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Abstract

We present a novel Bayesian model for semi-supervised part-of-speech tagging.
Our model extends the Latent Dirichlet Allocation model andincorporates the
intuition that words’ distributions over tags,p(t|w), are sparse. In addition we in-
troduce a model for determining the set of possible tags of a word which captures
important dependencies in the ambiguity classes of words. Our model outper-
forms the best previously proposed model for this task on a standard dataset.

1 Introduction

Part-of-speech tagging is a basic problem in natural language processing and a building block for
many components. Even though supervised part-of-speech taggers have reached performance of
over 97% on in-domain data [1, 2], the performance on unknownin-domain words is below 90%
and the performance on unknown out-of-domain words can be below 70% [3]. Additionally, few
languages have a large amount of data labeled for part-of-speech. Thus it is important to develop
methods that can use unlabeled data to learn part-of-speech. Research on unsupervised or partially
supervised part-of-speech tagging has a long history [4, 5]. Recent work includes [6, 7, 8, 9, 10].

As in most previous work on partially supervised part-of-speech tagging, our model takes as input
a (possibly incomplete) tagging dictionary, specifying, for some words, all of their possible parts
of speech, as well as a corpus of unlabeled text. Our model departs from recent work on semi-
supervised part-of-speech induction using sequence HMM-based models, and uses solely observed
context features to predict the tags of words. We show that using this representation of context gives
our model substantial advantage over standard HMM-based models.

There are two main innovations of our approach. The first is that we incorporate a sparse prior on the
distribution over tags for each word,p(t|w), and employ a Bayesian approach that maintains a dis-
tribution over parameters, rather than committing to a single parameter value. Previous approaches
to part-of-speech tagging ([9, 10]) also use sparse priors and Bayesian inference, but do not incor-
porate sparse priors directly on thep(t|w) distribution. Our results demonstrate that encoding this
sparse prior and employing a Bayesian approach contributessignificantly to performance.

The second innovation of our approach is that we explicitly model ambiguity class (the set of part-of-
speech tags a word type can appear with). We show that this also results in substantial performance
improvement. Our model outperforms the best-performing previously proposed model for this task
[7], with an error reduction of up to 57% when the amount of supervision is small.

The task setting is more formally as follows. Assume we are given a finite set of possible part-of-
speech tags (labels)T = {t1, t2, . . . , tnT

}. The set of part-of-speech tags for English we experiment
with has the17 tags defined by Smith & Eisner [7], and is a coarse-grained version of the45-tag set
in the English Penn Treebank. We are also given a dictionary which specifies the ambiguity classes
s ⊆ T for a subset of the word typesw. The ambiguity class of a word type is the set of all of its
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), i = 1, . . . , L, j = 1, . . . , 4
wi | mi, ω ∼ MULTI(ωmi

), i = 1, . . . , L
βi | α, si = SUBSET(α, si), i = 1, . . . , L
θi | βi ∼ DIR(βi), i = 1, . . . , L
ti,j | θi ∼ MULTI(θi), i = 1, . . . , L, j = 1, . . . ,Wi

ϕk,ℓ | γ ∼ DIR(γ), k = 1, . . . , 4, ℓ = 1, . . . , T
ck,i,j | ti,j , ϕk ∼ MULTI(ϕk,ti,j

), i = 1, . . . , L, j = 1, . . . ,Wi, k = 1, . . . , 4

Figure 1: A graphical model for the tagging model. In this model, each word typew is associated
with a sets of possible parts-of-speech (ambiguity class), and each ofits tokens is associated with
a part-of-speech tagt, which generates the context wordsc surrounding that token. The ambiguity
classs also generates the morphological featuresm of the word typew via a hidden tagu ∈ s.
The dotted line divides the model into the ambiguity class model (on the left) and the word context
model (on the right).

possible tags. For example, the dictionary might specify that walks has the ambiguity class{N,V }
which means thatwalks can never have a tag which is not anN or aV. Additionally, we are given a
large amount of unlabeled natural language text. The task isto label each word token with its correct
part-of-speech tag in the corresponding context.

