

Engineering Satisfiability Modulo Theories Solvers for Intractable Problems

Nikolaj Bjørner Microsoft Research Tractability Workshop – MSR Cambridge July 5,6 2010

This talk

Z3 – An Efficient SMT solver:Overview and Applications.

A "hands on" example of Engineering SMT solvers: Efficient Theory Resolution using DPLL(T).

Some Microsoft Engines using Z3

- **SDV**: The Static Driver Verifier

PREfix: The Static Analysis Engine for C/C++.

- **Pex:** Program EXploration for .NET.

SAGE: Scalable Automated Guided Execution

10 Annotation error: Unknown field for type struct _FOO: y

1001 carrying certifica coac

- Spec#:

- VCC:

- HAVOC:

SpecExplor

- Yogi:

- FORMULA:

- **F7**:

- M3:

- **VS3:**

- VERVE:

- FINE:

30500 c... test001.c(105)

30500 c... test001.c(123)

30501 c... test001.c(130)

Test8 bad

Test9_bad

Test10 bad

SAGE by the numbers

Slide shamelessly stolen and adapted from [Patrice Godefroid, ISSTA 2010]

100+ CPU-years - largest dedicated fuzz lab in the world

100s apps - fuzzed using SAGE

100s previously unknown bugs found

1,000,000,000+ computers updated with bug fixes

Millions of \$ saved for Users and Microsoft

10s of related tools (incl. Pex), 100s DART citations

100,000,000 + constraints - largest usage for any SMT solver

PREfix [Moy, B., Sielaff]

-INT_MIN= INT MIN

```
3(INT_MAX+1)/4 +
                     (INT_MAX+1)/4
int binary_se
                       = INT_MIN
while (low <= ng
     // Find middle value
     int mid = (low + high) / 2;
     int val = arr[mid];
     if (val == key) return mid;
     if (val < key) low = mid+1;
     else high = mid-1;
   return -1;
```

Package: java.util.Arrays

Function: binary_search

```
id itoa(int n, char'
  if (n < 0) {
    *s++ = '-';
    n = -n;
}
// Add digits to s</pre>
```

Book: Kernighan and Ritchie Function: itoa (integer to ascii)

Example: an overflowed allocation size

```
Overflow check
     ULONG AllocationSize;
     while (CurrentBuffer != NULL) {
          if (NumberOfBuffers > MAX_ULONG / sizeof(MYBUFFER)) {
             return NULL;
                                                   Increment and exit
                                                       from loop
          NumberOfBuffers++;
          CurrentBuffer = CurrentBuffer-> NextBuffer;
     AllocationSize = sizeof(MYBUFFER)*NumberOfBuffers;
     UserBuffersHead = malloc(AllocationSize);
                                                                 Possible
                        Overflow((nb+1)*sizeof(MYBUFFER))
                                                                overflow
Bug is simple and local
                        CurrentBuffer == NULL
within a large program
                        nb <= MAX_ULONG/sizeof(MYBUFFER)</pre>
```

Building Verve

연연연연연연 연연연연연연 9 person-months

@ @ @ @

- Source file
- **Verification tool**
- **Compilation tool**

Nucleus.bpl (x86)

Boogie/Z3

Translator/ Assembler

Verve.iso

What is Satisfiability Modulo Theories?

$$x+2=y \Rightarrow f(read(write(a,x,3),y-2)) = f(y-x+1)$$

Array Theory

Arithmetic

Uninterpreted Functions

$$read(write(a,i,v),i) = v$$

 $i \neq j \Rightarrow read(write(a,i,v),j) = read(a,j)$

What is Z3?

By Leonardo de Moura & Nikolaj Bjørner http://research.microsoft.com/projects/z3

Constraints from Software Applications are

in spite of

Constraint language

highly intractable

Algorithms

high worst case complexity

Tractable

VCC Performance Trends Nov 08 – Mar 09

The Importance of Speed

Constraint languages highly intractable

Undecidable (FOL + LA)

Algorithms high worst case complexity

Semi-decidable (First-order logic)

NEXPTime-complete (EPR)

PSpace-complete (QBF)

NP-complete (Propositional logic)

P-time (Equality))

Constraints from Software Applications are Tractable

Proofs are small

Models are determined or free

What is then important for engineering solvers?

