
µZ– An Efficient Engine for Fixed points with
Constraints?

Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura

Manchester University and Microsoft Research

Abstract. The µZ tool is a scalable, efficient engine for fixed points
with constraints. It supports high-level declarative fixed point constraints
over a combination of built-in and plugin domains. The built-in domains
include formulas presented to the SMT solver Z3 and domains known
from abstract interpretation. We present the interface to µZ, a number
of the domains, and a set of examples illustrating the use of µZ.

1 Introduction

Classical first-order predicate and propositional logic are a useful foundation for
many program analysis and verification tools. Efficient SAT and SMT solvers and
first-order theorem provers have enabled a broad range of applications based on
this premise. However, fixed points are ubiquitous in software analysis. Model-
checkers compute a set of reachable states as a least fixed point, or dually a
set of states satisfying an inductive invariant as a greatest fixed point. Abstract
interpreters compute fixed points over an infinite lattice using approximations.
An additional layer is required when using first-order engines in these contexts.

The µZ tool is a scalable, efficient engine for fixed points with constraints. At
the core is a bottom-up Datalog engine. Such engines have found several appli-
cations for static program analysis. A distinguishing feature of µZ is a pluggable
and composable API for adding alternative finite table implementations and ab-
stract relations by supplying implementations of relational algebra operations
join, projection, union, selection and renaming. Lattice join and widening can
be supplied to use µZ in an abstract interpretation context. The µZ tool is part
of Z3 [3] and is available from Microsoft Research since version 2.181.

2 Architecture `0 : [Int ] using pentagon
`1 : [Int ] using pentagon
`0(0).
`0(x) ← `0(x0), x = x0 + 1, x0 < n.
`1(x) ← `0(x), n ≤ x.

Fig. 1. Sample µZ input

A sample program is in Fig. 1 and the
main components of µZ are depicted on
Fig. 2. As input µZ receives a set of re-
lations, rules (Horn clauses) and ground
facts (unit clauses). The last rule uses the

? Appeared in CAV 2011, Copyright Springer Verlag.
1 http://research.microsoft.com/en-us/um/redmond/projects/z3/



Input	
  
Rule	
  

transforma0ons	
  
	
  

Compila0on	
   Execu0on	
   Results	
  

Restarts	
  

•  Preprocessing	
  
•  Rule	
  normaliza0on	
  

Fig. 2. µZ architecture.

head predicate `1 and constraint n ≤ x. The parameter n is symbolic, even dur-
ing evaluation. A relation is specified by its domain and by its representation.
The example from Fig. 1 uses the pentagon abstract domain. Representations
may support approximation through widening that ensures convergence over
infinite domains.

2.1 Rule Transformations

To allow for optimizations and/or additional features, we may perform various
transformations on the input rules.
Free Variable Elimination This transformation seeks to avoid large interme-
diary tables. It replaces rules of the form p(x, y)← B[x] by p′(x)← B[x]. (B[x]
stands for the body of the rule, and x denotes all the variables appearing in it.)
Furthermore, each occurrence of p in a body of some rule requires a version with
p′. E.g., for a rule q(x, y)← p(x, y), r(x, z), p(z, y) we would need to introduce
three rules q(x, y) ← p′(x), r(x, z), p(z, y), q(x, y) ← p(x, y), r(x, z), p′(z),
q(x, y) ← p′(x), r(x, z), p′(z). The last rule introduces another free head vari-
able, which can be eliminated using the same procedure. The transformation
may increase the source program by an exponential factor, so µZ uses a limit
on the number of such transformations.
Magic Sets The classical magic sets transformation [1] is an option in µZ that
specializes a set of rules with respect to a query.
Coalescing Rules This transformation moves constants into a new relation and
a group of rules with a single rule:

p(x, c1)← B[x, c1] .. p(x, cn)← B[x, cn] 7→ p(x,y)← B[x,y], r(y)

where r is a fresh relation containing tuples c1, . . . , cn. The transformation
trades n updates to p using unions by one update to p and a join between B
and the new relation r. In the context of µZ the transformation is particularly
useful after a Magic set transformation. We have not found it useful directly for
the user input.
Join Planning The join planner splits long rules so that each rule contains at
most two positive relation predicates in its body. Number of negative relation
predicates and non-relation predicates in rules is not limited, because these do
not lead to introduction of intermediate relations. The planner uses information



on the expected size of relations in order to make the intermediate relations
as small as possible. To this end the solver periodically restarts and reruns the
planner to make use of better size estimates. The join planner also attempts to
identify shared parts of rules in order to avoid their repeated evaluation.

