An SMT-LIB Format for Sequences and Regular Expressions

Nikolaj Bjgrner Vijay Ganesh Raphaél Michel Margus Veanes
Microsoft Research MIT University of Namur Microsoft Research
June 3, 2012

Abstract

Strings are ubiquitous in software. Tools for verificatiorddesting of software rely in various
degrees on reasoning about strings. Web applications aieydarly important in this context since
they tend to be string-heavy and have large number securityseattributable to improper string
sanitzation and manipulations. In recent years, manygsaivers have been implemented to ad-
dress the analysis needs of verification, testing and dgc¢adls aimed at string-heavy applications.
These solvers support a basic representation of stringstifuns such as concatenation, extraction,
and predicates such as equality and membership in regytaessions. However, the syntax and
semantics supported by the current crop of string solversmtually incompatible. Hence, there is
an acute need for a standardized theory of strings (i.e.,-BBization of a theory of strings) that
supports a core set of functions, predicates and stringseptations.

This paper presents a proposal for exactly such a standsiatizffort, i.e., an SMT-LIBization
of strings and regular expressions. It introduces a thebrsequencegeneralizing strings, and
builds a theory ofegular expressionsn top of sequences. The proposed IGFcBVRE is designed
to capture a common substrate among existing tools forgstamstraint solving.

1 Introduction

This paper is a design proposal for an SMT-LIB format for abtlgeof strings and regular expressions.
The aim is to develop a set of core operations capturing tedsef verification, analysis, security and
testing applications that use string constraints. Thedstalized theory should be rich enough to support
a variety of existing and as-yet-unknown new applicatioMare complex functions/predicates should
be easily definable in it. On the other hand, the theory shibelds minimal as possible in order for the
corresponding solvers to be relatively easy to write anchtaai.

Strings can be viewed as monoids (sequences) where the maiations are creating the empty
string, the singleton string and concatentation of stringsification algorithms for strings have been
subject to extensive theoretical advances over severalddsc Modern programming environments
support libraries that contain a large set of string openati Applications arising from programming
analysis tools use the additional vocabulary availablébiraties. A realistic interchange format should
therefore support operations that are encountered incapioins.

The current crop of string solvers|[9,/12, 3] have incompatiyntax and semantics. Hence, the
objective of creating an SMT-LIB format for string and regukxpression constraints is to identify a
uniform format that can be targeted by applications and wmesl by solvers.

The paper is organized as follows. Sectidn 2 introduceshbery Seq of sequences. The theory
RegEx of regular expressions in Sectibh 3 is basedeq. The theories admit sequences and regular
expressions over any type of finite alphabet. The characténg alphabet are defined over the theory of
bit-vectors (Sectionl4). Sectidh 5 surveys the state afgtsblving tools. Sectidd 6 describes benchmark
sets made available fQF _BVRE and a prototype. We provide a summary in Sedtion 7.

2 Seq: A Theory of Sequences

In the following, we develofseq as a theory of sequences. It has a sort constrigetqrthat takes the
sort of the alphabet as argument.

SMT-LIB Sequences and Regular Expressions

2.1 The Signature of Seq

(par (A) (seq-unit (A) (Seq A))) ; String consisting of a single character
(par (A) (seg-empty (Seq A))) ; The empty string
(par (A) (seqg-concat ((Seq A) (Seq A)) (Seq A))) ; String concatentation
(par (A) (seq-cons (A (Seq A)) (Seq A))) ; pre-pend a character to a seq
(par (A) (seq-rev-cons ((Seq A) A) (Seq A))) ; post-pend a characeter
(par (A) (seq-head ((Seq A)) A)) ; retrieve first character
(par (A) (seq-tail ((Seq A)) (Seq A))) ; retrieve tail of seq
(par (A) (seq-last ((Seq A)) A)) ; retrieve last character
(par (A) (seq-first ((Seq A)) (Seq A))) ; retrieve all but the last char
(par (A) (seq-prefix-of ((Seq A) (Seq A)) Bool)) ; test for seq prefix
(par (A) (seq-suffix-of ((Seq A) (Seq A)) Bool)) ; test for postfix
(par (A) (seq-subseq-of ((Seq A) (Seq A)) Bool)) ; sub-sequence test
(par (A) (seg-extract ((Seq A) Num Num) (Seq A))) ; extract sub-sequence

parametric in Num
(par (A) (seq-nth ((Seq A) Num) A)) ; extract n’th character

parametric in Num
(par (A) (seq-length ((Seq A)) Int) ; retrieve length of sequence

The sortNum can be either an integer or a bit-vector. The Iog#cBVRE instantiates the solum to
bit-vectors, and not to an integer.

