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ABSTRACT

Traffic differentiations are known to be found at the edgehaf t
Internet in broadband ISPs and wireless carriers [13, 2]e Th
ability to detect traffic differentiations is essential farstomers to
develop effective strategies for improving their applicatperfor-
mance. We build a system, calls@tPolice, that enables detection
of content- and routing-based differentiations in baclkb¢®Ps.
NetPolice is easy to deploy since it only relies on loss measurement
launched from end hosts. The key challenges in buildiatPo-
lice include selecting an appropriate set of probing destinatand
ensuring the robustness of detection results to measuteroise.
We useNetPolice to study 18 large ISPs spanning 3 major conti-
nents over 10 weeks in 2008. Our work provides concrete puile
of traffic differentiations based on application types ae@yhbor
ASes. We identify 4 ISPs that exhibit large degree of diffiéietion
on 4 applications and 10 ISPs that perform previous-AS hepdba
differentiation, resulting in up to 5% actual loss rate eliénces.
The significance of differences increases with network .|&ame
ISPs simply differentiate traffic based on port humbersspee-
tive of packet payload and the differentiation policies roaly be
partially deployed within their networks. We also find siyarorre-
lation between performance differences and Type-of-8ervalue
differences in the traffic.

Categories and Subject Descriptors. C.2.5 COMPUTER-
COMMUNICATION NETWORKS: Local and Wide-Area Net-
works

General Terms. Measurement, Experimentation
Keywords: Internet measurement, Traffic differentiation

1. INTRODUCTION

Since its early days, Internet is designed under the erafhtb-
principle which argues for intelligent end systems and enfde”
network. Under this principle, networks deliver traffic vibest
effort and do not treat traffic preferentially based on vasiprop-
erties such as IP address, port number, or packet contentIf27
recent years, a variety of new applications have emergeganrd
liferated on the Internet. Some require high bandwidtly.(peer-
to-peer file sharing and video streaming) while others meqiow
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latency and loss rate(g.,voice-over-IP and online gaming). Such
trend has inspired ISPs to perform various types of traffapsig
to manage network resource usage and introduce tieredesna
meet the requirements of different customers and appdicsti

Residential broadband ISPs are known to treat traffic diffdy,
e.g.,by limiting the bandwidth usage of peer-to-peer file shaapg
plications [13]. Cellular network carriers have also begported
to restrict the usage of video streaming services to prestmir
limited wireless spectrum [2]. Researchers have propoaddus
techniques for detecting traffic differentiation. Beveelyal. pre-
sented one of the first measurement studies of port blockéng b
havior from the edge of the Internet [8]. POPI is another fool
determining router traffic differentiation policy basedmort num-
bers via end-host measurements [19]. More recently, Digehi
et al. developed tests for detecting whether broadband ISPs rate-
limit or block BitTorrent traffic [13]. Besides these actimeasure-
ment techniques, Tarigt al. proposed to identify differentiation
by applying statistical method to passive measurements &od
hosts [32]. Yet so far, there has been no detailed and corapsere
study on the current practice of traffic differentiationidesthe In-
ternet core. Traffic differentiation in the core arguablyg amuch
wider scope of impact, as such policies affect much mordidraf
compared to the policies near the edge of the Internet.

In this paper, we consider the problem of detecting trafffe di
ferentiation in backbone ISPs. Different types of trafficyneape-
rience different performance within the same ISP networ tiu
various reasons. An ISP may “passively” throttle the trdfifion
a neighbor €.g.,a peer) by carrying the traffic over a low-capacity
link, since it may not have the economic incentive to pransor
upgrade the link [4]. It may also “actively” prevent the fiafof
an application €.g., BitTorrent) from disrupting other traffic via
weighted fair queuing when the network is congested.

Regardless of the actual reasons behind the performarfee- dif
ences, it is important for customers to be able to reasontaheu
behaviors of their ISPs. The ability to detect traffic diéfetiation
enables customers to develop appropriate strategies fooiimg
their application performance. For instance, large cdrgesviders
strive to ensure their Internet applications outperforosthoffered
by their competitors. If a content provider knows the averkgs
rate of its traffic traversing a particular ISP is twice thit® com-
petitor, it may want to negotiate better service level agreats
(SLA) with that ISP. Small customers will also benefit frontisu
differentiation information. For instance, they may chammprt
numbers or encrypt packets to circumvent content-baséetelif-
tiation employed by their ISP.

Most ISPs do not reveal the details of their network polieied
configurations. Realizing this problem, we aim to develogad-
host based system that can detect traffic differentiatiahawit any



[ Type | Examples |
Packet source & destination port numbers, protogol
headers type
Application| application header®(g.,HT TP header, BitTor
layer info | rent header), application payload
Traffic be-| flow rate, flow duration, packet size, packet in-
havior terval
Routing previous-hop AS, next-hop AS, source & desti-
info nation IP addresses
Avallable queue length, Tink utilization, router Toad
resources | memory

Table 1: Information commonly used for traffic differentiation.

ISP cooperation. Such a system is not only easily deployiiile
also applicable to many different ISPs. To build such a syste
we face two key challenges: i) unlike in the case of broadband
ISPs, most end hosts are not directly connected to backi@Pe |
We need to intelligently select probing destinations toecahe
relevant internal paths of backbone ISPs while complyinidp wie
requirement of limited network and CPU resources on endshost
ii) measurement data taken from end host is susceptiblertouga
types of noise on the host or in the network. We need to ensure o
detection results are not distorted by noise.

NetPolice is the first operational system that can detect traffic
differentiation in backbone ISPs by accurately and scylaimn-
itoring packet loss behavior. It relies on an intelligenttpselec-
tion scheme to detect both content- and routing-basedreliffe
ation while systematically balancing path coverage andipmp
overhead. It leverages statistical hypothesis tests tatifglesig-
nificant loss rate differences between different typesaifirmea-
sured along the same ISP internal paths after discountineftacts
of measurement noise. Furthermore, it uses a novel teahrigqu
cross-validating the statistical test results and the Tofp8ervice
(TOS) value set by ISPs.

By studying 18 large ISPs spanning 3 major continents over a
period of 10 weeks in 2008etPolice provides concrete evidence
of traffic differentiation based on application types anéghbor
ASes. We identified 4 ISPs that exhibit large degree of dffiéir
ation on \olIP, BitTorrent, PPLive, and SMTP traffic compated
HTTP traffic. We also identified 10 ISPs that treat traffic efiff
ently based on its previous-hop ASes, reflecting differessiress
contracts. The significance of differentiation increaséth wet-
work load, suggesting that differentiation is likely to begered
by resource competition. The actual loss rate differen¢evdsEn
certain pairs of applications or previous-hop ASes canek&b,
large enough to impair the performance of many TCP-baselit app
cations. Interestingly, we find a few ISPs simply rely on pann-
bers to perform traffic differentiation irrespective of@atpayload.
These ISPs may apply differentiation policies only to a stilo$
routers in their networks. We further validate our detectiesults
on paths where we have two-ended control.

2. TRAFFIC DIFFERENTIATION

An ISP may use various information in traffic and routers to-co
struct differentiation policies. Table 1 enumerates adissuch
potential factors [35]. First, an ISP may provide diffeiated ser-
vices based on the application type for security or busimeas
sons. It is well-known that broadband ISPs drop certain SMTP
traffic to fight spams and throttle P2P traffic to manage badtwi
usage. Application types can be determined from packetenead
fields or application layer information [24]. Even with eypted
traffic, there are sophisticated techniques that can infplication
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Figure 1: One common implementation of differentiation.

types by identifying certain traffic behavior [34]. Secomad, ISP
can differentiate traffic according to routing informatioeflecting
distinct business contracts with its customers and peersISR
may assign high priority to traffic from customers who payge-
mium services or assign low priority to traffic from peersishiype
of differentiation can be applied based on the previousédropext-
hop ASes, which can be easily extracted from packet headers a
routing state. Third, an ISP may enforce differentiatiofigies
according to available resources. Using the link utilizatinfor-
mation readily available from SNMP [11], it may slow downffia
with low priority to preserve sufficient bandwidth for otheaffic.