2.2 Compilation to an Abstract Machine

The compiler transforms the bodies of rules into relational algebra operations.
These operations are atomic instructions in an abstract machine, which also
contains control and data-flow instructions to handle applications of the rules
until a fixed point is reached.

r(y, x) ρ#17→#2,#27→#1(r)
r(a, y) σ#1=a(r)
r(x, x) σ#1=#2(r)
r(x, y), ϕ[x, y] σϕ[#1,#2](r)
r(x, y), q(z, x) r 1#1=#2 q
T [x,y] π#1(T [x,y])

We use a binary relation r(x, y) to
illustrate the compilation of rule bodies
into relation algebra. Renaming is used
to reorder the arguments to correspond
to r(x, y). Selection restricts r by fixing a
column to a constant, equating columns,
or constraining r with respect to an arbi-
trary predicate ϕ. Multiple relations are
combined using joins, and projection removes variables that are not used in the
head.

The abstract machine furthermore contains instructions for conditional jumps,
swap, copy, load, complementation (for stratified Datalog programs), and creat-
ing empty relations.

content
R0 := {0} `0
R2 := R0 ∆`0

while(R2 6= ⊥) {
R3 := >
R4 := R3 1 R2 x, x0
R4 := σ#1=#2+1(R4)
R4 := σ#2<n(R4)
R5 := π#2(R4) x
R2, R0 := R5 \R0, R0 ∪R5

}
R1 := σ¬(#1<n)(R0) `1
`0 := R0

`1 := R1

Fig. 3. Compiled version of Fig. 1

The effect of applying a rule is to up-
date the relation in the head by taking
a union with the relation computed in
the body. The corresponding union oper-
ation comes in two flavors: if the head re-
lation is used in a non-recursive context,
the corresponding operation destructively
updates the head relation. If the head re-
lation is used in a recursive context, the
union operation furthermore computes a
differenec relation ∆ that is used to detect
termination and to minimize the number
of records that need to be examined in
subsequent joins. This contrasts using a
containment relation to check for termi-
nation.

The requirement on ∆ is the following,
where p is the head relation and q is the relation from the body: q ⊆ p→ ∆ = ⊥,
and q 6⊆ p → q \ p ⊆ ∆ ⊆ p ∪ q. Loops are terminated when ∆ is empty. The
natural value for ∆ would be q \ p, but for some representations this might be
expensive to evaluate.



We use the relation dependency graph to obtain loops of smaller size and
evaluation order which leads to faster propagation of newly derived facts. We
identify strongly connected components of recursive head predicates and saturate
each of these components separately. We attempt to find an acyclic induced
subgraph of each component, and use this subgraph to obtain the evaluation
order inside the loop. The benefit of such order is that we do not have to carry the
“differences” of relations which are in the acyclic subgraph across loop iterations.

The engine supports two compilation modes: In standard Datalog compila-
tion mode, rules are compiled into instructions that perform a bottom-up satu-
ration. In the presence of stratified negation, it performs the saturation per stra-
tum. The compiler generates two phases in abstract interpretation mode: union
on recursive predicates is replaced by widening, and the recursive predicates are
reset (to the empty relations) between phases. Other compilation modes are pos-
sible in future versions of µZ. In particular a mode for bounded-model checking
where fixed points are unrolled to a fixed depth, is of interest in applications.

2.3 Execution

Execution of the compiled code is performed by a register machine interpreter.
Registers store relation objects that implement relational algebra methods. Com-
pile time transformations suffice to avoid using counters or other data types in
registers.

2.4 Tables and Relations

The abstract machine works at the level of relational algebra while the repre-
sentation of relations is delegated to implementations.
Finite Collections A basic representation of relations is as a finite collection
of records. Finite sets admit iterators that can enumerate elements from the
collection. Our default representation of finite collections is by hash tables with
on-demand indexing. Thus, one hash table may be indexed by multiple columns
at a time depending on which columns are used in different joins. An index is
created or updated when the correponding column is used in a join or a selection
by a constant. We found that hash tables offered a more efficient representation
for our benchmarks when compared with BDDs, though it is possible to create
examples where BDDs are significantly more compact [5]. We have plugged in
BDDs over the external relation API using the BuDDy package2.
Abstract Relations The real utility of the relational algebra core is achieved
by also admitting relation representations that are truly abstract.

A precise, but abstract representation is achieved by mapping relational al-
gebra operations back to first-order formulas. We call this the SMT relation
as it uses the SMT solver Z3 for quantifier-elimination during projection and
checking for convergence. Translation from relational algebra into first-order
logic is a simple transliteration. For example d⊥e = false, dπxRe = ∃x.dRe
2 http://buddy.wiki.sourceforge.net



and dR 1E Se = dRe ∧ dSe ∧ E . The set of satisfying assignments to the free
variables in the formula correspond to records that are members of the relation.
Computing ∆ requires a satisfiability check of dRe ∧ ¬dSe, which introduces
a formula with quantifier alternation. µZ relies on Z3’s support for quantifier
elimination for bit-vectors, Presburger arithmetic and algebraic data types to
compute ∆.

