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Abstract

Gaussian process regression allows a simple analytical treatment of ex-
act Bayesian inference and has been found to provide good performance,
yet scales badly with the number of training data. In this paper we com-
pare several approaches towards scaling Gaussian processes regression
to large data sets: the subset of representers method, the reduced rank
approximation, online Gaussian processes, and the Bayesian commit-
tee machine. Furthermore we provide theoretical insight into some of
our experimental results. We found that subset of representers methods
can give good and particularly fast predictions for data sets with high
and medium noise levels. On complex low noise data sets, the Bayesian
committee machine achieves significantly better accuracy, yet at a higher
computational cost.

1 Introduction

Gaussian process regression (GPR) has demonstrated excellent performance in a number
of applications. One unpleasant aspect of GPR is its scaling behavior with the size of the
training data setN. In direct implementations, training time increases asO(N3), with a
memory footprint ofO(N2). The subset of representer method (SRM), the reduced rank
approximation (RRA), online Gaussian processes (OGP) and the Bayesian committee ma-
chine (BCM) are approaches to solving the scaling problems based on a finite dimensional
approximation to the typically infinite dimensional Gaussian process.

The focus of this paper is on providing a unifying view on the methods and analyze their
differences, both from an experimental and a theoretical point of view. For all of the dis-
cussed methods, we also examine asymptotic and actual runtime and investigate the ac-
curacy versus speed trade-off. A major difference of the methods discussed here is that
the BCM performstransductivelearning, whereas RRA, SRM and OGP methods perform



inductionstyle learning. By transduction1 we mean that a particular method computes a
test set dependent model, i.e. it exploits knowledge about thelocation of the test datain its
approximation. As a consequence, the BCM approximation is calculated when the inputs
to the test data are known. In contrast, inductive methods (RRA, OGP, SRM) build a model
solely on basis of information from the training data.

In Sec. 1.1 we will briefly introduce Gaussian process regression (GPR). Sec. 2 presents the
various inductive approaches to scaling GPR to large data, Sec. 3 follows with transductive
approaches. In Sec. 4 we give an experimental comparison of all methods and an analysis
of the results. Conclusions are given in Sec. 5.

1.1 Gaussian Process Regression

We consider Gaussian process regression (GPR) on a set of training dataD = {(xi ,yi)}Ni=1,
where targets are generated from an unknown functionf via yi = f (xi) + ei with inde-
pendent Gaussian noiseei of varianceσ2. We assume a Gaussian process prior onf (xi),
meaning that functional valuesf (xi) on points{xi}Ni=1 are jointly Gaussian distributed,
with zero mean and covariance matrix (or Gram matrix)KN. KN itself is given by the
kernel (or covariance) functionk(·, ·), with KN

i j = k(xi ,x j).

The Bayes optimal estimator̂f (x) = E( f (x)|D) takes on the form of a weighted combina-
tion of kernel functions [4] on training pointsxi

f̂ (x) =
N

∑
i=1

wik(x,xi). (1)

The weight vectorw = (w1, . . . ,wN)> is the solution to the system of linear equations

(KN + σ21)w = y (2)

where1 denotes a unit matrix andy = (y1, . . . ,yN)>. Mean and covariance of the GP
predictionf∗ on a set of test pointsx∗1, . . . ,x

∗
T can be written conveniently as

E(f∗|D) = K∗Nw and cov(f∗|D) = K∗−K∗N(KN + σ21)−1(K∗N)> (3)

with K∗Ni j = k(x∗i ,x j). Eq. (2) shows clearly what problem we may expect with large train-

ing data sets: The solution to a system ofN linear equations requiresO(N3) operations,
and the size of the Gram matrixKN may easily exceed the memory capacity of an average
work station.

2 Inductive Methods for Approximate GPR

2.1 Reduced Rank Approximation (RRA)

Reduced rank approximations focus on ways of efficiently solving the system of linear
equations Eq. (2), by replacing the kernel matrixKN with some approximatioñKN.

