In all cases, full and
sample selection strategies result in similar accuracies.

In Figure 6(d), we again lift the memory constraint, and plotthe NDCG@3 accuracy of the central
model on 3500K queries (dotted line). The results highlight the benefit of increasing the amount of
training data per worker over using additional validation data, as seen by the significant gap between
the central and data-distributed models.

Even though the central model is superior in accuracy to our data-distributed models (assuming
memory of a single worker is not constrained), our data-distributed algorithms exhibit significant
gains when the memory of a single worker is exhausted. In thisscenario, a benefit of our data-
distributed algorithm is not only parallelized training, but also that the amount of information com-

11

12

1 2 4 8 16 32
57.9

58

58.1

58.2

58.3

58.4

58.5

58.6

58.7

58.8

58.9

N
D

C
G

@
1

Number of Workers K
1 2 4 8 16 32

57.5

57.6

57.7

57.8

57.9

58

58.1

58.2

58.3

58.4

N
D

C
G

@
3

Number of Workers K

a) NDCG@1. b) NDCG@3.

1 2 4 8 16 32
61.2

61.3

61.4

61.5

61.6

61.7

61.8

61.9

62

62.1

N
D

C
G

@
1
0

Number of Workers K
1 2 4 8 16 32

57.5

58

58.5

59

59.5

60

N
D

C
G

@
3

Number of Workers K

c) NDCG@10. d) NDCG@3 with Centralized.

Figure 5: Number of WorkersK versus NDCG@1, 3, 10 for full (solid) and sample (dashed) data-
distributed LambdaMART. Each worker trains on 3500 queries. Figure (d) includes centralized
LambdaMART (dotted) trained on3500K queries at eachx-axis point. Significant differences are
stated in the text.

13

1 2 4 8 16 32
58

58.2

58.4

58.6

58.8

59

59.2

59.4

N
D

C
G

@
1

Number of Workers K
1 2 4 8 16 32

57.6

57.8

58

58.2

58.4

58.6

58.8

59

N
D

C
G

@
3

Number of Workers K

a) NDCG@1. b) NDCG@3.

1 2 4 8 16 32
61.4

61.5

61.6

61.7

61.8

61.9

62

62.1

62.2

62.3

62.4

N
D

C
G

@
1
0

Number of Workers K
1 2 4 8 16 32

57.5

58

58.5

59

59.5

60

N
D

C
G

@
3

Number of Workers K

c) NDCG@10. d) NDCG@3 with Centralized.

Figure 6: Number of WorkersK versus NDCG@1, 3, 10 for full (solid) and sample (dashed) data-
distributed LambdaMART. Each worker trains on 7000 overlapping queries (stars). Results from
training on 3500 queries per worker (circles) are plotted for comparison. Figure (d) includes central-
ized LambdaMART (dotted) trained on3500K queries at eachx-axis point. Signficant differences
are stated in the text.

municated between the master and the workers is independentof the amount of training data; it is
dependent on the number of workers and the size of a weak hypothesis. Our full data-distributed
algorithm relies on the diversity of each weak hypothesis, yet upon examination of the NDCG scores
of the weak hypotheses, we found that during early rounds of boosting the weak hypotheses exhib-
ited diversity, but after only a few rounds of boosting, the weak hypotheses achieved almost identical
NDCG scores on the large validation data, indicating that wemay be able to eliminate the evaluation
step entirely and select a worker at random to produce the weak hypothesis at each iteration.

By eliminating the evaluation step at each iteration, the training time decreases dramatically, since
the cost of evaluation is linear in the size of the largest split Sk, and the accuracies are equivalent
to choosing the best weak hypothesis based on NDCG evaluation. Thus, our sample selection al-
gorithm can be efficiently applied to billions of samples andachieve comparable accuracy to the
full selection strategy. The sample selection algorithm also points to the advantages that an asyn-
chronous distributed approach may have over a synchronous one. Since each workerk trains on a
random subsetSk of the training data, then an asynchronous algorithm could assign idle workers
different tasks, such as evaluating or training a regression tree for a future iteration. Such an ap-
proach could possibly yield improvements in speed or accuracy by taking advantage of the large
number of workers available at any given time.

