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Abstract

State-of-the-art satisfiability modulo theory solvers aseombination of the Davis-Putnam-
Logemann-Loveland (DPLL) procedure for performing Boolsaarch and an integration of theory
solvers for identifying theory conflicts. Theory conflictegresented as clauses over the proposi-
tional vocabulary that prune the DPLL search. This comlimgs often highly effective, as propo-
sitional reasoning is handled by state-of-the-art mettiodgropositional satisfiability, while theory
solvers can be invoked incrementally as the DPLL core astitgtals. However, there are several
cases where this integration misses short proofs if thet glvoofs require additional literals that
are not part of the input. We present a method based on joimigidatifying a sufficient basis of
additional literals and lemmas that can speed up proof Bdar®PLL with theories exponentially.
We then compare variants of the proposed methods with py@déms based on superposition and
resolution. The theoretical result is that general forriates of joins are equivalent in succinctness
to superposition and resolution.

1 Introduction

Abstract interpretation and theorem proving are both usegrogram verification but they tradition-
ally approach the problem from different perspectives. thdus interpretation focuses on automatically
generatingprogram invariants_[1] whereas theorem proving is usedetify that given assertions are
invariant. However, the concept tidgical interpretation[5] shows that deductive methods based on
theorem proving can be used to build abstract interpreteithis paper, we examine the opposite issue,
namely, the use of abstraction techniques in automatedaheproving. More specifically, our goal is to
improve performance of Satisfiability Modulo Theory (SMD)\wers by generating useful lemmas using
abstraction.

SMT solvers decide the satisfiability of formulas in logitiakories such as linear arithmetic, the
theory of arrays, and bitvectors. Most SMT solvers use th&l}P) architecture. They combine a
Boolean satisfiability solver based on the Davis-Putnamelnsann-Loveland procedure (DPLL) with
a theory solver that can decide satisfiability of conjunddief atoms in a specific theof§ [2]. In
the last few years, specialized theory solvers and the dewednt of new integration methods have led
to dramatic performance improvement in SMT solving. Stillere are “easy” formulas that cannot
be solved efficiently using the standard DPII)(model, because the literals that are necessary for a
short proof are not present in the original formula. Thishiem has been recognized in the setting of
difference logic constraint5|[6], where a solution baseddading atoms based on transtivity of inequality
was investigated. We present a method based on abstractichdaply discovering additional literals
and lemmas. Essentially, the method discovers atomic tlaatsare implied by both side of a disjunction
®, Vv ®,, which can drastically reduce the search space by avoidimgreeous case splits. Formula (1)
motivated some of the techniques presented here. It is draatisn of a pattern seen in verification
conditions from program verification tools. The patternresponds roughly to propagating weakest
preconditions over branch statements.

2 DPLL(T) as a Non-deterministic Transition System

The DPLL(") procedure for satisfiability modulo theories is a comborabf the DPLL algorithm for
Boolean satisfiability and a theory solver for a the@ry In this paper, we focus on the quantifier-free
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Figure 1: Abstract DPLLI) Procedure

theory of pure equalities (calle).

Given a quantifier-free formula, we denote thap is valid inT by T' - ¢. A theory solver forl" is
an algorithm for deciding the satisfiability of conjunctiohground literals off". Dually, a theory solver
can decide whethér - ¢, Vv ... Vv ¢, holds, wherd, ..., ¢,, are ground literals.

The DPLL({") procedure starts with a formula written in conjunctive normal form. It searches
for a truth assignment that satisfies all the clauses ahd is consistent with respect to the@y The
search can be described by the transition system of Higurbelsystem states are of the foifi| F' or
M | F'| C wherelM is a partial truth assignmenk; is a set of clause, and is a clause.