2.2 Semantics Seq

The constangeq-empty and functionseq-concat satisfy the axioms for monoids. That issq-empty
is an identity ofseq-concat andseq-concat is associative.

(seq-concat seq-empty X) = (seq-concat X seq-empty) = X
(seq-concat X (seq-concat y 7)) = (seq-concat (seq-concat X Y) 2)

FurthermoregSeq is the theory all of whose models are an expansion to the fie®id generated
by seq-unit andseq-empty.

2.2.1 Derived operations

All other functions (except extraction and lengths) aravader They satisfy the axioms:

2

SMT-LIB Sequences and Regular Expressions

seq-cons X Y) = (seq-concat (seq-unit X) Y)
seq-rev-cons Y X) = (seq-concat Y (seq-unit X))
seq-head (seq-cons X Y)) =X

seq-tail (seq-cons XY)) =Yy

(

(

(

(

(seq-last (seq-rev-cons XY)) =Yy

(seq-first (seq-rev-cons XY)) = X
(seq-prefix-of XY) < Jz. (seq-concat X2) =y
(seq-suffix-of XY) < Jz. (seq-concat zX) =y
(

seq-subseq-of XYy) < JZ U. (seq-concat UX 2 =Y

Observe that the value ofseq-head seq-empty) is undetermined. Similarly foseq-tail,
seq-first andseq-last. Their meaning isunder-specified Thus, the theorgeq admitsall inter-
pretations that satisfy the free monoid properties and ti@es above.

2.2.2 Extraction and lengths

It remains to provide semantics for sequence extractioneargth functions. We will here describe these
informally.

(seq-length s) The length of sequence Seq satisfies the monoid axioms and is freely generated
by unit and concatenation. So every sequence is a finite tamaton of units (i.e., characters in
the alphabet). The length of a sequence is the number ofiarthe concatenation.

(seq-extract seq lo hi) produces the sub-sequence of characters betweemdhi-1. If the
length of seq is less tharnlo, then the produced subsequence is empty. If the bit-vectas
smaller tharlo the result is, once again, the empty sequence. If the lerfgtkedis larger than
lo, but less thami, then the result is truncated to the lengtlsed. In other wordsseqg-extract
satisfies the equation (The length function is abbreviasddss):

seq-empty if 1(s)<lo
seq-empty if hi<lo
seq-empty if hi<O
(seq-extract S |0 hi) = ¢ (seq-extract (seq-tails) (lo—1) (hi—1)) if 0<lo
(seq-extract (seq-first s) (0) (m)) ifO<m
m=1(s)—hi+1
S otherwise

(seq-nth s n) Extract then'th character of sequence Indexing starts at 0, so for exampleds
(whereNum ranges ovelnt).

(seq-nth (seq-cons C §) 0)

SMT-LIB Sequences and Regular Expressions

3 RegEx: A Theory of Regular Expressions

We summarize a theory of regular expressions over sequercégludes the usual operations over
regular expressions, but also a few operations that we fogetul from applications when modeling

recognizers of regular expressions. It has a sort conetrBegEx that takes a sort of the alphabet as
argument.

