
Generalized Property Directed Reachability

Kryštof Hoder(1) and Nikolaj Bjørner(2)

(1) The University of Manchester (2) Microsoft Research, Redmond

Abstract. The IC3 algorithm was recently introduced for proving prop-
erties of finite state reactive systems. It has been applied very success-
fully to hardware model checking. We provide a specification of the al-
gorithm using an abstract transition system and highlight its dual oper-
ation: model search and conflict resolution. We then generalize it along
two dimensions. Along one dimension we address nonlinear fixed-point
operators (push-down systems) and evaluate the algorithm on Boolean
programs. In the second dimension we leverage proofs and models and
generalize the method to Boolean constraints involving theories. 1

1 Introduction

Efficient SAT and SMT solvers are at the heart of many program analysis,
verification and test tools. Such tools reduce program representations and logics
to first-order or propositional queries. An ongoing quest is how one can raise
the level of abstraction and power of the logic engines. We pursue satisfiability
modulo least fixed-points. The propositional fragment corresponds to Boolean
Programs with procedure calls, equivalently monotone Datalog, and first-order
existential fixed-points provide a precise match for Hoare Logic [3].

The IC3 algorithm [4] was recently used successfully for hardware model
checking [4, 6]. We use the current popular, and descriptive, terminology Prop-
erty Directed Reachability (PDR) to refer to IC3 and its derivatives. PDR has
several intriguing characteristics. It simultaneously strengthens an abstraction
of reachable states and prunes a search for counter examples, but in contrast
to predicate abstraction methods [2] and methods based on interpolants [12, 8,
1], it maintains precise transition relations and only refines state abstractions.
Importantly, it leverages induction proofs to strengthen invariant candidates.

We are motivated by software analysis, where handling procedure calls and
theories is relevant. In the pursuit of this goal, we contribute the following:

– provide an abstract account of the PDR algorithm;
– generalize PDR to nonlinear fixed-point operators;
– further generalize PDR to theories, specifically Linear Real Arithmetic.

The paper is organized as follows: Section 2 motivates satisfiability mod-
ulo least fixed-points. Sections 3 (4) present the abstract account of (nonlinear)
PDR. Section 5 generalizes PDR to theories and Section 6 describes our imple-
mentation and experiments.

1 The original paper appears in SAT 2012

2 From Safety Verification to Least Fixed-points

To motivate the use of fixed-point operators and solving satisfiability modulo
least fixed-points consider Lamport’s two process Bakery algorithm. It ensures
mutual exclusion between processes P1 and P2. They cannot simultaneously
execute critical.

initially y1 := y2 := 0;

P1 ::


loop forever do
`0 : y1 := y2 + 1;
`1 : await y2 = 0 ∨ y1 ≤ y2;
`2 : critical;
`3 : y1 := 0;


 || P2 ::


loop forever do
`0 : y2 := y1 + 1;
`1 : await y1 = 0 ∨ y2 ≤ y1;
`2 : critical;
`3 : y2 := 0;




Θ(x) → R(x)
R(x) ∧ ρ(x,x′) → R(x′)
R(x) → S(x)

G-INVS |= 2S(x)

Mutual exclusion and other safety
properties are proved by induction over
the set of reachable states. The induction
proof requires finding an inductive invari-
ant that is true in the initial state, is
maintained by each step of the system, and implies the safety property. The
induction G-INV rule can be formalized following [11]. Programs denote transi-
tion systems S = 〈x, Θ, ρ(x,x′)〉, where x is a set of state variables, Θ a formula
describing a set of initial configurations over x and ρ(x,x′) is a transition rela-
tion. For the Bakery algorithm, Θ := y1 = y2 = L = M = 0 where L is program
counter for P1 and M is a program counter for P2. The safety property for Bak-
ery is S := ¬(L = 2∧M = 2). The predicate R serves as the inductive invariant
in G-INV. Notice that the premises of G-INV are Horn clauses. We reformulate

R(0, 0, 0, 0)
R(L,M, Y1, Y2) ∧ T (L,L′, Y1, Y2, Y

′
1) → R(L′,M, Y ′1 , Y2)

R(L,M, Y1, Y2) ∧ T (M,M ′, Y2, Y1, Y
′
2) → R(L,M ′, Y1, Y

′
2)

T (0, 1, Y1, Y2, Y2 + 1)
Y1 ≤ Y2 ∨ Y2 = 0 → T (1, 2, Y1, Y2, Y1)

T (2, 3, Y1, Y2, Y1)
T (3, 0, Y1, Y2, 0)

R(2, 2, Y1, Y2) → false

the Bakery verification
problem on the left us-
ing Prolog convention
of capitalization for
universally quantified
variables. The non-
recursive predicate T
is a shorthand for ρ. It
exploits the symmetry of P1 and P2. The real challenge is to find a solution to
the recursive predicate R. A solution exists iff there is a solution to the least
fixed-point of the strongest post-condition predicate transformer that defines R.
For transition systems, the predicate transformer follows the template:

F(R)(x) := ∃x0 . Θ(x) ∨ R(x0) ∧ ρ(x0,x)︸ ︷︷ ︸
T [R(x0)]

, (1)

where the quantifier-free body T of F is the transition relation, which now
includes also the initial condition Θ. The predicate transformer (1) is linear ; the
argument R occurs in at most one (positive) position. Using the terminology of
predicate transformers, finding an inductive invariant amounts to finding a post

fixed-point R, such that F(R)→ R and R→ S. Recall that the least fixed-point
µR.F(R) (the infinite disjunction

∨
i≥0 F i(false)) is contained in any R that

satisfies F(R)→ R.

