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Abstract

One key issue in developing learning methods for multilingual acoustic model-
ing in large vocabulary automatic speech recognition (ASR) applications is to
maximize the benefit of boosting the acoustic training data from multiple source
languages while minimizing the negative effects of data impurity arising from
language “mismatch”. In this paper, we introduce two learning methods, semi-
automatic unit selection and global phonetic decision tree, to address this issue via
effective utilization of acoustic data from multiple languages. The semi-automatic
unit selection is aimed to combine the merits of both data-driven and knowledge-
driven approaches to identifying the basic units in multilingual acoustic model-
ing. The global decision-tree method allows clustering of cross-center phones and
cross-center states in the HMMs, offering the potential to discover a better sharing
structure beneath the mixed acoustic dynamics and context mismatch caused by
the use of multiple languages’ acoustic data. Our preliminary experiment results
show that both of these learning methods improve the performance of multilingual
speech recognition.

1 Introduction

Building language-specific acoustic models for automatic speech recognition (ASR) of a particular
language is a reasonably mature technology when a large amount of speech data can be collected
and transcribed to train the acoustic models. However when multilingual ASR for many languages
is desired, data collection and labeling often become too costly so that alternative solutions are
desired. One potential solution is to explore shared acoustic phonetic structures among different
languages to build a large set of acoustic models (e.g. [1, 2, 3, 4, 5, 6]) that characterize all the
phone units needed in order to cover all the spoken languages being considered. This is sometimes
called multilingual ASR, or cross-lingual ASR when no language-specific data are available to build
the acoustic models for the target language.

A central issue in multilingual speech recognition is the tradeoff between two opposing factors. On
the one hand, use of multiple source languages’ acoustic data creates the opportunity of greater
context coverage (as well as more environmental recording conditions). On the other hand, the
differences between the source and target languages create potential impurity in the training data,
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giving the possibility of polluting the target language’s acoustic model. In addition, different lan-
guages may cause mixed acoustic dynamics and context mismatch, hurting the context-dependent
models trained using diverse speech data from many language sources.

Thus, one key challenge in the learning multilingual acoustic model is to maximize the benefit of
boosting the acoustic data from multiple source languages while minimizing the negative effects of
data impurity arising from language “mismatch”. Many design issues arise in addressing this chal-
lenge, including the choice of “language-universal” speech units, the total size of such units, defini-
tion of context-dependent units and their size, decision-tree building strategy, optimal weighting of
the individual source languages’ data in training, model adaptation strategy, feature normalization
strategy, etc. In this paper, we focus on two of these design issues.

The first issue we discuss in this paper is the selection of basic units for multilingual ASR. The
main goal of multilingual acoustic modeling is to share the acoustic data across multiple languages
to cover as much as possible the contextual variation in all languages being considered. One way
to achieve such data sharing is to define a common phonetic alphabet across all languages. This
common phone set can be either derived in a data-driven way [7, 8], or obtained from phonetic
inventories such as Worldbet [9], or International Phonetic Alpha-bet (IPA) [10]. One obstacle of
applying the data-driven approach to large-vocabulary multilingual ASR is that building of lexicons
using the automatically selected units is not straightforward, while for the pure phonetic approach,
the drawback is that the consistency and distinction among the units across languages defined by
linguistic knowledge may not be supported by real acoustic data (as we will demonstrate in Section
2). In this paper, we introduce a semi-automatic unit selection strategy which combines the merits of
both data-driven and knowledge-driven approaches. The semi-automatic unit identification method
starts from the existing phonetic inventory for multiple languages. This is followed by a data-driven
refinement procedure to ensure that the final selected units also reflect acoustic similarity. Our
preliminary experiment results show that the semi-automatically selected units outperform the units
defined solely by linguistic knowledge.

The second issue we address here is the phonetic decision tree building strategy. As we know,
context-dependent models are usually utilized for modern large vocabulary ASR system. One com-
monly used basic unit in context-dependent models istriphone, which consists of a center phone
along with its left-neighbor and right-neighbor phones. Typically, around 30 to 40 phonemes are
required in order to describe a single language. In a monolingual ASR system, a complete triphone-
based acoustic model would contain a total of over 60 thousand triphone models with more than
180 thousand hidden Markov model (HMM) states if each triphone is modeled with a 3-state left-to-
right HMM. It is generally impossible to train such large acoustic models with supervised learning
methods since a huge amount of labeled acoustic data are required, which is not available at present.
To address this issue, phonetic decision tree clustering [11] was introduced and is still widely used
today. Usually, the decision trees are limited to operate independently on each context independent
state of the acoustic model. In other words, no cross center phone sharing is allowed. This design
feature is based on the assumption that there is no benefit from clustering different phones together.
Such a restriction may be reasonable for a monolingual ASR system, but it may not be suitable for
multilingual acoustic modeling since the acoustic properties across multiple languages is less pred-
icable. In this paper, we use a global decision tree, which better describes acoustics of the training
data without artificially partitioning the acoustic space. Improvements of using global decision trees
are illustrated in our preliminary experimental results.