3.1 The Signature of RegEx

(par (A) (re-empty-set () (RegEx A))) ; Empty set
(par (A) (re-full-set () (RegEx A))) ; Univeral set
(par (A) (re-concat ((RegEx A) (RegEx A)) (RegEx A))) ; Concatenation
(par (A) (re-of-seq ((Seq A)) (RegEx A))) ; Regular expression of sequence
(par (A) (re-empty-seq () (RegEx A))) ; same as (re-of-seq seq-empty)
(par (A) (re-star ((RegEx A)) (RegEx A4))) ; Kleene star
(par (A) ((_ re-loop i j) ((RegEx A)) (RegEx A))) ; Bounded star, i,j >= 0
(par (A) (re-plus ((RegEx A)) (RegEx A4))) ; Kleene plus
(par (A) (re-option ((RegEx A)) (RegEx A))) ; Option regular expression
(par (A) (re-range (A A) (RegEx A))) ; Character range
(par (A) (re-union ((RegEx A) (RegEx A)) (RegEx A))) ; Union
(par (A) (re-difference ((RegEx A) (RegEx A)) (RegEx A))) ; Difference
(par (A) (re-intersect ((RegEx A) (RegEx A)) (RegEx A))) ; Intersection
(par (A) (re-complement ((RegEx A)) (RegEx A))) ; Complement language
(par (A) (re-of-pred ((Array A Bool)) (RegEx A))) ; Range of predicate
(par (A) (re-member ((Seq A) (RegEx A)) Bool)) ; Membership test

Note the following. The functiomre-range is defined modulo an ordering over the character sort.
The ordering is bound in the logic. For example, in G#®BVRE logic, the corresponding ordering
is unsigned bit-vector comparisasvule. While re-range could be defined usinge-of-pred, we
include it because it is pervasively used in regular exjwass The functiorre-of -pred takes an array
as argument. The array encodes a predicate. No other featliegrays are used, and the intent is that
benchmarks that usee-of -pred also include axioms that define the values of the arrays dnditles.

For example we can constratrusing an axiom of the form

(assert (forall ((i (_ BitVec 8))) (iff (select p i) (bvule #0A i))))

3.2 Semantics of RegEx

Regular expressions denote sets of sequences. Assumimgtaiiten[[s] for sequence expressions, we
can define a denotation function of regular expressions:

4

SMT-LIB Sequences and Regular Expressions

=0
= {s|sisasequence

]
]
| = {stlsexteD}
]
]

[re-empty-set]
[re-full-set]
[(re-concat X V)]
]

[(re-of-seqs)] = {[s]}
[re-empty-seq] = {[seq-empty]l}
[(re-star x)] = [4" = Ul
i=0
[(re-plus x)] = [X]* =
i=1
[(re-option x)] = [xJU{[seq-empty]}
[((-re-toop 1 w)x] = Ul
i=l
[(re-union x y)] = [XU[Y]
[(re-difference x y)] = [\ [yl
[(re-intersect x y)| = @ﬂ[{y}]
[(re-complement x)] = [X]
[(re-rangeaz)] = {[(seq-unitX)]]|a<x<z}
[re-of-predp] = {[(seq-unitx)]|p[x}
]]

|
[(re-member s X)]

3.3 Anchors

Most regular expression libraries include anchors. Theyusually identified using regular expression
constants™ (match the beginning of the string) agdmatch the end of a string). We were originally
inclined to include operators corresponding these cotstémthe end, we opted to not include anchors
as part of the core. The reasons were that it is relativebigsttforward to convert regular expressions
with anchor semantics into regular expressions withouhansemantics. The conversion increases the
size of the regular expression at most linearly, but in praanuch less. If we were to include anchors,
the semantics of regular expression containment would lzdse to take anchors into account. The
denotation of regular expressions would then be contexd¢midgnt and not as straightforward.

We embed regular expressions with anchor semantics intderegxpressions with “regular” seman-
tics using the funnctionsomplete It takes three regular expressions as arguments, andsiédsta convert
the regular expressiomwith anchors by calling it with the argumentsmpletée, T, T). Note that the
symbol T corresponds t@e-full-set, ande corresponds t@e-empty-set.

5

SMT-LIB Sequences and Regular Expressions

= e -string-e

completéx, T, &) completéy, &, T)
completéx, T,€)y

x completéy, &, T)

€

completéstring, e;, &)
completéx-y, T, T)
completéx-y, T,€)
completéx-y, e, T)
)

)

)

completé$, e, e
complet¢™, e, &
complet¢x+y, e, &

&
= completéx, ey, &) + completgy, e, &)

We will not definecompletefor Kleene star, complement or difference. Such regularesgions are
normally considered malformed and are rejected by reguiaression tools.