3 Abstract Property Directed Reachability

S Ri+1

↖ ↗ ↖
Ri F(Ri)

(2)

Fig. 1: Invariant (2). Each arrow
is an implication: Ri → S, Ri →
Ri+1, F(Ri)→ Ri+1.

This section recalls the Property Directed
Reachability algorithm using terminology of
predicate transformers and we specify the
algorithm as an abstract transition system.
We build upon [6] as we arrive to a specifi-
cation. The original IC3 algorithm verifies
invariants of linear fixed-point operators.
PDR maintains formulas Θ = R0, . . . , RN ,
such that for 0 ≤ i < N invariant (2) holds.
Initially we set R0 = F(false) and N = 0, so the invariant holds trivially. N is
incremented if RN → S is established.

For Bakery, we have R0 := Θ := (L = M = Y1 = Y2 = 0) and S := ¬(L =
M = 2) so R0 → S, and we can increment N := 1, R1 := true. The next action
is to check if R1 ∧ ¬S is satisfiable. It is, and one partial model is denoted by
M := L = 2 ∧M = 2 (it does not include assignments to Y1, Y2). The model
M violates the safety property, but isM reachable from the current unfolding?
They would be if F(R0)∧M was satisfiable. It is not satisfiable. One of several
possible unsatisfiable cores is L 6= 0 ∧ M 6= 0. We then update R1 with the
negation: R1 := R1 ∧ (L = 0 ∨M = 0) and now we can unfold again N := 2.

These steps give a taste of how PDR uses spurious counter examples, as par-
tial models, to build up Ri. PDR also contains a clever mechanism for strength-
ening clauses in Ri by using induction, presented in the following. The Ri are
sets of clauses. We shall however often (ab)use notation and use conjunction
instead of set union and freely switch between viewing a set of formulas as a
conjunction. The Ri denote sets of states (the set of models that satisfy Ri)
and over-approximate the states reachable by unfolding the transition relation i
times. All stages except the last imply the safety property. We can visualize the
implications between the approximations using the picture below (for N = 3).

S R3 F(R3)
↖ ↗ ↖ ↗

S R2 F(R2)
↖ ↗ ↖ ↗

S R1 F(R1)
↖ ↗ ↖ ↗
R0 := F(false) F(R0)

PDR relies on refining counter examples that are models. A model is a con-
junction of equalities between variables and values. For example the model

a = true ∧ b = false ∧ x = 3 (more compactly written a ∧ ¬b ∧ x = 3), as-
signs a to true, b to false and x to 3. We use M as shorthand for models of the
form x = c. A model M of a formula ϕ is allowed to be partial (omit assigning
values to some variables) as long as ϕ is true underM. When ϕ is a clause, then
¬ϕ is treated as a conjunction of literals. So ¬ϕ ⊆M means that all literals in
ϕ are false in M.

The following updates to Ri are made by the algorithm:

Valid For i < N , if Ri ⊆ Ri+1, then Ri is an inductive invariant. Return Valid.
Unfold If RN → S, then set N ← N + 1, RN ← true.
Induction For 0 ≤ i < N , a clause (ϕ∨ ψ) ∈ Ri, ϕ 6∈ Ri+1, if F(Ri ∧ ϕ)→ ϕ,

then conjoin ϕ to Rj , for each j ≤ i+ 1. While induction is a separate rule,
it is useful to apply it immediately following Unfold and Conflict. The rule is
sound because F is monotone and Invariant (2) ensures Rj → Ri for j < i.
Therefore F(false)→ ϕ and F(Rj ∧ ϕ)→ ϕ for each j < i.

PDR includes a dual mode where it searches for a candidate counter-model
to S. The candidate model is used to guide the strengthening of Ri.

Candidate If M |= RN (x) ∧ ¬S(x), then produce candidate 〈M, N〉.
Decide If 〈x = c, i + 1〉 for 0 ≤ i < N is a candidate model and there is a

subset x̃0 of x0 and constants c0, such that x = c, x̃0 = c0 |= T [Ri(x0)],
then add the candidate model 〈x̃ = c0, i〉 (renaming x̃0 to x̃).

Model If 〈M, 0〉 is a candidate model, then report that S is violated.
Conflict For 0 ≤ i < N : given a candidate model 〈M, i+ 1〉 and clause ϕ, such

that ¬ϕ ⊆M, if F(Ri)→ ϕ, then conjoin ϕ to Rj , for j ≤ i+ 1.