Williams and Seeger [12] use the Nyström method to calculate an approximation to the
first B eigenvalues and eigenvectors ofKN. Essentially, the Nyström method performs an
eigendecomposition of theB×B covariance matrixKB, obtained from a set ofB basis
points selected at random out of the training data. Based on the eigendecomposition ofKB,

1Originally, the differences between transductive and inductive learning where pointed out in sta-
tistical learning theory [10]. Inductive methods minimize the expected loss over all possible test
sets, whereas transductive methods minimize the expected loss for one particular test set.



one can compute approximate eigenvalues and eigenvectors ofKN. In a special case, this
reduces to

KN ≈ K̃N = KNB(KB)−1(KNB)>. (4)
whereKB is the kernel matrix for the set of basis points, andKNB is the matrix of kernel
evaluations between training and basis points. Subsequently, this can be used to obtain an
approximate solutioñw of Eq. (1) via matrix inversion lemma inO(NB2) instead ofO(N3).

2.2 Subset of Representers Method (SRM)

Subset of representers methods replace Eq. (1) by a linear combination of kernel functions
on a set ofB basis points, leading to an approximate predictor

f̃ (x) =
B

∑
i=1

βik(x,xi) (5)

with an optimal weight vector

β = (σ2KB +(KNB)>KNB)−1(KNB)>y. (6)

Note that Eq. (5) becomes exact if the kernel function allows a decomposition of the form
k(xi ,x j) = K i,B(KB)−1(K j,B)>.

In practical implementation, one may expect different performance depending on the
choice of theB basis pointsx1, . . . ,xB. Different approaches for basis selection have been
used in literature, we will discuss them in turn.

Obviously, one may select the basis points at random (SRM Random) out of the training
set. While this produces no computational overhead, the prediction outcome may be sub-
optimal.

In the sparse greedy matrix approximation (SRM SGMA, [6]) a subset ofB basis kernel
functions is selected such that all kernel functions on the training data can be well approx-
imated by linear combinations of the selected basis kernels2. If proximity in the associated
reproducing kernel Hilbert space (RKHS) is chosen as the approximation criterion, the op-
timal linear combination (for a given basis set) can be computed analytically. Smola and
Scḧolkopf [6] introduce a greedy algorithm that finds a near optimal set of basis functions,
where the algorithm has the same asymptotic complexityO(NB2) as theSRM Random
method.

Whereas the SGMA basis selection focuses only on the representation power of kernel
functions, one can also design a basis selection scheme that takes into account the full
likelihood model of the Gaussian process. The underlying idea of the greedy posterior
approximation algorithm (SRM PostApp, [7]) is to compare the log posterior of the subset
of representers method and the full Gaussian process log posterior. One thus can select
basis functions in such a fashion that the SRM log posterior best approximates3 the full
GP log posterior, while keeping the total number of basis functionsB minimal. As for the
case of SGMA, this algorithm can be formulated such that its asymptotic computational
complexity isO(NB2), whereB is the total number of basis functions selected.

2.3 Online Gaussian Processes

Csat́o and Opper [2] present an online learning scheme that focuses on a sparse model of
the posterior process that arises from combining a Gaussian process prior with a general

2This method was not developed particularly for GPR, yet we expect this basis selection scheme to
be superior to a purely random choice.

3However, Rasmussen [5] noted that Smola and Bartlett [7] falsely assume that the additive constant
terms in the log likelihood remain constant during basis selection.



likelihood model of data. The posterior process is assumed to be Gaussian and is modeled
by a set of basis vectors. Upon arrival of a new data point, the updated (possibly non-
Gaussian) posterior process is being projected to the closest (in a KL-divergence sense)
Gaussian posterior. If this projection induces an error above a certain threshold, the newly
arrived data point will be included in the set of basis vectors. Similarly, basis vectors with
minimum contribution to the posterior process may be removed from the basis set.

3 Transductive Methods for Approximate GPR

In order to derive a transductive kernel classifier, we rewrite the Bayes optimal prediction
Eq. (3) as follows:

E(f∗|D) = K∗
[
K∗+K∗N cov(y|f∗)−1(K∗N)>

]−1
K∗N cov(y|f∗)−1y. (7)

Here, cov(y|f∗) is the covariance obtained when predicting training observationsy given
the functional valuesf∗ at the test points:

cov(y|f∗) = KN + σ21− (K∗N)>(K∗)−1K∗N (8)

Mind that this matrix can be written down without actual knowledge off∗.

