
Nikolaj Bjørner
Microsoft Research
Tractability Workshop – MSR Cambridge July 5,6 2010

FSE &

Z3 – An Efficient SMT solver:

 Overview and Applications.

A “hands on” example of Engineering SMT solvers:

 Efficient Theory Resolution using DPLL(T).

- SDV: The Static Driver Verifier

- PREfix: The Static Analysis Engine for C/C++.

- Pex: Program EXploration for .NET.

- SAGE: Scalable Automated Guided Execution

- Spec#: C# + contracts

- VCC: Verifying C Compiler for the Viridian Hyper-Visor

- HAVOC: Heap-Aware Verification of C-code.

- SpecExplorer: Model-based testing of protocol specs.

- Yogi: Dynamic symbolic execution + abstraction.

- FORMULA: Model-based Design

- F7: Refinement types for security protocols

- M3: Model Program Modeling

- VS3: Abstract interpretation and Synthesis

- VERVE: Verified operating system

- FINE: Proof carrying certified code

Hyper-V

100+ CPU-years - largest dedicated fuzz lab in the world

100s apps - fuzzed using SAGE

100s previously unknown bugs found

1,000,000,000+ computers updated with bug fixes

Millions of $ saved for Users and Microsoft

10s of related tools (incl. Pex), 100s DART citations

100,000,000+ constraints - largest usage for any SMT solver

Slide shamelessly stolen and adapted from [Patrice Godefroid, ISSTA 2010]

int binary_search(int[] arr, int low,
 int high, int key)

while (low <= high)

 {

 // Find middle value

 int mid = (low + high) / 2;

 int val = arr[mid];

 if (val == key) return mid;

 if (val < key) low = mid+1;

 else high = mid-1;

 }

 return -1;

}

void itoa(int n, char* s) {

 if (n < 0) {

 *s++ = „-‟;

 n = -n;

 }

 // Add digits to s

 ….

-INT_MIN=
INT_MIN

3(INT_MAX+1)/4 +
(INT_MAX+1)/4

 = INT_MIN

Package: java.util.Arrays
Function: binary_search

Book: Kernighan and Ritchie
Function: itoa (integer to ascii)

ULONG AllocationSize;

while (CurrentBuffer != NULL) {

 if (NumberOfBuffers > MAX_ULONG / sizeof(MYBUFFER)) {
 return NULL;
 }
 NumberOfBuffers++;
 CurrentBuffer = CurrentBuffer->NextBuffer;

}

AllocationSize = sizeof(MYBUFFER)*NumberOfBuffers;

UserBuffersHead = malloc(AllocationSize);

6/26/2009 6

Overflow check

Possible
overflow

Increment and exit
from loop

Bug is simple and local

within a large program

…

Overflow((nb+1)*sizeof(MYBUFFER))

CurrentBuffer == NULL

nb <= MAX_ULONG/sizeof(MYBUFFER)

Building Verve
V

e
rifie

d

Safe to the Last Instruction / Jean Yang & Chris Hawbliztl

PLDI 2010

C# compiler

Kernel.cs

Boogie/Z3

Translator/
Assembler

TAL checker

Linker/ISO generator

Verve.iso

Source file

Compilation tool
Verification tool

Nucleus.bpl (x86) Kernel.obj (x86)

9 person-months

Z3: An Efficient SMT

Solver

)1())2),3,,(((2  xyfyxawritereadfyx

Arithmetic Array Theory
Uninterpreted

Functions

((, ,),)

((, ,),) (,)

read write a i v i v

i j read write a i v j read a j



  

Theory Solvers
Bit-Vectors

Lin-arithmetic Groebner basis

Free (uninterpreted) functions

Arrays

Quantifiers:
E-matching

OCaml

.NET

C
Native

SMT-LIB

Model Generation:
Finite Models

Simplify

Comb. Array Logic Recursive Datatypes

Quantifiers:
Super-position

Proof objects

Parallel Z3
Cores: Assumption

tracking

By Leonardo de Moura & Nikolaj Bjørner http://research.microsoft.com/projects/z3

F# quote

SAT core

http://research.microsoft.com/projects/z3

Constraints from Software

Applications are

Constraint language highly intractable

Algorithms high worst case complexity

in spite of

Tractable

0.1

1

10

100

1000

Attempt to improve
Boogie/Z3 interaction

Modification in invariant
checking

Switch to Boogie2

Switch to Z3 v2

Z3 v2 update

Constraint languages highly intractable

Algorithms high worst case complexity

Constraints from Software

Applications are Tractable

Proofs are small Models are determined or free

𝑎 ≤ 𝑏 ∧
𝑏 < 𝑐 ∧
𝑐 ≤ 𝑎 ∧
𝑥 ≤ 𝑦 ∧
𝑦 < 𝑧 ∧
𝑧 < 𝑢 ∧
𝑥 ≤ 𝑤 ∧
𝑥 ≤ 𝑣 ∧
𝑥 ≤ 1 ∧
𝑥 ≤ 2 ∧
𝑥 ≤ 3

