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Abstract. The Satisfiability Modulo Theories solver Z3 [10] is used in
several program analysis and verification tools at Microsoft Research.
Some of these tools require bit-precise reasoning for accurately modeling
machine arithmetic instructions. But this alone is rarely sufficient, and
an integration with other theories is required. The Pex tool [20] performs
program exploration of .NET programs by generating and solving path
conditions corresponding to paths that get explored during concrete ex-
ecution. The path conditions reflect directly the executed instructions,
including ones involving machine arithmetic supported by the CLR. The
path conditions include also operations on heaps and structures. Pex re-
lies on Z3’s ability to produce models for satisfiable path conditions, the
models must reflect the combination of the involved theories: bit-vectors,
arrays, and tuples. This paper describes the features of Z3 that are used
by Pex.

1 Introduction

The ability to solve logical assertions is essential in several tools that perform
program analysis, program verification and program testing. Satisfiability Mod-
ulo Theories (SMT) solvers appear to match these tools particularly well, since
they integrate a number of the domains that occur naturally in programs. For
example, machine arithmetic is handled by the theory of bit-vectors, heaps are
handled by a theory of arrays, and a theory of uninterpreted functions and in-
tegers can be used to abstract program state.

This paper illustrates the use of the solver Z3 in the context of one of its
clients, Pex - a program exploration tool. Both tools are freely available for
download from Microsoft Research.

2 Z3

Z3 [17] is an SMT solver from Microsoft Research. Z3 is targeted at solving
problems that arise in software verification and software analysis. Consequently,
it integrates support for a variety of theories. Z3 combines several algorithms,
in particular for quantifier instantiation [7], superposition [11], theory combina-
tion [8], and for discriminating relevant atoms from don’t cares [9].



Algorithm 3.1 Dynamic symbolic execution

Set J := false J summarizes the set of already
loop analyzed program inputs

Choose program input i such that ¬J(i) stop if no such i can be found
Output i
Execute P (i); record path condition C in particular, C(i) holds
Set J := J ∨ C

end loop

Z3 supports binary interfaces for C, OCaml, and .NET. It also allows supply-
ing text inputs in the Simplify, SMT-LIB, and a native format. It has been inte-
grated with several projects at Microsoft Research, including, Spec#/Boogie [2,
12], Pex [20], Yogi [15], Vigilante [6, 5], SLAM/SDV [1], HAVOC [18], and F7 [3].

3 Pex

Pex [21, 19] is a dynamic symbolic execution platform Pex for .NET. It is de-
veloped at Microsoft Research. Pex contains a complete symbolic interpreter for
safe programs that run in the .NET virtual machine, and it also supports rea-
soning about pointers and unsafe memory accesses. Pex uses Z3 as a constraint
solver, using Z3’s ability to compute models for satisfiable constraint systems.
Pex has been used within Microsoft to test core .NET components developed at
Microsoft. Pex is integrated with Microsoft Visual Studio and available from [19].

Dynamic symbolic execution [14, 4] is a variation of conventional static sym-
bolic execution [16]. Dynamic symbolic execution consists in executing the pro-
gram, starting with arbitrary inputs, while performing a symbolic execution in
parallel to collect symbolic constraints on inputs obtained from predicates in
branch statements along the execution. Then a constraint solver is used to com-
pute variations of the previous inputs in order to steer future program executions
along different execution paths. In this way, all execution paths will be exercised
eventually. Algorithm 3.1 shows the general dynamic symbolic execution algo-
rithm decides in which order the different execution paths of the program are
enumerated.

The advantage of dynamic symbolic execution over static symbolic execution
is that the abstraction of execution paths can leverage observations from concrete
executions, and not all operations must be expressed and reasoned about sym-
bolically. Using concrete observations for some values instead of fully symbolic
representations leads to an under-approximation of the set of feasible execution
paths, which is appropriate for testing. Such cases can be detected, e.g. when a
function is called that is defined outside of the scope of the analysis. Our tool
reports them to the user.



3.1 Symbolic path conditions

In a concrete execution the program’s state is given by a mapping from program
variables to concrete values, such as 32 or 64-bit integers and heap-allocated
pointers and objects managed by the .NET garbage collector.

the state is a program counter and a mapping from program variables to
terms built over symbolic input values, together with a predicate over symbolic
input values, the so-called path condition. The path condition summarizes the
constraints on input variables that must be satisfied in order for the program
execution to reach the program counter.