Examining Eq. (7) reveals that the Bayes optimal prediction of Eq. (3) can be expressed as
a weighted sum of kernel functions on test points. In Eq. (7), the term cov(y|f∗)−1y gives a
weighting of training observationsy: Training points which cannot be predicted well from
the functional values of the test points are given a lower weight. Data points which are
“closer” to the test points (in the sense that they can be predicted better) obtain a higher
weight than data which are remote from the test points.

Eq. (7) still involves the inversion of theN×N matrix cov(y|f∗)−1 and thus does not make
a practical method. By using different approximations for cov(y|f∗)−1, we obtain different
transductive methods, which we shall discuss in the next sections.

Note that in a Bayesian framework, transductive and inductive methods are equivalent, if
we consider matching models (the true model for the data is in the family of models we
consider for learning). Large data sets reveal more of the structure of the true model, but for
computational reasons, we may have to limit ourselves to models with lower complexity.
In this case, transductive methods allow us to focus on the actual region of interest, i.e. we
can build models that are particularly accurate in the region where the test data lies.

3.1 Transductive SRM

For large sets of test data, we may assume cov(y|f∗) to be a diagonal matrix cov(y|f∗) ≈
σ21, meaning that test valuesf∗ allow a perfect prediction of training observations (up to
noise). With this approximation, Eq. (7) reduces to the prediction of a subset of representers
method (see Sec. 2.2) where the test points are used as the set of basis points (SRM Trans).

3.2 Bayesian Committee Machine (BCM)

For a smaller number of test data, assuming a diagonal matrix for cov(y|f∗) (as for the
transductive SRM method) seems unreasonable. Instead, we can use the less stringent
assumption of cov(y|f∗) being block diagonal. After some matrix manipulations, we obtain



the following approximation for Eq. (7) with block diagonal cov(y|f∗):

Ê(f∗|D) = C−1
M

∑
i=1

cov(f∗|D i)−1E(f∗|D i) (9)

C = ĉov(f∗|D)−1 =−(M−1)(K∗)−1 +
M

∑
i=1

cov(f∗|D i)−1. (10)

This is equivalent to the Bayesian committee machine (BCM) approach [8]. In the BCM,
the training dataD are partitioned intoM disjoint setsD1, . . . ,DM of approximately same
size (“modules”), andM GPR predictors are trained on these subsets. In the prediction
stage, the BCM calculates the unknown responsesf∗ at a set of test pointsx∗1 . . .x

∗
T at once.

The predictionE(f∗|D i) of GPR modulei is weighted by the inverse covariance of its
prediction. An intuitively appealing effect of this weighting scheme is that modules which
are uncertain about their predictions are automatically weighted less than modules that are
certain about their predictions.

Very good results were obtained with the BCM with random partitioning [8] into subsets
D i . The block diagonal approximation of cov(y|f∗) becomes particularly accurate, if each
D i contains data that is spatially separated from other training data. This can be achieved
by pre-processing the training data with a simplek-means clustering algorithm, resulting in
an often drastic reduction of the BCM’s error rates. In this article, we always use the BCM
with clustered data.

4 Experimental Comparison

In this section we will present an evaluation of the different approximation methods dis-
cussed in Sec. 2 and 3 on four data sets. In the ABALONE data set [1] with 4177 examples,
the goal is to predict the age of Abalones based on 8 inputs. The KIN8NM data set4 rep-
resents the forward dynamics of an 8 link all-revolute robot arm, based on 8192 examples.
The goal is to predict the distance of the end-effector from a target, given the twist angles
of the 8 links as features. KIN40K represents the same task, yet has a lower noise level
than KIN8NM and contains 40.000 examples. Data set ART with 50000 examples was
used extensively in [8] and describes a nonlinear map with 5 inputs with a small amount of
additive Gaussian noise.

For all data sets, we used a squared exponential kernel of the formk(xi ,x j) =

exp
(
− 1

2d2‖xi−x j‖2
)

, where the kernel parameterd was optimized individually for each

method. To allow a fair comparison, the subset selection methodsSRM SGMA andSRM
PostApp were forced to select a given numberB of basis functions (instead of using the
stopping criteria proposed by the authors of the respective methods). Thus, all methods
form their predictions as a linear combination of exactlyB basis functions.