𝑎 ≤ 𝑏 ∧
𝑏 ≤ 𝑐 ∧
𝑐 ≤ 𝑎 ∧
𝑥 = 𝑤 ∧
𝑥 = 𝑣 ∧
𝑥 = 1 ∧
𝑥 ≤ 2 ∧
𝑥 ≤ 3 ∧
𝑥 ≤ 𝑦 ∧
𝑦 < 𝑧 ∧
𝑧 < 𝑢 ∧

Unsat a = b = c

x, v, w = 1

x = 1 ≤ 2,3

y,z,u “free”

What is then important for engineering solvers?

Solve tractable parts - efficient theory solvers

Strong Simplification - reduce the clutter

Efficient Indexing - minimize & reuse work

Avoid getting stuck - restarts, parallel search

What is then important for engineering solvers?

Solve tractable parts - efficient theory solvers

Strong Simplification - reduce the clutter

Efficient Indexing - minimize & reuse work

Avoid getting stuck - restarts, parallel search
[Parallel Portfolio, Wintersteiger, Hamadi & de Moura]

[Efficient E-matching de Moura & B]

[Efficient, Generalized Array Decision Procedures de Moura & B]

[Z3 An Efficient SMT Solver de Moura & B]

Constraints from Software

Applications are Tractable

Problem solved, end of talk

Constraints from Software

Applications are Tractable

sometimes quite intractable for

existing techniques

Poses a challenge to Z3

FA

a0b0 a0b1 a0b2 a0b3

a1b0 a1b1 a1b2

a2b0

HA HA HA

FA

FA

a2b1

a3b0

out0 out1 out2 out3

O(n2) clauses

SAT solving time increases

exponentially. Similar for BDDs.

[Bryant, MC25, 08]

Brute-force enumeration +

evaluation faster for 20 bits.

[Matthews, BPR 08]

Bit-vector multiplication using SAT

𝒐𝒖𝒕 𝑵 = 𝒂 𝑵 ∗ 𝒃 𝑵

DPLL(T) is Z3‟s main core search framework

Efficient SAT technologies

• DPLL + CDCL + Restart = Space Efficient Resolution

Efficient integration of incremental theory solvers
• Theory lemmas (T-Conflicts)

• Theory propagation (T-Propagation)

But we claim
• Contemporary DPLL(T) < Resolution

But … DPLL(T) < Resolution

Possible remedies:

- Forget DPLL(T). Use other core engine.

- Adapt DPLL(T). Elaboration here. We call it:

 Conflict Directed Theory Resolution

¬𝑝 ∨ ¬𝑞, 𝑝 ∨ ¬𝑞, ¬𝑝 ∨ 𝑞, 𝑝 ∨ 𝑞

¬𝑞 𝑞

⊥⊥
Guess q

Conflict Conflict

Propagate ¬𝑝

Resolve

Learn ¬𝒒

Backjump

Propagate ¬𝒒

Builds resolution proof
General Resolution ≡ DPLL + CDCL + Restart
 (CDCL: Conflict Directed Clause Learning)

Space Efficient
DPLL does not create intermediary clauses

Efficient indexing and heuristics
2-watch literals, Restarts, phase selection,
clause minimization

Initialize 𝜖| 𝐹 𝐹 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠

Decide 𝑀 𝐹 ⟹ 𝑀, ℓ 𝐹 ℓ 𝑖𝑠 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

Propagate 𝑀 𝐹, 𝐶 ∨ ℓ ⟹ 𝑀, ℓ𝐶∨ℓ 𝐹, 𝐶 ∨ ℓ 𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀

Conflict 𝑀 𝐹, 𝐶 ⟹ 𝑀 𝐹, 𝐶 | 𝐶 𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀

Resolve 𝑀 𝐹 | 𝐶′ ∨ ¬ℓ ⟹ 𝑀 𝐹 | 𝐶′ ∨ 𝐶 ℓ𝐶∨ℓ ∈ 𝑀

Learn 𝑀 𝐹 | 𝐶 ⟹ 𝑀 𝐹, 𝐶 | 𝐶

Backjump 𝑀¬ℓ𝑀′ 𝐹 | 𝐶 ∨ ℓ ⟹ 𝑀ℓ𝐶∨ℓ 𝐹 𝐶 𝑕𝑎𝑠 𝑛𝑜 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 𝑖𝑛 𝑀′