The assignment/ is represented as a finite sequence of the féffm. . /5, where/; is a literal and
e; is anexplanation For everyi, the explanation is either the symhglin which case/; is adecision
literal, or a clauseC' that explains why’; must be assigned. The explanation clause is used during
conflict resolution. The assignment is implicitly dividedgegments of successive decision levels, where
the decision level of a literdl; is the number of decisions i/ prior to its occurrence. In states of the
form M | F, the procedure attempts to extend the current truth assighby using the unit and theory
propagation rules or the decision rule. A conflict is detéatden the assignme/ falsifies a clause
C of F (rule Conflict) or whenM is not consistent with respect to the theory (riite€€onflict). In both
cases, the system moves to a conflict state of the fafip/" | C'. In any such state, it can be shown
that the clausé’ is false inM (written M H— =(C). The rulesResolve andBackjump correspond to
conflict-driven clause learningmployed by modern SAT solverfkesolve constructs a new conflict
clauseC Vv C' by applying resolution.Backjump is applicable when the conflict clause has a unique
literal £ of maximal decision level. The conflict clause is then adaed't backtracking is performed
(i.e., literal assignments are undone), tiies assigned as implied by Vv [ and the search can continue
from a consistent state.

DPLL(T) terminates when none of the rules of Figlie 1 is applicableis can happen in a state
M | F where all literals off" are assigned. In such a cadé,is a full assignment that satisfies all the
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Figure 2: TheSP(FE) calculus

clauses ofF' and is consistent with respect #a In other words, the initial formula is satisfiable.
The other terminal states are of the foifi| F' | O whereO is the empty clause. In such a casgeis
unsatisfiable. Proof of termination and details can be faorid].

2.1 A Superposition CalculusSP(F)

Figure[2 summarizes basic superposition inference rutethéotheory of pure ground equalities. It is a
simple instance of more general and complete superposititmuli for the first-order theory of equality,
but in this paper we will only consider equalities betweenstants, and we omit ordering constraints in
side conditions on the ruleSP(FE) is finitely saturating without orderings). BY|[a] we refer to the O
or more, but not necessarily all, of thepositions inD, these selecteds are replaced byin D[b].

3 A Hard Formula for DPLL( FE)

Consider the unsatisfiable formuld (1) (and illustrated iguFe[3) also used in [3], and present in the
2008 SMT competition for the EUF divisiof{t p: // www. st conp. or g).

49
aq ;é aso A\ /\ [(al ~ bl A\ bl ~ ai+1) V ((IZ' >~ C; A\ C; =~ ai+1)] (l)
=1
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Figure 3: Diamond equalities
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The formula is unsatisfiable because in every diamond, fiescase that; ~ a;1 because either
a; ~ b ANb; ~ a;41 Ora; ~ ¢; A ¢ ~ a;y1. Therefore, by repeating this argument for evgryve
end up with the implied equality; ~ asy. This contradicts the disequality; 7 aso. A proof search
method directly based on DPLE]) is not able to produce a succinct proof like the informatification
just given. In a propositional abstraction of the problemcheof the equalities; ~ b;, b, ~ a;y1,
a; ~ ¢, ¢; ~ a;41 anday ~ as is treated as a propositional variable. Because the atoms a; 1
are not present DPLL assigns truth values to the propositieariables, and a decision procedure for
equalities detects a contradiction only when for everst 1,...,49 a; ~ a;11 follows from either
a; ~ b; Nb; ~ a;11 Ora; ~ c; A¢; ~ a;y1. There ar@* different such equality conflicts, none of which
subsumes the other. There is no short unsatisfiability graifuses only the original atoms.

3


http://www.smtcomp.org

DPLL(L) Bjagrner, Dutertre, and de Moura

On the other hand, the formula has a short prodf#( E). More, generally, every proof in DPLIK)
can be simulated by a proof of equal lengthS®(E), but not conversely. We writé} < Fy if
every proof in the formal systerf, can be reduced to a proof in the formal systéinusing at most a
polymomial overhead:= is used if reduction is possible in both directions antiolds if the reduction
only holds in one direction. To summarize:

Theorem 3.1. SP(E) < DPLL(E).

4 A Sufficient Basis of Literals

There is a very simple way of augmenting DPIL(to allow it to simulateSP(E): First create the set
A consisting of all literals of the forra ~ b, wherea andb are constants in the original formula.
Then allow these literals to participate in tBecide and propagation rules. For reference, we call the
resulting system DPLLE + A).

Theorem 4.1. SP(E) = DPLL(E + A). In particular, any superposition inference can be sintedby
DPLL(E + A).

The setA is quadratic in the size of the input, so additional techesjare needed to make this
approach efficient, but then neither d&B(E) provide any built-in guidance.