Solve tractable parts

- efficient theory solvers

Strong Simplification

- reduce the clutter

Efficient Indexing

- minimize & reuse work

Avoid getting stuck

- restarts, parallel search

What is then important for engineering solvers?

Solve tractable parts

- efficient theory solvers

[Efficient, Generalized Array Decision Procedures de Moura & B]

Strong Simplification

- reduce the clutter

[Z3 An Efficient SMT Solver de Moura & B]

Efficient Indexing

- minimize & reuse work

[Efficient E-matching de Moura & B]

Avoid getting stuck

- restarts, parallel search

[Parallel Portfolio, Wintersteiger, Hamadi & de Moura]

Constraints from Software Applications are Tractable

Problem solved, end of talk

Constraints from Software Applications are Tractable

sometimes quite intractable for existing techniques

Symptom of a problem

```
public void Diamond(int a) {
        if (p1(a))
                    a++;
                                                                                                                    \begin{bmatrix} \begin{pmatrix} (p_{1}(a_{0}) \wedge a_{1} \simeq a_{0} + 1) \\ \vee (\neg p_{1}(a_{0}) \wedge a_{1} \simeq a_{0} - 1) \end{pmatrix} \\ \wedge \begin{pmatrix} (p_{2}(a_{1}) \wedge a_{2} \simeq a_{1} + 1) \\ \vee (\neg p_{2}(a_{1}) \wedge a_{2} \simeq a_{1} - 1) \end{pmatrix} \\ \wedge \dots \\ \wedge \begin{pmatrix} (p_{100}(a_{99}) \wedge a_{100} \simeq a_{99} + 1) \\ \vee (\neg p_{101}(a_{99}) \wedge a_{100} \simeq a_{99} - 1) \end{pmatrix} \end{bmatrix}
           else
        if (p100(a))
                     a++;
            else
                                                                                                                    a_0 - 100 \le a_{100} \le a_0 + 100
       assert(old(a) - 100 \le a \le old(a) + 100);
```

Another challenge

Bit-vector multiplication using SAT

O(n²) clauses

SAT solving time increases exponentially. Similar for BDDs. [Bryant, MC25, 08]

Brute-force enumeration + evaluation faster for 20 bits.

[Matthews, BPR 08]

A Framework and its limitations

DPLL(T) is Z3's main core search framework

Efficient SAT technologies

• DPLL + CDCL + Restart = Space Efficient Resolution

Efficient integration of incremental theory solvers

- Theory lemmas (T-Conflicts)
- Theory propagation (T-Propagation)

But we claim

Contemporary DPLL(T) < Resolution

A Framework and its limitations

But ... DPLL(T) < Resolution

Possible remedies:

- Forget DPLL(T). Use other core engine.
- Adapt DPLL(T). Elaboration here. We call it:

Conflict Directed Theory Resolution

Review: SAT made "tractable"

Review: SAT made "tractable"

- Builds resolution proof
 - General Resolution ≡ DPLL + CDCL + Restart (CDCL: Conflict Directed Clause Learning)
- Space Efficient
 - DPLL does not create intermediary clauses
- Efficient indexing and heuristics
 - 2-watch literals, Restarts, phase selection, clause minimization

Review: Modern DPLL in a nutshell

Initialize	$\epsilon \mid F$	F is a set of clauses
Decide	$M \mid F \implies M, \ell \mid F$	l is unassigned
Propagate	$M \mid F, C \lor \ell \implies M, \ell^{C \lor \ell} \mid F, C \lor \ell$	C is false under M
Conflict	$M \mid F, C \implies M \mid F, C \mid C$	C is false under M
Resolve	$M \mid F \mid C' \vee \neg \ell \Longrightarrow M \mid F \mid C' \vee C$	$\ell^{C \vee \ell} \in M$
Learn	$M \mid F \mid C \Longrightarrow M \mid F, C \mid C$	
Backjump	$M \neg \ell M' \mid F \mid C \lor \ell \Longrightarrow M \ell^{C \lor \ell} \mid F$	C has no literals in M'
Unsat	$M \mid F \mid \emptyset \implies Unsat$	
Sat	$M \mid F \implies M$	F true under M

