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Abstract

We present a novel Bayesian model for semi-supervisedopaeech tagging.
Our model extends the Latent Dirichlet Allocation model andorporates the

intuition that words’ distributions over tags(t|w), are sparse. In addition we in-
troduce a model for determining the set of possible tags aralwhich captures
important dependencies in the ambiguity classes of words: ibdel outper-

forms the best previously proposed model for this task oamdstrd dataset.

1 Introduction

Part-of-speech tagging is a basic problem in natural laggymeiocessing and a building block for
many components. Even though supervised part-of-spegders have reached performance of
over 97% on in-domain data [1, 2], the performance on unknmagiomain words is below 90%
and the performance on unknown out-of-domain words can kmvbg0% [3]. Additionally, few
languages have a large amount of data labeled for partegfesp Thus it is important to develop
methods that can use unlabeled data to learn part-of-sp&&dearch on unsupervised or partially
supervised part-of-speech tagging has a long history [4/&tent work includes [6, 7, 8, 9, 10].

As in most previous work on partially supervised part-oéagh tagging, our model takes as input
a (possibly incomplete) tagging dictionary, specifying; $ome words, all of their possible parts
of speech, as well as a corpus of unlabeled text. Our modelrtbefrom recent work on semi-
supervised part-of-speech induction using sequence HNd&d models, and uses solely observed
context features to predict the tags of words. We show thiaguhkis representation of context gives
our model substantial advantage over standard HMM-baseltisio

There are two main innovations of our approach. The firstabwle incorporate a sparse prior on the
distribution over tags for each worg(t|w), and employ a Bayesian approach that maintains a dis-
tribution over parameters, rather than committing to alsipgrameter value. Previous approaches
to part-of-speech tagging ([9, 10]) also use sparse priodsBayesian inference, but do not incor-
porate sparse priors directly on th&|w) distribution. Our results demonstrate that encoding this
sparse prior and employing a Bayesian approach contrisigagicantly to performance.

The second innovation of our approach is that we explicithgdei ambiguity class (the set of part-of-
speech tags a word type can appear with). We show that tluisesslts in substantial performance
improvement. Our model outperforms the best-performirgyiously proposed model for this task
[7], with an error reduction of up to 57% when the amount ofesufsion is small.

The task setting is more formally as follows. Assume we averga finite set of possible part-of-
speech tags (label¥) = {t1,t2, ..., tn, }. The set of part-of-speech tags for English we experiment
with has thel 7 tags defined by Smith & Eisner [7], and is a coarse-grainesiaeiof the45-tag set

in the English Penn Treebank. We are also given a dictionaigwspecifies the ambiguity classes
s C T for a subset of the word types. The ambiguity class of a word type is the set of all of its
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Figure 1: A graphical model for the tagging model. In this mip@ach word typev is associated
with a sets of possible parts-of-speech (ambiguity class), and eadts tdkens is associated with
a part-of-speech tag which generates the context wordsurrounding that token. The ambiguity
classs also generates the morphological feature®f the word typew via a hidden tag: € s.
The dotted line divides the model into the ambiguity classieidon the left) and the word context
model (on the right).

possible tags. For example, the dictionary might specifywhalks has the ambiguity clasgV, V'}
which means thawalks can never have a tag which is notldror aV. Additionally, we are given a
large amount of unlabeled natural language text. The taskabel each word token with its correct
part-of-speech tag in the corresponding context.

This task formulation corresponds to a problem in comportati linguistics that frequently arises in
practice, because the only available resources for magysges consist of a manually constructed
dictionary and a text corpus. Note that it differs from thenstard semi-supervised learning setting,
where we are given a small amount of labeled data and a largergrof unlabeled data. In the
setting we study, we are never given labeled data, but aemdnstead constraints on possible tags
of some words (in the form of a dictionary).

2 Graphical model

Our model is shown in Figure 1. In the figuf€js the set of part-of-speech tadsis the set of word
types (i.e., the set of different orthographic formig),is the set of tokens (i.e., occurrences) of the
word typew, andM* is the set of four-element morphological feature vectoscdbed below.