5 A Solution Based on Joins

Our approach to solving such problems efficiently is baseitleas from abstract interpretation. It is
based on the availability ofjain operator on constraints maintained by theory solvers tmgier atomic
facts that are implied by both sides of a disjunction or cgdie s

To describe the basic procedure in the context of DADLEonsider a stat@/ | ' where M does
not contain decision literals (literals annotated?®@s We can then choose an unassigned propositional
variablep; first assign it td r ue, performUnitPropagate andT-Propagate to derive all consequences
of p to obtain the contexd/;, second assigntof al se and perform the same propagation to obtain the
contextM,. We then use an operatarsuch that\f; LI M, is a set of literals that are implied iy, and
M- to compute a joint set of implied literals. The rule can berfolated in the context of the abstract
transition system for DPLLL) as an inference rule::

Mp?|F = M |F M—p?|F = M| F
p is the only decision variable i, Mo
M||F:>M1|_|M2||F
For the propositional case, the resulting system is regnisof Stalmarck’s methodl[4], except, that

method also allows learning equivalences between litefethe rule allows some proof-acceleration in
formulas like [[1), but it is also limited as we have:

Theorem 5.1. SP(E) < DPLL(E + Li1) < DPLL(E).

L

5.1 Joining Equalities

Let £ be the equivalence classes of a set of constants at/gtat®o for everye,e¢’ € E if e # ¢’ then
ene = (), and|J E consists of all the constants . For a given constarit associatéZ(t) as the class
in E such that € E(t) € E. We can characterize the join of two partitions as:

E\UE, = {Ei(t)nEyt)|te| E} 2)

4
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Also, the set of equalities associated with a partition éntfust a spanning tree of equalities per equiva-
lence class.

5.2 Generalized Join

There is an obvious limitation to the rulel: It can only be applied whei/ does not contain decision
literals. Consequently, it allows only learning units facthe limitation is on purpose: the rule requires
at most a quadratic number of applications (based on the euwfbatoms inF') to either assign all
literals, or saturate. The more generic formulation of tiferience rule is to allow it being applied at any
level and add new literals t&/ without these being unit facts. For reference, we will clié tsystem
DPLL(E + L“). The definition of joins will then have to be adjusted so thgblanations are tracked
correctly when literals are joined. We will not give the fdibtails of DPLLE + U*), instead we will
arrive at a system that is equally succinct as the one justisé@. But we do so thieard way to examine
the limitations of the more conservative liftings of DPLA(+ L11).

5.3 k-lookaheads

The ruleLs! allows for splitting on a single atom. The implied consequences of the different cases
for p are then combined. We say that this approach oseslookahead One lookahead is not always
sufficient for learning the right implied facts. Consideiiragle extension of the diamond problem given
in equation[(B), and illustrated in Figuré 4.

4 (a;j =~ b ANb; ~ a;t1)
a1 % aso N /\ \Y (ai ~c N\Ne =~ ai+1) 3)
=1 | V (a; ~di Nd; ~ a;11)

bg\ / bg\ b49
Co_ a3 a49— C49— Q50

SN NG

dig

SN/
ANZEN

Figure 4: Double diamond equalities

In order to learn thaty ~ a; we now need two splits. The obvious generalization of rulds to
combine multiple branches in a join. We call the resultingtesn DPLL(J}) wherek are the number
of lookaheads admitted. Note thatookaheads produce up 8§ branches. It admits short proofs for
formulas such a$13), but it can still be simulated3y(E).

Theorem 5.2. SP(E) < DPLL(E + L) < DPLL(E + Li1) < DPLL(E).

5.4 m-disjunctions

The inequality in Theoreiin 5.2 is strict, as can be seen fradimula in [4) and Figurel 5.

49 49
aq ¢ aso VAN /\(al X~ a;+1 V a; =~ bi+1) A /\(bl X~ a;+1 vV bz ~ bi+1) VAN b50 >~ aso (4)
i=1 1=2
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Figure 5: Butterfly equalities

Let DPLL(E + L") be the extension of DPLIK + LI}) where join may return not only units but
disjunctions with up ton literals. This is also known adisjunctive join Instead of adding non-units to
M the resulting (non-unit) clauses are added'towe also don’t need to examir?é branches because
we can trade additional disjunctions for explored branckezally, the resulting system is equivalent to
SP(FE) in succinctness:

Theorem 5.3. SP(E) = DPLL(E + U}J).