This task formulation corresponds to a problem in computational linguistics that frequently arises in
practice, because the only available resources for many languages consist of a manually constructed
dictionary and a text corpus. Note that it differs from the standard semi-supervised learning setting,
where we are given a small amount of labeled data and a large amount of unlabeled data. In the
setting we study, we are never given labeled data, but are given instead constraints on possible tags
of some words (in the form of a dictionary).1

2 Graphical model

Our model is shown in Figure 1. In the figure,T is the set of part-of-speech tags,L is the set of word
types (i.e., the set of different orthographic forms),W is the set of tokens (i.e., occurrences) of the
word typew, andM4 is the set of four-element morphological feature vectors described below.

This is a generative model for a sequence of word tokens in a text corpus along with part-of-speech
tags for all tokens, ambiguity classes for word types and other hidden variables. To generate the
text corpus, the model generates the instances of every wordtype together with their contexts in

1For some words, the dictionary specifies only one possible tag, e.g.information → {N}, in which case all
instances ofinformation can be assumed labeled with the tagN. However these constraints are not sufficient to
result in fully labeled sentences.
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turn. The generation of a word type and all of its occurrencescan be decomposed into two steps,
corresponding to the left and right parts of the model: the ambiguity class model, and the word
context model (separated by a dotted line in the figure).

For every word typewi ∈ L (plateL in the figure), in the first step the model generates an ambiguity
classsi ⊆ T of possible parts of speech. The ambiguity classsi is the set of parts-of-speech that
tokens ofwi can be labeled with. Our dictionary specifiessi for some but not all word typeswi.
The ambiguity classsi is generated by a multinomial over2T with parametersξ, with support on
the different values fors observed in the dictionary. The ambiguity classsi for wi generates four
different morphological featuresm1,i, . . . ,m4,i of wi representing the suffixes, capitalization, etc.,
of the orthographic form ofwi. These are generated by multinomials with parametersψ1,u, . . . , ψ4,u

respectively, whereu ∈ s is a hidden variable generated by a uniform distribution over the members
of s. For completeness we generate the full surface form of the word typewi from a multinomial
distribution selected by its morphology featuresm1,i, . . . ,m4,i. But since the morphology features
are always observed (they are determined bywi’s orthographic form), we ignore this part of the
model. We discuss the ambiguity class model in detail in Section 3.1.

In the second step the word context model generates all instanceswi,j of wi together with their
part-of-speech tagsti,j and context words (plateW in the figure). This is done by first choosing a
multinomial distributionθi over the tags in the setsi, which is drawn from a Dirichlet with param-
etersβi and supportsi, whereβi,t = αt for t ∈ s. That is,si identifies the subset ofT to receive
support inβi, but the value ofβi,t for t ∈ si is specified byαt. Given these variables, all tokens
wi,j of the wordwi together with their contexts are generated by first choosinga part-of-speech tag
ti,j from θi and then choosing context wordsck,i,j preceding and following the word tokenwi,j

according to tag-specific (depending onti,j) multinomial distributions. The context of a word to-
ken c1,i,j . . . , c4,i,j consists of the two preceding and two following words. For example, for the
sentenceHe often walks to school, the context words of that instance ofwalks arec1=He, c2=often,
c3=to, andc4=school. This representation of the context has been used previously by unsupervised
models for part-of-speech tagging in different ways [4, 8].Each context wordck,i,j is generated
by a multinomial with parametersϕk,ti,j

, where eachϕk,t is in turn generated by a Dirichlet with
parametersγ. The parametersϕk,t are generated once for the whole corpus as indicated in the figure.