It is feasible to implement traffic differentiation in a bédne
network with many high-speed links. Today’s router alreadp-
ports various queuing mechanisms to fulfill the need of taffi-
gineering, quality of service, and security guaranteeguiéi 1 il-
lustrates a common architecture for implementing difféedion
within a backbone ISP. The ingress routers perform trafssit
fication by marking packets according to packet header fihds
routing information, such as port numbers and previous/A®ps.
The marking is usually applied to the Type-of-Service (TGS}
in the IP header. The internal routers perform traffic shggio-
cording to the TOS value in the packets [17]. There are variou
queuing and dropping mechanisms that provide differerelseof
service to traffice.g.,priority queuing, proportional share schedul-
ing, and policing [10]. These mechanisms differ in detaflb@wv
and when differentiation is carried out. In §6.7, we dematst
traffic differentiation can be easily implemented on todagom-
mercial routers in testbed experiments.

Other than the router marking-based mechanisms using packe
header information, ISPs may perform deep packet inspectio
(DPI) [14] to classify application types according to packen-
tent. Some DPI devices can perform pattern matching in packe
payload with hardware support for 100 Gps links [1, 12]. Besea
DPI devices can be quite expensive, they are usually deglogky
at selected locations.

In this work, we examine all types of differentiation listed
Table 1 except for the one based on traffic behavior (Tableanl ro
4) due to limitations of end-host based probing (83.2). lct,fa
behavior-based differentiation could be expensive to @mgnt by
ISPs due to the required per-flow state information and piatign
high false positives. Our goal of detecting these four tyqfedif-
ferentiation guides the design of path selection and pratmket
composition inNetPolice. By providing concrete evidence of dif-
ferentiation, we hope to stimulate more research to fullyaustand
possible differentiation policies in backbone ISPs.

3. METHODOLOGY

NetPolice detects traffic differentiation inside a particular ISP by
launching probes from a distributed set of end systems. fisr t
purpose, we have to decide what paths to measure, how to reeasu
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Figure 2: Detecting various types of differentiation with end-host
based probing

each path, and how to identify differentiation based on meas
ment results. We address these three issues below.

3.1 Path selection

NetPolice is designed to detect traffic differentiation based on
packet headers, application layer information, and rguinfor-
mation (described in Table 1). Figure 2 illustrates hegtPolice
uses measurements from end systems to identify diffetentian
ISP I. In Figure 2(a), an end host probes two paths to different des
tinations, sharing the same ingress and egress wigin, but di-
verging into two distinct next-hop ASes after leaving theesg. By
comparing the performance of the two internal paths betvtieen
ingress and egress (8P |, NetPolice can determine whethéBP |
treats traffic differently based on the next-hop ASes. Sirhyil
Figure 2(b) shows howetPolice detects differentiation based on
previous-hop ASes. In Figure 2(c), an end host probes a path t
traverses the same ingress and egredS$Bfl to the same desti-
nation. By comparing the internal path performance meashye
packets of different application®.g., a1 VvS. az), NetPolice can
detect differentiation based on content, such as packeengeand
application layer information. We leave the discussionesburce-
based differentiation to §6.5.

To detect traffic differentiation inside an ISP, we deviseiran
telligent path selection strategy to ensure good coverageav
overhead. On the one hand, a backbone ISP typically cortfists
multiple PoPs (Points of Presence) at many geographicitosat
We want to cover as many distinct PoP pairs as possible irr orde
to quantify the scope of traffic differentiation policiesside the
ISP. On the other handyetPolice relies on end hosts to perform
measurements. While this makistPolice easily deployable and
applicable to different ISPs, we must aggressively redneariea-
surement overhead to comply with the requirement of lim@&dJ
and network resources at each host.

Given a target ISP, a list of probing sources, and all the des-
tination prefixes on the Internet, a naive approach is to @b
the prefixes from all the sources. This may lead to both walstef
probes that do not traverse the target ISP and redundar¢gptbat
traverse the same internal paths multiple times. To avadeliwo
problems, we frame the path selection problem as follows.

1. Each three-tuplésrc, ingress, egress) is traversed at least
R times by probes to different destinations.

2. Each three-tupléingress, egress, dst) is traversed at least
R times by probes from different sources;

3. A probing source does not send more thaprobes.

Here, src is a probing sourcedst is a destination prefix, and
ingress andegress are the PoPs in the ISP.

Conditions 1 and 2 allow us to detect differentiation based o
routing informationg.g.,previous-hop and next-hop ASes. We can
also detect content-based differentiation by probing #mespath
with packets of different applications? is a tunableredundancy
factor that determines the tradeoff between probing overhead and
coverage. A largeR will increase not only the chance of detecting
routing-based differentiation but also the amount of pnghiraffic.
Condition 3 restricts the total number of probes from eaclrea
Because a source needs to probe each three-tuple many tmes f
reliably detecting differentiation (explained in §3.3)is condition
ensures it will not take too much time for a source to compédite
the probes.

This problem is an instance of the set covering/packing prob
lem [18, 23]: given multiple sets over a universe of elemgpitsk
a subset of input sets such that each element is includeasit le
R times (covering constraint), and no element is includedemor
than m times (packing constraint). In our case, the input sets
are the probes between source-destination pairs, anddheepts
are the probers and the three-tuplegofc, ingress, egress) and
(ingress,egress,dst). A probe typically contains all three el-
ement types. This formulation enables us to perform both re-
dundancy elimination and probing load assignment sysieailgt
While this problem is NP-hard, we use a greedy based approxi-
mation: at each step, we select the probe that covers theunest
covered elements without exceeding the probing threshold@his
process continues until all the elements are covered dtiE@mes.

3.2 Lossrate measurement

NetPolice focuses on detecting traffic differentiation that de-
grades application performance. Currently, it measurss tate
in order to detect differentiation schemes based on ratiitig in
backbone ISPs. We may extend it to measure other performance
metrics,e.qg.,delay, by applying the probing techniques developed
in Tulip [22]. We may also extend it to detect the differetitia
schemes used by broadband 1S€s,, traffic blocking and TCP
SYN/RST [13].

Given a pathNetPolice measures the loss rate as follows. First,
to reduce probing overheadletPolice only probes the hops that
map to an ingress or an egress of a target ISP instead of all the
hops along the path, given that we are only interested irctiete
differentiation inside the ISP. We will describe the detaif iden-
tifying the ingress and egress of an ISP in 84. Second, touneas
the loss rate to a particular hagetPolice sends probe packets with
pre-computed TTL (Time-to-Live) value which will triggeEMP
time exceeded response from that hop. In essence, thesetpack
are similar to traceroute probes. Although an ICMP packet bea
forwarded on a slow path, it will not affect the loss measwestas
long as the packet is not dropped.