3.1 PDR as an Abstract Transition System

Figure 2 summarizes the PDR algorithm as an abstract transition system. It
maintains states of the form M ||A, where M is a candidate counter example
trace that is a stack of models labeled by a level i, andA is the current abstraction
comprising of the maximal level N and sets of clauses R0, . . . , RN .

Example 1. Suppose we are given the safety property S(x, y, z) ≡ ¬y and the
predicate transformer F = λRλxyz . ∃x0y0z0 . (x, y, z) = (1, 0, 0) ∨ ((x, y, z) =
(y0, z0, x0)∧R(x0, y0, z0))) that corresponds to the rules: R(1, 0, 0). R(x, y, z) →
R(y, z, x) . We use 0 for false and 1 for true. We can check that ¬S is reachable.

Initialize =⇒ ε || [N ← 0, R0 ← x ∧ ¬y ∧ ¬z]
Unfold =⇒ ε || [N ← 1, R0, R1 ← true]
Candidate =⇒ 〈y ∧ ¬z, 1〉 || [N,R0, R1]
Conflict =⇒ ε || [N,R0, R1 ← ¬y] since y ∧ ¬z |= y, F(R0)(x, y, z)→ ¬y
Unfold =⇒ ε || [N ← 2, R0, R1, R2 ← true]
Candidate =⇒ 〈y, 2〉 || [N,R0, R1, R2]
Decide =⇒ 〈z, 1〉〈y, 2〉 || [N,R0, R1, R2]
Decide =⇒ 〈x, 0〉〈z, 1〉〈y, 2〉 || [N,R0, R1, R2]
Model =⇒ 〈x, 0〉〈z, 1〉〈y, 2〉 �

Initialize =⇒ ε || [N ← 0, R0 ← F(false)]

Valid M ||A =⇒ Valid if |= Ri−1 ⊆ Ri, i < N .

Unfold M ||A =⇒ ε ||A[RN+1 ← true, N ← N + 1] if |= RN → S,

Induction M ||A =⇒ M ||A[Rj ← Rj ∧ ϕ]i+1
j=1 if (ϕ ∨ ψ) ∈ Ri, ϕ 6∈ Ri+1,

|= F(Ri ∧ ϕ)→ ϕ

Candidate ε ||A =⇒ 〈M, N〉 ||A ifM |= RN ∧ ¬S

Decide 〈M, i+1〉M ||A =⇒ 〈x̃ = c0, i〉〈M, i+1〉M ||A ifM, x̃0 = c0 |= T [Ri(x0)]

Model 〈M, 0〉M ||A =⇒ Model 〈M, 0〉M

Conflict 〈M, i+1〉M ||A =⇒M ||A[Rj ← Rj ∧ ϕ]i+1
j=1 if ¬ϕ ⊆M, |= F(Ri)→ ϕ.

Fig. 2: Abstract transition system specification of PDR

The example exercises several features of PDR. It starts with a Candidate counter
example model to the last state and Decide pushes models down to the initial
state. There is some freedom in choosing models to push down. Such models
can be partial; they just need to force the transition relations. If models can be
pushed all the way down, there is a counter example trace, otherwise a Conflict
gets detected along the way. The induction rule is specified as a separate rule,
but it can be applied immediately after Conflict to minimize the new clause.
A good analogy is how subsumption is used when processing conflict clauses
in modern SAT solvers. Induction also serves the purpose of pushing up clauses
from (ϕ∨ψ) ∈ Ri to Ri+1 by taking ψ = false. Such propagation can be applied
immediately after Conflict and before Unfold.

Correctness of the algorithm follows from four observations:

Lemma 1 (Invariant (2)). The rules from Figure 2 maintain Invariant (2).

Lemma 2 (Validity). When |= Ri ⊆ Ri+1, then S is invariant.

Proof. Let us add this condition to the implications from invariant (2) and we get
that Ri is a post-fixed point that is contained in S: F(Ri) → Ri+1 → Ri → S.
Thus, Ri satisfies the premises of G-INV and therefore S is invariant.

Lemma 3 (Satisfiability). When 〈M, 0〉 is reached, then S is violated with a
path of length N .

Corollary 1 (Correctness of PDR). If PDR terminates with Valid, then S
is invariant. If PDR terminates with Model M , then M is a trace leading to a
violation of S.

It is also the case that each step makes progress by either extending models
or strengthening states. The set of possible different states Ri is bounded by the
set of possible models (assuming that clauses are normalized) so the algorithm
terminates for finite domains. Therefore,

Theorem 1 (Termination on Finite Domains). Any derivation sequence
terminates with a verdict Valid or Model when F is finite domain.

Note that PDR represents traces explicitly, so while reachability of Boolean
systems is PSPACE, PDR may nevertheless consume exponential space.

