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Abstract

We describe the RA scanner, a novel system for the examination of pa-
tients suffering from rheumatoid arthritis. The RA scanner is based on
a novel laser-based imaging technique which is sensitive to the optical
characteristics of finger joint tissue. Based on the laser images, finger
joints are classified according to whether the inflammatory status has
improved or worsened. To perform the classification task, various lin-
ear and kernel-based systems were implemented and their performances
were compared. Special emphasis was put on measures to reliably per-
form parameter tuning and evaluation, since only a very small data set
was available. Based on the results presented in this paper, it was con-
cluded that the RA scanner permits a reliable classification of patholog-
ical finger joints, thus paving the way for a further development from
prototype to product stage.

1 Introduction

Rheumatoid arthritis (RA) is the most common inflammatory arthropathy with 1–2% of the
population being affected. This chronic, mostly progressive disease often leads to early dis-
ability and joint deformities. Recent studies have convincingly shown that early treatment
and therefore an early diagnosis is mandatory to prevent or at least delay joint destruc-
tion [2]. Unfortunately, long-term medication with disease modifying anti-rheumatic drugs
(DMARDs) often acts very slowly on clinical parameters of inflammation, making it dif-
ficult to find the right drug for a patient within adequate time. Conventional radiology,



such as magnetic resonance imaging (MRI) and ultrasound, may provide information on
soft tissue changes, yet these techniques are time-consuming and—in the case of MRI—
costly. New imaging techniques for RA diagnosis should thus be non-invasive, of low cost,
examiner independent and easy to use.

Following recent experiments on absorption and scattering coefficients of laser light in
joint tissue [6], a prototype laser imaging technique was developed [7]. As part of the pro-
totype development, it became necessary to analyze if the rheumatic status of a finger joint
can be reliably classified on the basis of the laser images. Aim of this article is to pro-
vide an overview of this analysis. Employing different linear and kernel-based classifiers,
we will investigate the performance of the laser imaging technique to predict the status
of the rheumatic joint inflammation. Provided that the accuracy of the overall system is
sufficiently high, the imaging technique and the automatic inflammation classification can
be combined into a novel device that allows an inexpensive and objective assessment of
inflammatory joint changes.

The paper is organized as follows. In Sec. 2 we describe the RA scanner in more detail, as
well as the process of data acquisition. In Sec. 3 we describe the linear and kernel-based
classifiers used in the experiments. In Sec. 4 we describe how the methods were evaluated
and compared. We present experimental results in Sec. 5. Conclusions and an outlook are
given in Sec. 6.

2 The RA Scanner

The rheumatoid arthritis (RA) scanner provides a new medical imaging technique, devel-
oped specifically for the diagnosis of RA in finger joints. The RA scanner [7] allows the
in vivo trans-illumination of finger joints with laser light in the near infrared wavelength
range. The scattered light distribution is detected by a camera and is used to assess the
inflammatory status of the finger joint. Example images, taken from an inflamed joint and
from a healthy control, are shown in Fig. 1.

Starting out from the laser images, image pre-processing is used to obtain a description of
each laser image by nine numerical features. A brief description of the features is given in
Fig. 1. Furthermore for each finger joint examined, the circumference is measured using a
conventional measuring tape. The nine image features plus the joint circumference make up
the data that is used in the classification step of the RA scanner to predict the inflammatory
status of the joint.

2.1 Data Acquisition

One of the clinically important questions is to know as early as possible if a prescribed
medication improves the state of rheumatoid arthritis. Therefore the goal of the classi-
fication step in the RA scanner is to decide—based on features extracted from the laser
images—if there was an improvement of arthritis activity or if the joint inflammation re-
mained unchanged or worsened.

The data for the development of the RA scanner stems from a study on 22 patients with
rheumatoid arthritis. Data from 72 finger joints were used for the study. All of these 72
finger joints were examined at baseline and during a follow-up visit after a mean duration of
42 days. Earlier data from an additional 20 patients had to be discarded since experimental
conditions were not controlled properly.

Each joint was examined and the clinical arthritis activity was classified from 0 (inactive,
not swollen, tender or warm) to 3 (very active) by a rheumatologist. The characteristics of
joint tissue was recorded by the above described laser imaging technique. In a preprocess-



(a) Laser image of a healthy finger joint (b) Laser image of an inflamed finger
joint. The inflammation changes the joint
tissue’s absorption coefficient, giving a
darker image.