4 Thelogic QF_BVRE

The logicQF _BVRE uses the theory of sequences and regular expressionsutésche SMT-LIB theory
of bit-vectors as well. Formulas are subject to the follayvionstraints:

e Sequences and regular expressions are instantiatedvedbirs.
e The sortNum used for extraction and indexing is a bit-vector.
e re-range assumes the comparison predicatale.

e Length functions can only occur in comparisons with otheigths or numerals obtained from
bit-vectors. So while the range ekq-length is Int, it is only used in relative comparisons
or in comparisons with a number over a bounded range. In etheds, we admit the following
comparisons (whemis an integer constant):

({<,<=,=,>=,>} (seq-length X) (seq-lengthy))
({<,<==,>=,>} (seq-Length X) n)

To maintain decidability, we also require that whenever mrchenark contain§seq-length x)
it also contains an assertion of the fofassert (<= (seq-length x) n)).

e The sequence operationsq-prefix-of, seq-suffix-of andseq-subseq-of are excluded.

5 String solvers

String analysis has recently received increased attentiitn several automata-based analysis tools. Be-
sides differences in notation, which the current propoddtesses, the tools also differ in expressiveness
and succinctness of representation for various fragmenfsxtended) regular expressions. The tools
also use different representations and algorithms foimtgalith the underlying automata theoretic op-
erations. A comparison of the basic tradeoffs between aati@mepresentations and the algorithms for
product and difference is studied in[11], where the benchmariginate from a case study in [19].

6

SMT-LIB Sequences and Regular Expressions

The Java String Analyzer (JSA)I[7] uses finite automata ivatity to represent strings with the
dk.brics.automaton library, where automata are directed graphs whose edgessegg contiguous
character ranges. Epsilon moves are not preserved in tbenata but are eliminated upon insertion.
This representation is optimized foratchingstrings rather thafinding strings.

The Hampi tool [[16] uses an eager bitvector encoding fronuleggexpressions to bitvector logic.
The Kudzu/Kaluza framework extends this approach to systeirtonstraints with multiple variables
and supports concatenation [22]. The original Hampi forduets not directly support regular expression
guantifiers“at leastm times” and “at mosh times”, e.g., a regex{1,33} would need to be expanded
to alaalaaa. The same limitation is true for the core constraint languafKudzu [22] that extends
Hampi.

The tool presented in [14] uses lazy search algorithms flvirgpregular subset constraints, inter-
section and determinization. The automaton represent&itbased on the Boost Graph Library [23]
and uses a range representation of character intervalsstiahilar to JSA. The lazy algorithms pro-
duce significant performance benefits relative to DPRLE §iR] the original Rex [27] implementation.
DPRLE [13] has a fully verified core specification written imlitha [8], and an OCaml implementation
that is used for experiments.

Rex [27] uses a symbolic representation of automata whémddaare represented by predicates.
Such automata were initially studied in the context of raltlanguage processing [21]. Rex usgm-
bolic language acceptorghat are first-order encodings of symbolic automata inettieory of alge-
braic datatypes. The initial Rex work [27] explores variaggimizations of symbolic automata, such
as minimization, that make use of the underlying SMT solgegliminate inconsistent conditions. Sub-
sequent work[[26] explores trade-offs between the langwageptor based encoding and the use of
automata-specific algorithms for language intersectiahlamguage difference. TH&ymbolic Automata
library [25] implements the algebra of symbolic automatd tansducerq24]. Symbolic Automata is
the backbone of Rex and BBk.

Kleene | Boole | re-range | re-of-pred | re-loop | seq-concat | seq-length z
JSA v v v BV16
Hampi v v BV8
Kudzu/Kaluza v v v v BV8
Symbolic Automata/Rex| v v v v v ALL

Table 1: Expressivity of string tools.