This is a generative model for a sequence of word tokens irt&tepus along with part-of-speech
tags for all tokens, ambiguity classes for word types anerolidden variables. To generate the
text corpus, the model generates the instances of every typedtogether with their contexts in

'For some words, the dictionary specifies only one possible tagnfogmation — { N'}, in which case all
instances oifnformation can be assumed labeled with the bigHowever these constraints are not sufficient to
result in fully labeled sentences.



turn. The generation of a word type and all of its occurrerca@sbe decomposed into two steps,
corresponding to the left and right parts of the model: théiguity class model, and the word
context model (separated by a dotted line in the figure).

For every word typev; € L (plateL in the figure), in the first step the model generates an antygigui
classs; C T of possible parts of speech. The ambiguity clasis the set of parts-of-speech that
tokens ofw; can be labeled with. Our dictionary specifigsfor some but not all word types;.
The ambiguity class; is generated by a multinomial ove¥ with parameters, with support on
the different values fos observed in the dictionary. The ambiguity clasdor w; generates four
different morphological features, ;, ..., m4,; of w; representing the suffixes, capitalization, etc.,
of the orthographic form of;. These are generated by multinomials with parameters . .., ¢4,
respectively, where € s is a hidden variable generated by a uniform distributiorr tive members
of s. For completeness we generate the full surface form of thel Wype w; from a multinomial
distribution selected by its morphology features;, ..., m4 ;. But since the morphology features
are always observed (they are determineduls orthographic form), we ignore this part of the
model. We discuss the ambiguity class model in detail iniSe&.1.

In the second step the word context model generates allnicessa; ; of w; together with their
part-of-speech tags ; and context words (platéd’ in the figure). This is done by first choosing a
multinomial distributiond; over the tags in the set, which is drawn from a Dirichlet with param-
etersf; and suppork;, whereg; » = oy for t € s. Thatis,s; identifies the subset df to receive
support ing;, but the value ofj; , for t € s; is specified byn,. Given these variables, all tokens
w; ; of the wordw; together with their contexts are generated by first choosipart-of-speech tag
t;.; from 6, and then choosing context wordg; ; preceding and following the word token; ;
according to tag-specific (depending fr3) multinomial distributions. The context of a word to-
kenci;;...,ca;; consists of the two preceding and two following words. Foaragle, for the
sentencée often walks to school, the context words of that instancewélks arec; =He, co=0ften,
c3=to, andcs=school. This representation of the context has been used preyibysinsupervised
models for part-of-speech tagging in different ways [4, Bach context word, ; ; is generated
by a multinomial with parameters, ;, ., where eachy, ; is in turn generated by a Dirichlet with
parameters. The parameterg, ; are generated once for the whole corpus as indicated in tiefig

A sparse Dirichlet prior om; with parameten. < 1 allows us to exploit the fact that most words
have a very frequent predominant tag, and their distributicer tagsp(t|w) is sparse. To verify
this, we examined the distribution of tH&-label tag set in the WSJ Penn Treebank. A classifier
that always chooses the most frequent tag for every word tyjleout looking at context, is 90.9%
accurate on ambiguous words, indicating that the disiohus heavily skewed.

Our model builds upon the Latent Dirichlet Allocation (LDAjodel [11] by extending it in several
ways. If we assume that the only possible ambiguity clkagsr all words is the set of all tags
(and thus remove the ambiguity class model because it becwratevant), and if we simplify our
word context model to generate only one context word (saywbie in position—1), we would
end up with the LDA model. In this simplified model, we could/ shat for every word typew;
we have a document consisting of all word tokens that occyosition —1 of the word typew;
in the corpus. Each context worgl; in w;’s document is generated by first choosing a tag (topic)
from a word (document) specific distributignand then generating the worg; from a tag (topic)
specific multinomial. The LDA model incorporates the sammllaf Dirichlet priors or9 andy that
our model uses. The additional power of our model stems fl@mmodel of ambiguity classes
which can take advantage of the information provided by tbtahary, and from the incorporation
of multiple context features.

Finally, we note that our model is deficient, because the saond token in the corpus is indepen-
dently generated multiple times (e.g., each token will apjire the context of four other words and
will be generated four times). Even though this is a theoa¢tirawback of the model, it remains
to be seen whether correcting for this deficiency (e.g., byamnalization) would improve tagging
performance. Models with similar deficiencies have beewessful in other applications (e.g. the
model described in [12], which achieved substantial imprognts over the previous state-of-the-art
in unsupervised parsing).



3 Parameter estimation and tag prediction

Here we discuss our method of estimating the parametersrafnodel and making predictions,
given an (incomplete) tagging dictionary and a set of natargguage sentences.