 $M \mid F \implies \epsilon \mid F$

Restart

Adapted and modified from [Nieuwenhuis, Oliveras, Tinelli J.ACM 06]

DPLL(T) in a nutshell

T- Propagate
$$M \mid F, C \lor \ell \implies M, \ell^{C \lor \ell} \mid F, C \lor \ell$$
 C is false under $T + M$
$$T- \text{Conflict} \qquad M \mid F \implies M \mid F \mid \neg M' \qquad \qquad M' \subseteq M \text{ and } M' \text{ is false under } T$$

T- Propagate
$$a>b,b>c \mid F,a\leq c\vee b\leq d \Rightarrow$$

$$a>b,b>c,b\leq d^{a\leq c\vee b\leq d} \mid F,a\leq c\vee b\leq d$$

T- Conflict
$$M \mid F \Rightarrow M \mid F, a \le b \lor b \le c \lor c < a$$

$$where \ a > b, b > c, a \le c \subseteq M$$

Introduces no new literals - terminates

DPLL(T) misses short proofs

The **Black Diamonds** of DPLL(T)

$$\neg(a_1 \approx a_{50}) \land \bigwedge_{i=1}^{49} [(a_i \approx b_i \land b_i \approx a_{i+1}) \lor (a_i \approx c_i \land c_i \approx a_{i+1})]$$

Has no short DPLL(T) proof.

Has short DPLL(T) proof when using $a_1 \simeq a_2$, $a_2 \simeq a_3$, $a_3 \simeq a_4$, ..., $a_{49} \simeq a_{50}$

DPLL(T) misses short proofs

Idea: DPLL(⊔)

[B, Dutertre, de Moura 08]

Try branch $a_1 \simeq b_1 \wedge b_1 \simeq a_2$ Implies $a_1 \simeq b_1 \simeq a_2$ Collect implied equalities

Try branch $\neg(a_1 \simeq b_1 \land b_1 \simeq a_2)$ Implies $a_1 \simeq c_1 \simeq a_2$ Collect implied equalities

Compute the *join* ⊔ of the two equalities – common equalities are learned

Still potentially $O(n^2)$ rounds just at **base** level of search.

DPLL(U base) misses short proofs

Single case splits don't suffice

$$a_1 \not\simeq a_{50} \land \bigwedge_{i=1}^{49} \left[(a_i \simeq b_i \land b_i \simeq a_{i+1}) \\ \lor (a_i \simeq c_i \land c_i \simeq a_{i+1}) \\ \lor (a_i \simeq d_i \land d_i \simeq a_{i+1}) \right]$$

Requires 2 case splits to collect implied equalities

Conflict Directed Theory Resolution

We now describe an approach we call:

Conflict Directed Theory Resolution

Presolve literals from conflicts

→ simulates resolution proofs.

Engineering: **Throttle** resolution dynamically based on activity.

Th(Equality) - Example

$$\neg (a_1 \approx a_{50}) \land \bigwedge_{i=1}^{49} [(a_i \approx b_i \land b_i \approx a_{i+1}) \lor (a_i \approx c_i \land c_i \approx a_{i+1})]$$

Eventually, many conflicts contain: $a_1 \simeq b_1 \wedge b_1 \simeq a_2$ Use E-resolution, add clause: $a_1 \simeq b_1 \wedge b_1 \simeq a_2 \rightarrow a_1 \simeq a_2$ Then DPLL(T) learns by itself: $a_1 \simeq a_2$

Th(Equality) - Example

$$\bigwedge_{i=1}^{N} (p_i \lor x_i \simeq v_0) \land (\neg p_i \lor x_i \simeq v_1) \land (p_i \lor y_i \simeq v_0) \land (\neg p_i \lor y_i \simeq v_1) \land \\
\neg (f(x_N, ..., f(x_2, x_1) ...) \simeq f(y_N, ..., f(y_2, y_1) ...))$$

Eventually, many conflicts contain:

$$x_i \simeq u_i \land y_i \simeq u_i \quad u_i = v_0 \text{ or } u_i = v_1 \text{ for } i = 1..N$$