Table[1 compares expressivity of the tools with an emphasisegular expression constraints.
Columns represent supported featutéleenestands for the operatiore-empty-set, re-empty-seq,
re-concat, re-union, andre-star. Boolestands forre-intersect andre-complement. 2 refers
to supported alphabet theories. In Hampi and Kudzu the Boobperations over languages can be en-
coded through membership constraints and Boolean opesatiger formulas. In the Symbolic Automata
Toolkit, automata are generic and supdltSMT theories as alphabets.

A typical use ofre-range is to succinctly describe a contiguous range of characsersh as all
upper case letters dii-Z]. Similarly, re-of-pred can be used to definecharacter classuch as\w
(all non-word-letter characters) through a predicatergsgnted as an array). For example, provided that
W is defined as follows

VXWX < =((‘A? <x< Z°)V(‘a’ <x< ‘2?)V(0° <Xx< 97)Vx=‘_"))

then (re-of-pred W) is the regex that matches all non-word-letter charactaralllf, re-1oop is
a succinct shorthand for bounded loops that is used verydrmty in regular expressions.

Inttp://research.microsoft.com/bek/

SMT-LIB Sequences and Regular Expressions

MONA [10] [17] provides decision procedures for several etigs of monadic second—order logic
(M2L) that can be used to express regular expressions ovetsvas well as trees. MONA relies on a
highly-optimized multi-terminal BDD-based representatfor deterministic automata. Mona is used in
the PHP string analysis tool Stranger|[29] through a striagipulation library.

Other tools include custom domain-specific string solv@@s[R8]. There is also a wide range of
application domains that rely on automata based methodsgstconstraints with length bounds [30];
automata for arithmetic constraints [6]; automata in efipditate model checkin@|[5]; word equatiohs [1,
18]; construction of automata from regular expression$. [Moreover, certain string constraints based
on common string library functions][4] (not using regulapmessions) can be directly encoded using a
combination of existing theories provided by an SMT solver.

6 A prototypefor QF_BVRE based on the Symbolic Automata Toolkit

This section describes a prototype implementatiolQfoBVRE. It is based on the Symbolic Automata
Toolkit [25] powered by Z3. The description sidesteps theent limitation that all terms of sort
(Seq o) are converted to terms of sditist o). While lists in Z3 satisfy all the algebraic properties
of sequences, only the operations equivalernidg-empty, seq-cons, seq-head, andseq-tail are
(directly) supported in the theory of lists. This also eiptawhy seq-concat andseq-length (as is
also noted in Tablel 1) are currently not supported in thisqgtype.

To start with, the benchmark file is parsed by using Z3's APlhodParseSmt1ib2File providing
a Z3 Term object ¢ that represents the AST of the assertion contained in the Titee assertior® is
converted into a formul&ony ¢) where each occurrence of a membership consttai#tmember s r)
has been replaced by an atgicg s), whereAcg is a new uninterpreted function symbol called the
symbolic languge acceptor for The symbolAcg is associated with a set of axiori$(r) such that,
(Acg s) holds moduloTh(r) iff sis a sequence that matches the regular expressidrhe converted
formulaCony¢) as well as all the axiom$h(r) are asserted to Z3 and checked for satisfiability.

The core of the translation is in convertimgnto a Symbolic Finite Automaton SFA and then
definingTh(r) as the theory 08FA(r) [26]. The translation uses closure properties of symbaltormata
under the following (effective) Kleene and Boolean opeirai

e If AandB are SFAs then there is an SBAB such that.(A-B) = L(A)-L(B).

e If AandB are SFAs then there is an SBAJB such thaL (AUB) = L(A) UL(B).
e If AandB are SFAs then there is an SPA B such thal. (AN B) = L(A)NL(B).

e If Ais an SFAs then there is an SP& such thal (A*) = L(A)*.

e If Ais an SFAs then there is an SBsuch thal.(A) = L(A).

The effectiveness of the above operatidogs nodepend on the theory of the alphabet. In SFAs all
transitions are labeled by predicates. In particular, &éitor rangére-range m n) is mapped into an
anonymous predicatéx.(m < x < n) over bit-vectors and a predicatee-of-pred p) is just mapped
to p. The overall translatiorsFAr) now follows more-or-less directly by induction of the stiwre
of r. The loop constructre-loop m n 1) is unfolded by usingre-concat andre-union. Several
optimizatons are possible that have been omitted here.