We train the parameters of the ambiguity class madeb, andw, separately from the parameters of
the word context modely,0,y, andy. This is because the two parts of the model are connected only
via the variables; (the ambiguity classes of words), and when these ambiglaigges are given the
two sets of parameters are completely decoupled. The daryagives us labeled training examples
for the ambiguity class model, and we train the parametetiseodAmbiguity class model only from
this data (i.e., the word types in the dictionary). Afteiirirag the ambiguity class model from the
dictionary we fix its parameters and estimate the word comb@del given these parameters.

3.1 Ambiguity classmodel: details and parameter estimation

Our ambiguity class model captures the strong regulanijes&rning the possible tags of a word
type. Empirically we observe that the number of occurrindinuity classes is very small relative
to the number of possible ambiguity classes. For exampléheriWSJ Penn Treebank data, the
49, 206 word types belong t@18 ambiguity classes. Modeling these (rather than POS tagsttjiy
constrains the model to avoid assignments of tags to worhtiwhich would result in improbable
ambiguity classes for word types. A related intuition hasrbased in other contexts before, e.g.
[13, 14], but without directly modeling ambiguity classéhe ambiguity class model contributes
to biasingp(t|w) toward sparse distributions as well, because most ampiglasses have very
few elements. For example, the top ten most frequent antgiglaisses in the complete dictionary
consist of one or two elements.

The ambiguity class of a word type can be predicted from itfasa morphological features. For
example the suffixs of walks indicates that an ambiguity class oV, V'} is likely for this word.
The four morphological features which we used for the anmibjglass model were: a binary feature
indicating whether the word is capitalized, a binary featundicating whether the word contains a
hyphen, a binary feature indicating whether the word caosta digit character, and a nominal
feature indicating the suffix of a word. We define the suffix afi@rd to be the longest character
suffix (up to three letters) which occurs as a suffix of suffidigmany word types.

We train the ambiguity class model on the set of word typesenkin the dictionary. We set the
multinomial parameters;, ; and{ to maximize the joint likelihood of these word types and thei
morphological features. Maximum likelihood estimationfois complicated by the hidden variable
u; which selects a tag form the ambiguity class with uniforntribstion.

P(s,m1,ma,ms,mal), §) = P(s|€) 3 e, Pluls) [T;_; Pmylihy)-

We fix the probabilityP(u|s) = 1/|s| to the uniform distribution over tags in We estimate thé
parameters using maximum likelihood estimation with adddplace) smoothing and we train the
1) parameters using EM (with add-1 smoothing in the M-step).

3.2 Parameter estimation for the word context model and prediction given complete
dictionary

We restrict our attention at first to the setting where a ceteptagging dictionary is given. The
incomplete dictionary generalization is discussed ini8r@.3. When every word is in the dictio-
nary, the ambiguity class; for each word typewv; is specified by the tagging dictionary, and the
ambiguity class model becomes irrelevant. The relevargmaters of the model in this setting are
a6y, andyp. The contexts of word instances; ; and the ambiguity classeg are observed.

We integrate over all hidden variables except the uniformicbiet parametersr and~. We set
~ = 1 and we use Empirical Bayes to estimatey maximizing the likelihood of the observed data
given o and the ambiguity classes. Note that if the ambiguity classes and« are given,s; is
fixed. Below we use to denote the vector of all contexts of all word instances, sathe vector of
ambiguity classes for all word types. We uséo denote the vector of all multinomials;, ;, 6 to

2A suffix occurs with sufficiently many word types if its type-frequencykés below 100.



denote the vector of all; andt to denote the vector of all tag sequenegfor word typesw;. The
likelihood we would like to maximize is:

Liels.a,7) = [ Pl T [ PO T S0 (0TI, Plenislonn)) déide

P(ely) = TTpey TT1=1 DIR(2k17)

Since exact inference is intractable, we use a variatigp@iaximation to the posterior distribution
of the hidden variables given the data and maximize instédtdeoexact log-likelihood, a lower

bound given by the variational approximation. This vadaél approximation is also used for find-
ing the most likely assignment of the part-of-speech tagastes to instances of words.

More specifically, the variational approximation has agalss form to the approximation used for
the LDA model [11]. It depends on variational parameters, 7;, andv; ;.