Because packet loss may occur in either direction, we uge lar
probe packets to ensure the measured loss is mostly duentarfbr
path loss. The assumption is that large probe packets are mor
likely to be dropped than small ICMP packets on the reversie. pa
This has also been adopted in previous work [22, 20]. To avoid
triggering ICMP rate limitingNetPolice probes each hop once per
second for 200 times, allowing us to detect loss rate as sasall
0.5%. Probing each hop more times increases the sensitiity
loss rate detection but also the probing overhead. We silitva
measured loss rate of the ingress from that of the egresstamob
the loss rate of the internal path. In 85, we describe how tmate
the impact of reverse path loss and ICMP rate-limiting onloss
rate measurements.



To detect content-based differentiation, we measure ktgsaf
an internal path using different application traffic. Weesglfive
representative applications with distinct QoS (QualitySefrvice)
requirements: HTTP (default port 80), BitTorrent (P2P fiais
ing, port 6881), SMTP (email, port 25), PPLive (video strézm
port 4004), and VoIP (port 5060). Except for HTTP, the remain
ing four applications are selected based on how likely thdy w
be treated differently by backbone ISPs. HTTP, one of thetmos
commonly-used application, is used as the baseline to canpea-
formance with other applications. ISPs may slow down Bit&ot
and PPLive traffic due their high volumes. Similarly, ISPs/rdis-
favor SMTP traffic due to email spam concerns. We also ted? Vol
traffic because many ISPs provide their own VoOIP servicajngi
incentives for preferential treatment.

We construct probe packets with application-specific aunte
captured from real application traces. This eliminates aegd
to understand the protocols of proprietary applicationghsas
PPLive or VoIP. To enable fair comparison between the lots ra
of different applications, all probe packets are chosenaietthe
same size.

BecauseNetPolice relies on TTL-based probes to measure path
performance, it cannot fully mimic the temporal behavioredl
application traffic. If it probes as fast as the packet rateli-
cations, it may easily trigger ICMP rate-limiting on rowgerAn
alternative is to run applications on end hosts and detéfetrein-
tiation based on observed application performance [32]véver,
such approach requires the participation of a large numtieosis
to cover the internal paths of the backbone ISPs of interfest:
thermore, without directly probing routers, it is chall@mgyto infer
the performance of ISP internal paths purely based on eddo
measurements.

3.3 Differentiation detection

NetPolice detects differentiation by observing the performance
differences measured along the same ISP internal path dging
ferent types of probe traffic. Due to load variations on a ptita
same type of probes may experience different loss rate ffertatit
times. This suggests we need to take a sufficiently large Bumb
of loss rate measurements to ensure that the observedmarfoe
differences accurately reflect how an ISP treats differgp¢s of
traffic.

We first introduce a few notions before describing the detail
our differentiation detection scheme. For a target ISRe define

Path views

Path Selector

Task list
destinations, hops, app.

Prober i II

Differentiation

Detector Measurement result
} loss rate

AS pairs and application pairs
with differentiation

Figure3: The NetPolice system

detect previous-hop AS based differentiation betwgeal and
pre2 atingressng. As long as the underlying distributions are sta-
ble and the two candidate sets include enough samples, wésho
be able to reliably detect differentiation between two typétraf-
fic.

Given a pair of input sets, we apply statistical hypothesssstto
determine if there are significant differences between th&ewv-
eral commonly-used hypothesis tests exist to compute Hiistst
cal significance of differences between two input sets. &the
distribution of the loss rate samples in an input set is unkno
we choose the Kolmogorov-Smirnov (K-S) test [31] which meake
no assumption about the input sample distribution. The I€s$ t
compares the distance of the two empirical cumulative ibigtion
functions F; and F» corresponding to the two input sets. It com-
putes the Kolmogorov-Smirnov statistie; 2 = sup, |Fi(z) —
F»>(x)|, wheresup is the supremum, under the null hypothesis
that the two sets of samples are collected from the sameéhdistr
tion. The null hypothesis test is rejected at significaneelle: if

n’;lsz Di 2 > K,. Heren; andn. denote the size of the input

sets and¥,, is the critical value in the K-S statistic table.

As we just discussed, the validity of a K-S test statisticeels
not only on whether the distributions of the input sets aadlst
but also on whether the input sets contain enough samples. We
use Jackknife [33], a commonly-used non-parametric reBagp
method, to verify the validity of the K-S test statistic. Tidea is
to randomly select half of the samples from the two origimgluit
sets and apply the K-S test on the two new subsets of sampies. T
process is repeatedtimes. If the results of ove8% of ther new

I{s,d,0,¢} to be aloss rate sample measured along an internal path of_s tests are the same as that of the original test, we coa¢hat

ISPI from a probing sourceto a destinatio, using probes of ap-
plicationa at timet. We use the termet to denote a set of samples
that are measured with a particular type of probes. For el@amp
selys a,q) includes all the samples measured along a path fréon
d using probes of applicatian Similarly, set{p, ¢ ing,qa,q} iNCludes
all the samples measured along the paths traversing peetiopl
AS pre and ingressng to destinationd, using probes of applica-
tion a.

Our basic assumption is that the loss rate samples:n follow
a particular underlying distribution. This distributioefiects how
an ISP treats the corresponding type of traffic. We can then de
tect differentiation between two types of traffic by compgrihe
two corresponding distributions. We ugeir; 4,41,q2} to denote
two candidateset, 4,11 andsety, 4421 (S€€ Figure 2(c)). We
can compare the two distributions of applicationpair s 4,q1,q2}
to detect content-based differentiation betwegnand a2. Sim-
ilarly, we USepair{pre1 prez,ing,d,a} 10 denote two candidate
s€lipreling,d,a} ANAdset(pre2ing d,a} (S€€ Figure 2(b)). We can
compare the two distributions of @S pair,re1,pre2,ing,d,a} 10

the original K-S test statistic is valid. We uge= 400, o = 95%,
andg = 95 in this paper to ensure 95% confidence interval. In §6.1
and 86.3, we will show that the choice of these parameteresak
our differentiation detection results robust against@aidoss rate
samples.

4. IMPLEMENTATION

The implementation ofletPolice is illustrated in Figure 3. It has
three major components:
Path selector  takespath viewsas input and compute a task list
of probing destinations for each prober. The path views lage t
traceroute measurements conducted from all the probetstteea
destination prefixes on the Internet. The path selectorthsgsath
views to learn the ingress and egress of the target ISPs dlcat e
path traverses. It identifies the ingress and egress by ptitggnto
map each IP hop to an ISP and a PoP based on the DNS name of
the IP hop [29]. We extend the set of naming rulesnans[29] to
increase the number of names that can be successfully mapped



ISP

| PoP] Ingress-Egresg PoP-AS]

15P, 49 716 337
ISP, | 139 2125 806
15P; 57 1498 1170
ISP, 25 232 102
15Ps 46 501 351
15Ps 71 1750 653
15P; 59 677 371
15Pg 38 502 195
ISP, [ 112 822 430
ISPy | 45 539 176
ISP, | 32 419 119
ISP, | 30 267 138
ISPi3 | 64 115 195
ISPy | 23 303 82

I1SPs | 19 137 66

ISP | 44 538 208
ISP7 | 69 1787 152
ISPis | 44 261 316

Table 2: 18 ISPs being studied

path views are updated daily to keep up with the evolutiorS# |
topologies. Some path views may become temporarily outabé-
due to routing changes. We detect routing changes by olbggervi

the mismatch between the IP hops seen in loss measuremehts an

the corresponding hops in path views. We simply discardhall t
loss rate samples affected by routing changes.

The path selector implements the greedy algorithm destiibe
83.1. Note that path selection is performed for multiplgéatSPs
simultaneously. This significantly reduces probing ovathéy
leveraging the fact that a single probe often traversesiphailtar-
get ISPs, allowing us to cover the same set of three-tupreezies
(defined in §3.1) with fewer probes compared to probing e&¢h |
separately. For each of the target ISPs traversed by a pvabe,
measure its internal loss rate between an ingress and dglless
ing the method described in §3.2.