Our sample approach can also be applied to centralized training: at each round of boosting, sample
the training data and train a weak hypothesis on that sample.If the complete training dataset fits in
memory on a single machine, then the training time will decrease by training on a sample of the data
during each boosting iteration. However, if the training data must reside on separate machines, then
to train on a single machine, at each round of boosting, the sample must be sent to the machine and
then loaded into memory on the machine. The sample must be sampled across all of the machines.
The process of communicating the data samples from the many nodes that store the data will be
costly and prohibit the use of the algorithm on very large datasets.

E Additional Remarks on Data-distributed LambdaMART

We have shown that our data-distributed approach is a viablemethod for exploiting additional train-
ing data when the main memory of a single machine is exceeded.In this section, we consider the
case where the main memory of the workers is not exhausted andwe have a fixed amount of train-
ing data. One goal of a distributed learning algorithm is to achieve comparable or better accuracy
compared to the centralized algorithm, but with much shorter training times. We conduct a series
of experiments to determine if our data-distributed approach achieves comparable accuracy with
shorter training times compared to the centralized algorithm.

We first determine the effect of decreasing the training datasize on the centralized algorithm’s
accuracy. Let the size of the training set residing on the central machine decrease as|S|

K
, with

increasing values ofK. Figure 7 plots the training set size versus NDCG for the centralized model
(dotted line). When training on50% of the training data, the NDCG@1, 3, 10 accuracy compared to
training on100% of the data is statistically similar. It is also noteworthy that as the training set size
decreases, the optimal number of leaves decreases, while the optimal learning rate stays constant
across the training data sizes (Table 1).

We next determine the accuracy of full and sample data-distributed LambdaMART, where the train-
ing dataS is split acrossK workers and each worker contains|S|

K
queries. Figure 7 contains the

centralized and full and sample data-distributed accuracyresults. In the central case, thex-axis indi-
cates the size of the training set on the single node. In the data-distributed cases, thex-axis indicates
the number of workersK and correspondingly the amount of training data|S|

K
on a given worker.

The results indicate that choosing a weak hypothesis among theK nodes, either by full or sample
selection, is better than choosing the same weak hypothesisfrom the same node at each iteration.
This is seen by looking at a given value ofK: the data-distributed NDCG scores are consistently
higher than the centralized NDCG scores and statistically significantly higher forK ≥ 16. However,
there is not a single point on the data-distributed curves that outperforms training on the full data set
using the centralized algorithm (the point atK = 1). Splitting the data across an increasing number
of workersK causes a gradual and continual drop in accuracy, with significant losses compared to
the point atK = 1 whenK ≥ 4.

14

15

1 2 4 8 16 32
58

58.5

59

59.5

60

60.5

N
D

C
G

@
1

Fraction of Training Data 1/K (Number of Workers K)
1 2 4 8 16 32

57.5

58

58.5

59

59.5

60

N
D

C
G

@
3

Fraction of Training Data 1/K (Number of Workers K)

a) NDCG@1. b) NDCG@3.

1 2 4 8 16 32
61

61.5

62

62.5

63

63.5

64

N
D

C
G

@
1
0

Fraction of Training Data 1/K (Number of Workers K)

c) NDCG@10.

Figure 7: Number of WorkersK vs. NDCG@1, 3, 10 for centralized (dotted) and full (solid) and
sample (dashed) data-distributed LambdaMART. Each workertrains on |S|

K
queries. The central

model was trained on|S|
K

queries on a single worker. Significant differences are stated in the text.

The experiment additionally shows that choosing a single weak hypothesis from a worker at random
(sample selection) performs similarly to choosing the bestweak hypothesis among theK workers
based on the evaluation step.

Finally, we determine if training on larger overlapping sets of data achieves comparable accuracy to
the central model, but with less training time. We considerK = 4 workers and divide the training
dataS into 4 setsS1, S2, S3, S4. Each set contains25% of the full training set. Workerk is assigned
setsSk + Sk+1 + Sk+2, and thus produces a weak hypothesis based on75% of the full training
set. At each iteration, we use sample selection to produce the next weak hypothesis in the ensemble.
We find that training on75% of the training queries per node yields equivalent NDCG scores to the
central model trained on100% of the training data, but trains in less than half of the time.

16