6 Conclusions

We have examined the following equivalently succinct syste
SP(E) = DPLL(E + A) = DPLL(E + U}") = DPLL(E + L)

so what is the difference in practice? The advantages of P).have been the availability of space-
efficient and adaptive search techniques developed in titexioof SAT solvers. The advantage of using
LI was that we could combine results from different branchistinit facts or lemmas. In future work we
examine the more general problem of the quantifier-freerthebuninterpreted functions with equality,
as well as describe applying the framework on selected ®@uch as the theory of arrays. There are
inherent theoretical limitations in the approaches stlidie far. For example, the pigeon hole principle
can be encoded as:

/\\/diZT‘j VAN /\ dzgédj (5)
i<m j<m i<j<m
There are no short superposition proofs of unsatisfiabiditythis formula, but there are short proofs in
Frege systems, which amounts to short proofs if arbitrégydls and definitions (cuts) can be introduced.
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A Proof Outlines

Sketch proof of Theorelm B.The theorem states th&P(FE) < DPLL(E). Formula [[1) shows that
DPLL(E) £ SP(FE), so it suffices to establish th&P(F) < DPLL(E). Thus, every DPLLE) proof

can be directly simulated i§P(E). First notice that DPLL induces a propositional resolutiwoof. In

fact the conflict resolution steps derive the conflict clausieg a sequence of resolution steps based on
clauses that annotate the literals in the confext These clauses are either extracted from the original
formula I or obtained from conflict resolution. Second, let us exarniireropagate andT-Conflict.
These rules supply additiondl-lemmas (clauses) into the produced proo&P(E) cannot directly
derive T-lemmas, so we cannot just replace these lemmas by sup@pasieps. Instead, consider a
supoerposition proof-tree that contaiidemmas. In the theory of equality all lemmas are of the form

a; ~ ag V \/i.‘;1 a; % a;+1. We will show how to eliminatd’-lemmas from a proof tree, starting from
the lower-most occurrences @Flemmas. So suppose that~ ¢V a % bV b % cis a lower-most
T-lemma in a proof-tree. Then there are nodes labeled'ba ~ b, D V b ~ ¢, andE V a # c that
resolve with the literals from th&-lemma (and there are other nodes that resolve with liténads, D
andFE). Apply ruleSuptoC vV a ~ b, D V b ~ cto obtain the claus€' v D V a ~ ¢. Then applySup

on the result and' V a # ¢, to obtainC'v D V E V a # a. UseE-Fact to remove the last disequality.
The remaining literals can be resolved using the same dabhs¢ were used in the original proof. By
repeating this argument, we can eliminat€iallemmas. O

Remarkl. Note that we are givingP(E) some flexibility. In particular, we do not refer to any term
orderings in the side-conditions. The succinctness ®$oitSP(£) would not work if one requires

a total ordering on all constants and that the superpositites respect these. For example, create the
disjunction of formulal(lL) and another copy of it, but swamndb; in the second copy. We claim that a
good ordering for the (1) is a bad ordering for the second ,capgt vice versa. So the disjunction does
not have a short proof if a total ordering on ground constentsquired.

Sketch proof of Theorelm 4.By case analysis, where we consider the rules specifftoF):

CVax~b Dld]

sup cv D]

It can be simulated in DPLLE + A) in the following way: UseDecide to build the context witiC' and
D[b]. By unit propagation deduae ~ b. By congruence deducB|[a] (conflict with clauseD[a]). Use
all decided conflict resolution strategy to gét v DIb]).

The all decided conflict resolution strategy consists inldpg (Resolve) until the clause’
inM | F | C contains only decided literals.

CVa#a

E-Res c

DPLL(T) keeps the clauses fully simplified.

E-Fact

UseDecide to build the context withC’, a % b,b ~ c. By unit propagation deduae~ c. Froma 2 b
anda ~ ¢ deduceb # ¢ (conflict) Use all decided conflict resolution strategy to@ev a ~ bV b % c.