Probers
tinations in their task list periodically. After complegieach round
of probing to all the destinations, the probers send theasuee-
ment results to the differentiation detector for furtheogassing.
Probing is conducted with a customized version of tracertiat
probes multiple hops of a path and multiple destinationsnalitel.
The probe packets are constructed to reduce the probahaitylif-
ferent probe packets from the same source to the same distina
take different IP-level paths due to load-balancing [6].
Differentiation detector firstfilters the noise in the measurement
results due to overloaded probers or reverse path lossehent
tries to detect differentiation based on content, previooys AS, or
next-hop AS, following the process described in §3.3. Wnal
performs detailed analysis on differentiation policiesg;tsas what
input information they use, whether they are affected byvoek
load, and how significant their impact is.

We deployed\etPolice on the PlanetLab testbed [26]. It uses all
the PlanetLab hosts across about 200 distinct sites. Eactu raf
probing takes roughly two hours to complete. The resulthérpa-
per are based on 74 days of data collected during a periocebatw
August 2008 and October 2008. Eagit includes around 1,000
loss rate samples. We run multiple instancesletfPolice to take
measurements of the five applications described in §3.2ialpa
lel. We randomize the order of destinations to probe in eagha
to reduce the chance of a path being simultaneously meabyred
multiple instances. We studied 18 large ISPs covering neajor

run on a distributed set of end hosts, probing all the des-

tinents including North America, Europe, and Australiansisting

of 9 Tier-1 ISPs, 8 Tier-2 ISPs, and 1 Tier-3 ISP. Table 2 shoets
Police has a decent coverage of internal paths and interconnegtion
traversing 115 to 2125 ingress-egress pairs and 66 to 1170N%0
pairs for each ISP. A PoP-AS pair represents an intercoiumelog-
tween a neighbor AS and the target ISP at the correspondiRg Po

5. REDUCING NOISE EFFECTS

Loss rate measurements taken by end-hosts are susceptible t
various types of noise on the host and in the network. As men-
tioned in 83.2, the inaccuracy of loss rate measuremeritely to
be caused by three main factors: i) overloaded prober; N)RPCGate
limiting at router; and iii) loss on reverse path. In thistsat, we
investigate the effects of these three factors and develdmiques
to mitigate their impact. We emphasize that these techsigaa-
not completely eliminate all the noise. However, as showthé
next section, the remaining noise will have little impacttba dif-
ferentiation detection results.

Many ISPs perform load balancing using equal-cost multivpa
(ECMP) to ensure effective utilization of network resowr¢g].
Per-flow load balancing is usually performed based on thettive
ple (srcip, dstip, srept, dstpt, proto). Thus, different application
packetsge.g.,BitTorrent and HTTP, may take different internal IP-
level paths between the same ingress and egress, giverdifeir
ferent destination portse(g., 6881 vs. 80). We do not observe
any per-packet load balancing in the 18 ISPs being studiethi$
section, we carefully design experiments to ensure ouerdiffti-
ation detection is not affected by potential performandteidince
of ECMP paths.

5.1 Overloaded prober

Previous work has shown measurement inaccuracies caused by
resource contention, in particular CPU load, on probingthos
PlanetLab experiments [28]. To deal with this problem, wa-co
tinually monitor the CPU utilization on each prober by rummi
thet op command and compute the average CPU utilization us-
ing three instantaneous load samples in each minute. Wehean t
investigate the relationship between CPU utilization amssured
loss rate by temporally correlating these two types of samplhis
allows us to identify and discard abnormal loss rate samjplas
could be affected by high CPU utilization.

To determine an appropriate cut-off threshold of high CPJ ut
lization, we design the following controlled experimentdmdy
the effects of CPU utilization on loss rate measurements.s&ve
lect a pair of lightly-loaded PlanetLab machines at the saitee
One machine acts as a “prober” to transmit one 1000-byteeprob
packet per second. The other machine acts as an “acker’dweec
probe packets and return 40-byte ACKs. In essence, the égrob
behaves just like a realetPolice prober that measures loss rate. We
then run a computation-intensive program to graduallygase the
CPU utilization on the “prober” while keeping the acker ligh
loaded.

Figure 4 illustrates the relationship between CPU utii@aand
loss rate measured by the “prober”. Because loss is unlitely
occur on the light-loaded acker or on the local area netwerk b
tween the “prober” and the acker, the measured loss ratenissal
certainly due to the CPU load on the “prober.” Clearly, thsslo
rate jumps up when the CPU utilization goes above 65%. We re-
peat this experiment on ten pairs of PlanetLab hosts acifbseeht
sites and find the loss rates induced by CPU load are coniysten
smaller than 0.2% when CPU utilization is under 65%. In 8§6.6,
we will show that such loss rates are negligible comparedhéo t
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Figure 4. Impact of CPU utilization on loss rate.

observed loss rate differences due to traffic differemratBy ap-
plying the 65% cutoff threshold on CPU utilization, 15% o€&th
samples in our data are discarded.

5.2 ICMP ratelimiting

ICMP rate limiting is often configured on a per-router basis t
prevent router overload. If triggered, it may significantiflate the
measured loss rate. To prevent this, we deliberately keepge |
probing intervalg.g.,only one probe packet is sent on a given path
per second. We use the following experiments to confirm that t
probing interval is large enough to avoid triggering ICMRerbm-
iting.
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Figure5: Impact of probing interval on loss rate.

We conducted five sets of experiments by measuring the Itess ra
of all the internal paths of the 18 target ISPs from all thebers.
We gradually increase the probing interval for each set pgex
ments from 10ms to 2s. The smaller the interval is, the mésdli
a router along a path may rate-limit the ICMP time-exceeded r
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Figure 6: Impact of probe packet size on loss rate.

paths. We study the effect of packet size on measured loss rat
using controlled experiments. We conducted three setspdrex
ments by measuring the loss rate of all the ISP internal pagimgy
probe packets of 40 bytes, 200 bytes, and 1440 bytes. As simown
Figure 6, the measured loss rate increases with probe psiziet
Since the size of the ICMP responses is always the same aiis ¢
firms that bigger probe packets are more likely to encountesds
on forward path. Nonetheless, the loss rates measured bigy260
and 1440-byte packets are roughly the same, suggestindf¢lctse
of packet size on forward path loss diminish when packet esze
ceeds 200-byte.
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Figure7. ReErr before & after filtering.

The loss rate measured by 40-byte probe packets is much
smaller. In fact, we can use this loss rate as the upper bofihé o
loss rate on reverse path. To further limit the impact of rezgath
loss, we computdRe Err as the ratio of the loss rate measured by
40-byte packets and that by 1000-byte packets on each phib. T
ReFErr is a conservative estimate of the relative error of loss rate

ply. As shown in Figure 5, the measured loss rates on 30% of the measurements induced by reverse path loss. Figure 7 shatvs th

paths increase significantly when the probing interval gearirom
500ms to 300ms. This indicates the rate-limiting threstuslthe

ReErr is less than 10% on 70% of the paths. We fiRdErr
tends to be large on paths with high loss rate,, Re Err exceeds

routers along those paths is between 300ms and 500ms. T$e los10% on most of the paths with loss rat&%. By discarding 6%

rate curves of 1s, 2s, and 500ms are almost indistinguishabg-
gesting that the 1-second interval is sufficiently largevoictrig-
gering ICMP rate-limiting on most routers. Otherwise, weuldo
have observed the loss rates measured by the 2-secondhlrtterv
be much smaller than those measured by the 1-second interval

5.3 Losson reversepath

of the paths with such abnormally high loss rafe,Err is within
10% on 80% of the remaining paths. In essence, we sacrifibe pat
coverage a little for higher measurement accuracy.