Q. 0,1\ 1, v) = TTe_y Ty DIR(¢rAet) T2y DIR(O:|n:) T, Pt 5lvi g)

This distribution is an approximation to the posterior dimttion of the hidden variables:
P(p,0,t|c,s,a,7). As we can see, according to thgdistribution, the variables, 6, andt are
independent. Eacly, ; is distributed according to a Dirichlet distribution withnational parame-
ters A ;, eachd; is also Dirichlet with parameterg and each tag; ; is distributed according to a
multinomial v; ;. We obtain the variational parameters by maximizing théovahg lower bound
on the log-likelihood of the data (the dependenc&)abn the variational parameters is not shown
below for simplicity): Eq [log P(p, 0, t, c|s, a, )] — Eg [log Q(p, 0, t)]

We use an iterative maximization algorithm for finding théues of the variational parameters. We
do not describe it here due to space limitations, but it idagais to the one used in [11]. Given
fixed variational parameters; ; we maximize with respect to the variational parametgrand
v;,; corresponding to word types and their instances. Then kgepe latter parameters fixed, we
maximize with respect td ;. We repeat until the change in the variational bound fallswbea
threshold. On our dataset, about 100 iterations of the ¢ob@rfor maximizing with respect tay, ;
were necessary. Given a variational distributi@rwe can maximize the lower bound on the log-
likelihood with respect ta. Sincea is determined by a single real-valued parameter, we magitiniz
with respect tax using a simple grid search.

For predicting the tags; ; of word tokens we use the same approximate posterior disiitn().
Since according t@) all tagst; ; are independent given the variational parametérét;|v;) =

H?/:’il(ti,j |vi ), finding the most likely assignment is straightforward.

3.3 Parameter estimation for the word context model and prediction with incomplete
dictionary

So far we have described the training of the parameters ofvtird context model in the setting
where for all words, the ambiguity classesare known and these variables are observed. When
the ambiguity classes are unknown for some words in the dataset, they become adalithidden
variables, and the hidden variables in the word context inmefsome dependent on the morpholog-
ical featuresn; and the parameters of the ambiguity class model. Denotedti®of ambiguity
classes for the known (in the dictionary) word typessyand the ambiguity classes for the un-
known word types by,. The posterior distribution over the hidden variables ¢éiiast given the
observations become® (i, 0, t, sy|sa, my, ¢, @, 7), wherem,, are the morphological features of
the unknown word types.

To perform inference in this setting we extend the variatlampproximation to account for the
additional hidden variables. Before we had, for every wgpkt a variational distribution over the
hidden variables corresponding to that word type:

Wi
Q(03, tilni, vi ;) = DIR(6s]m:) T 1,2, P(tijlvig)
We now introduce a variational distribution including neisiden variables; for unknown words.

W;
Q03 ti, silmi, mis, vigs) = P(si|mi)DIR(0;|mis,) [ 1,21 P(tijlvig,s,)
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That is, for each possible ambiguity clagsof an unknown wordv; we introduce variational pa-
rameters specific to that ambiguity class. Instead of singt@tional parameter®; andv; ; for a
word with knowns;, we now have variational parametéds , } and{v; ; , } for all possible values

of s;. For simplicity, we use the probabilit}(s;|m;) = P(s;|m;, £, ¢) from the morphology-based
ambiguity class model in the approximating distributiothest than introducing new variational
parameters and learning this distributibie adapt the algorithm to estimate the variational param-
eters. The derivation is slightly complicated by the faetth andé; are not independent according
to @ (this makes sense becausedetermines the dimensionality 6f), but the derived iterative
algorithm is essentially the same as for our basic modelgifmagine that an unknown word type
w; occurs with each of its possible ambiguity classea fractionalp(s;|m;) number of times.

For predicting tag assignments for words according to thisreled model, we use the same algo-
rithm as described in Section 3.2, for word types whose anilyiglasses; are known. For words
with unknown ambiguity classes, we need to maximize overignily classes as well as tag assign-
ments. We use the following algorithm to obtain a slightlt@eapproximation than the one given
by the variational distributiord). For each possible tag set, we find the most likely assignment
of tags given that ambiguity cla$s(s;), using the variational distribution as in the case of known
ambiguity classes. We then choose an ambiguity class anss@gnanent of tags according to:

s* = argmax, P(s;|m;, ¥, §)P(t*(s:), ci|si, D, o, y) andt = t*(s*).

