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Z3 – An Efficient SMT solver: 

 Overview and Applications. 

 

 

A “hands on” example of Engineering SMT solvers: 

 Efficient Theory Resolution using DPLL(T).  

 



 

- SDV:  The Static Driver Verifier 

- PREfix:  The Static Analysis Engine for C/C++. 

- Pex:  Program EXploration for .NET. 

- SAGE:  Scalable Automated Guided Execution  

- Spec#:  C# + contracts 

- VCC:  Verifying C Compiler for the Viridian Hyper-Visor 

- HAVOC:  Heap-Aware Verification of C-code. 

- SpecExplorer: Model-based testing of protocol specs. 

- Yogi:  Dynamic symbolic execution + abstraction. 

- FORMULA: Model-based Design 

- F7:   Refinement types for security protocols 

- M3:   Model Program Modeling 

- VS3:  Abstract interpretation and Synthesis 

- VERVE:  Verified operating system 

- FINE:  Proof carrying certified code 

      

Hyper-V 



100+ CPU-years - largest dedicated fuzz lab in the world 
 

100s apps - fuzzed using SAGE 

 

100s previously unknown bugs found 

 

1,000,000,000+ computers updated with bug fixes 

 

Millions of $ saved for Users and Microsoft 

 

10s of related tools (incl. Pex), 100s DART citations 

 

100,000,000+ constraints  - largest usage for any SMT solver 

Slide shamelessly stolen and adapted from [Patrice Godefroid, ISSTA 2010] 



int binary_search(int[] arr, int low,  
                       int high, int key)   

while (low <= high)   

    { 

        // Find middle value  

        int mid = (low + high) / 2; 

        int val = arr[mid]; 

        if (val == key) return mid; 

        if (val < key) low = mid+1;  

        else high = mid-1; 

     } 

     return -1; 

} 

void itoa(int n, char* s) { 

      if (n < 0) { 

         *s++ = „-‟; 

         n = -n; 

     } 

     // Add digits to s 

     …. 

 

-INT_MIN= 
INT_MIN 

3(INT_MAX+1)/4 + 
(INT_MAX+1)/4  

 = INT_MIN 

Package: java.util.Arrays 
Function: binary_search 

Book: Kernighan and Ritchie 
Function: itoa (integer to ascii) 



ULONG AllocationSize; 

while (CurrentBuffer != NULL) { 

        if (NumberOfBuffers > MAX_ULONG / sizeof(MYBUFFER)) {              
   return NULL; 
   } 
   NumberOfBuffers++; 
   CurrentBuffer = CurrentBuffer->NextBuffer; 

} 

AllocationSize = sizeof(MYBUFFER)*NumberOfBuffers; 

UserBuffersHead = malloc(AllocationSize); 
 

6/26/2009 6 

Overflow check 

Possible 
overflow 

Increment and exit 
from loop 

Bug is simple and local  

within a large program 

… 

Overflow((nb+1)*sizeof(MYBUFFER)) 

CurrentBuffer == NULL  

nb <= MAX_ULONG/sizeof(MYBUFFER) 



Building Verve 
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e
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Safe to the Last Instruction / Jean Yang & Chris Hawbliztl 

PLDI 2010 

C# compiler 

Kernel.cs 

Boogie/Z3 

Translator/ 
Assembler 

TAL checker 

Linker/ISO generator 

Verve.iso  

Source file 

Compilation tool 
Verification tool 

Nucleus.bpl (x86) Kernel.obj (x86) 

9 person-months 



 

Z3: An Efficient SMT 

Solver 
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Theory Solvers 
Bit-Vectors 

Lin-arithmetic Groebner basis 

Free (uninterpreted) functions 

Arrays 

Quantifiers: 
E-matching 

OCaml 

.NET 

C 
Native 

SMT-LIB 

Model Generation: 
Finite Models 

Simplify 

Comb. Array Logic Recursive Datatypes 

Quantifiers: 
Super-position 

Proof objects 

Parallel Z3 
Cores: Assumption 

tracking 

By Leonardo de Moura & Nikolaj Bjørner http://research.microsoft.com/projects/z3  

F# quote 

SAT core 

http://research.microsoft.com/projects/z3


Constraints from Software 

Applications are 

  