5.4 Load balancing

Per-flow load balancing is observed extensively in our measu
ments.e.qg.,BitTorrent traffic and HTTP traffic take different inter-

NetPolice relies on single-ended probes to measure loss rate. Thenal IP-level paths between 48% of the source-destinatias.pto

measured loss rate can be inflated due to reverse path log= Si
large packets are more likely to be dropped [20], we use 1306-

eliminate the effect of load balancing, we take a consemaip-
proach in detecting content-based differentiation. We fietect

probe packets to ensure the measured loss is mostly on fibrwar potential differentiation for each applicatigmir from the initial



[TSP [ App | Paths (%) Aw. | TOS, [ FP (%) |
TSDr, | BitTorrent | 3794 (19)] 100 | 99 | 12 (0.06)
TSP, | PPLve | 825(@.1)| 100 | 85 | 24 (0.1)
15P; VOIP | 172(3.2)| 100 | 68 | 11(0.2)
ISP, | SMTP [ 573(11) [ 100 [ 93 [ 9(0.02)
15P; VOIP | 203(2.1)| 100 | 96 | 25(0.2)
TSP, | SMTP [ 388(7.2)[ 100 | 97 | 52(0.9)

Table 3: Test results for content-based differentiation.

measurement data. We then verify that the detected ditiatam
still exists when the probe packets of the two applicatioagarses
the same internal IP-level path. Since per-flow load batemei-
gorithms use the five tuplésrcip, dstip, srept, dstpt, proto) to
choose an internal path, we fix the five tuple of one applicatio
while only changing the source port of the other application

til the probe packets of both applications follow the santerimal
IP-level path. The results in 86 are obtained after applyhig
controlled procedure to each application pair.

6. EXPERIMENTAL RESULTS

In this section, we provide concrete evidence of trafficedldhti-
ation based on content (§6.1) and routing (86.3) in backib®Rs.
We study the types of information used to construct contaised
differentiation policies and the scope of such policies inI&P
network (86.4). Without access to ISPs’ proprietary potionfig-
urations, we leverage both TOS value in probe packets (86d)
two-ended controlled probing (86.2) to validate the de@cliffer-
entiations. We also provide insight into when differenéins occur
(86.5) and how significant they are (86.6) in the large ISRsgoe
studied. Finally, we demonstrate that content and routiaged
differentiation can be easily implemented on today’s comuiaé
routers (86.7).

6.1 Content-based differentiation

Table 3 presents the detection results of content-bastteatif
tiation. We only listed the 4 ISPs that exhibits large degredif-
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Figure 8: Validation using two-ended controlled probing

a path even if it is configured with differentiation policés.§6.5,
we will show that there is indeed a strong correlation betwdi&
ferentiation and network load.

The loss rate samples may contain noise even after the filter-
ing process described in 85. The remaining noise may stitl te
false positives in the detection results. Because we doana the
ground truth, we cannot quantify false positives directhstead,
we use the following analysis to show that the detectionlteguw
deed reflect content-based differentiation performed leyl8Ps.
The main idea is to compare for the same paths the detecfed dif
entiation across different content with any observablédihces
due to noise for the same content. Strong evidence of cohtes®d
differentiation is manifested if the former is much moreminent
than the latter.

We first randomly divide the loss rate samplegts same ap-
plicationmeasured on the same path into two equally-sized subsets
and apply the K-S test to these two subsets. Since the saimples
both subsets are drawn from the same distribution, an sacept
of the testindicates a false positive due to noise. Theessits are
in the “FP” column in Table 3. We then make the conjecture that
ISPs do not carry out any content-based differentiatiordddnhis
conjecture, we deduce that: i) the detection results in Behs”
column are all “false positives”; ii) the number of false jioes

ferentiation. We use the performance of HTTP as a baseline in results from the K-S test should be independent of whethir it
comparison with the performance of each of the 4 remaining ap conducted between the same application (column “FP”) avben

plications. For a particular application, the “Paths” cohulists
the number and percentage of ISP internal IP-level pathstochw
differentiation of the application is detected. Surprigyn these
4 large ISPs show clear evidence of differentiation of agpions
such as BitTorrent, PPLive, SMTP, and VoIP in Table 3. For in-
stance, BitTorrent experiences higher loss rate on 379%) baths
in IS Pi». Thisis also true for SMTP on 573 (11%) pathdif\P».

In contrast,/ .S P> andl S Ps treat VoIP preferentially on 172 (3.2%)
and 203 (2.1%) internal paths. While content-based difiigag&on
is known to exist in broadband ISPs [13], we are the first tectet
such differentiation in backbone ISPs.

The percentage of internal paths with detected differéatias
relatively small for some applications. This can be exdity
two reasons: i) the differentiation policies are not unsadly de-
ployed within the ISPs. By analyzing the TOS marking behavio
of these ISPs (explained in 86.4), we find the differentiatoli-
cies are deployed only at certain routers. If we only consitde
internal paths traversing those routers, the percentagatb$ with
detected differentiation will become much higher as shawthée
“TOS;” column in Table 3; ii) traffic differentiation may happen
only during certain period®.g.,when network is congested. Since

different applications (column “Paths”). Nonetheless, tumbers
in the “Paths” column are mostly over an order of magnitudgda
than those in the “FP” column, contradicting our conjecturais
therefore suggests the detection results do reflect cohsead dif-
ferentiation performed by the ISPs.

In 86.4, we will further cross-validate the detection résand
the TOS values marked by the ISPs (columis,;” and “TOS;”
in Table 3).

6.2 Validation with two-ended controlled
probing

As mentioned in 85, loss rate measured by TTL-based probing
could be affected by various types of noise. We perform twdeel
controlled probing to partially validate the content-trhsifferen-
tiation results presented in the previous section. GivethalPlan-
etLab node pairs, we first select a subset of them that tratkes
ISP internal paths with detected differentiation. In tpte¢ found
13 such pairs, all traversing the internal pathd 8Pi2 with dif-
ferentiation against BitTorrent. Between each pair of sodee
simultaneously measure the one-way end-to-end loss ratelas
as the loss rate between ingress and egredsSéfi» with TTL-

we can only measure the loss rate of a path once every two hoursbased probing, using both HTTP and BitTorrent probes. In Fig

(explained in §4), we may not observe any loss rate diffexgn

ure 8, the two curves labeled “one-way end-to-end” and ‘@sgf



ISP Previous-hop Next-hop [ False positive (FP
name | AS pairs (%)] A¢s | TOSs | Customers (%) Peers (%) AS pairs (%) (%)
ISP 480 (11) 85 25 58 (10) 7(1.2) 97 (1.6) 6 (0.1)
5P, 440 (2.4) 48 94 406 (2.6) 0 130 (0.7) 90 (0.5)
IS5P; 1086 (21) 89 86 362 (12) 541 (19) | 3159 (15) 17 (0.05)
15P; 158 (6) 21 65 36 (4) 22 (2.4) 0 0
I1SPs 559 (16) 98 79 98 (13) 13 (1.7) 164 (4.9) 10 (0.3)
1S5Ps 670 (10) 71 41 569 (15) 0 103 (1.3) 33(0.4)
ISPy 501 (9) 77 81 365 (12) 0 109 (1.5) 5(0.07)
ISP 662 (17) 99 80 99 (5) 232 (12) 93 (2.3) 39 (1)
ISP 1511 (30) 67 90 134(12) 243 (23) 102 (2) 5(0.1)
ISP 51 (9) 94 91 15 (10) [9] 0 0

Table 4: Test results for routing-based differentiation.

egress” correspond to the CDF of actual loss rate differehee
tween HTTP and BitTorrent measured by two-ended controlled
probing and TTL-based probing respectively. Clearly, the t
curves match quite well, implying that the differentiatioaetween
HTTP and BitTorrent can also be confirmed by one-way loss rate
measurements.