4 Nonlinear PDR

Nonlinear transformers are important in the context of checking software with
procedures. The Static Driver Verifier [2] implements a model checker for pro-
grams with procedure calls.

mc(x) = if x > 100 then x− 10 else mc(mc(x + 11))
assert ∀x.mc(x) ≥ 91

X > 100 → mc(X,X − 10)
X ≤ 100 ∧mc(X + 11, Y) ∧mc(Y,R) → mc(X,R)
mc(X,R) → R ≥ 91

Nonlinear predicate transform-
ers correspond to general Horn
clauses. An example program
with procedure calls and re-
sulting non-linear Horn clauses
comes from McCarthy’s 91

function and the accompanying assertion.
We therefore consider nonlinear predicate transformers of the form

F(R)(x) = ∃x0,x1 . Θ(x) ∨ [R(x0) ∧ R(x1) ∧ ρ(x0,x1,x)]︸ ︷︷ ︸
T [R(x0),R(x1)]

(3)

We use the template (3) when presenting algorithms for nonlinear PDR. The
terminology of predicate transformers was useful for formulating the main in-
variant (2), and we find it particularly instrumental for generalizing PDR to
general Horn clauses. The extension to nonlinear predicate transformers with
more than two occurrences of R, and systems of nonlinear predicate transform-
ers is relatively straight-forward.

4.1 State

In contrast to linear predicate transformers, counter examples for nonlinear
transformers unfold into trees. A compressed view of counter examples is as
DAGs, and the potential savings of using DAGs can be exponential. A chal-
lenge is to create and maintain such counter examples. We propose an approach
where states that are known to be reachable are put in a cache, and PDR inserts
nodes into a DAG. So it inspects the current DAG to see if a new (potentially)
reachable state is already being expanded before creating a new node. States are
compared syntactically. A more powerful alternative is to represent the cache as
a formula and check cache containment semantically, but we found no practical

use for such added power: counter examples for recursive predicates from pro-
grams can be expected to have a small tree unfolding. We present this approach
in the following.

The state of the algorithm is maintained as a triple D ||A ||C, where:

D, the model search DAG represents a partial unfolding of a counter example.
It is initially the empty DAG ε. Nodes are labeled with queries 〈M, i〉, where
i is a level and M is a partial model. We use L as a shorthand for 〈M, i〉; use
D[L • {D′ D′′}] to refer to an internal node L with two children; and model(D)
to access the model at the root of a DAG.

A, the property state of the form [N,R0, . . . , RN].

C, the cache of reachable states. It contains a set of partial interpretations M
that imply Fn(false) for some n ≥ 0. Consequently, every completion of M is
contained in the least fixed-point and is therefore reachable.

4.2 Algorithm Specification

Figure 3 contains the new rules we need for the nonlinear variant of PDR. Rules
Initialize, Valid, Induction, Unfold, Candidate are unchanged from Figure 2, with
the exception that we add a column for the cache C and we replace the stack of
models M by a DAG D.

Decide D[〈M, i+ 1〉] ||A ||C =⇒ D[〈M, i+ 1〉 • {〈x̃ = c0, i〉 〈˜̃x = c1, i〉}] ||A ||C
ifM, x̃0 = c0, ˜̃x1 = c1 |= T [Ri(x0), Ri(x1)]

Model D ||A ||C =⇒ Model D if 〈M, N〉 ∈ D,M∈ C

Conflict D[L • {D′ D′′}] ||A ||C =⇒ D[L] ||A[Rj ← Rj ∧ ϕ]i+1
j=1 ||C

if ¬ϕ ⊆ model(D′), |= F(Ri)→ ϕ.

Base D[〈M, i〉] ||A ||C =⇒ D ||A ||C ∪ {M} ifM |= R0.

Close D[〈M, i+ 1〉 • {D′ D′′}] ||A ||C =⇒ D ||A ||C ∪ {M}
if model(D′),model(D′′) ∈ C .

Fig. 3: Abstract nonlinear transitions

Decide extends a leaf L in D with two children. The nodes correspond to
partial models for the variables that are arguments to the recursive predicates
in F . To differentiate two possibly different subsets of x we use x̃ and ˜̃x. The
children are possibly pointers to nodes that already exist in D (so that we don’t
expand the same model twice). Model declares a counter example when all the

leaves and internal nodes have been validated. This amounts to that the root of
D is in the cache C. Conflicts are similar, Conflict backtracks from a leaf when
the (partial) model annotating the leaf contradicts the constraints at its level.

There are two new rules. The rules are Base and Close. Their role is to
propagate cache hits upwards in the model DAG. At the base level, a modelM
is added to the cache C if it implies R0. The Close rule removes children from
an internal node if each child is reachable. The model annotating the internal
node is then also reachable, so added to C.

Correctness follows analogously to the basic PDR algorithm, as we maintain the
following properties for a state D ||A ||C:

1. R0 ≡ F(false).
2. Invariant (2) holds.
3. Every member M∈ C is contained in FN (false).
4. Every internal node 〈M, i+ 1〉 with children 〈x̃ = c0, i〉, 〈˜̃x = c1, i〉, it is the

case that M, x̃0 = c0, ˜̃x1 = c1 |= T [Ri(x0), Ri(x1)].