As a simple example of the above translation, consider thexre

utf16 = ~ ([\O-\uD7FF\uEO0O0-\uFFFF] | ([\uD800-\uDBFF] [\uDCOO-\uDFFF])) *$

SMT-LIB Sequences and Regular Expressions

that describes valid UTF16 encoded strings. Using the SNfadt and assuming the defined sort
as(_ BitVec 16) theregexis

(re-star (re-union (re-union (re-range #x0000 #xD7FF) (re-range #xE000 #xFFFF))
(re-concat (re-range #xD800 #xDBFF) (re-range #xDCOO #xDFFF))))

The resultingSFA(utf16) can be depicted as follows:
AX.(x < #xD7FF V#xE000 X))y 431800 < x < #xDBFF

@
) =W
AX.#xDCO0 < X < #xDFFF
and the theoryrh(utf16) contains the following axioms:

Vy(AcGirs(y) < (Y= €V (Y # € A (heady) < #xD7FF V #xE000 < heady)) A AcGue(tail (y)))V
(y # € A#xD800 < heady) < #xDBFF A Acc(tail(y)))))
Vy(Aca(y) < (Y # € A#xDCO0 < heady) < #xDFFF A AcGynis(tail (y))))

Benchmarks in the proposed SMT-LIB format that are handiethb tool are availatffe

7 Summary

We proposed an interchange format for sequences and remdegssions. It is based on the features
of strings and regular expressions used in current mairesofor regular expressions. There are many
possible improvements and extensions to this proposedatorfror example, it is tempting to lever-
age that SMT-LIB already allows string literals. The firsjegttive is to identify a logic that allows to
exchange meaningful benchmarks between solvers and et@blgaring techniques that are currently
being developed for solving sequence and regular expressiostraints.

7.1 Contributors

Several people contributed to discussions about SMTizaifcstrings, including Nikolaj Bjarner, Vi-
jay Ganesh, Tim Hinrichs, Pieter Hooimeijer, Raphaél MichRuzica Piskac, Cesare Tinelli, Margus
Veanes, Andrei Voronkov and Ting Zhang. This effort grew foaim discussions at Dagstuhl seminar
[2] and was followed up @&trings-smtization@googlegroups . com.

References

[1] Sebastian Bala. Regular language matching and othédalde cases of the satisfiability problem for con-
straints between regular open termsSIFACSpages 596—607, 2004.

[2] Nikolaj Bjgrner, Robert Nieuwenhuis, Helmut Veith, aAddrei Voronkov. Decision Procedures in Soft,
Hard and Bio-ware - Follow Up (Dagstuhl Seminar 112 Magstuhl Reportsl(7):23-35, 2011.

[3] Nikolaj Bjgrner, Nikolai Tillmann, and Andrei VoronkovPath feasibility analysis for string-manipulating
programs. INTACAS 2009.

[4] Nikolaj Bjgrner, Nikolai Tillmann, and Andrei VoronkovPath feasibility analysis for string-manipulating
programs. INTACAS 2009.

[5] Stefan Blom and Simona Orzan. Distributed state spacenmi@ation. J. Software Tools for Technology
Transfer 7(3):280-291, 2005.

2hhttp://research.microsoft.com/~nbjorner/microsoft.automata.smtbenchmarks.zip

strings-smtization@googlegroups.com
http://research.microsoft.com/~nbjorner/microsoft.automata.smtbenchmarks.zip

SMT-LIB Sequences and Regular Expressions

[6] Bernard Boigelot and Pierre Wolper. Representing arétic constraints with finite automata: An overview.
In ICLP 2002: Proceedings of The 18th International Confeson Logic Programmingpages 1-19, 2002.

[7] Aske Simon Christensen, Anders Mgller, and Michael InBartzbach. Precise Analysis of String Expres-
sions. INSAS2003.

[8] Thierry Coquand and Gérard P. Huet. The calculus of tantons. Information and Computatign
76(2/3):95-120, 1988.