Figure 1: Two examples of the light distribution captured by the RA scanner. A laser beam
is sent through the finger joint (the finger tip is to the right, the palm is on the left), the light
distribution below the joint is captured by a CCD element. To calculate the features, first
a horizontal line near the vertical center of the finger joint is selected. The distribution of
light intensity along that line is bell-shaped. The features used in the classification task are
the maximum light intensity, the curvature of the light intensity at the maximum and seven
additional features based on higher moments of the intensity curve.

ing step nine features were derived from the distribution of the scattered laser light (see
Fig. 1). The tenth feature is the circumference of the finger joint.

Since there are high inter-individual variations in optical joint characteristics, it is not pos-
sible to tell the inflammatory status of a joint from one single image. Instead, special
emphasis was put on the intra-individual comparison of baseline and follow-up data. For
every joint examined, data from baseline and follow-up visit were compared and changes
in arthritis activity were rated as improvement, unchanged or worsening.

This rating divided the data into two classes: Class+1 contains the joints where an im-
provement of arthritis activity was observed (a total of 46 joints), and class−1 are the
joints that remained unchanged or worsened (a total of 26 joints). For all joints, the differ-
ences in feature values between baseline and follow-up visit were computed.

3 Classification Methods

In this section, we describe the employed linear and kernel-based classification methods,
where we focus on design issues.

3.1 Gaussian Process Classification (GPC)

In Gaussian processes, a function

f (x) =
M

∑
j=1

w jK(x,x j ,Θ) (1)

is described as a superposition ofM kernel functionsK(x,x j ,Θ), defined for each of the
M training data pointsx j , with weightw j . The kernel functions are parameterized by the
vectorΘ = (θ0 . . .θd). In two-class Gaussian process classification, the logistic transfer
function σ( f (x)) = (1+ e− f (x))−1 is applied to the prediction of a Gaussian process to
produce an output which can be interpreted asπ(x), the probability of the inputx belonging
to class 1 [10].



In the experiment we chose the Gaussian kernel function

K(x,x j ,Θ) = θ0exp

[
−1

2
(x−x j)Tdiag(θ2
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d)−1(x−x j)

]
(2)

with input length scalesθ1 . . .θd whered is the dimension of the input space. diag(θ2
1 . . .θ

2
d)

denotes a diagonal matrix with entriesθ2
1 . . .θ

2
d. For training the Gaussian process classifier

(that is, determining the posterior probabilities of the parametersw1, . . .wM,θ0, . . .θd) we
used a full Bayesian approach, implemented with Readford Neal’s freely available FBM
software.1

3.2 Gaussian Process Regression (GPR)

In GPR we treat the classification problem as a regression problem with target values
{−1,+1}, i.e. we do not apply the logistic transfer function as in the last subsection.
Any GP output< 0 is treated as indicating an example from class 0, any output>= 0 as
an indicator for class 1.The disadvantage is that the GPR prediction cannot be treated as
a posterior class probability; the advantage is that the fast and non-iterative training al-
gorithms for GPR can be applied. GPR for classification problems can be considered as
special cases of Fisher discriminant analysis with kernels [4] and of least squares support
vector machines [9].

The parametersΘ = {θ0 . . .θd} of the covariance function Eq. (2) were chosen by maxi-
mizing the posterior probability ofΘ, P(Θ|t,X) ∝ P(t|X,Θ)P(Θ), via a scaled conjugate
gradient method. Later on, this method will be referred to as “GPR Bayesian”. Results are
also given for a simplified covariance function withθ0 = 1, θ1 = θ2 = . . .= θd = r, where
the common length scaler was chosen by cross-validation (later on referred to as “GPR
crossval”).

3.3 Support Vector Machine (SVM)

The SVM is a maximum margin linear classifier. As in Sec. 3.2, the SVM classifies a
pattern according to the sign off (x) in Eq. (1). The difference is that the weightsw =
(w1, . . . ,wM)T in the SVM minimize the particular cost function [8]

wTKw +
M

∑
i=1

Ci(1−yi( f (xi)))+ (3)

where()+ sets all negative arguments to zero. Here,yi ∈ {+1,−1} is the class label for
training pointxi . Ci ≥ 0 is a constant that determines the weight of errors on the training
data, andK is anM×M matrix containing the amplitudes of the kernel functions at the
training data, i.e.K i, j = K(xi ,x j ,Θ). The motivation for this cost function stems from sta-
tistical learning theory [8]. Many authors have previously obtained excellent classification
results by using the SVM. One particular feature of the SVM is the sparsity of the solution
vectorw, that is, many elementswi are zero.

In the experiments, we used both an SVM with linear kernel (“SVM linear”) and an SVM
with a Gaussian kernel (“SVM Gaussian”), equivalent to the Gaussian process kernel
Eq. (2), with θ0 = 1, θ1 = θ2 = . . . = θd = r. The kernel parameterr was chosen by
cross-validation.