Example 2. Consider a nonlinear system R(true, true). R(x0, y0)∧R(x1, y1) →
R(x0 ⊕ x1, y0 ⊕ y1). R(true, false) → false. A sample run of the algorithm
proceeds as follows:

Initialize =⇒ ε ||A0 || {} for A0 = [N ← 0, R0 ← x ∧ y]
Unfold =⇒ ε ||A1 || {} for A1 = A0[N ← 1, R1 ← true]
Candidate =⇒ 〈x∧¬y, 1〉 ||A1 || {}
Conflict =⇒ ε ||A2 || {} for A2 = A1[R1 ← R1 ∧ (¬x ∨ y)]
Unfold =⇒ ε ||A3 || {} for A3 = A2[N ← 2, R2 ← true]
Candidate =⇒ 〈x∧¬y, 2〉 ||A3 || {}
Decide =⇒ 〈x∧¬y, 2〉 • {〈x∧y, 1〉 〈¬x∧y, 1〉} ||A3 || {}
Base =⇒ 〈x∧¬y, 2〉 • {〈x∧y, 1〉 〈¬x∧y, 1〉} ||A3 || {x∧y}
Conflict =⇒ 〈x∧¬y, 2〉 ||A4 || {x∧y} for A4 = A3[Rj ← Rj∧(x∨¬y)]2j=1

Induction =⇒ . . . ||A4[Rj ← Rj ∧ (¬x ∨ y)]2j=1 || {x∧y}
Valid =⇒ Valid

Note how Decide develops two branches. When one child is in conflict then both
children are collapsed. Note also how Induction is used to push (¬x ∨ y) up to
level 2. The property is inductive when combined with the property (x∨¬y). At
this point R2 → R1 (e.g., R1 ⊆ R2) so the procedure terminates with Valid. �

5 Theories - The case of Linear Real Arithmetic

We generalize PDR to handle non-Boolean constraints. The problem goes from
PSPACE to highly intractable. Nevertheless, we identify a subclass, timed push-
down systems, that are handled by our generalization. Our approach is to lift
the Conflict and Decide rules and instantiate the generalization to the theory of

linear real arithmetic. Central to our approach is the use of models for guiding
the creation of conflict clauses as interpolants. The interpolants are a minimal
set of constraints implied by the existing abstraction that suffice to exclude a
spurious counter example. When iterated over all spurious counter examples, our
procedure does in fact produce interpolants for systems of non-recursive Horn
clauses [8]. Our incremental approach is appealing compared to an approach
that computes interpolants in from an eager unfolding: intermediary results from
spurious counter examples act as conflict clauses for future traversals. We use
the calculus from Section 3 to keep definitions simpler.

5.1 Conflicts

Recall Conflict applies when there is a ϕ ⊆ ¬M such that F(Ri) → ϕ. The
Conflict rule therefore applies when F(Ri) → ¬M. The propositional version
lets us add any subset of ¬M that is implied by F(Ri). The clause ϕ is also an
interpolant by construction. A problem with using a subset of ¬M for infinite
domains is that the number of potential counter-models is unbounded, so block-
ing one of an unbounded set of models does not help to ensure convergence. In
principle one can take any clause Post such that

F(Ri) → Post , Post → ¬M . (4)

This suggests a G-Conflict rule (formulated for linear fixed-points) as:

G-Conflict 〈M, i+ 1〉M ||A =⇒ M ||A[Rj ← Rj ∧ Post]i+1
j=1

if |= F(Ri)→ Post , Post → ¬M.

Where Post is any clause that uses the variables x and implies ¬M. Notice that
we require Post to be a single clause. At the other extreme, one could think of
taking Post := F(Ri), the strongest post-condition that is independent of M.
The resulting algorithm would have to rely on quantifier elimination to convert
the result into a set of clauses and for making effective use of Induction. The rule
G-Conflict without further conditions is not informative.

Arithmetical Conflicts We instantiate G-Conflict for the theory of Linear Real
Arithmetic (LRA) and show that we obtain a decision procedure for safety prop-
erties of timed push-down systems. The main idea is to compute the strongest
conflict clause modulo linear real arithmetic from unsatisfiability ofM∧F(Ri).

L = 2 ∧M = 2 |= F(R3) ∧ ¬S
↑

L = 1 ∧M = 2 ∧ Y2 = 0 |= F(R2)
↑

L = 1 ∧M = 1 ∧ Y1 = 1 ∧ Y2 = 0 |= F(R1)
...