A sparse Dirichlet prior onθi with parameterα < 1 allows us to exploit the fact that most words
have a very frequent predominant tag, and their distribution over tagsp(t|w) is sparse. To verify
this, we examined the distribution of the17-label tag set in the WSJ Penn Treebank. A classifier
that always chooses the most frequent tag for every word type, without looking at context, is 90.9%
accurate on ambiguous words, indicating that the distribution is heavily skewed.

Our model builds upon the Latent Dirichlet Allocation (LDA)model [11] by extending it in several
ways. If we assume that the only possible ambiguity classs for all words is the set of all tags
(and thus remove the ambiguity class model because it becomes irrelevant), and if we simplify our
word context model to generate only one context word (say theword in position−1), we would
end up with the LDA model. In this simplified model, we could say that for every word typewi

we have a document consisting of all word tokens that occur inposition−1 of the word typewi

in the corpus. Each context wordci,j in wi’s document is generated by first choosing a tag (topic)
from a word (document) specific distributionθi and then generating the wordci,j from a tag (topic)
specific multinomial. The LDA model incorporates the same kind of Dirichlet priors onθ andϕ that
our model uses. The additional power of our model stems from the model of ambiguity classessi

which can take advantage of the information provided by the dictionary, and from the incorporation
of multiple context features.

Finally, we note that our model is deficient, because the sameword token in the corpus is indepen-
dently generated multiple times (e.g., each token will appear in the context of four other words and
will be generated four times). Even though this is a theoretical drawback of the model, it remains
to be seen whether correcting for this deficiency (e.g., by re-normalization) would improve tagging
performance. Models with similar deficiencies have been successful in other applications (e.g. the
model described in [12], which achieved substantial improvements over the previous state-of-the-art
in unsupervised parsing).
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3 Parameter estimation and tag prediction

Here we discuss our method of estimating the parameters of our model and making predictions,
given an (incomplete) tagging dictionary and a set of natural language sentences.

We train the parameters of the ambiguity class model,ξ, ψ, andω, separately from the parameters of
the word context model:α,θ,γ, andϕ. This is because the two parts of the model are connected only
via the variablessi (the ambiguity classes of words), and when these ambiguity classes are given the
two sets of parameters are completely decoupled. The dictionary gives us labeled training examples
for the ambiguity class model, and we train the parameters ofthe ambiguity class model only from
this data (i.e., the word types in the dictionary). After training the ambiguity class model from the
dictionary we fix its parameters and estimate the word context model given these parameters.

3.1 Ambiguity class model: details and parameter estimation

Our ambiguity class model captures the strong regularitiesgoverning the possible tags of a word
type. Empirically we observe that the number of occurring ambiguity classes is very small relative
to the number of possible ambiguity classes. For example, inthe WSJ Penn Treebank data, the
49, 206 word types belong to118 ambiguity classes. Modeling these (rather than POS tags directly)
constrains the model to avoid assignments of tags to word tokens which would result in improbable
ambiguity classes for word types. A related intuition has been used in other contexts before, e.g.
[13, 14], but without directly modeling ambiguity classes.The ambiguity class model contributes
to biasingp(t|w) toward sparse distributions as well, because most ambiguity classes have very
few elements. For example, the top ten most frequent ambiguity classes in the complete dictionary
consist of one or two elements.

The ambiguity class of a word type can be predicted from its surface morphological features. For
example the suffix-s of walks indicates that an ambiguity class of{N,V } is likely for this word.
The four morphological features which we used for the ambiguity class model were: a binary feature
indicating whether the word is capitalized, a binary feature indicating whether the word contains a
hyphen, a binary feature indicating whether the word contains a digit character, and a nominal
feature indicating the suffix of a word. We define the suffix of aword to be the longest character
suffix (up to three letters) which occurs as a suffix of sufficiently many word types.2

We train the ambiguity class model on the set of word types present in the dictionary. We set the
multinomial parametersψk,l andξ to maximize the joint likelihood of these word types and their
morphological features. Maximum likelihood estimation for ψ is complicated by the hidden variable
ui which selects a tag form the ambiguity class with uniform distribution.