2 Semi-automatic Unit Selection

2.1 The Technique

The steps of the semi-automatic unit selection procedure developed in this work are described below:

• We start with a common phonetic inventory, sayI = {p1, p2, ..., pn}, defined for multiple
languages. There aren phonemes defined in this inventory. For convenience, we denote
the index set asN , i.e.N = {1, 2, ..., n}.

• A separate phonetic inventoryIl = {pk,l | k ∈ S,S ⊆ N} is formed for each langauge
l. Il containsall the phones used for languagel. Language tag is attached to the phone
symbol to denote that it belongs to languagel.
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Figure 1:Histogram of KL distances between phones sharing the same symbol UPS (based on IPA)).
The numbers on x axis represents the value of KL distances.

• Using the transcribed data, train a HMMHk,l for each monophonepk,l for each language.

• All phones in all languages are clustered and the phones in the same cluster are shared with
acoustic data during multilingual training. Specifically, K-mean clustering is performed
to all the phones in all languages, where the distance between phones are defined as the
Kullback-Leibler (KL) distance between HMMs; I.e.d(pk,l1 , pk,l2) = dKL(Hk,l1 ,Hk,l2).
A new symbol is used to represent all the phones in the same cluster, and these new symbols
form our final phonetic inventoryInew across all languages. Mappings fromIl to Inew are
recorded accordingly.

• Obtain a new lexicon for each languagel using the mapping fromIl to Inew.

The design in the second step above with the use of language tags is intended to prevent any data
sharing across languages since at this intial stage we assume there are no common phones defined
among different languages. For example, phonemepk,l1 and phonemepk,l2 are treated as two
distinct phones, one for languagel1 and the other for languagel2, but they have both originated
from the same phonepk in the common phonetic inventoryI. If we were to fully trust the common
phonetic inventoryI, pk,l1 andpk,l2 would be identical, and thus the acoustic data forpk,l1 from
langaugel1 and data forpk,l2 from languagel2 would be shared to represent a common unitpk.
Unfortunately, the common phone inventory in our investigation has been found not to accurately
reflect the real acoustic similarities. This is illustrated in Figure1), where a histogram is plotted of
the KL distances between the Italian and Spanish phones that have the same symbol in Universal
Phone Symbol (UPS) –dKL(Hk,italian,Hk,spanish), k ∈ N . The numbers on x axis represents
the value of the KL distance. Apparently, at least three symbols result in very different acoustic
distributions, indicating that the UPS set could not accurately reflect acoustic similarities across
languages. Detailed investigation motivated us to distinguish phones for different languages at this
step and to leave the decision of sharing data or otherwise to the clustering algorithm based on the
data themselves.

2.2 Experiments

In our experiments, we use the universal phone set (UPS), which is a machine-readable phone set
based on the IPA, to represent the language universal speech units. In most cases, there is a one-to-
one mapping between UPS and IPA symbols, while in a few other cases UPS is a superset of IPA. For
example, UPS includes some unique phone labels for commonly used sounds such as diphthongs,
and nasalized vowels, while IPA treats them as compounds. Generally, UPS covers sounds in various
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genres, including consonants, vowels, suprasegmentals, diacritics, and tones. Table1 illustrates the
number of different types of UPS units for the two languages (Italian and Spanish) used in this
experiment.

Table 1: Number of vowel , consonant, suprasegmentals, and diacritics units for the 2 languages
used in this experiment

vowel consonant suprasegmentals diacritics
Italian 11 24 1 0

Spanish 6 21 0 0

To cover these two languages, we only need 44 units (including four other symbols used for silence
and noise). That is,|I| = 44 in our case. Monophone HMMs with single Gaussian per state were
trained separately for these two languages. The KL distance between phones which share the same
UPS symbol,dKL(Hk,italian,Hk,spanish), k ∈ N , were calculated and the histogram is plotted
in Figure1. To gain insight into what value of the distance actually indicates “dis-similarity”, the
distances between different phones within the same language are also estimated. For Spanish, the
estimated average distance is 213; for Italian, it is 335. These values are smaller than some values
shown in Figure1 for the same symbol across the two languages, which indicates that the use of
UPS as is would necessarily introduce “language mismatch”.

After adding language tag as introduced in Section2.1, we have|Iitalian| = 40 and|Ispanish| = 31.
This gives a total of 71 monophone units for the two languages. These 71 units are further clustered
resulting a final phone set with 47 units (|Inew| = 47).