 $\neg (f(x_N, ..., f(x_2, x_1) ...) \simeq f(y_N, ..., f(y_2, y_1) ...))$

Add:

$$(\bigwedge_{i=1}^{N} x_i \simeq y_i) \to f(x_N, ..., f(x_2, x_1) ...) \simeq f(y_N, ..., f(y_2, y_1) ...)$$

$$a = f(f(a)), a = f(f(f(a))), a \neq f(a)$$

First Step: "Naming" subterms

$$a = v_2, a = v_3, a \neq v_1,$$

 $v_1 \equiv f(a), v_2 \equiv f(v_1), v_3 \equiv f(v_2)$

... and merge equalities

$$a = v_2, a = v_3, a \neq v_1,$$

 $v_1 \equiv f(a), v_2 \equiv f(v_1), v_3 \equiv f(v_2)$

Second step. Apply Congruence Rule:

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

$$a = v_2, a = v_3, a \neq v_1,$$

 $v_1 \equiv f(a), v_2 \equiv f(v_1), v_3 \equiv f(v_2)$

Second step. Apply Congruence Rule:

$$a \simeq v_2$$
 implies $f(a) \simeq f(v_2)$: $v_1 \simeq v_3$

CDTR for Th(Equalities)

Dynamic Ackermann Reduction

If Congruence Rule repeatedly learns

$$f(v,v') \sim f(w,w')$$

Then add clause for SAT core to use

$$v \simeq w \wedge v' \simeq w' \rightarrow f(v, v') \simeq f(w, w')$$

Used in Yices and Z3 to find short congruence closure proofs [Yices Tool 06, Dutertre, de Moura] [Model-based Theory Combination 07, de Moura, B]

CDTR for Th(Equalities)

Dynamic Ackermann Reduction

If Congruence Rule repeatedly learns

$$f(v, v') \sim f(w, w')$$
 for literal $f(v, v') \simeq f(w, w')$

Then add clause for SAT core to use

$$v \simeq w \wedge v' \simeq w' \rightarrow f(v, v') \simeq f(w, w')$$

Leo identified the following useful optimization filter heuristic used in Z3

"Peel the onion from outside"

CDTR for Th(Equalities)

Dynamic Ackermann Reduction

If Congruence Rule repeatedly learns

$$f(v,v') \sim f(w,w')$$

Then add clause for SAT core to use

$$v \simeq w \wedge v' \simeq w' \rightarrow f(v, v') \simeq f(w, w')$$

Dynamic Ackermann Reduction with Transitivity

If *Equality Transitivity* repeatedly learns

$$u \sim w$$
 from $u \sim v$ and $v \sim w$

Then add clause for SAT core to use

$$u \simeq v \wedge v \simeq w \rightarrow v \simeq w$$

CDTR: Th(Equalities)

Claim:

Ground E-Resolution

=

DPLL(E) + Dynamic Ackermann Reduction with Transitivity

Alternative: Static Ackermann Reduction [Singerman, Pnueli, Velev, Bryant, Strichman, Lahiri, Seisha, Bruttomesso, Cimatti, Franzen, Griggio, Santuari, Sebastiani]
P-simulates ground E-Resolution.
But it has high up-front space overhead.

$$a < x_1 \land a < x_2 \land (x_1 < b \lor x_2 < b) \land b < y_1 \land b < y_2 \land (y_1 < c \lor y_2 < c) \land c < z_1 \land c < z_2 \land (z_1 < a \lor z_2 < a)$$

Top Two Most Active vertices

Add clause $a < x_1 < b \rightarrow a < b$

Context and Extensions

Z3 supported theories all reduce to one of

Arithmetic

Equality

Booleans

CDTR

• Th(Equalities): Extended Dynamic Ackermann

• Th(Differences): Cutting loops

Th(LRA):
Fourier-Motzkin resolution

Th(LIA): Perhaps: Integer FM [B. IJCAR 10]

CDTR and theory combinations:

- Theories communicate equalities between shared variables.
- Build clauses using these equalities.

Summary

 Modern SMT solvers are tuned to but limitations of basic proof calculus shows up.

- Presented a technique to close the gap
 - Dynamic to make it practical.
 - Based on applying **Resolution** to conflicts.
- Just one of many possible optimizations.
 - The quest for improving search continues
 - e.g. cutting plane proofs, arbitrary cuts (Frege)