P (s,m1,m2,m3,m4|ψ, ξ) = P (s|ξ)
∑

u∈s P (u|s)
∏

4

j=1
P (mj |ψj,l).

We fix the probabilityP (u|s) = 1/|s| to the uniform distribution over tags ins. We estimate theξ
parameters using maximum likelihood estimation with add-1(Laplace) smoothing and we train the
ψ parameters using EM (with add-1 smoothing in the M-step).

3.2 Parameter estimation for the word context model and prediction given complete
dictionary

We restrict our attention at first to the setting where a complete tagging dictionary is given. The
incomplete dictionary generalization is discussed in Section 3.3. When every word is in the dictio-
nary, the ambiguity classsi for each word typewi is specified by the tagging dictionary, and the
ambiguity class model becomes irrelevant. The relevant parameters of the model in this setting are
α,θ,γ, andϕ. The contexts of word instancesck,i,j and the ambiguity classessi are observed.

We integrate over all hidden variables except the uniform Dirichlet parametersα andγ. We set
γ = 1 and we use Empirical Bayes to estimateα by maximizing the likelihood of the observed data
givenα and the ambiguity classessi. Note that if the ambiguity classessi andα are given,βi is
fixed. Below we usec to denote the vector of all contexts of all word instances, and s the vector of
ambiguity classes for all word types. We useϕ to denote the vector of all multinomialsϕk,l, θ to

2A suffix occurs with sufficiently many word types if its type-frequency rank is below 100.
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denote the vector of allθi andt to denote the vector of all tag sequencesti for word typeswi. The
likelihood we would like to maximize is:

L(c|s, α, γ) =
∫

P (ϕ|γ)
∏L

i=1

∫

P (θi|βi)
∏Wi

j=1

∑T

l=1

(

θi,l

∏

4

k=1
P (ck,i,j |ϕk,l)

)

dθidϕ

P (ϕ|γ) =
∏

4

k=1

∏T

l=1
DIR(ϕk,l|γ)

Since exact inference is intractable, we use a variational approximation to the posterior distribution
of the hidden variables given the data and maximize instead of the exact log-likelihood, a lower
bound given by the variational approximation. This variational approximation is also used for find-
ing the most likely assignment of the part-of-speech tag variables to instances of words.

More specifically, the variational approximation has analogous form to the approximation used for
the LDA model [11]. It depends on variational parametersλk,l, ηi, andυi,j .

Q(ϕ, θ, t|λ, η, υ) =
∏

4

k=1

∏T

l=1
DIR(ϕk,l|λk,l)

∏L

i=1
DIR(θi|ηi)

∏Wi

j=1
P (ti,j |υi,j)

This distribution is an approximation to the posterior distribution of the hidden variables:
P (ϕ, θ, t|c, s, α, γ). As we can see, according to theQ distribution, the variablesϕ, θ, andt are
independent. Eachϕk,l is distributed according to a Dirichlet distribution with variational parame-
tersλk,l, eachθi is also Dirichlet with parametersηi and each tagti,j is distributed according to a
multinomialυi,j . We obtain the variational parameters by maximizing the following lower bound
on the log-likelihood of the data (the dependence ofQ on the variational parameters is not shown
below for simplicity):EQ [logP (ϕ, θ, t, c|s, α, γ)] − EQ [logQ(ϕ, θ, t)]

We use an iterative maximization algorithm for finding the values of the variational parameters. We
do not describe it here due to space limitations, but it is analogous to the one used in [11]. Given
fixed variational parametersλk,l we maximize with respect to the variational parametersηi and
υi,j corresponding to word types and their instances. Then keeping the latter parameters fixed, we
maximize with respect toλk,l. We repeat until the change in the variational bound falls below a
threshold. On our dataset, about 100 iterations of the outerloop for maximizing with respect toλk,l

were necessary. Given a variational distributionQ we can maximize the lower bound on the log-
likelihood with respect toα. Sinceα is determined by a single real-valued parameter, we maximized
with respect toα using a simple grid search.