1As a prior distribution for kernel parameterθ0 we chose a Gamma distribution.θ1 . . .θd are sam-
ples of a hierarchical Gamma distribution. In FBM syntax, the prior is0.05:0.5 x0.2:0.5:1 .
Sampling from the posterior distribution was done by persistent hybrid Monte Carlo, following the
example of a 3-class problem in Neal [5].



To compensate for the unbalanced distribution of classes, the penalty termCi was chosen
to be 0.8 for the examples from the larger class and 1 for the smaller class. This was found
empirically to give the best balance of sensitivity and specificity (cf. Sec. 4). A formal
treatment of this issue can be found in Lin et al. [3].

3.4 Generalized Linear Model (GLM)

A GLM for binary responses is built up from a linear model for the input data, and the
model outputf (x) = wTx is in turn input to the link function. For Bernoulli distributions,
the natural link function [1] is the logistic transfer functionσ( f (x)) = (1+e− f (x))−1. The
overall output of the GLMσ( f (x)) computesπ(x), the probability of the inputx belonging
to class 1. Training of the linear model was done by iteratively re-weighted least squares
(IRLS).

4 Training and Evaluation

One of the challenges in developing the classification system for the RA scanner is the low
number of training examples available. Data was collected through an extensive medical
study, but only data from 72 fingers were found to be suitable for further use. Further
data can only be acquired in carefully controlled future studies, once the initial prototype
method has proven sufficiently successful.

Training From the currently available 72 training examples, classifiers need to be trained
and evaluated reliably. Part of the standard methodology for small data sets is N-fold cross-
validation, where the data are partitioned intoN equally sized sets and the system is trained
onN−1 of those sets and tested on theNth data set left out. Since we wish to make use of
as much training data as possible,N = 36 seemed the appropriate choice2, giving test sets
with two examples in each iteration. For some of the methods model parameter needed
to be tuned (for example, choosing SVM kernel width), where again cross-validation is
employed. The nested cross-validation ensures that in no case any of the test examples is
used for training or to tune parameters, leading to the following procedure:

Run 36 fold CV
For Bayesian methods or methods without tunable parameters

(SVM linear, GPC, GPR Bayesian, GLM):
Use full training set to tune and train classifier

For Non-Bayesian methods (SVM Gaussian, GPR crossval):
Run 35 fold CV on the training set

choose parameters to minimise CV error
train classifier with chosen parameters

evaluate the classifier on the 2 example test set

Significance Tests In order to compare the performance of two given classification meth-
ods, one usually employs statistical hypothesis testing. We use here a test that is best suited
for small test sets, since it takes into account the outcome on the test examples one by one,
thus matching our above described 36-fold cross validation scheme perfectly. A similar
test has been used by Yang and Liu [11] to compare text categorization methods.

Basis of the test are two countsb (how many examples in the test set were correctly classi-
fied by method B, but misclassified by method A) andc (number of examples misclassified
by B, correctly classified by A). We assume that examples misclassified (resp. correctly
classified) by both A and B do not contribute to the performance difference. We take the

2Thus, it is equivalent to a leave-one-out scheme, yet with only half the time consumption.



Method Error rate

GLM 20.83%
GLM, reduced feature set 16.67%
GPR Bayesian 13.89%
GPR crossval 22.22%
GPC 23.61%
SVM linear 22.22%
SVM linear, reduced feature set 16.67%
SVM Gaussian 20.83%

Table 1: Error rates of different classification methods on the rheumatoid arthritis predic-
tion problem. All error rates have been computed by 36-fold cross-validation. “Reduced
feature set” indicates experiments wherea priori feature selection has been done

countsb andc as the sufficient statistics of a binomial random variable with parameterθ,
whereθ is the proportion of cases where method A performs better than method B.

The null hypothesisH0 is that the parameterθ = 0.5, that is, both methods A and B have
the same performance. HypothesisH1 is thatθ > 0.5. The test statistics under the null
hypothesis is the Binomial distribution Bi(i|b+ c,θ) with parameterθ = 0.5. We reject
the null hypothesis if the probability of observing a countk≥ c under the null hypothesis
P(k≥ c) = ∑b+c

i=c Bi(i|b+c,θ = 0.5) is sufficiently small.

ROC Curves In medical diagnosis, biometrics and other areas, the common means of
assessing a classification method is the receiver operating characteristics (ROC) curve. An
ROC curve plots sensitivity versus 1-specificity3 for different thresholds of the classifier
output. Based on the ROC curve it can be decided how many false positives resp. false
negatives one is willing to tolerate, thus helping to tune the classifier threshold to best suit
a certain application.