6.3 Routing-based differentiation

Table 4 summarizes our findings for the 10 ISPs which appear
to carry out routing-based differentiation. For previdwgp AS
based differentiation, the “AS pairs” column shows the namdnd
percentage of previous-hop AS pairs in which differentiaiis de-
tected. Clearly, previous-hop AS based differentiatiaroimmonly
used by many ISPs, reflecting the fact that ISPs usually @miaint
different business contracts with their customers andspe&he
number of previous-hop AS pairs exhibiting differentiatican be
as large as 1511 (30%) if5 P1s and 1086 (21%) id S Ps. In con-
trast, next-hop AS based differentiation is far less pevalExcept
for 1.5 Ps, all the other ISPs studied show few cases of next-hop AS
based differentiation. This is likely due to the clear adege of
previous-hop AS based approach in enabling an ISP to matsge i
internal resources to meet its SLAs with customers and peers

Following the similar logic in §6.1, we show that the deteuwti
results indeed reflect previous-hop AS based differentiagier-
formed by the ISPs. We apply K-S test to path pairs that tssver
the same(preAS, ingress, egress, nztAS), which are not sub-
ject to any routing-based differentiation. Thus, an acmeqs of
the test indicates a false positive due to noise, as shoveitHP”
column in Table 4. Under the conjecture that ISPs do not carry
out any previous-hop AS based differentiation, we deduagt ti
the detection results in the previous-hop “AS pairs” coluena all
“false positives”; ii) the percentage of false positiverpaiesults
from the K-S test should be independent of whether it is cotetl

between the same previous-hop ASes (column “FP”) or between Can TOS difference explain detected differentiation?

different previous-hop ASes (column “AS pairs”). Nonetwsd,
the percentage numbers in the “FP” column are negligiblyllsma
compared to those in the previous-hop “AS pairs” columntreen
dicting our conjecture. This again implies that the detectesults
indeed reflect previous-hop AS based differentiation peréal by
the ISPs, which we will further cross-validate in the nexttEm
(columns A+s" and “TOSs” in Table 4).

The neighbors of an ISP can generally be classified into cus-
tomers and peers based on whether the ISP receives paymuents f
them. ISPs may have incentives to give customer’s traffib pigr
ority. We employ the commonly-used relationship infereraseilts
by Gao [16] to classify the previous-hop ASes into custonaeic
peers. Among all the previous-hop AS pairs consisting ofare
tomer and one peer, the “Customers” and “Peers” columns-n Ta

ble 4 shows the number of cases where customer’s trafficveei
better or worse treatment respectively. Seven of the tes P
ther consistently or mostly give customer’s traffic higheiopty,
confirming our conjecture.

6.4 Correlation with TOS value

As previously illustrated in §2, traffic differentiationrcée im-
plemented in the router by marking the TOS field in the IP heade
We develop a method to reveal the TOS field marked by the muter
along a path. We then study whether the observed trafficrdiffe
tiation can be explained by different TOS values.

Our probe packets trigger ICMP time exceeded messages from
routers. These ICMP messages contain the IP header of tpe ori
inal probe packets, including the TOS values set by the rsute
Table 5 illustrates an example of the TOS marking behavior of
content-based differentiation. It shows the traceroutpuiurom
a PlanetLab node in University of Arizona traversih§P;>. The
“TOS” column shows the TOS value of original probe packets ex
tracted from ICMP replies. Itis clear that the TOS value dflBi-
rent probes is set to 128 by the router at the sixth hop whiedh
HTTP probes is always O.

To correlate the loss rate differences with TOS value difiees
in the traffic, we first need to infer the relationship betw@&»S
values and priorities. We assume an ISP has a consistety poli
of associating a TOS value with a fixed priority. However, vee d
not assume that a large TOS value is always associated wigiha h
priority. Starting with all the pairs that pass K-S test, wenpile a
list of all the distinct TOS values observed in a target ISE.tén
construct a mapping from TOS values to priorities in a wayhsuc
that the loss rate differences between the pairs with @ifféation
can be best explained. More specifically, given a pair wiffedi
entiation, if the first set has lower loss rates than the s&eet) the
TOS value of the former should map to higher priority.

Once

a mapping is constructed for each ISP, we comphtgs, which

is the percentage of pairs with detected differentiatiat tan be
explained by differences in priorities inferred from TOSues.
The results are in theXA;,s” columns in Tables 3 and 4, where
“-" means no TOS marking is used. Clearly, a large percentage
of pairs with detected differentiation can be explained Hwy pri-
ority differences inferred from TOS valuegd\,; is 100% for all

the pairs with content-based differentiation (Table 3). the pairs
with previous-hop AS based differentiatiofy,, s is over 80% in 5
ISPs (Table 4). Note thah;.s is not 100% in some ISPs, which
could be caused by ISP’s “passive” differentiation. Fotanse,

an ISP may route the traffic from a neighbor through an under-
provisioned link, persistently causing high loss rategnethough
the ISP does not “actively” treat the traffic with low prigrit



Hop | DNS name TOS
BitTorrent | HTTP

2 tuco.telcom.arizona.edu 0 0
3 morgan.telcom.arizona.edu 0 0
4 static.twtelecom.net 0 0
5 - 0 0
6 HOP, ISP 128 0
7 HOPy,. ISP 128 0
8 HOP.. ISP 128 0
9 HOP,.ISP:2 128 0

Table 5: An example of content-based differentiation confirmed
with TOS

[TSP [ Destinafion poris |
TSDr, | 1214 (Napster), 4004 (PPLwe), 4662 (eDonkey)
6881-6889 (BitTorrent), 6946, 6961-6969, 6999
TSD; | 10, 5060 (VoIP)
TSP, | 179 (BGP), 16384 (VoIP), 25 (SMTP), 2525 (majl)
ISP, | 25 (SMTP), 53 (DNS), 109 (POP3),
443 (IMAP), 1575, 5060 (VoIP)

Table 6: Destination ports used for TOS marking.

Aredifferentiation policiesapplied toall therouters? Interest-
ingly, we observe that some ISPs selectively deploy coriaaed
differentiation policy within their networks. Among the 8Ps in
Table 3,I1SP, and I.SP; only mark the TOS field of VoIP traf-
fic that traverses the PoP in Utah and Virginia respectivélye
differentiation policy of BitTorrent is much more widely pleyed
than that of PPLive il SPi2. The TOS marking of BitTorrent is
found on nearly 4 times more paths than that of PPLive, whieh a
matches the numbers in the “Paths” column in Table 3. In fact,
many routers that perform TOS marking of BitTorrent traffayp
no attention to PPLive traffic. Given that an ISP may not apipéy
same differentiation policy to all the routers, it is impaort to cover

a reasonable number of ISP internal paths to avoid drawiaggehli
conclusion.