Constraint language  highly intractable 

 
Algorithms    high worst case complexity 

in spite of 

Tractable 
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Attempt to improve 
Boogie/Z3 interaction 

Modification in invariant 
checking 
 

Switch to Boogie2 
 

Switch to Z3 v2 
 

Z3 v2 update  
 
 





Constraint languages highly intractable 

 
Algorithms  high worst case complexity 



Constraints from Software  

Applications are Tractable 

  

Proofs are small Models are determined or free 

𝑎 ≤ 𝑏 ∧ 
𝑏 < 𝑐 ∧ 
𝑐 ≤ 𝑎 ∧ 
𝑥 ≤ 𝑦 ∧ 
𝑦 < 𝑧 ∧ 
𝑧 < 𝑢 ∧ 
𝑥 ≤ 𝑤 ∧ 
𝑥 ≤ 𝑣 ∧ 
𝑥 ≤ 1 ∧ 
𝑥 ≤ 2 ∧ 
𝑥 ≤ 3 

𝑎 ≤ 𝑏 ∧ 
𝑏 ≤ 𝑐 ∧ 
𝑐 ≤ 𝑎 ∧ 
𝑥 = 𝑤 ∧ 
𝑥 = 𝑣 ∧ 
𝑥 = 1 ∧ 
𝑥 ≤ 2 ∧ 
𝑥 ≤ 3 ∧ 
𝑥 ≤ 𝑦 ∧ 
𝑦 < 𝑧 ∧ 
𝑧 < 𝑢 ∧ 

 

Unsat a = b = c 

x, v, w = 1 

x = 1 ≤ 2,3 

y,z,u “free”  



  

What is then important for engineering solvers? 

Solve tractable parts - efficient theory solvers  

 

Strong Simplification - reduce the clutter  

 

Efficient Indexing  - minimize & reuse work 

 

Avoid getting stuck  - restarts, parallel search 



  

What is then important for engineering solvers? 

Solve tractable parts - efficient theory solvers  

 

Strong Simplification - reduce the clutter  

 

Efficient Indexing  - minimize & reuse work 

 

Avoid getting stuck  - restarts, parallel search 
[Parallel Portfolio, Wintersteiger, Hamadi & de Moura] 

[Efficient E-matching de Moura & B] 

[Efficient, Generalized Array Decision Procedures de Moura & B] 

[Z3 An Efficient SMT Solver de Moura & B] 



  

Constraints from Software 

Applications are Tractable 

Problem solved, end of talk 



  

Constraints from Software 

Applications are Tractable 

 

sometimes quite intractable for  

existing techniques 



Poses a challenge to Z3 



FA 

a0b0 a0b1 a0b2 a0b3 

a1b0 a1b1 a1b2 

a2b0 

HA HA HA 

FA 

FA 

a2b1 

a3b0 

out0  out1  out2  out3  

O(n2) clauses 

 

 

SAT solving time increases 

exponentially. Similar for BDDs. 

[Bryant, MC25, 08] 

 

Brute-force enumeration + 

evaluation faster for 20 bits. 

[Matthews, BPR 08] 

Bit-vector multiplication using SAT 

𝒐𝒖𝒕 𝑵 = 𝒂 𝑵  ∗ 𝒃 𝑵  



DPLL(T) is Z3‟s main core search framework 

 
Efficient SAT technologies 

• DPLL + CDCL + Restart = Space Efficient Resolution  

 

Efficient integration of incremental theory solvers 
• Theory lemmas    (T-Conflicts) 

• Theory propagation (T-Propagation) 

 

But we claim  
• Contemporary DPLL(T) < Resolution 



 

But … DPLL(T) < Resolution 

 

Possible remedies: 

 

- Forget DPLL(T). Use other core engine. 