For predicting the tagsti,j of word tokens we use the same approximate posterior distributionQ.
Since according toQ all tagsti,j are independent given the variational parameters:Q(ti|υi) =
∏Wi

j=1
(ti,j |υi,j), finding the most likely assignment is straightforward.

3.3 Parameter estimation for the word context model and prediction with incomplete
dictionary

So far we have described the training of the parameters of theword context model in the setting
where for all words, the ambiguity classessi are known and these variables are observed. When
the ambiguity classessi are unknown for some words in the dataset, they become additional hidden
variables, and the hidden variables in the word context model become dependent on the morpholog-
ical featuresmi and the parameters of the ambiguity class model. Denote the vector of ambiguity
classes for the known (in the dictionary) word types bysd and the ambiguity classes for the un-
known word types bysu. The posterior distribution over the hidden variables of interest given the
observations becomes:P (ϕ, θ, t, su|sd,mu, c, α, γ), wheremu are the morphological features of
the unknown word types.

To perform inference in this setting we extend the variational approximation to account for the
additional hidden variables. Before we had, for every word type, a variational distribution over the
hidden variables corresponding to that word type:

Q(θi, ti|ηi, υi,j) = DIR(θi|ηi)
∏Wi

j=1
P (ti,j |υi,j)

We now introduce a variational distribution including new hidden variablessi for unknown words.

Q(θi, ti, si|mi, ηi,s, υi,j,s) = P (si|mi)DIR(θi|ηi,si
)
∏Wi

j=1
P (ti,j |υi,j,si

)
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That is, for each possible ambiguity classsi of an unknown wordwi we introduce variational pa-
rameters specific to that ambiguity class. Instead of singlevariational parametersθi andυi,j for a
word with knownsi, we now have variational parameters{θi,s} and{υi,j,s} for all possible valuess
of si. For simplicity, we use the probabilityP (si|mi) = P (si|mi, ξ, ψ) from the morphology-based
ambiguity class model in the approximating distribution rather than introducing new variational
parameters and learning this distribution.3 We adapt the algorithm to estimate the variational param-
eters. The derivation is slightly complicated by the fact thatsi andθi are not independent according
to Q (this makes sense becausesi determines the dimensionality ofθi), but the derived iterative
algorithm is essentially the same as for our basic model, if we imagine that an unknown word type
wi occurs with each of its possible ambiguity classessi a fractionalp(si|mi) number of times.

For predicting tag assignments for words according to this extended model, we use the same algo-
rithm as described in Section 3.2, for word types whose ambiguity classessi are known. For words
with unknown ambiguity classes, we need to maximize over ambiguity classes as well as tag assign-
ments. We use the following algorithm to obtain a slightly better approximation than the one given
by the variational distributionQ. For each possible tag setsi, we find the most likely assignment
of tags given that ambiguity classt∗(si), using the variational distribution as in the case of known
ambiguity classes. We then choose an ambiguity class and an assignment of tags according to:

s∗ = arg maxsi
P (si|mi, ψ, ξ)P (t∗(si), ci|si,D, α, γ) andt = t∗(s∗).

We computeP (t∗(si), ci|si,D, α, γ) by integrating with respect to the word context distributions
ϕ whose approximate posterior given the data is Dirichlet with parametersλk,l, and by integrating
with respect toθi which are Dirichlet with parametersα and dimensionality given bysi.

4 Experimental Evaluation

We evaluate the performance of our model in comparison with other related models. We train and
evaluate the model in three different settings. In the first setting, a complete tagging dictionary is
available, and in the other two settings the coverage of the dictionary is greatly reduced.