L = 0 ∧M = 1 ∧ Y2 = 0 |= ¬F(R0)

The conflict clause is by con-
struction an interpolant and
the way it is extracted can
be described as a specialized
interpolation procedure. On
the right is the stage N = 4
where PDR pushes a counter
example down for Bakery. It

reaches a conflict because L = 0 ∧M = 1 ∧ Y2 = 0 ∧ T [R0(x0)] is unsatisfiable.
The justification includes the clause ¬(Y2 ≤ 0 ∧ Y1 ≥ 0 ∧ Y2 ≥ Y1 + 1). The last
two literals are from T [R0(x0)]. They resolve to Y2 > 0, justifying the stronger
conflict clause ¬(L = 0 ∧M = 1 ∧ Y2 ≤ 0).

In general, assume M is of the form
∧

i ki ≤ xi ≤ ki where xi are variables
and ki are numerals of type Real. The G-Conflict rule applies whenM∧T [Ri(x0)]
is unsatisfiable and there is a resolution proof Π that derives the empty clause.
In the following we make two important assumptions for our construction, first
we assume that all literals in Π are already in M∧ T [Ri(x0)]. This is the case
for proofs produced by the DPLL(T) framework [13]. Second, we assume that all
literals inM are used in unit-resolution with input clauses. This can be enforced
by permutingM up in proofs. The leaves of Π comprise of the inequalities (unit-
literals) from M, clauses from T [Ri(x0)] and T-axioms. In the theory of LRA,
the T-axioms are of the form

∨
i ¬(Aix− bi ≤ 0), where Ai are row vectors and

bi are constants. Recall that we can represent strict inequalities t > s using non-
strict inequalities by using an infinitesimal ε constant for t ≥ s+ ε. Let us write
Ax ≤ b for the conjunction

∧
iAix ≤ bi. Farkas’ lemma implies that there is a

corresponding set of non-negative coefficients λ, such that λ ·A ·x is a numeric
constant and λ · A · x > λb. These coefficients are produced as a side-effect of
the Simplex procedure. Proof-objects exposed by Z3 [9] include the coefficients.

The method for creating Post is now as follows: conjoin every literal from
M that resolves against a clause from T [Ri(x0)] in Π. Furthermore, for every
T-axiom we partition the literals into two groups, the first group contains the
literals that resolve against a literal fromM, the second comprises of literals that

resolve against clauses from T [Ri(x0)]. Rewrite the inequality as

[
C
D

]
x ≤

[
c
d

]
,

where the inequalities with coefficients C, c resolve againstM and the remaining
inequalities resolve against T [Ri(x0)]. The coefficients from Farkas’ lemma are
λC and λD respectively, such that:

λCCx+ λDDx > λCc+ λDd, (5)

and therefore:

Dx ≤ d → λDDx ≤ λDd, λDDx ≤ λDd → λCCx > λCc . (6)

Then replace the theory axiom in Π by

¬(Dx ≤ d) ∨ λDDx ≤ λDd (7)

and conjoin λDDx > λDd to Post . This literal is implied by the original literals
Cx > c from M. Denote by Farkas-Conflict the rule that extracts formula Post
corresponding to a weakening of M determined by Π ′.

Notice that the new literals that are produced by applying Farkas lemma
are linear combinations of literals that occur in F(Ri). The number of linearly
independent linear combinations of such literals is naturally bounded by the
dimension of the vector space, so the Farkas conflict rule can only be applied a
finite number of times for each unfolding N .

5.2 Timed push-down systems

Basic timed transition systems are of the form S = 〈x, C, Θ, ρ ∨ ρtick 〉, where
c ⊆ x is a designated set of clock variables, and d := x \ c are finite domain
data-variables. There is a transition ρtick : ∃δ.c′ = c+ δ ∧ d′ = d that advances
time on the clock variables. Other transitions are allowed to reset clocks to 0
and modify the data-variables. We consider a slight extension of timed transition
systems with push-down capabilities. Reachable states can be described as:

R(c,d) ∧ c′ = c+ δ ∧ ϕ(c′,d)→ R(c′,d) (8)

R(c,d) ∧ ∧ic′i = reset?(ci)→ R(c′,d) (9)

R(c,y) ∧R(c, z) ∧ ϕ(c,d,y, z)→ R(c,d) (10)

where reset?(c) is either c or 0 and the occurrences of clocks in ϕ is restricted
to difference arithmetic formulas of the form ci − cj ≤ k for k a constant.

Theorem 2 (Timed Push-down System Reachability). Generalized PDR
with Farkas-Conflict decides timed push-down system reachability.