For example, for the function

void compare and mult iply ( i n t x ) {
i f ( x>0) {

i n t y = x∗x ;
i f ( y==0) {

t a r g e t :
}

}
}

the path condition for reaching target: consists of two conjuncts (x > 0) and
(x ∗ x == 0). Note that the symbolic state is always expressed in terms of the
symbolic input values, that is why the value of the local variable y was expressed
with the symbolic input x.

3.2 Solving symbolic path conditions

The path condition x > 0 ∧ x ∗ x = 0 is clearly not solvable when x ranges over
integers, but it is solvable for machine represented numerals. When x ranges over
32-bit integers, then one possible solution is x = 216. Pex requires the semantics
of machine representable numerals for accurately generating test cases.

3.3 ResourceReader - an example from the .NET BCL

An illustrative example of the use for integrating bit-level reasoning and other
theories is the exploration of the .NET Base Class Library ResourceReader. The
ResourceReader provides a default implementation of a utility that reads re-

source files. Resource files are used by Windows applications to display text in
culture-specific ways. For example, when setting the default language of Win-
dows to German, applications will load strings from the German resource files.
Abstractly, resource files consist of a set of key-value pairs, and the role of a
resource reader is to parse a text file and create a dictionary of the encoded
key-value pairs. Here, the values are serialized instances of .NET classes, and
the ResourceReader implements type-specific de-serialization.

We can use Pex to test the ResourceReader utility without having any re-
source files available. The listing in Fig. 1 shows a parameterized unit test that



exercises the ResourceReader. It consists of a function ReadEntries, which takes
as input a non-null buffer of bytes (data), creates a stream from the bytes, then
creates an instance of the ResourceReader class, and finally consumes the re-
sources in the stream. Note that the construct fixed (byte* p = data) connects
objects that are managed by the .NET garbage collector with pointers whose
bit-vector nature the program can, and in fact does, reason about. The attribute
[PexMethod] is used by Pex to identify the method as a parameterized unit test.
Thus, values for data will have to be synthesized by dynamic symbolic execution.

[ PexClass , TestClass ]
pub l i c p a r t i a l c l a s s ResourceReaderTest {

[ PexMethod ]
pub l i c unsafe
void ReadEntries ( [ PexAssumeNotNull ] byte [ ] data ) {

f i x ed ( byte ∗ p = data )
us ing (UnmanagedMemoryStream stream =

new UnmanagedMemoryStream (p , data . Length ) ) {
ResourceReader r eader = new ResourceReader ( stream ) ;
fo r each ( var entry in reader ) { /∗ j u s t read ing ∗/ }

}
}

}

Fig. 1. A Resource Reader test class

In general, the ResourceReader cannot assume anything about the contents of
the stream supplied to the constructor. As is common with binary file formats,
a cookie is used to provide a partial filter to distinguish file streams that may
possibly correspond to well-formed resource files and those that are malformed. A
cookie match is of course no assurance that the remaining of the stream conforms
to the definition of the .resources format, but it provides a first sanity check.
Fig. 2 shows the implementation within the Microsoft Base Class Library of the
cookie check. Fig. 3 further illustrates the how a 32-bit integer is reconstructed
by bit manipulation. In contrast to the white-box dynamic symbolic execution
approach, a random block-box test input generator would most likely never pass
this hurdle.

To exercise the remaining of the ResourceReader class Pex needs to create
test inputs that match the cookie. By performing dynamic symbolic execution,
the branch where the cookie match is checked corresponds to a constraint. Fig. 4
shows the term graph for the path condition for a successful cookie match. The
corresponding formula is:

0xcecaefbe = (a[0] | a[1]<<8 | a[2]<<16 | a[3]<<24) where a = $Items[data].

We notice that Pex maintains the input array data within a global array $Items

of array inputs, and that the constraint refers to the elements stored at indices



p r i v a t e void ReadResources ( ) {
BinaryFormatter b f = new BinaryFormatter ( nu l l , . . . ) ;
b f . AssemblyFormat = FormatterAssemblyStyle . Simple ;
ob jFormatter = bf ;

t ry {
i n t magicNum = s t o r e . ReadInt32 ( ) ;
i f (magicNum != ResourceManager . MagicNumber)

throw new ArgumentException ( ) ;
. . .

Fig. 2. Checking the .resources cookie

pub l i c v i r t u a l i n t ReadInt32 ( ) {
F i l l B u f f e r ( 4 ) ;
r e tu rn ( i n t ) ( m buffer [ 0 ] | m buffer [ 1 ] << 8 |

m buffer [ 2 ] << 16 | m buffer [ 3 ] << 24 ) ;
}

Fig. 3. Checking the .resources cookie

0, 1, 2, and 3; which should match a beefca”k”e cookie. These indices correspond
to the run-time values of the indices used by ReadInt32 for parsing the first four
bytes.