The tagging dictionary was constructed by collecting for each word type, the set of parts-of-speech
with which it occurs in the annotated WSJ Penn Treebank, including the test set. This method of
constructing a tag dictionary is arguably unrealistic but has been used in previous research [7, 9, 6]
and provides a reproducible framework for comparing different models. In the complete dictionary
setting, we use the ambiguity class information for all words, and in the second and third setting we
remove from the dictionary all word types that have occurredwith frequency less than2 and less
than3, respectively, in the test set of 1,005 sentences. The complete tagging dictionary contains
entries for49, 206 words. The dictionary obtained with cutoff of2 contains 2,141 words, and the
one with cutoff of3 contains 1,249 words. We train the model on the whole (unlabeled) WSJ Penn
Treebank, consisting of 49,208 sentences. We evaluate performance on a set of 1,005 sentences,
which is a subset of the training data and is the same test set used by [7, 9].

To see how much removing information from the dictionary impacts the hardness of the problem we
can look at the accuracy of a classifier choosing a tag at random from the possible tags of words,
shown in the columnRandom of Table 1. Results for the three settings are shown in the three rows
of Table 1. In addition to theRandom baseline, we include the results of a frequency baseline,Freq,
in which for each word, we choose the most frequent tag from its set of possible tags.4 This baseline
uses the same amount of partial supervision as our models. Iflabeled corpus data were available, a
model which assigns the most frequent tag to each word by using p̂(t|w) would do much better.

The models in the table are:

LDA is the model proposed in this paper, excluding the ambiguityclass model. The ambiguity class
model is irrelevant when a compete dictionary is available because allsi are observed. In the other
two settings for the LDA model we assume thatsi is the complete ambiguity class (all 17 tags)

3We also limit the number of possible ambiguity classes per word to the three most likely ones and re-
normalize the probability mass among them.

4Frequency of tags is unigram frequency of tagsp̂(t) by token in the unlabeled data. Since the tokens in the
corpus are not actually labeled we compute the frequency by giving fractional counts to each possible tag of
words in the dictionary. Only the words present in the dictionary were usedfor computingp̂(t).
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Dictionary LDA LDA PLSA PLSA CE (S&E) Bayesian ML Random Freq
coverage + AC +AC +spelling HMM (G&G)HMM (G&G)
complete 93.4 93.4 89.7 89.7 88.7 (91.9) 87.3 83.2 69.5 64.8
count≥ 2 87.4 91.2 83.4 87.8 79.5 (90.3) 79.6 70.6 56.6 64.8
count≥ 3 85.0 89.7 80.2 85.9 78.4 (89.5) 71.0 65.5 51.0 62.9

Table 1: Results from minimally supervised POS-tagging models.

for words which are not in the dictionary and do not attempt topredict a more specific ambiguity
class. The estimated parameterα for the tag prior was0.5 for the complete dictionary setting, and
0.2 for the other two settings, encouraging sparse distributions. For this model we estimate the
variational parametersλk,l and the Dirichlet parameterα to maximize the variational bound on the
log-likelihood of the word types which are in the dictionaryonly. We found that including unknown
word types was detrimental to performance.

LDA+AC is our full model including the model of ambiguity classes ofwords given their mor-
phological features. As mentioned above, this augmented model differs fromLDA only when the
dictionary is incomplete. We trained this model on all word types as discussed in Section 3.3. The
estimatedα parameters for this model in the three dictionary settings were0.5, 0.1, and0.1, respec-
tively.

PLSA is the model analogous to LDA, which has the same structure asour word context model, but
excludes the Bayesian components. We include this model in the comparison in order to evaluate
the effect on performance of the sparse prior and the integration over model parameters. This model
is similar to the PLSA model for text documents [15]. The PLSAmodel does not have a prior on
the word-specific distributions over tagsθi = p(t|wi) and it does not have a prior distribution on
the topic-specific multinomials for context wordsϕk,l. For this model we find maximum likelihood
estimates for these parameters by applying an EM algorithm.We do add-1 smoothing forϕk,l in the
M step, because even though this is not theoretically justified for this mixture model, it is frequently
used in practice and helps prevent probabilities of zero forpossible events. PLSA does not include
the ambiguity class model forsi and as in the LDA model, word types not in the dictionary were
assumed to have ambiguity classes containing all 17 tags.PLSA+AC extends the PLSA model by
the inclusion of the ambiguity class model.