Unsat 𝑀 𝐹 ∅ ⟹ 𝑈𝑛𝑠𝑎𝑡

Sat 𝑀 |𝐹 ⟹ 𝑀 𝐹 𝑡𝑟𝑢𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀

Restart 𝑀 𝐹 ⟹ 𝜖 𝐹

Adapted and modified from [Nieuwenhuis, Oliveras, Tinelli J.ACM 06]

T- Propagate 𝑀 𝐹, 𝐶 ∨ ℓ ⟹ 𝑀, ℓ𝐶∨ℓ 𝐹, 𝐶 ∨ ℓ 𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑇 + 𝑀

T- Conflict 𝑀 𝐹 ⟹ 𝑀 𝐹 | ¬𝑀′ 𝑀′ ⊆ 𝑀 𝑎𝑛𝑑 𝑀′𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑇

𝑀 | 𝐹 ⟹ 𝑀 | 𝐹, 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑐 ∨ 𝑐 < 𝑎

𝑤𝑕𝑒𝑟𝑒 𝑎 > 𝑏, 𝑏 > 𝑐, 𝑎 ≤ 𝑐 ⊆ 𝑀

T- Conflict

𝑎 > 𝑏, 𝑏 > 𝑐 | 𝐹, 𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ⟹

 𝑎 > 𝑏, 𝑏 > 𝑐, 𝑏 ≤ 𝑑𝑎≤𝑐∨𝑏≤𝑑 | 𝐹, 𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑

T- Propagate

Introduces no new literals - terminates

The Black Diamonds of DPLL(T)

Has no short DPLL(T) proof.

Has short DPLL(T) proof when using 𝑎1 ≃ 𝑎2, 𝑎2 ≃ 𝑎3, 𝑎3 ≃ 𝑎4, … , 𝑎49 ≃ 𝑎50

¬(𝑎1≃ 𝑎50) ∧ [𝑎𝑖 ≃ 𝑏𝑖 ∧ 𝑏𝑖 ≃ 𝑎𝑖+1 ∨ (𝑎𝑖 ≃ 𝑐𝑖 ∧ 𝑐𝑖 ≃ 𝑎𝑖+1)]

49

𝑖=1

Example from [Rozanov, Strichman, SMT 07]

Idea: DPLL(⊔) [B, Dutertre, de Moura 08]

Try branch 𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2 Try branch ¬(𝑎1≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2)
Implies 𝑎1 ≃ 𝑏1 ≃ 𝑎2 Implies 𝑎1 ≃ 𝑐1 ≃ 𝑎2
Collect implied equalities Collect implied equalities

Compute the join ⊔ of the two equalities – common equalities are learned

Still potentially O(𝑛2) rounds just at base level of search.

Single case splits don‟t suffice

Requires 2 case splits to collect implied equalities

We now describe an approach we call:

 Conflict Directed Theory Resolution

 resolve literals from conflicts

 → simulates resolution proofs.

Engineering: Throttle resolution dynamically
based on activity.

Eventually, many conflicts contain: 𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2

Use E-resolution, add clause: 𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2 → 𝑎1 ≃ 𝑎2

Then DPLL(T) learns by itself: 𝑎1 ≃ 𝑎2

¬(𝑎1≃ 𝑎50) ∧ [𝑎𝑖 ≃ 𝑏𝑖 ∧ 𝑏𝑖 ≃ 𝑎𝑖+1 ∨ (𝑎𝑖 ≃ 𝑐𝑖 ∧ 𝑐𝑖 ≃ 𝑎𝑖+1)]

49

𝑖=1

Eventually, many conflicts contain:

𝑥𝑖 ≃ 𝑢𝑖 ∧ 𝑦𝑖 ≃ 𝑢𝑖 𝑢𝑖 = 𝑣0 𝑜𝑟 𝑢𝑖 = 𝑣1 𝑓𝑜𝑟 𝑖 = 1. . 𝑁
¬(𝑓 𝑥𝑁, … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 …)

Add:

(𝑥𝑖 ≃ 𝑦𝑖) →

𝑁

𝑖=1

𝑓 𝑥𝑁 , … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 …

 𝑝𝑖 ∨ 𝑥𝑖 ≃ 𝑣0 ∧ ¬𝑝𝑖 ∨ 𝑥𝑖 ≃ 𝑣1 ∧ 𝑝𝑖 ∨ 𝑦𝑖 ≃ 𝑣0 ∧ ¬𝑝𝑖 ∨ 𝑦𝑖 ≃ 𝑣1 ∧

𝑁

𝑖=1

 ¬(𝑓 𝑥𝑁, … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 …)

a = f(f(a)), a = f(f(f(a))), a  f(a)

First Step: “Naming” subterms

𝑎 = 𝑣2, 𝑎 = 𝑣3, 𝑎  𝑣1,
𝑣1 ≡ 𝑓 𝑎 , 𝑣2 ≡ 𝑓 𝑣1 , 𝑣3 ≡ 𝑓(𝑣2)