Why the percentage of pairs with detected differentiation is
small? As shown in Table 3 and 4, the percentage of appli-
cation and AS pairs with detected differentiation is refltf small

in some ISPs. One major reason is the differentiation pslare
not universally deployed within these ISPs. To illustrdtes,twe
compute the percentage of pairs with detected differeatiaby
only considering the pairs that are confirmed to have difféae
tion policies based on different TOS values. The resultsratiee
“TOS;” columns in Tables 3 and 4. Compared to the corresponding
percentage numbers in the “Paths” and “Pairs” columns, sT®S
much higher. Only VoIP il .SP, has a TOS smaller than 80% in
Table 3. For previous-hop AS based differentiation, T@gceeds
80% in 6 ISPs in Table 4. The reason that ;S not 100% is
likely due to the fact that differentiation is performed pninder
certain conditionse.g.,when there is resource competition. As a
result, we may not observe any loss rate differences betegen
tain pairs even if they are configured with differentiatiasligies.
We will study its correlation with network load in 86.5.

How content-based differentiation policy isconstructed? For
the 4 ISPs verified to use TOS markings for content-baseerdiif
tiation, we further analyze which packet fields are used téopa
TOS marking. Such information is especially useful for onsers
who want to circumvent ISP’s differentiation policy. We cloct
controlled experiments by changing packet headers andcappl
tion payloads in probe packets. Surprisingly, we found fzadl 4

[TSP [ App [ Highloss (%)] Low loss (%)]
ISP, | BitTorrent 3642 (18) 1707 (8.5)
ISP PPLive 825 (4.7) 51T (2.5)
ISP, VOIP 182 (3.3) 111 (2)
ISP, SMTP 573 (11) 304 (5.8)
ISP; VOIP 203 (2.1) 103 (1.07)
I5P; SMTP 388 (7.2) 54 (1)

Table7: Effects of network load on content-based differentiation.

[ TSP [ Highloss (%)] Low loss (%) |
ISP, 437 (10) 115 (2.6)
I5P, 440 (2.4) 308 (1.68)
ISP; 1108 (21.4) 489 (9.5)
I15P; 158 (6) 32 (1.2)
1SPs 559 (16) 414 (11.8)
15Ps 643 (9.2) 107 (1.6)
15Py 501 (9) 115 (2)
ISPy, 662 (17) 311 (8)
ISPis | 1299 (25.8) 982 (19.5)
ISPrs 48 (8.5) 20 (3.5)

Table 8: Effects of network load on previous-hop AS based dif-
ferentiation.

ISPs simply use destination port to mark TOS field despitéatie
that some applications may change their port numieegs,packets
with the default BitTorrent port and fake payloads are stiirked.
By enumerating different destination ports, we can cleabyerve
changes in TOS markings. Table 6 lists all the destinatiatispo
which are used by the 4 ISPs for TOS marking. For instance, be-
sides PPLive and BitTorrenf,S P;> marks the TOS field of Nap-
ster and eDonkey (both are P2P applications). It also méuks t
TOS field of traffic destined to all the default BitTorrent fsobe-
tween 6881 and 6889. Similar to VoIP, BGP traffic seems tavece
preferential treatment byS Ps, likely reflecting operator’s desire
to maintain the stability of BGP sessions. We plan to comgmeh
sively study on whether ISPs use other factors rules otlzer des-
tination port to construct their differentiation policy fasure work.

6.5 Load-sensitive differentiation

Given the strong evidence of traffic differentiation penied by
some large ISPs using packet content and routing informatie
now investigate whether there exists other factors that af@gct
traffic differentiation. In particular, if ISPs intend toauslifferen-
tiation to conserve limited resource in their networks, Wweuwsd
be able to observe a strong correlation between networkdodd
traffic differentiation. For instance, an ISP may throtti€TBrrent
traffic only when its bandwidth usage exceeds 100Mbps.

Although we cannot measure network load directly, we can ob-
serve its effects in terms of loss rate. High loss rate ugtiadli-
cates heavy load, given that we have discarded the samfeeseaf
by routing changes and failures (in §4). For the two sets dh ep-
plication or AS pair, we sort the samples in each set basedsa |
rate value and partition the samples into two equally-sgredips:
high-lossvs. low-loss. We then perform K-S test both between
the two high-loss groups and between the two low-loss grotgs
bles 7 and 8 summarize the number and percentage of appficati
and AS pairs that pass the tests. The numbers in the higlgriosp
are significantly higher than those in the low-loss groupady
supporting our conjecture that ISPs perform load-sermsitiaffic
differentiation.
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Figure 10: Loss rate differences in content-based differentiation.

6.6 Degree of differentiation

The statistical tests we devise can systematically detkethver
there exists differences between two loss rate distribatitVe now
study whether the actual loss rate differences are signtfar@ough
to affect the perceived performance of TCP-based appicstiFor
each AS pair with previous-hop AS based differentiation,finst
compute the mean loss rate of each set. We then compute tla act
loss rate difference between the two mean loss rates. Figpies
the CDF of actual loss rate differences of all the AS pairhineé
target ISPs. Among them, the AS pairsidf Py have the smallest
loss rate differences, mostly under 3%. In contrast, tHemifices
are much more evident for AS pairs i Ps. Nearly 10% of them
have loss rate difference over 4%. Such large loss raterelifte
will certainly lead to perceptible performance differedioemany
TCP-based applications.

Figure 10 illustrates the CDF of actual loss rate differsmafehe
application pairs included in Table 3. For each applicagiaim, the
actual loss rate difference is computed as the differentedamn
the mean loss rate of an applicatiand., BitTorrent) and that of
HTTP. Clearly, the degree of content-based differentiatiaries
significantly across different applications and ISPs. Rstance,
1S P, treats SMTP only slightly worse than HTTP. Their loss rate
differences are smaller than 2% on nearly 90% of paths. Irpaom
ison, IS P; gives VolP much higher priority than HTTP, possibly
reflecting their desire to meet the QoS requirements of tHe Vo
service provided by themselves. Interestingly, althougth Bit-
Torrent and PPLive experience worse performance than HRTP i
IS P2, the loss rates of PPLive are even higher than those of Bit-
Torrent. This is because the paths with PPLive differeiatinare
only a subset of those with BitTorrent differentiation (&iped in
86.4) and this subset of paths tend to have higher loss rades t
other paths.

ip nbar port-map custom-01 tcp 6881
class-map BTCLASS match protocol custom-01
policy-map BTPOLICY class BTCLASS dscp 60

R1

l R2
BT traffic | &=¥ay (=&
HOSLA =P traffic P ~

class-map BTCLASS match dscb 60
rate-limit output dscp 60 90000 110000 conform-action transmit exceed-actiono drop

Host B

Figure 11: Router testbed setup
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Figure 12: Loss rate differences in testbed experiment

6.7 Implementation of differentiation in

router testbed

In this section, we demonstrate the feasibility of impletran
and enforcing traffic differentiation in today’s commetaiauters.
As shown in Figure 11, we set up our own experimental testbed u
ing two high-end routers (Cisco 7300 and 12000) runningatest
10S 12.3 from the Schooner testbed [3]. Hastransmits BitTor-
rent and HTTP traffic to hosB via R; and R.. All the machines
and routers are connected using Gigabit Ethernet links. ofo ¢
figure the routers for port-based differentiation, we defingort-
map onR; to capture all the packets with the default BitTorrent
port and mark their TOS field using policy map. Interestinghg
found the default router configurations already includegefned
port-maps for applications such as Napster, Kazaa, S{tH9],
which greatly simplifies the work of configuring differerttan for
these applications. The actual router commands used inidoe C
command line interface (CLI) are shown in Figure 11. Sinjlar
to implement previous-hop AS based differentiation, we easily
mark packets based on incoming interfaces by changing fivé-de
tion of class-mapo class-map NEIGHBOR match interface Giga-
bitEthernet 1/0 We configureR: to prioritize traffic on its incom-
ing interface using weighted random early drop (WRED) goeui

In § 6.5, we observed that the effects of traffic differemiaiare
more perceptible when network load is high. To illustrais,tive
measure the loss rate differences between HTTP and BitTiaaee
we control the sending rate a#. The configurations oR; and
R> remain the same throughout the experimerRs. will restrict
the BitTorrent bandwidth to be within 110Mbps. Figure 12who
the actual loss rate differences between BitTorrent andaiider
two different ranges of sending rates. When the sendingsaigh
(80 - 150Mbps), the loss rate differences can go up to 7%. A co
trast, when the sending rate is below the bandwidth limit-(800
Mbps), the loss rate differences become negligibly smaé. algo
measure the overhead induced by the differentiation corfiguns
on R, and R». From the SNMP logs, we observed little changes
in the CPU utilization onR; and R, when we disable or enable



the differentiation configurations. This indicates therbead of
enforcing both types of differentiation is small.