µZ also contains two built-in abstract relations for conjunctions of integer in-
tervals and bounds (relations of the form x < y). These domains are well-known
from abstract interpretation [2]. They are closed under join, projection and se-
lection, but they are not closed under union. Union is instead approximated by
a convex hull operation. The domains also support widening operations.
Compositionality Explanations can be tracked by adding a column to each
relation and track rules by accumulating a term for the rules that are applied:

rl : p(x)← q(x, y), r(x, y). 7→ rl ′ : p′(x, rl(u, v, y))← q′(x, y, u), r′(x, y, v).

There can be an unbounded number of explanations for a derived fact, but it
suffices to consider just one representative. We can encode this in a special re-
lational algebra of explanations, where unions of two sets of explanations selects
a suitable (in the case of µZ, oldest) representative. The remaining columns of
p′ do not belong to the algebra of explanations, but may be stored in a finite
table or an abstract relation. To support such joint representations, µZ allows
composing arbitrary tables and relations. The composition of a finite table with
another finite table or relation is obtained by adding an additional column to the
finite table to point to a table (relation) that contains values corresponding to a
row. The usual relational algebra operations are extended directly for this rep-
resentation. For example, the joint relation r(x, y, z) : {(1, 0, a), (1, 0, b), (1, 1, c)}
is represented as the map [(1, 0) 7→ {a, b}, (1, 1) 7→ {c}], and projecting the
second column produces πyr(x, y, z) : [1 7→ {a, b, c}]. The product and intersec-
tion of two abstract relations is also available, but in this case projection and
union are no longer precise because the normalized representation is as a vec-
tor of relations. Some precision is retained by supporting reduced products that
lets domains communicate constraints. For example, we obtain the Pentagon
domain by taking the product of the Interval i and Bound b domain subject
to having restriction (b ∪ {x < y}) ∧ (z = x − y) contribute the interval con-
straint (z ∈ [−∞,−1]); and extending unions on bounds to also accept intervals:
b ∪ i := {x < y ∈ b | supi(x) < infi(y)}.

3 Usage

A diagram showing the integration of options for µZ is in Fig. 4.
Interface User can interact with µZ either by the means of the Z3 API (man-
aged or C) or pass the problem specification in a file from the command line.

Input files can be in one of the following formats: SMT2 format extended
by commands rule and query to add rules and start the fix-point search, in the



Interface	
  

• Managed	
  API	
  
• C	
  API	
  
• SMT2	
  
• Bddbddb	
  
• Tuples	
  

Domains	
  

• Finite	
  
• SMT	
  domain	
  
• Abstract	
  
• Composi?on	
  

Rules	
  

• Op?miza?ons	
  
• Goal	
  orienta?on	
  
• Explana?ons	
  
• SMT	
  constraints	
  

Compila?on	
  mode	
  

• Datalog	
  
• Abstract	
  Interpreta?on	
  

Fig. 4. Possible configurations of µZ.

Bddbddb [5] format, or in the tuple format which allows fast reading of large
amounts of facts.
Applications Although µZ is a new tool, it has been already used in several
contexts 3. We have run µZ on moderate size (2- 25K lines of pure Datalog code)
benchmarks extracted from the Javascript security analyzer Gatekeeper [4]. It
suffices to configure µZ using hash tables for storing relations. It spends in the
order of 100ms on these benchmarks due to transformations such as the free
variable elimination that eliminated many rules in favor of ground facts. The
Bddbddb tool [5], in contrast relies on the existence of good variable orderings to
avoid running out of physical memory. Using finite domains, we have also loaded
a representation of the Windows base kernel, and ran various queries on it. The
resulting data-base contained in the order of 106 facts. The efficient tuples front-
end loads the 2 GB data-base within 20 seconds, but stand-alone saturation is
infeasible. Queries can still be answered within a second on a standard dekstop
PC after the Magic sets transformation. A demonstration of µZ for solving
Traffic Jam puzzles is available. It illustrates the use of explanations.

4 Conclusion

µZ is a new efficient engine for fixed points with logical constraints. It integrates
and is available with Z3. This tool paper explained the main architecture of µZ
and provided background on pluggable and composable relations. We hope this
tool will enable several future applications that rely on efficient fixed point core
with special needs on domain representations.

References

1. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In PODS, pages 1–15. ACM, 1986.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252, 1977.

3. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS 08, 2008.
4. S. Guarnieri and V. B. Livshits. Gatekeeper: Mostly static enforcement of security

and reliability policies for javascript code. In USENIX, pages 151–168, 2009.
5. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In PLDI, pages 131–144, 2004.

3 http://research.microsoft.com/projects/z3/fixedpoints-index.html