Fig. 5. Sample resource reader input

Upon solving this path
condition, which is easy with
a solver that supports bit-
vectors and arrays, Pex can
use the solution to con-
tinue exploring the paths
following the cookie check.
Fig. 5 shows an example
buffer that was generated by
exploring branches following
the cookie check in the re-
source reader.

3.4 Heap constraints on garbage-collected objects

Addresses of garbage-collected objects are opaque: while they are pointers that
can be represented as bit-vectors, they cannot be observed by the program. Pex
takes advantage of the abstraction by representing pointers as abstract, distinct,
values. To handle such object values in constraints, the solver needs to provide
a theory that provides distinct elements. To this end, we use integers that are



Fig. 4. A path condition for matching the .resources cookie

available through the theory of linear integer arithmetic. Similarly, we encode
the types of a .NET program as integers.

We take an approach similar to how the heap is encoded in ESC/Java [13].
Each mutable field of a .NET class is modeled by an evolving mathematical
mapping from objects to values. For example, for the class Class, with the dec-
laration, class Class { int X; int Y; }, there will be a mapping for X and one
for Y, which associates objects with their respective values. To this end, we use
the theory of arrays with the usual read/write functions in Z3.

In the same spirit, an array can be seen as a class with a single mutable field,
which itself is an evolving mapping from integers, representing array indices, to
bytes. Intuitively, the class byte[] corresponds to a class with a single mutable
field that holds the map class byte[] { map<int,byte> $Items; }.

As a result, .NET arrays are encoded as a map of (array) objects to a map
of integers to values.

We omitted two conjuncts from the path condition that required that the
data object is not null, and that it is object that has the byte-array type.

data 6= 0 ∧ $Type(data) = 1



The null object has been assigned the value 0, and the type for byte arrays
has been assigned the value 1. $Type is an uninterpreted function that maps
integers (representing objects) to integers (representing types).

3.5 Minimizing values

We omitted another conjunct from the path condition that was required for
generating the input buffer. The condition imposes that the length of the buffer
be at least 4, to ensure that an array of appropriate size gets allocated to hold
the cookie. Thus, the constraint

$Length(data) ≥ 4

is added, where $Length is an uninterpreted function that maps integers (rep-
resenting objects) to 32-bit bit-vectors (representing array lengths). We use uni-
versal quantifiers to state axioms which restrict possible interpretations of the
$Length function. In particular, to ensure that array lengths are not negative:

∀x.$Length(x) ≥ 0

Clearly, $Length(data) = 4 is a satisfying assignment to $Length(data), but so is
5, or 6, or 231−1. However, the last assignment is not going to be helpful because
running the resource reader with this input will cause attempting to allocate a
prohibitive amount of memory. Pex interacts with Z3 to guide the generation of
test inputs by minimizing some values. We do not attempt to solve the optimiza-
tion problem in its full generality, but instead use a partial greedy algorithm for
minimizing selected values. The algorithm is shown in Algorithm 3.2. It starts
with a constraint C(x) with variable x. The constraint is tested for feasibility.
The first model produces an upper bound on x. It then seeks to reduce the upper
bound until the lower and upper bounds are the same.

Z3 exposes methods Push and Pop to enable asserting and retracting bounds.
So if a bound x < mid is infeasible, it is undone by calling Pop. On the other
hand, if the bound is feasible, then the context is not popped. This enables
subsequent search to re-use conflict clauses that were learned.

Note that the greedy minimization algorithm is complete when only one vari-
able is minimized. When used for several variables, it will find a local minimum
according to the order in which variables are minimized. It cannot be used to
minimize, say, the sum of the variables.

4 Conclusion

We illustrated the use of the SMT solver Z3 in the context of the program
exploration tool Pex. Pex used a combination of several of the theories supported
in Z3 to model different aspects related to symbolic execution. Other program
analysis and verification tools also use Z3 for solving logical formulas. These
tools exercise yet other features of Z3. For example, the program verification
tool chains VCC, Spec#, and HAVOC all prolifically use quantified formulas to
summarize loop invariants and frame conditions on heaps.



Algorithm 3.2 Greedy minimization algorithm

Assert C(x) Assert the path condition
Let m be a model for C(x)
If there is no model, return Unsat
Set lo := 0, hi := m(x) Initialize bounds for x
while lo < hi:

Push Push a local context
Let mid = (lo + hi)/2
Assert x < mid
If context has a model m Then

Set hi := m(x)
Else

Set lo := mid
Pop Pop the local context

Pop remaining pushed contexts
Return the last model m
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