[9] Vijay Ganesh, Adam Kiezun, Shay Artzi, Philip J. Guo, tereHooimeijer, and Michael D. Ernst. Hampi: A
string solver for testing, analysis and vulnerability @¢iten. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors,CAV, volume 6806 ot ecture Notes in Computer Scienpages 1-19. Springer, 2011.

[10] J.G. Henriksen, J. Jensen, M. Jgrgensen, N. KlarlunBaie, T. Rauhe, and A. Sandholm. Mona: Monadic
second-order logic in practice. TACAS’'95volume 1019 o£ NCS 1995.

[11] Pieter Hooimeijer and Margus Veanes. An evaluationuwbmata algorithms for string analysis. M-
CAI'11, volume 6538 of NCS pages 248-262. Springer, 2011.

[12] Pieter Hooimeijer and Westley Weimer. A decision prhoe for subset constraints over regular languages.
In PLDI, 2009.

[13] Pieter Hooimeijer and Westley Weimer. A decision prhoe for subset constraints over regular languages.
In PLDI, 2009.

[14] Pieter Hooimeijer and Westley Weimer. Solving strirastraints lazily. IPASE 2010.

[15] Lucian llie and Sheng Yu. Follow automataformation and Computatiqri86(1):140-162, 2003.

[16] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooijere and Michael D. Ernst. HAMPI: a solver for
string constraints. IISSTA2009.

[17] Nils Klarlund, Anders Mgller, and Michael I. Schwartath. MONA implementation secretkternational
Journal of Foundations of Computer Scient8(4):571-586, 2002.

[18] Michal Kunc. What do we know about language equationsDdvelopments in Language Theppages
23-27,2007.

[19] Nuo Li, Tao Xie, Nikolai Tillmann, Peli de Halleux, and&fram Schulte. Reggae: Automated test genera-
tion for programs using complex regular expressionASE'09 2009.

[20] Yasuhiko Minamide. Static approximation of dynamigaenerated web pages. WWW '05 pages 432—
441, 2005.

[21] Gertjan Van Noord and Dale Gerdemann. Finite statesttacers with predicates and identiti€ammars
4:263-286, 2001.

[22] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng $fiephen McCamant, and Dawn Song. A Sym-
bolic Execution Framework for JavaScript, Mar 2010.

[23] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaiftee Boost Graph Library: User Guide and Refer-
ence Manual (C++ In-Depth Seriespddison-Wesley Professional, December 2001.

[24] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and Bjgrner. Symbolic finite state transducers: Algo-
rithms and applications. IROPL'12, 2012.

[25] Margus Veanes and Nikolaj Bjgrner. Symbolic automatae toolkit. In C. Flanagan and B. Konig, editors,
TACAS’12volume 7214 o£ NCS pages 472—-477. Springer, 2012.

[26] Margus Veanes, Nikolaj Bjgrner, and Leonardo de Mou®ymbolic automata constraint solving. In
C. Fermuller and A. Voronkov, editorsPAR-17 volume 6397 o NCS/ARCoS$ages 640-654. Springer,
2010.

[27] Margus Veanes, Peli de Halleux, and Nikolai Tillmannexk Symbolic Regular Expression Explorer. In
ICST'1Q IEEE, 2010.

[28] Gary Wassermann and Zhendong Su. Sound and precisesanall web applications for injection vulnera-
bilities. In PLDI, 2007.

[29] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: Amtomata-based string analysis tool for PHP. In
TACAS’'1QLNCS. Springer, 2010.

[30] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolidr&tiVerification: Combining String Analysis and
Size Analysis. INTACAS pages 322-336, 2009.

10

	Introduction
	Seq: A Theory of Sequences
	The Signature of Seq
	Semantics Seq
	Derived operations
	Extraction and lengths

	RegEx: A Theory of Regular Expressions
	The Signature of RegEx
	Semantics of RegEx
	Anchors

	The logic QF_BVRE
	String solvers
	A prototype for QF_BVRE based on the Symbolic Automata Toolkit
	Summary
	Contributors