Table 1 shows the average remaining variance5 in a 10-fold cross validation procedure on
all data sets. For each of the methods, we have run experiments with different kernel width
d. In Table 1 we list only the results obtained with optimald for each method.

On the ABALONE data set (very high level of noise), all of the tested methods achieved
almost identical performance, both withB = 200 andB = 1000 basis functions. For all
other data sets, significant performance differences were observed. Out of the inductive

4From the DELVE archivehttp://www.cs.toronto.edu/˜delve/
5remaining variance= 100×

MSEmodel
MSEmean, whereMSEmeanis the MSE obtained from using the

mean of training targets as the prediction for all test data. This gives a measure of performance
that is independent of data scaling.



Abalone KIN8NM KIN40K ART

Method 200 1000 200 1000 200 1000 200 1000

SRM PostApp 42.81 42.81 13.79 7.84 9.49 2.36 3.91 1.12
SRM SGMA 42.83 42.81 21.84 8.70 18.32 4.25 5.62 1.79
SRM Random 42.86 42.82 22.34 9.01 18.77 4.39 5.87 1.79
RRA Nyström 42.98 41.10 N/A N/A N/A N/A N/A N/A
Online GP 42.87 N/A 16.49 N/A 10.36 N/A 5.37 N/A

BCM 42.86 42.81 10.32 8.31 2.81 0.83 0.27 0.20
SRM Trans 42.93 42.79 21.95 9.79 16.47 4.25 5.15 1.64

Table 1: Remaining variance, obtained with different GPR approximation methods on four
data sets, with different number of basis functions selected (200 or 1000). Remain-
ing variance is given in per cent, averaged over 10-fold cross validation. Marked
in bold are results that are significantly better (with a significance level of 99% or
above in a pairedt-test) than any of the other methods

methods (SRM SGMA, SRM Random, SRM PostApp, RRA Nyström) best performance was
always achieved withSRM PostApp. Using the results in a pairedt-test showed that this
was significant at a level of 99% or above. Online Gaussian processes6 typically performed
slightly worse thanSRM PostApp. Furthermore, we observed certain problems with the
RRA Nyström method. On all but the ABALONE data set, weightsw̃ took on values in the
range of 103 or above, leading to poor performance. For this reason, the results forRRA
Nyström were omitted from Table 1. Further comments on these problems will be given in
Sec. 4.2.

Comparing induction and transduction methods, we see that the BCM performs signifi-
cantly better than any inductive method in most cases. Here, the average MSE obtained
with the BCM was only a fraction (25-30%) of the average MSE of the best inductive
method. By a pairedt-test we confirmed that the BCM is significantly better than all other
methods on the KIN40K and ART data sets, with significance level of 99% or above. On
the KIN8NM data set (medium noise level) we observed a case whereSRM PostApp per-
formed best. We attribute this to the fact that k-means clustering was not able to find well
separated clusters. This reduces the performance of the BCM, since the block diagonal
approximation of Eq. (8) becomes less accurate (see Sec. 3.2). Mind that all transductive
methods necessarily lose their advantage over inductive methods, when the allowed model
complexity (that is, the number of basis functions) is increased.

We further noticed that, on the KIN40K and ART data sets,SRM Trans consistently outper-
formedSRM Random, despite ofSRM Trans being the most simplistic transductive method.
The difference in performance was only small, yet significant at a level of 99%.

As mentioned above, we did not make use of the stopping criterion proposed for theSRM
PostApp method, namely the relative gap between SRM log posterior and the log posterior
of the full Gaussian process model. In [7], the authors suggest that the gap is indicative of
the generalization performance of the SRM model and use a gap of 2.5% in their exper-
iments. In contrast, we did not observe any correlation between the gap and the general-
ization performance in our experiments. For example, selecting 200 basis points out of the
KIN40K data set gave a gap of≈ 1%, indicating a good fit. As shown in Table 1, a signif-
icantly better error was achieved with 1000 basis functions (giving a gap of≈ 3.5 ·10−4).
Thus, it remains open how one can automatically choose an appropriate basis set sizeB.

6Due to the numerically demanding approximations, runtime of the OGP method forB = 1000 is
rather long. We thus only list results forB = 200 basis functions.