7
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So, anySP(E) proof can be simulated by DPLE[(+ A).
The converse direction, that any DPLA.(+ A) proof can be simulated b§P(E), follows from the
proof of Theorend 3]1.
[l

Sketch proof of Theorelm 5. Example[(1) has a linear size proofdPLL(E +L1) but notin DPLL(E).
Using Tseitsin’s translation into clausal form, the sub¥falaa; ~ b; A b1 ~ ao is associated with a
predicatep;, and similarly, the subformula; ~ ¢; A ¢; ~ a9 is associated with a fresh predicate
and the clause§ V q1), (—p1 Va1 ~ b1), (—p1 Vb1 =~ a2), (-q1 Va1 =~ ¢1), (0q1 V ¢1 ~ ag) are
added. Similarly, all the other conjunctions are represgusing proxies. The proof BPLL(E + L})
is obtained by first splitting op,. In the branch where, is asserted, both; ~ b; andb; ~ as are
asserted. From these two equalities it follows #at~ a-. In the branch wherep, is asserted, unit-
propagation over the claugeV ¢; ensures thaj; is asserted. Similarly; ~ ¢; ande; ~ as get asserted
and therefore alse; =~ ay is learned. It therefore follows th&PLL(E + LU}) < DPLL(E).

Formula [[8) shows thddPLL(E + LU}) Z SP(FE) because the corresponding clausification of the
formula produces instead @, V ¢1) the clausép; V ¢; V1), and adds-ry V ay ~ dy, —r1 Vdy =~ as.
Splitting on any of-p, —¢; or —r; does not allow propagating any equalities because thegmamnts
don’t imply any equalities directly and the claugg V ¢; \V r1) cannot yet be used for unit-propagation.
Two splits are required to learn any equalities, and in paldr learn thati; ~ as.

We finally show thatSP(E) < DPLL(E+U1). Thus, we need to simulate proofsiiPLL(E+ 1)
usingSP(E). The new proof rulelis simulated by using the decision variable as the seledtmall
for resolution. The literals learned in one branch correspio the clauseg Vv ¢;, fori = 1,...,k for
somek. The literals learned in the other branch correspond toselstp Vv B}, forj =1,...,m. All
binary clauses in the cross-product can therefore be deageavell. Supposé € M; LI Ms. Then,/ is
already inM or there is a sequence of super-position steps from one dfitlagy clauseg; Vv 63- such
that factoring applies to produce a single learned literal.

[l

Sketch proof of Theoremb.Eormula [3) has a linear size proof in DPLE U}) but not in
DPLL(E + LJ}). This establishes that DPLE(+ Lit) < DPLL(E + Li{). Formula [(#) can be used
to establish that DPLL + LI1) # SP(E).

Establishing thatSP(E) < DPLL(E + ;) is a direct extension of the argument 8P (E) <
DPLL(E + L}): Consider the pairwise join of branches that have all butassgnment to a decision
literal in common. The argument from Theorém]5.1 can be usedtiis case to derive a clause that
contains the joined literal and all other decision variabl@he clauses produced in this way can be
resolved with each-other leaving just the new literals. O

Sketch proof of Theorelm b.EstablishingSP(E) < DPLL(E + LI* ) follows by extending the argu-
ments from the sketch proofs of Theorems| 5.1 5.2. Therdiite is that we don't necessarily
need to apply factoring to produce a unit literal. Similarthe proof of Theoremh 411, we show that
DPLL(E + k) < SP(E) examining each rule G§P(E).

Sup: To simulateSup we guess firsC”. This causes ~ b to be added usintynitPropagate.
The context is thu€a ~ b| F,C V a ~ b, D[a]. Then guess all variants of the literals ifa]. The
corresponding copies @b [b] are implied by the equality ~ b. The resulting joined clause is the desired
resolventC' vV DI[b].

E-Fact: First guesfd, then guessa £ b)?. This causes ~ ¢ to be derived using/nitPropagate.
The context is thu@d, (@ % b)%a ~ c|F,CVa~bVa~ c Then consider the other branch

Ud,a ~ b|F,C Va~bVa~ c Thisbranch is consistent with the clause, but the join efrth

8
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difference:((a 2 b)? Aa ~ ¢) Ua ~ bis the disjunctioms ~ b \V b % ¢ which we need for the result of
E-Fact. The other literals front' are added as we only considaf. O
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