- Adapt DPLL(T). Elaboration here. We call it: 

 
     Conflict Directed Theory Resolution 



¬𝑝 ∨ ¬𝑞,     𝑝 ∨ ¬𝑞,    ¬𝑝 ∨ 𝑞,    𝑝 ∨ 𝑞  

¬𝑞  𝑞  

⊥⊥ 
Guess  q 

Conflict  Conflict  

Propagate ¬𝑝  

Resolve 

Learn ¬𝒒 

Backjump 

Propagate ¬𝒒  



Builds resolution proof 
General Resolution ≡ DPLL + CDCL + Restart 
    (CDCL: Conflict Directed Clause Learning) 

 

Space Efficient 
DPLL does not create intermediary clauses 

 

Efficient indexing and heuristics 
2-watch literals, Restarts, phase selection, 
clause minimization 



Initialize 𝜖| 𝐹  𝐹 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠  

Decide 𝑀   𝐹 ⟹ 𝑀, ℓ     𝐹   ℓ 𝑖𝑠 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑   

Propagate 𝑀  𝐹, 𝐶 ∨ ℓ ⟹ 𝑀, ℓ𝐶∨ℓ     𝐹, 𝐶 ∨ ℓ  𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀  

Conflict 𝑀  𝐹, 𝐶 ⟹ 𝑀    𝐹, 𝐶 | 𝐶    𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀  

Resolve 𝑀  𝐹 | 𝐶′ ∨ ¬ℓ ⟹ 𝑀    𝐹 | 𝐶′ ∨ 𝐶   ℓ𝐶∨ℓ ∈ 𝑀   

Learn 𝑀  𝐹 | 𝐶 ⟹ 𝑀   𝐹, 𝐶 | 𝐶    

Backjump 𝑀¬ℓ𝑀′  𝐹 | 𝐶 ∨ ℓ ⟹ 𝑀ℓ𝐶∨ℓ   𝐹    𝐶 𝑕𝑎𝑠 𝑛𝑜 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 𝑖𝑛 𝑀′  

Unsat 𝑀  𝐹 ∅ ⟹ 𝑈𝑛𝑠𝑎𝑡  

Sat 𝑀 |𝐹 ⟹ 𝑀  𝐹 𝑡𝑟𝑢𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀    

Restart 𝑀  𝐹 ⟹  𝜖    𝐹    

Adapted and modified from [Nieuwenhuis, Oliveras, Tinelli J.ACM 06] 



T- Propagate 𝑀  𝐹, 𝐶 ∨ ℓ ⟹ 𝑀, ℓ𝐶∨ℓ     𝐹, 𝐶 ∨ ℓ  𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑇 + 𝑀  

T- Conflict 𝑀  𝐹 ⟹ 𝑀    𝐹 | ¬𝑀′    𝑀′ ⊆ 𝑀 𝑎𝑛𝑑 𝑀′𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑇  

𝑀  |   𝐹 ⟹    𝑀 |    𝐹, 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑐 ∨ 𝑐 < 𝑎  

𝑤𝑕𝑒𝑟𝑒 𝑎 > 𝑏, 𝑏 >  𝑐, 𝑎 ≤ 𝑐 ⊆ 𝑀  

T- Conflict 

𝑎 > 𝑏, 𝑏 >  𝑐     |   𝐹, 𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ⟹   
 

                           𝑎 > 𝑏, 𝑏 >  𝑐, 𝑏 ≤ 𝑑𝑎≤𝑐∨𝑏≤𝑑    |    𝐹, 𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑  

T- Propagate 

Introduces no new literals - terminates 



The Black Diamonds of DPLL(T) 

Has no short DPLL(T) proof.  

 

Has short DPLL(T) proof when using 𝑎1 ≃ 𝑎2, 𝑎2 ≃ 𝑎3, 𝑎3 ≃ 𝑎4, … , 𝑎49 ≃ 𝑎50 

¬(𝑎1≃ 𝑎50)  ∧ [ 𝑎𝑖 ≃ 𝑏𝑖 ∧ 𝑏𝑖 ≃ 𝑎𝑖+1 ∨ (𝑎𝑖 ≃ 𝑐𝑖 ∧ 𝑐𝑖 ≃ 𝑎𝑖+1)]

49

𝑖=1

 

Example from [Rozanov, Strichman, SMT 07] 



Idea: DPLL(⊔)             [B, Dutertre, de Moura 08] 

Try branch 𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2  Try branch ¬(𝑎1≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2) 
Implies 𝑎1 ≃ 𝑏1 ≃ 𝑎2    Implies 𝑎1 ≃ 𝑐1 ≃ 𝑎2 
Collect implied equalities   Collect implied equalities 

Compute the join ⊔ of the two equalities – common equalities are learned 

 

Still potentially O(𝑛2) rounds just at base level of search.  