7. SYSTEM EVALUATION

In this section, we study the parameter settings and syséem p
formance inNetPolice. We will explain the choice of redundancy
factor and maximum probing threshold (defined in § 3.1). Wé wi
also evaluate the resource usageNetPolice in terms of network,
memory, and CPU. Our evaluation results demonstrate tisébiea
ity of deployingNetPolice as a lightweight tool for continually de-
tecting traffic differentiation in multiple large ISPs sittaneously.
Parameter settings The path selection process NEtPolice
is controlled by two pre-defined parameters: the redundéacy
tor R and the maximum probing threshotd (§ 3.1). R de-
termines the number of distinct paths that will traversehegle-
ment. An element can be a three-tuple(efc, ingress, egress)
or (ingress, egress,dst). Figure 13 shows the maximum number
of destinations assigned to a prober increases Ritind remains
the same oncé® exceeds 100. This means whé&n> 100, the
redundancy of each element is no longer determined liput by
the set of destinations the probers can probe. Wezset 100 to
obtain the best coverage.
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Figure 13: How to select redundancy factor.
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NetPolice imposes a maximum probing threshotdto prevent
a prober from being assigned too many probing destinatibhis
may cause the actual redundancy of certain elements to Heesma
than R. Figure 14 shows the fraction of elements whose actual re-
dundancy reacheB > 100 under differentn. The fraction num-
ber grows slowly whenn exceeds 10K. We choose = 10K
to attain a reasonable balance between element redundadcy a
maximum prober overhead. Note that the redundancy of certai
elements can never rea¢hbecause the number of distinct paths
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Figure 15: Execution time and memory usage of path selector.

ISP
1Ot

ISP

1300 |
1200 ulti-
1100
1000

900

800 :
700 ;/D
600

500

= T

Number of paths probed(K)

300

0 2 4 6 8 10 12 14 16 18
Number of ISPs

Figure 16: Probing overhead under single-ISRs. multi-ISP
path selection.

traversing an element is inherently limited by the set ofrseu
destination pairs covered IetPolice.

Performance evaluation In NetPolice, the number of destina-
tions probed by each prober ranges from 6K to 10K. This corre-
sponds to a bandwidth usage from 17Kbps to 443Kbps per prober
The multi-ISP path selection consumes most of the exectitioe
and memory compared to other componentsiétPolice. Since a
path can only traverse a limited number of elements, the &ntk
space complexity of the path selectiorOgp®) andO(ep). Here,

p is the number of source-destination pairs and the number of
elements.

We evaluateNetPolice on a commodity server with eight 3.0
GHz Xeon processors and 8 GB memory running Linux 2.6.18
SMP. Figure 15 illustrates the execution time and memory us-
age ofNetPolice as the number of ISPs increases. At 18 ISPs,
NetPolice measures 13K unique ingress-egress pairs from 186
sources to 57K destinations. It takes 3.5GB memory Net-
Police to store 182M three-tuples dfrc,ingress,egress) and
(ingress,egress,dst). The execution time of each run of path
selection is around 25 minutes, which is only 20% of one roafind
probing. This means the path selection process can keepthp wi
measurement speed. To demonstrate the benefit of multia8P p
selection, Figure 16 compares the total number of pathsegrah-
der single-ISR/s. multi-ISP path selection. The latter reduces the
probing overhead by almost a third when 18 ISPs are being mea-
sured.

8. RELATED WORK

Traffic differentiation detection has drawn significanteatton
among the research community in the last few years. One re-
cent study leverages active measurement launched fronhestd-



to identify traffic differentiation using port blocking [8Evidence
of differentiation against P2P traffic has been found in manoad-
band ISPs by BTTest [13]. Unlike the existing works that gtud
broadband ISPg\etPolice focuses on differentiation detection in
backbone ISPs. This requires us to devise an intelligeht gelec-
tion algorithm to scalably measure a large number of ISRniate
paths.

Our previous work has demonstrated some initial evidence of
traffic differentiation in backbone ISPs [35]. In this papse sig-
nificantly extend our prior work by comprehensively pregemt
validating, and analyzing the differentiation detecti@sults col-
lected over 10 weeks. NANO [32] targets a similar goal buesak
a passive monitoring approach. Without coordinating acthea-
surement from multiple end hosts ldstPolice does, its main diffi-
culty lies in collecting sufficient samples across différeasts and
ISPs that enables adjustment for each of the many confogifiain
tors,e.g.,congestion and time-of-day effect.

Our work draws heavily on a broad class of measurement studie
to reverse engineer the Internet using end-host basedngr¢®0,
21]. Rocketfuel [29] infers ISP topologies by launchingceeoute
from a set of end-hosts. We extends its DNS naming rules tdPap
addresses to geographic locations. There have been a fearket
wide systems that measure and predict the performance iofigar
Internet paths [20, 15, 25]. The closest work on monitorBg per-
formance is Netdiff [23], which enables cross ISP latenaypar-
ison. Similar toNetPolice, the systems above must carefully man-
age measurement overhead for scalable probing. Howevee, afo
them has been used for systematically detecting traffiewifftia-
tion.

9. CONCLUSION & FUTURE WORK

In this paper, we presented théetPolice system to detect
content- and routing-based traffic differentiation in Haahe ISPs
by taking loss measurement from end hosk&tPolice employs
an intelligent probing scheme to attain rich coverage of ilgér-
nal paths while maintaining reasonable measurement caerhée
identifies significant performance gap between differepesyof
traffic using statistical hypothesis tests.

We deployedNetPolice on PlanetLab to study 18 large ISPs

across 3 continents over 10 weeks in 2008. We find 4 ISPs that

perform differentiation on 4 distinct applications and BPk that
perform previous-hop AS based differentiation, evidernogdp to
5% actual loss rate differences. The degree of differeatian-
creases with network load. Some ISPs appear to carry ougmpnt
based differentiation simply based on port numbers irrespmeof
packet content. These ISPs may deploy differentiatiorcjgdionly
to a subset of routers in their networks. The loss rate diffees are
often associated with different TOS values in the traffickedrby
the ISPs.

Our work serves as an important step towards increasing the

transparency of the Internet. If an ISP blacklists the sauR
addresses ofNetPolice or disables ICMP response completely,
we could getNetPolice deployed on hosts spanning educational,
commercial and residential networks to counteract blatkly of
source IP addresses. We could also leverage end-to-enahih-b
probing techniques [7] to detect performance degradatientd
differentiation without requiring router responses. Warmpto ex-
plore ways to improve the robustness of differentiatioredgon in
NetPolice in the future.
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