Acquiring the ROC curve typically requires the classifier output on an independent test set.
We instead use the union of all test set outputs in the cross-validation routine. This means
that the ROC curve is based on outputs of slightly different models, yet this still seems to
be the most suitable solution for such few data. For all classifiers we assess the area of the
ROC curve and the cross-validation error rate. Here the above mentioned threshold on the
classifier output is chosen such that sensitivity equals specificity.

5 Results

Tab. 1 lists error rates for all methods listed in Sec. 3. Gaussian process regression (GPR
Bayesian) with an error rate of≈ 14% clearly outperforms all other methods, which all
achieve comparable error rates in the range of 20. . .24%. We attribute the good perfor-
mance of GPR to its inherent feature relevance detection, which is done by adapting the
length scalesθi in the covariance function Eq. (2), i.e. a largeθi means that thei-th feature
is essentially ignored.

Surprisingly, Gaussian process classification implemented with Markov chain Monte Carlo
sampling (GPC) showed rather poor performance. We currently have no clear explanation
for this fact. We found no indications of convergence problems, furthermore we achieved
similar results with different sampling schemes.

In an additional experiment we wanted to find out if classification results could be improved

3sensitivity= true positives
true positives+false negatives specificity= true negatives

true negatives+false positives
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Figure 2: ROC curves of the best classification methods, both on the full data set and on
a reduced data set wherea priori feature selection was used to retain only the three most
relevant features. Integrating the area under the ROC curves gives similar results for all
three methods, with an area of 0.86 for SVM linear and GLM, and 0.84 for GPR Bayesian

by using only a subset of input features4. We found that only the performance of the two
linear classifiers (GLM and SVM linear) could be improved by the input feature selection.
Both now achieve an error rate of 16.67%, which is slightly worse than GPR on the full
feature set (see Tab. 1).

Significance Tests Using the statistical hypothesis test described in the previous section,
we compared all classification methods pairwise. It turned out the three best methods
(GPR Bayesian, and GLM and SVM linear with reduced feature set) perform better than
all other methods at a confidence level of 90% or more. Amongst the three best methods,
no significant difference could be observed.

ROC Curves For the three best classification methods (GPR Bayesian, and GLM and
SVM linear with reduced feature set), we have plotted the receiver operating characteristics
(ROC) curve in Fig. 2. According to the ROC curve a sensitivity of≈ 80% can be achieved
with a specificity at around 90%. GPR Bayesian seems to give best results, both in terms
of error rate and shape of the ROC curve.

Summary To summarize, when the full set of features was used, best performance was
obtained with GPR Bayesian. We attribute this to the inherent input relevance detection
mechanisms of this approach. Comparable yet slightly worse results could be achieved
by performing feature selectiona priori and reducing the number of input features to the
three most significant ones. In particular, the error rates of linear classifiers (GLM and
linear SVM) improved by this feature selection, whereas more complex classifiers did not
benefit. We can draw the important conclusion that, using the best classifiers, a sensitivity
of 80% can be reached at a specificity of approximately 90%.

6 Conclusions

In this paper we have reported results of the analysis of a prototype medical imaging sys-
tem, the RA scanner. Aim of the RA scanner is to detect soft tissue changes in finger joints,

4This was done with the input relevance detection algorithm of the neural network tool SENN,
a variant of sequential backward elimination where the feature that least affects the neural network
output is removed. The feature set was reduced to the three most relevant ones.



which occur in early stages of rheumatoid arthritis (RA). Basis of the RA scanner is a novel
laser imaging technique that is sensitive to inflammatory soft tissue changes.

We have analyzed whether the laser images are suitable for an accurate prediction of the
inflammatory status of a finger joint, and which classification methods are best suited for
this task. Out of a set of linear and kernel-based classification methods, Gaussian processes
regression performed best, followed closely by generalized linear models and the linear
support vector machine, the latter two operating on a reduced feature set. In particular, we
have shown how parameter tuning and classifier training can be done on basis of the scarce
available data. For the RA prediction task, we achieved a sensitivity of 80% at a specificity
of approximately 90%. These results show that a further development of the RA scanner is
desirable.

In the present study the inflammatory status is assessed by a rheumatologist, taking into
account the patients subjective degree of pain. Thus we may expect a certain degree of label
noise in the data we have trained the classification system on. Further developments of the
classification system in the RA scanner will thus incorporate information from established
medical imaging systems such as magnetic resonance imaging (MRI). MRI is known to
provide accurate information about soft tissue changes in finger joints, yet is too costly to
be routinely used for RA diagnosis. By incorporating MRI results into the RA scanner’s
classification system, we expect to significantly improve the overall accuracy.
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