Table 2:Training set descriptions

Language Corpus #. Speaker Hours
Italian ELRA-S0052 989 23.5

Spanish ELRA-S0065 992 33.9

Some statistics of the data used for training are shown in Table2. The training procedure used in
this experiment is described below. 13 MFCCs were extracted along with their first and second time
derivatives, giving a feature vector of 39 dimensions. Cepstral mean normalization was used for
feature normalization. All the models mentioned in this paper are cross-word triphone models.
Phonetic decision tree tying was utilized to cluster triphones. A set of linguistically motivated
questions were derived from the phonetic features defined in the UPS set. The number of tied
states, namelysenones, can be specified at the decision tree building stage to control the size of the
model. The top-down tree building procedure is repeated until the increase in the log-likelihood
falls below a preset threshold. The number of mixtures per senone is increased to four along with
several EM iterations. This leads to an initialized cross-word triphone model. The transcriptions are
then re-labeled using the initialized cross-word triphone models, which were used to run the training
procedure once again - to reduce number of mixture components to one, untie states, re-cluster states
and increase the number of mixture Gaussian components. The final cross-word triphone is modeled
with 12 Gaussian components per senone.

Table 3: Test set descriptions

ID Corpus #. Utterances #. Speaker Envronments
Test I ELRA-S0052 2140 99 Office/home
Test II ELRA-S0116 2199 400 Office/home/street/public place/vehicle
Test III PHIL18 4827 197 Quite environment
Test IV PHIL42 3916 129 Office/home/Quite environment

In testing, we are interested in telephony ASR under various environments, including home, office,
and public places. We chose Italian as our target language, which is observed during the language-
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universal training. Several test sets were used as shown in Table3. In all of our experiments, the
standard Microsoft speech recognition engine was used for acoustic modeling and decoding.

Table4 shows the word error rates (WER) results of different methods on the four test sets. The row
with “Monolingual training” refers to the procedure where we only used the data for Italian to train
the acoustic models. For multilingual training, data for both Italian and Spanish were used. We had
3000 senones based on the amount of data (about 20 hours) for monolingual training, while for the
multilingual training, we had 5000 senones since more training data (about 50 hours) were used in
the training. For fair comparisons, we also increased the number of senones for the monolingual
model, which was stopped at around 4600 when the problem of data insufficiency was detected.
It can be seen that multilingual acoustic modeling outperforms monolingual training on Test sets
II, III and IV. Semi-automatic unit selection described in this paper is shown to be effective with
significant improvements on Test II and III compared with using UPS.

Table 4:WER (%) results on the four test sets for Italian

Method #. Phones #. Senones Test I Test II Test III Test IV
Monolingual training 40 3000 3.62 5.57 6.34 17.90
Monolingual training 40 4600 3.82 5.68 7.67 19.61

Multilingual training (UPS) 44 5000 4.05 5.21 5.13 17.78
Multilingual training (semi-auto) 47 5000 4.04 4.99 5.01 17.82

3 Global Phonetic Decision Tree

3.1 The Technique

The standard way of clustering triphone HMM states is to use a set of phonetic decision trees. One
tree is built for every state of every center phone. The trees are built using a top-down sequential
optimization process. Initially, each of the trees starts with all possible phonetic contexts represented
in a root node. Then a binary question is chosen which gives the best splits the states represented by
the node. Whichever question creates two new senones that maximally increase the log likelihood
of the training data is chosen. This process is applied recursively until the log likelihood increase is
less than a threshold.

Instead of using a different decision tree for every context independent phone state, we use a single
global phonetic decision tree that starts with all states in the root node. The question sets explored
during the clustering includes questions about the current state, about the current center phone, and
about the current left and right context phone classes. In contrast, the conventional decision tree
building would only use the context questions. Other than that, the global decision tree building
procedure is the same as the standard procedure. Using a global decision allows cross-center phone
and cross-center state clustering. We believe that such joint clustering could discover a better sharing
structure beneath the mixed acoustic dynamics and context mismatch caused by multiple languages.

3.2 Experiments

The experimental setup was the same as introduced in Section2.2. Instead of using traditional deci-
sion tree building procedure, we built a single global decision tree during the multilingual training.
The new model was compared to that produced without global decision tree optimization. As shown
in Table 5, using global decision tree has positive effects consistently on all of the four test sets,
supporting our claim that global phonetic decision explores state tying structure that better describes
the training data, and thus is a better option for multilingual ASR. Note the global decision tree
method experimeted here was not on the semi-automatic selected units. We will explore combining
the two learning methods in our future work and further performance improvements are expected.
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Table 5:WER (%) results on the four test sets for Italian

Method #. Phones #. Senones Test I Test II Test III Test IV
Monolingual training 40 3000 3.62 5.57 6.34 17.90
Monolingual training 40 4600 3.82 5.68 7.67 19.61
Multilingual training 44 5000 4.05 5.21 5.13 17.78

Multilingual training (global DT) 44 5000 3.99 5.01 4.91 17.24

4 Sumamry and Conclusions

In this paper, we reported our development and experimental results for two learning methods in
multilingual speech recognition. The key issue that the learning methods are addressing is how
to balance between boosting acoustic training from multiple languages and reduing acoustic data
impurity arising from language mismatch. Both learning methods, one on the use of new cross-
lingual speech units and another on the use of a global decision tree, are shown to produce superior
speech recognition performance over the respective baseline systems. There is vast opportunity to
develop new learning methods in the space of multilingual speech recognition.
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