Single case splits don‟t suffice 

Requires 2 case splits to collect implied equalities 



We now describe an approach we call:  
 

 Conflict Directed Theory Resolution  

 

     resolve literals from conflicts 

 → simulates resolution proofs. 

 

Engineering: Throttle resolution dynamically 
based on activity. 



Eventually, many conflicts contain:            𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2 

Use E-resolution, add clause:         𝑎1 ≃ 𝑏1 ∧ 𝑏1 ≃ 𝑎2 → 𝑎1 ≃ 𝑎2 

Then DPLL(T) learns by itself:              𝑎1 ≃ 𝑎2 

¬(𝑎1≃ 𝑎50)  ∧ [ 𝑎𝑖 ≃ 𝑏𝑖 ∧ 𝑏𝑖 ≃ 𝑎𝑖+1 ∨ (𝑎𝑖 ≃ 𝑐𝑖 ∧ 𝑐𝑖 ≃ 𝑎𝑖+1)]

49

𝑖=1

 



Eventually, many conflicts contain:     

         
𝑥𝑖 ≃ 𝑢𝑖 ∧ 𝑦𝑖 ≃ 𝑢𝑖    𝑢𝑖 = 𝑣0 𝑜𝑟 𝑢𝑖 = 𝑣1   𝑓𝑜𝑟 𝑖 = 1. . 𝑁 
¬(𝑓 𝑥𝑁, … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 … ) 

Add: 

( 𝑥𝑖 ≃ 𝑦𝑖) →

𝑁

𝑖=1

𝑓 𝑥𝑁 , … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 …  

 𝑝𝑖 ∨ 𝑥𝑖 ≃ 𝑣0 ∧ ¬𝑝𝑖 ∨ 𝑥𝑖 ≃ 𝑣1 ∧ 𝑝𝑖 ∨ 𝑦𝑖 ≃ 𝑣0 ∧ ¬𝑝𝑖 ∨ 𝑦𝑖 ≃ 𝑣1 ∧ 

𝑁

𝑖=1

 

             ¬(𝑓 𝑥𝑁, … , 𝑓 𝑥2, 𝑥1 … ≃ 𝑓 𝑦𝑁, … , 𝑓 𝑦2, 𝑦1 … )  



a = f(f(a)), a = f(f(f(a))), a   f(a)  

First Step: “Naming” subterms 

 



𝑎 = 𝑣2, 𝑎 = 𝑣3, 𝑎   𝑣1,  
𝑣1 ≡ 𝑓 𝑎 , 𝑣2 ≡ 𝑓 𝑣1 , 𝑣3 ≡ 𝑓(𝑣2) 

  

… and merge equalities 

𝑎, 𝑣2, 𝑣3  𝑣1 



𝑎 = 𝑣2, 𝑎 = 𝑣3, 𝑎   𝑣1,  
𝑣1 ≡ 𝑓 𝑎 , 𝑣2 ≡ 𝑓 𝑣1 , 𝑣3 ≡ 𝑓(𝑣2) 

  
 

Second step. Apply Congruence Rule: 

x1 = y1, …, xn = yn implies f(x1, …, xn) = f(y1, …, yn) 

𝑎, 𝑣2, 𝑣3  𝑣1 



𝑎 = 𝑣2, 𝑎 = 𝑣3, 𝑎   𝑣1,  
𝑣1 ≡ 𝑓 𝑎 , 𝑣2 ≡ 𝑓 𝑣1 , 𝑣3 ≡ 𝑓(𝑣2) 

  
 

Second step. Apply Congruence Rule: 

𝑎 ≃ 𝑣2   implies 𝑓 𝑎 ≃ 𝑓 𝑣2 :        𝑣1≃ 𝑣3 

𝑎, 𝑣2, 𝑣3, 𝑣1  



If Congruence Rule repeatedly learns  
 
 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′  
 

Then add clause for SAT core to use 
 

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′  

Used in Yices and Z3 to find short congruence closure proofs  

[Yices Tool 06, Dutertre, de Moura]  