We computeP (¢*(s;), ¢i|si, D, v, y) by integrating with respect to the word context distribnto
¢ whose approximate posterior given the data is Dirichlehw#rameters, ;, and by integrating
with respect t@; which are Dirichlet with parametersand dimensionality given by;.

4 Experimental Evaluation

We evaluate the performance of our model in comparison wikrarelated models. We train and
evaluate the model in three different settings. In the fiestirsy, a complete tagging dictionary is
available, and in the other two settings the coverage of ittedary is greatly reduced.

The tagging dictionary was constructed by collecting farteaord type, the set of parts-of-speech
with which it occurs in the annotated WSJ Penn Treebank, dirafuthe test set. This method of
constructing a tag dictionary is arguably unrealistic bag been used in previous research [7, 9, 6]
and provides a reproducible framework for comparing défermodels. In the complete dictionary
setting, we use the ambiguity class information for all véprahd in the second and third setting we
remove from the dictionary all word types that have occuméth frequency less tha and less
than 3, respectively, in the test set of 1,005 sentences. The @imfgging dictionary contains
entries for49, 206 words. The dictionary obtained with cutoff 8fcontains 2,141 words, and the
one with cutoff of3 contains 1,249 words. We train the model on the whole (utéaf)@VvVSJ Penn
Treebank, consisting of 49,208 sentences. We evaluaterpehce on a set of 1,005 sentences,
which is a subset of the training data and is the same tessedthy [7, 9].

To see how much removing information from the dictionary &ois the hardness of the problem we
can look at the accuracy of a classifier choosing a tag at rarfdum the possible tags of words,
shown in the columiRandom of Table 1. Results for the three settings are shown in theethows

of Table 1. In addition to thRandom baseline, we include the results of a frequency basdfire,

in which for each word, we choose the most frequent tag frerset of possible tagsThis baseline
uses the same amount of partial supervision as our modéd#hdfed corpus data were available, a
model which assigns the most frequent tag to each word by @sifw) would do much better.

The models in the table are:

L DA is the model proposed in this paper, excluding the ambiguétys model. The ambiguity class
model is irrelevant when a compete dictionary is availalgednise alk; are observed. In the other
two settings for the LDA model we assume thatis the complete ambiguity class (all 17 tags)

3We also limit the number of possible ambiguity classes per word to the threelikely ones and re-
normalize the probability mass among them.

“Frequency of tags is unigram frequency of ta@s by token in the unlabeled data. Since the tokens in the
corpus are not actually labeled we compute the frequency by giviktjdreal counts to each possible tag of
words in the dictionary. Only the words present in the dictionary were fosembmputingp(t).



Dictionary | LDA | LDA | PLSA | PLSA | CE (S&E) | Bayesian ML Random | Freq
coverage +AC +AC | +spelling HMM (G&G)HMM (G&G)

complete | 93.4 | 934 | 89.7 | 89.7 | 88.7(91.9) 87.3 83.2 69.5 64.8
count>2 | 874 | 912 | 834 | 87.8 | 79.5(90.3) 79.6 70.6 56.6 64.8
count>3 | 85.0 | 89.7 | 80.2 | 85.9 | 78.4(89.5) 71.0 65.5 51.0 62.9

Table 1: Results from minimally supervised POS-tagging esad

for words which are not in the dictionary and do not attemppredict a more specific ambiguity
class. The estimated parametefor the tag prior wa$).5 for the complete dictionary setting, and
0.2 for the other two settings, encouraging sparse distribstioFor this model we estimate the
variational parameters;, ; and the Dirichlet parameter to maximize the variational bound on the
log-likelihood of the word types which are in the dictionanyly. We found that including unknown

word types was detrimental to performance.

LDA+AC is our full model including the model of ambiguity classeswairds given their mor-
phological features. As mentioned above, this augmentetdkehuffers fromL DA only when the
dictionary is incomplete. We trained this model on all woydds as discussed in Section 3.3. The
estimatedy parameters for this model in the three dictionary settingee@.5, 0.1, and0.1, respec-
tively.