Memory consumption Computational cost Runtime

Method Initialization Prediction Initialization Prediction KIN40K

Exact GPR O(N2) O(N) O(N3) O(N) N/A
RRA Nyström O(NB) O(N) O(NB2) O(N) 4 min
SRM Random }

O(NB)

}
O(B)

}
O(NB2)

}
O(B)

3 min
SRM Trans 3 min
SRM SGMA 7 h
SRM PostApp 11 h
Online GP O(B2) O(B) O(NB2) O(B) est. 150 h
BCM — O(N +B2) — O(NB) 30 min

Table 2: Memory consumption, asymptotic computational cost and actual runtime for dif-
ferent GP approximation methods withN training data points andB basis points,
B< N. For the BCM, we assume here that training and test data are partitioned
into modules of sizeB. Asymptotic cost for predictions show the cost per test
point. The actual runtime is given for the KIN40K data set, with 36000 training
examples, 4000 test patterns andB = 1000 basis functions for each method.

4.1 Computational Cost

Table 2 shows the asymptotic computational cost for all approximation methods we have
described in Sec. 2 and 3. The subset of representers methods (SRM) show the most fa-
vorable cost for the prediction stage, since the resulting model consists only ofB basis
functions with their associated weight vector. Table 2 also lists the actual runtime7 for
one (out of 10) cross validation runs on the KIN40K data set. Here, methods with the same
asymptotic complexity exhibit runtimes ranging from 3 minutes to 150 hours. For the SRM
methods, most of this time is spent for basis selection (SRM PostApp andSRM SGMA). We
thus consider the slow basis selection as the bottleneck for SRM methods when working
with larger number of basis functions or larger data sets.

4.2 Problems with RRA Nyström

As mentioned in Sec. 4, we observed that weightsw̃ in RRA Nyström take on values in
the range of 103 or above on data sets KIN8NM, KIN40K and ART. This can be explained
by considering the perturbation of linear systems.RRA Nyström solves Eq. (2) with an
approximateK̃N instead ofKN, thus calculating an approximatẽw instead of the truew.
Using matrix perturbation theory, we can show that the relative error of the approximatew̃
is bounded by

‖w̃−w‖
‖w‖

≤max
i

|λi− λ̃i |
λ̃i + σ2

(11)

whereλi andλ̃i denote eigenvalues ofKN resp.K̃N. A closer look at the Nyström approx-
imation [11] revealed that already for moderately complex data sets, such as KIN8NM,
it tends to underestimate eigenvalues of the Gram matrix, unless a very high number of
basis points is used. If in addition a rather low noise variance is assumed, we obtain a
very high value for the error bound in Eq. (11), confirming our observations in the experi-
ments. Methods to overcome the problems associated with the Nyström approximation are
currently being investigated [11].

7Runtime was logged on Linux PCs with AMD Athlon 1GHz CPUs, with all methods implemented
in Matlab and optimized with the Matlab profiler.



5 Conclusions

Our results indicate that, depending on the computational resources and the desired accu-
racy, one may select methods as follows: If the major concern is speed of prediction, one is
well advised to use the subset of representers method with basis selection by greedy pos-
terior approximation. This method may be expected to give results that are significantly
better than other (inductive) methods. While being painfully slow during basis selection,
the resulting models are compact, easy to use and accurate. Online Gaussian processes
achieve a slightly worse accuracy, yet they are the only (inductive) method that can easily
be adapted for general likelihood models, such as classification and regression with non-
Gaussian noise. A generalization of the BCM to non-Gaussian likelihood models has been
presented in [9].

On the other hand, if accurate predictions are the major concern, one may expect best results
with the Bayesian committee machine. On complex low noise data sets (such as KIN40K
and ART) we observed significant advantages in terms of prediction accuracy, giving an
average mean squared error that was only a fraction (25-30%) of the error achieved by
the best inductive method. For the BCM, one must take into account that it is a transduc-
tion scheme, thus prediction time and memory consumption are larger than those of SRM
methods.

Although all discussed approaches scale linearly in the number of training data, they exhibit
significantly different runtime in practice. For the experiments we had done in this paper
(running 10-fold cross validation on given data) the Bayesian committee machine is about
one order of magnitude slower than an SRM method with randomly chosen basis; SRM
with greedy posterior approximation is again an order of magnitude slower than the BCM.
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