[Model-based Theory Combination 07, de Moura, B] 

Dynamic Ackermann Reduction  



If Congruence Rule repeatedly learns  
 
 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′  for literal 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′   
 

Then add clause for SAT core to use 
 

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′  

Leo identified the following useful  

optimization filter heuristic used in Z3 

 

“Peel the onion from outside” 

Dynamic Ackermann Reduction  



If Congruence Rule repeatedly learns  
 
 𝑓 𝑣, 𝑣′ ∼ 𝑓 𝑤,𝑤′  
 

Then add clause for SAT core to use 
 

 𝑣 ≃ 𝑤 ∧ 𝑣′ ≃ 𝑤′ → 𝑓 𝑣, 𝑣′ ≃ 𝑓 𝑤,𝑤′  

Dynamic Ackermann Reduction  

Dynamic Ackermann Reduction with Transitivity 

If Equality Transitivity repeatedly learns  
 
 𝑢 ∼ 𝑤                   𝑓𝑟𝑜𝑚 𝑢 ∼ 𝑣 𝑎𝑛𝑑 𝑣 ∼ 𝑤 
 

Then add clause for SAT core to use 
 

 𝑢 ≃ 𝑣 ∧ 𝑣 ≃ 𝑤 → 𝑣 ≃ 𝑤     



Ground E-Resolution  

≡ 

DPLL(E) + Dynamic Ackermann Reduction with Transitivity   

Alternative: Static Ackermann Reduction  

[Singerman, Pnueli, Velev, Bryant, Strichman, 

Lahiri, Seisha, Bruttomesso,Cimatti, Franzen,  

Griggio, Santuari, Sebastiani], 

P-simulates ground E-Resolution.  

But it has high up-front space overhead. 

Claim:  
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Effect on the Diamond Example:. 

sec. 



 𝑎 < 𝑥1 ∧ 𝑎 < 𝑥2 ∧ 𝑥1 < 𝑏 ∨ 𝑥2 < 𝑏 ∧ 
 b < 𝑦1 ∧ 𝑏 < 𝑦2 ∧ 𝑦1 < 𝑐 ∨ 𝑦2 < 𝑐 ∧ 
 c < 𝑧1 ∧ 𝑐 < 𝑧2 ∧ 𝑧1 < 𝑎 ∨ 𝑧2 < 𝑎  

 

 

 

 
 𝑎 

  𝑥1 

  𝑥2 

 𝑏 

  𝑦1 

  𝑦2 

 𝑐 

  𝑧1 

  𝑧2 

 𝑎 ∧ ∧ ∧ ∨ ∨ ∨ 
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  𝑥1 

 𝑏 

  𝑦2 

 𝑐 

  𝑧2 

 𝑎 



  𝑥1 

 𝑏 

  𝑦2 

 𝑐 

  𝑧2 

 𝑎 



  𝑥1 

 𝑏 

  𝑦2 

 𝑐 

  𝑧2 

 𝑎 



  𝑥1 

 𝑏 

  𝑦2 

 𝑐 

  𝑧2 

 𝑎 
 

Add clause 

𝑎 < 𝑥1 <  𝑏 →  𝑎 < 𝑏 

Top Two Most Active 

vertices 
< 



Z3 supported theories all reduce to one of 
 
 Arithmetic      Equality    Booleans 

 

CDTR  
Th(Equalities):   Extended Dynamic Ackermann 

Th(Differences):  Cutting loops 

Th(LRA):    Fourier-Motzkin resolution  

Th(LIA):   Perhaps: Integer FM [B. IJCAR 10] 

 

CDTR and theory combinations: 
Theories communicate equalities between shared variables. 

Build clauses using these equalities. 



Modern SMT solvers are tuned to 
but limitations of basic proof  
calculus shows up.  

 

Presented a technique to close the gap  
Dynamic  - to make it practical. 

Based on applying Resolution to conflicts. 

 

Just one of many possible optimizations.  
The quest for improving search continues 

e.g. cutting plane proofs, arbitrary cuts (Frege) 