PL SA is the model analogous to LDA, which has the same structuoeiaword context model, but
excludes the Bayesian components. We include this modékicomparison in order to evaluate
the effect on performance of the sparse prior and the intiegraver model parameters. This model
is similar to the PLSA model for text documents [15]. The PL®Adel does not have a prior on
the word-specific distributions over tags = p(t|w;) and it does not have a prior distribution on
the topic-specific multinomials for context wordsg ;. For this model we find maximum likelihood
estimates for these parameters by applying an EM algorithendo add-1 smoothing fas,, ; in the

M step, because even though this is not theoretically jasditifr this mixture model, it is frequently
used in practice and helps prevent probabilities of zerpfssible events. PLSA does not include
the ambiguity class model far; and as in the LDA model, word types not in the dictionary were
assumed to have ambiguity classes containing all 17 RigSA+AC extends the PLSA model by
the inclusion of the ambiguity class model.

CE+spélling (S&E) is the sequence model for semi-supervised part-eésip tagging proposed in

[7], based on an HMM-structured model estimated using estitre estimation. This is the state-
of-the-art model for semi-supervised tagging using annmglete dictionary. In the table we show
actual performance and oracle performance for this modatle performance is in brackets).The
oracle is obtained by testing models with different valuEa esmoothing hyper-parameter on the
test set and choosing the model with the best accuracy. Beergh there is only one real-valued
hyper-parameter, the accuracies of models using diffarginies can vary by nearly ten accuracy
points and it is thus more fair to compare our results to theomacle result, until a better criterion

for setting the hyper-parameters using only the partiakstipion is found. The results shown in

the table are for a model which incorporates morphologieatifres.

Bayesian HMM (G&G) is a fully Bayesian HMM model for semi-supervised paftspeech tag-

ging proposed in [9], which incorporates sparse Dirichtens onp(w|t) of word tokens given part

of speech tags and¢;|t;—1,t;—2) Of transition probabilities in the HMM. We include this mdde
in the comparison, because it uses sparse priors and Bayie$iaence as our LDA model, but
using a different structure of the model. [9] showed thas thiodel outperforms significantly a
non-Bayesian HMM model, whose results we show as well.

ML HMM (G&G) is the maximum likelihood version of a trigram HMM foemi-supervised part-
of-speech tagging. Results for this model have been repbstether researchers as well [7, 6]. We
use the performance numbers reported in [9] because theyusad the same data sets for testing.

The last two models do not use spelling (morphological)uest. We should note that even though
the same amount of supervision in the form of a tagging dietip is used by all compared models,
the HMM and CE models whose results are shown in the Table bega trained on less unsu-
pervised natural language text: they have been trainedy usily the test set of 1,005 sentences.
However, there is no reason one should limit the amount cdheled data used and in addition,



other results reported in [7] and [9] show that accuracy dmeseem to improve when more unla-
beled data are used with these models.

There are several points to note about the experimentdtseBirst, the fact that PLSA substantially
outperforms ML HMM (and even the Bayesian HMM) models shohat fpredicting the tags of
words from a window of neighboring word tokens and modeling P (¢|w) distribution directly
results in an advantage over HMMs with maximum likelihoodBayesian estimation. This is
consistent with the success of other models that used wartgxtofor part-of-speech prediction in
different ways [4, 8]. Second, the Bayesian and sparse-pamponents of our model do indeed
contribute substantially to performance, as illustratedhe performance of LDA compared to that
of PLSA. LDA achieves an error reduction of up to 36% over PLSAird, our ambiguity class
model results in a significant improvement as well; LDA+AGuees the error of LDA by up to
31%. PLSA+AC similarly reduces the error of PLSA. Finallyraomplete model outperforms the
state-of-the-art model CE+spelling. It reduces the erféh® non-oracle models by up to 57% and
also outperforms the oracle models.

We compared the performance of our model to that of stathefart models applied in the same
setting. It will also be interesting to compare our modelhe bne proposed in [8], which was
applied in a different partial supervision setting. In tresatting a small set of example word types
(which they call prototypes) are provided for each posgidte(only three prototypes per tag were
specified). Their model achieved an accuracy of 82.2% on dasiglataset. We can not directly
compare the performance of our model to theirs, because odelhwould need prototypes for
every ambiguity class rather than for every tag. In futurekwee will explore whether a very small
set of prototypical ambiguity classes and correspondingdvigpes can achieve the performance
we obtained with an incomplete tagging dictionary. Anotimberesting direction for future work
is applying our model to other NLP disambiguation taskshsag named entity recognition and
induction of deeper syntactic or semantic structure, wiishld benefit from both our ambiguity
class model and our word context model.
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