Proof (Idea). Use the observation that Farkas-Conflict produces only literals in
the transitive closure of the difference constraints from the timed push-down
system. Assume F is a description of a timed push-down system that uses the
difference constraints ∆ = {yi1 − yj1 ≤ k1, yi2 ≤ k2, . . .} where each yi is from
x0. Add to ∆ also the inequalities yi ≥ 0, yi ≤ 0 for each yi from x0. As usual in
difference arithmetic we can treat∆ as a directed graph whose edges are weighted
by the difference constraints. Let ∆∗ be the transitive closure that contains
inequalities for every loop-free path in ∆. Suppose that x = c ∧ T [Ri(x0)] is
unsatisfiable (the premise of G-Conflict) with proof Π and let C :

∨
i ¬(Aix −

bi ≤ 0) be a clause in Π that is justified by Farkas lemma. Consider the most
interesting case where C contains at most two literals xi ≥ ki, xj ≤ kj fromM[x]
and C contains the atoms xi = yi + δ, xj = yj + δ (or xi = yi, xj = yj) together
with literals from ∆∗. Since difference logic tautologies correspond to paths in a
weighted graph, the literal λDDx > λDd obtained from Farkas’ lemma cancel
out the coefficient δ and use a weight that corresponds to a directed path in ∆∗.
In each case, every spurious counter example was blocked by a combination of
literals in ∆∗. Since ∆∗ is finite this process terminates.

The Farkas-Conflict rule also suffices for some non-timed transition systems. It
can prove the mutual exclusion property of our initial Bakery algorithm example.

5.3 Decisions

Farkas-Conflict is useful for many scenarios, but it is easy to come up with Horn
clauses where it is insufficient. For example, the inductive invariant 2x = y that
is required to establish the satisfiability of the Horn clauses cannot be found
using Farkas-Conflict.

R(x, y) → R(x+ 1, y + 2). R(0, 0). R(x, y) ∧ 2x 6= y → false. (11)

A remedy to this limitation is to generalize the Decide rule. The approach is mo-
tivated as a way of producing relevant predicates, similar to what predicate ab-
straction achieves. We cannot help to note some dualities between the Decide and
the Conflict rules: Conflict strengthens invariants and uses over-approximations
of strongest post-conditions; Decide weakens counter examples and uses under-
approximations of pre-conditions. Recall the basic Decide rule:

Decide 〈M, i+1〉M ||A =⇒ 〈x̃ = c0, i〉〈M, i+1〉M ||A ifM, x̃0 = c0 |= T [Ri(x0)]

In order to retain predicates that are relevant to the counter example trace,
we can use any pre-condition Pre such that

x̃0 = c0 → Pre[x̃0], Pre[x̃0] → ∃x .M[x] ∧ T [Ri(x0)] . (12)

Thus, the generalized Decide rule is:

G-Decide 〈M, i+ 1〉M ||A =⇒ 〈x̃ = c0 ∧ Pre[x̃], i〉〈M, i+ 1〉M ||A
if x̃0 = c0 → Pre[x̃0], Pre[x̃0] → ∃x .M[x] ∧ T [Ri(x0)]

A crucial insight in [6] is to use ternary simulation for computing the relevant
subset x̃0 of x. This reduces the set of literals in x̃0 = c0. We are not aware of
a canonical approach to lifting model generalization to the first-order case. The
following is a heuristic. For the first-order case we also leverage ternary simula-
tion to minimize x̃0 = c0, and select the literals in T [Ri(x0)] that contribute
to making the formula true under x̃0 = c0,M[x]. The goal is to produce a
conjunction x̃0 = c0 ∧Pre[x̃0] comprising of an assignment to x̃0 and auxiliary
literals over x̃0 such that x̃0 = c0 |= Pre[x̃0]. So by induction assume M[x]
is also of this form: M1 ∧ Pre1. When F is derived from guarded assignments,
the variables x are typically given as a function of previous state variables, and
the selected literals from T [Ri(x0)] contains equalities of the form x = t[x0].
We collect these equalities as a substitution θ. The condition for Pre[x̃0] is then
reduced to:

x̃0 = c0 → Pre[x̃0], Pre[x̃0] → ∃x .M1 ∧ (Pre1 ∧ T [Ri(x0)])θ (13)

Our current approach creates Pre[x̃0] as the conjunction of x̃0 = c0 and the
selected literals from (Pre1 ∧ T [Ri(x0)])θ that do not contain variables from x
and that do not mix variables from different predecessor states.

Example 3. Assume a candidate counter example to (11) sets x′ = 3, y′ = 1.
Then, ∃x′, y′ .x′ = 3∧ y′ = 4∧ [(y′ = y+ 2∧x′ = x+ 1∧ 2x′ 6= y′)∨ y′ = x′ = 0]
yields the pre-condition x = 2 ∧ y = 2 ∧ 2x 6= y. �

It is now also necessary to generalize Conflict so that it can produce the
necessary conflict clauses from either M or the predicates from the weakest
pre-condition.

Multi-Core Conflicts Each unsatisfiable core for F(Ri) ∧M gives rise to a
different conflict that can enable a different proof. A proper generalization of
G-Conflict is therefore to allow multiple conflicts

MC-Conflict 〈M, i+ 1〉M ||A =⇒ M ||A[Ri+1 ← Ri+1 ∧ Post1 ∧ . . . ∧ Postk]
if |= F(Ri)→ Postj , Postj → ¬M, for j = 1..k.

Algorithms for unsatisfiable cores [10] and efficient integration of cores in PDR
is beyond the scope of this paper.