CE+spelling (S&E) is the sequence model for semi-supervised part-of-speech tagging proposed in
[7], based on an HMM-structured model estimated using contrastive estimation. This is the state-
of-the-art model for semi-supervised tagging using an incomplete dictionary. In the table we show
actual performance and oracle performance for this model (oracle performance is in brackets).The
oracle is obtained by testing models with different values of a smoothing hyper-parameter on the
test set and choosing the model with the best accuracy. Even though there is only one real-valued
hyper-parameter, the accuracies of models using differentvalues can vary by nearly ten accuracy
points and it is thus more fair to compare our results to the non-oracle result, until a better criterion
for setting the hyper-parameters using only the partial supervision is found. The results shown in
the table are for a model which incorporates morphological features.

Bayesian HMM (G&G) is a fully Bayesian HMM model for semi-supervised part-of-speech tag-
ging proposed in [9], which incorporates sparse Dirichlet priors onp(w|t) of word tokens given part
of speech tags andp(ti|ti−1, ti−2) of transition probabilities in the HMM. We include this model
in the comparison, because it uses sparse priors and Bayesian inference as our LDA model, but
using a different structure of the model. [9] showed that this model outperforms significantly a
non-Bayesian HMM model, whose results we show as well.

ML HMM (G&G) is the maximum likelihood version of a trigram HMM for semi-supervised part-
of-speech tagging. Results for this model have been reported by other researchers as well [7, 6]. We
use the performance numbers reported in [9] because they have used the same data sets for testing.

The last two models do not use spelling (morphological) features. We should note that even though
the same amount of supervision in the form of a tagging dictionary is used by all compared models,
the HMM and CE models whose results are shown in the Table havebeen trained on less unsu-
pervised natural language text: they have been trained using only the test set of 1,005 sentences.
However, there is no reason one should limit the amount of unlabeled data used and in addition,
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other results reported in [7] and [9] show that accuracy doesnot seem to improve when more unla-
beled data are used with these models.

There are several points to note about the experimental results. First, the fact that PLSA substantially
outperforms ML HMM (and even the Bayesian HMM) models shows that predicting the tags of
words from a window of neighboring word tokens and modeling theP (t|w) distribution directly
results in an advantage over HMMs with maximum likelihood orBayesian estimation. This is
consistent with the success of other models that used word context for part-of-speech prediction in
different ways [4, 8]. Second, the Bayesian and sparse-prior components of our model do indeed
contribute substantially to performance, as illustrated by the performance of LDA compared to that
of PLSA. LDA achieves an error reduction of up to 36% over PLSA. Third, our ambiguity class
model results in a significant improvement as well; LDA+AC reduces the error of LDA by up to
31%. PLSA+AC similarly reduces the error of PLSA. Finally, our complete model outperforms the
state-of-the-art model CE+spelling. It reduces the error of the non-oracle models by up to 57% and
also outperforms the oracle models.

We compared the performance of our model to that of state-of-the-art models applied in the same
setting. It will also be interesting to compare our model to the one proposed in [8], which was
applied in a different partial supervision setting. In their setting a small set of example word types
(which they call prototypes) are provided for each possibletag (only three prototypes per tag were
specified). Their model achieved an accuracy of 82.2% on a similar dataset. We can not directly
compare the performance of our model to theirs, because our model would need prototypes for
every ambiguity class rather than for every tag. In future work we will explore whether a very small
set of prototypical ambiguity classes and corresponding word types can achieve the performance
we obtained with an incomplete tagging dictionary. Anotherinteresting direction for future work
is applying our model to other NLP disambiguation tasks, such as named entity recognition and
induction of deeper syntactic or semantic structure, whichcould benefit from both our ambiguity
class model and our word context model.
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