… and merge equalities

𝑎, 𝑣2, 𝑣3 𝑣1

𝑎 = 𝑣2, 𝑎 = 𝑣3, 𝑎  𝑣1,
𝑣1 ≡ 𝑓 𝑎 , 𝑣2 ≡ 𝑓 𝑣1 , 𝑣3 ≡ 𝑓(𝑣2)

Second step. Apply Congruence Rule:

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn)

𝑎, 𝑣2, 𝑣3 𝑣1

𝑎 = 𝑣2, 𝑎 = 𝑣3, 𝑎  𝑣1,
𝑣1 ≡ 𝑓 𝑎 , 𝑣2 ≡ 𝑓 𝑣1 , 𝑣3 ≡ 𝑓(𝑣2)

Second step. Apply Congruence Rule:

𝑎 ≃ 𝑣2 implies 𝑓 𝑎 ≃ 𝑓 𝑣2 : 𝑣1≃ 𝑣3

𝑎, 𝑣2, 𝑣3, 𝑣1

If Congruence Rule repeatedly learns

 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′

Then add clause for SAT core to use

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′

Used in Yices and Z3 to find short congruence closure proofs

[Yices Tool 06, Dutertre, de Moura]

[Model-based Theory Combination 07, de Moura, B]

Dynamic Ackermann Reduction

If Congruence Rule repeatedly learns

 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′ for literal 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′

Then add clause for SAT core to use

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′

Leo identified the following useful

optimization filter heuristic used in Z3

“Peel the onion from outside”

Dynamic Ackermann Reduction

If Congruence Rule repeatedly learns

 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′

Then add clause for SAT core to use

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′

Dynamic Ackermann Reduction

Dynamic Ackermann Reduction with Transitivity

If Equality Transitivity repeatedly learns

 𝑢 ∼ 𝑤 𝑓𝑟𝑜𝑚 𝑢 ∼ 𝑣 𝑎𝑛𝑑 𝑣 ∼ 𝑤

Then add clause for SAT core to use

 𝑢 ≃ 𝑣 ∧ 𝑣 ≃ 𝑤 → 𝑣 ≃ 𝑤

Ground E-Resolution

≡

DPLL(E) + Dynamic Ackermann Reduction with Transitivity

Alternative: Static Ackermann Reduction

[Singerman, Pnueli, Velev, Bryant, Strichman,

Lahiri, Seisha, Bruttomesso,Cimatti, Franzen,

Griggio, Santuari, Sebastiani],

P-simulates ground E-Resolution.

But it has high up-front space overhead.

Claim:

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Effect on the Diamond Example:.

sec.

 𝑎 < 𝑥1 ∧ 𝑎 < 𝑥2 ∧ 𝑥1 < 𝑏 ∨ 𝑥2 < 𝑏 ∧
 b < 𝑦1 ∧ 𝑏 < 𝑦2 ∧ 𝑦1 < 𝑐 ∨ 𝑦2 < 𝑐 ∧
 c < 𝑧1 ∧ 𝑐 < 𝑧2 ∧ 𝑧1 < 𝑎 ∨ 𝑧2 < 𝑎

 𝑎

 𝑥1

 𝑥2

 𝑏

 𝑦1

 𝑦2

 𝑐

 𝑧1

 𝑧2

 𝑎 ∧ ∧ ∧ ∨ ∨ ∨

 𝑎

 𝑥1

 𝑏

 𝑦2

 𝑐

 𝑧2

 𝑎

 𝑥1

 𝑏

 𝑦2

 𝑐

 𝑧2

 𝑎

 𝑥1

 𝑏

 𝑦2

 𝑐

 𝑧2

 𝑎

 𝑥1

 𝑏

 𝑦2

 𝑐

 𝑧2

 𝑎

Add clause

𝑎 < 𝑥1 < 𝑏 → 𝑎 < 𝑏

Top Two Most Active

vertices
<

Z3 supported theories all reduce to one of

 Arithmetic Equality Booleans

CDTR
Th(Equalities): Extended Dynamic Ackermann

Th(Differences): Cutting loops

Th(LRA): Fourier-Motzkin resolution

Th(LIA): Perhaps: Integer FM [B. IJCAR 10]

CDTR and theory combinations:
Theories communicate equalities between shared variables.

Build clauses using these equalities.

Modern SMT solvers are tuned to
but limitations of basic proof
calculus shows up.

Presented a technique to close the gap
Dynamic - to make it practical.

Based on applying Resolution to conflicts.

Just one of many possible optimizations.
The quest for improving search continues

e.g. cutting plane proofs, arbitrary cuts (Frege)