6 Implementation and Experiments

We have implemented Generalized PDR in µZ [9] and we have performed a num-
ber of experiments to validate the generalizations to nonlinear PDR and linear
real arithmetic. Additional material is online http://rise4fun.com/z3py/courses/fixedpoints.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

pd
r

bebop

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

pd
r

bebop

We tested our implementation on a set of
2906 Boolean programs that come with the
Windows Driver Research Platform.2 Most
programs are checked for safety violations
within a second by both the Bebop tool and
µZ. We wrote a basic converter from Boolean
programs into Horn clauses. It associates a
recursive predicate with each program state-
ment and therefore sometimes requires much
more space than the Boolean program. We
are therefore not surprised that our proto-
type is generally 3 times slower than Bebop.
Nevertheless it prevails where it matters: it was able to solve 32 programs that
Bebop could not solve within a 5 minute timeout. µZ times out on just one
program where Bebop also times out.

In other experiments we use µZ successfully on instantiations of timed tran-
sition systems, the examples in this paper, and a set of device drivers provided
by Ken McMillan. They use arithmetic for reasoning about pointer offsets so
Farkas-Conflict also suffices for verifying safety properties of these programs.

7 Conclusions, Related and Future Work

We generalized PDR in two directions. To solve general Horn clauses we first
developed an abstract account of PDR and leveraged it for nonlinear predicate
transformers. We also provided a solution to lifting PDR to linear real arithmetic.
The solution uses a generalization of unsatisfiable cores for theories. The idea
is to compute an interpolant based on the unit literals from a spurious counter
example. We applied it to timed automata (with push-down capabilities). This
is a new algorithm for timed automata, but not a new decidability result. Other

2 http://research.microsoft.com/slam

extensions such as vector addition systems can be formulated in Datalog [14].
These extensions are not addressed here.

PDR can be seen as an instance of a Counter Example Guided Abstraction
Refinement [5]. It refines state abstractions while avoiding approximating or
unfolding the transition relation. Related approaches [2, 12, 8, 7, 1] also refine
transition relations. In several cases (and in contrast to PDR), the abstraction
refinement loop relies on unfolding the transition relation up to a certain depth.
Of particular interest is [7], which explicates the connection between proof rules
and solving Horn clauses.

Generalizing PDR to theories is an open-ended enterprise. The experiments
so far indicate that Generalized PDR is attractive as a tool for satisfiability
modulo fixed-points. Nevertheless, several extensions and optimizations should
be pursued and there are several avenues for future work. A study of weakest T-
unsat cores deserves attention from both an algorithmic point of view and from
a point of view of commonly used theories. Our implementation in µZ works
with algebraic data-types, but not yet with general uninterpreted functions. We
believe uninterpreted functions can be handled by extending models to carry
also a congruence class of terms. The corresponding version of Farkas-Conflict
is then super-position on T-conflicts from congruence closure. We would also
like to generalize other parts of PDR, in particular the crucial Induction rule.
The implementations of PDR we are aware of use cheap strategies, they pick
random literals in clauses and try to drop them one-by-one until a limit (of 4)
failed strengthening attempts is reached. It is tempting to speculate of other
generalizations for strengthening clauses. For example, (ϕ ∨ ¬(x ≤ y + 1) ∨
¬(z + 2 ≤ x)) ∈ Ri could be strengthened to (ϕ ∨ ¬(x + 1 ≤ y)), and (x 6'
y ∨ ϕ[x]) ∈ Ri could be strengthened to ϕ[y].
Acknowledgments: Thanks to Natarajan Shankar, Josh Berdine, Bruno Dutertre,
Sam Owre and the reviewers for significant constructive feedback. Also thanks
to Andrey Rybalchenko and Ken McMillan for numerous discussions.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-based
algorithm for inter-procedural verification. In VMCAI, pages 39–55, 2012.

2. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. SIGPLAN Not., 37(1):1–3, 2002.

3. A. Blass and Y. Gurevich. Existential fixed-point logic. In Computation Theory
and Logic, pages 20–36, 1987.

4. A. R. Bradley. Sat-based model checking without unrolling. In VMCAI, 2011.
5. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. Journal of the ACM, 50(5):752–794, 2003.
6. N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of property-

directed reachability. In FMCAD, 2011.
7. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing

software verifiers from proof rules. In PLDI, 2012.
8. A. Gupta, C. Popeea, and A. Rybalchenko. Solving Recursion-Free Horn Clauses

over LI+UIF. In APLAS, pages 188–203, 2011.

9. K. Hoder, N. Bjørner, and L. M. de Moura. µZ- an efficient engine for fixed points
with constraints. In CAV, pages 457–462, 2011.

10. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

11. Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety. 1995.
12. K. L. McMillan. Interpolants from Z3 proofs. In FMCAD, 2011.
13. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo The-

ories: From an abstract DPLL procedure to DPLL(T). J. ACM, 53(6), 2006.
14. P. Z. Revesz. Safe datalog queries with linear constraints. In CP, 1998.

