Z3 Lab exercises

Leonardo de Moura and Nikolaj Bjgrner
Microsoft Research, One Microsoft Way, Redmond, WA, 98QT3A
{leonardo, nbjorngér@microsoft.com

June 18, 2008

Chapter 1

| ntroduction

This document contains a few hands-on experiments with Z&. ugéF# and C#
several places for writing code and pseudo-code for iltistg the use of the managed
binary API.

1.1 Acknowledgments

We wish to thank Utkarsh Upadhyay, Wolfgang Grieskamp andiduPiskac for in-
valuable feedback on preparation of these exercises.

Chapter 2

SAT encodings

This chapter contains exercises for using SAT and bit-vembocodings into Z3. You
can use bit-vectors directly to save energy for encodingreomidioms that can oth-
erwise directly be encoded in SAT.

2.1 n-queens

The classicah-queens puzzle is to placequeens on an x n chess-board so that no
two queens attack each other. The exercise asks you to eanadgueens placement
problem and then have Z3 enumerate solutions. The followgrgcontains a guided
walk through of how this can be accomplished. You can try yaun encoding ideas
as well.

2.1.1 Placing queens on a chess-board

1. We will allocate am bit bit-vector per row. So lety,...,r, ben n-bit bit-
vectors. In SMT-LIB the declaration fat, . . . , rs looks as follows:

cextrafuns ((rl BitVec[8]) (r2 BitVec[8]) (r3 BitVec[8])
(r4 BitVec[8]) (r5 BitVec[8]) (r6 BitVec[8])
(r7 BitVec[8]) (r8 BitVec[8]))

2. Each vector; should have at most one bit set. There are various ways oflenco
ing this. The simplest is to crea(égl) axioms per row of the chessboard. For
example, for rowr; one can assert the axioms:

We use the notatiom, [7] for accessing the most significant bit«af. The other
bits are at positions 0 to 6. This is not the most succinct Wwawever. Consider
the formula

bv0[8] = (r1&(r1 — 1))

wherebuv0][8] is a bit-vector of length 8 consisting of all zeros. It sayattiaking
the bit-wise and of-; andr; — 1 results in 0. The arithmetical circuit for this
formula is much smaller.

3. Now consider the columns; for each columthere should be exactly one row
r;, such that; k] is set. How would you encode this using as few constraints as
possible?

4. Finally consider the diagonals. Also at most one bit sthdnel set on diagonals.
How can you express succinctly that in each diagonal thexresst one bit set?

5. Write a program that takes a numiaegis input and generates a problem in SMT-
LIB format for then-queens placement.

6. Write a program that takes a numbeas input, uses the Z3 API to enumerate
placements of queens.

2.1.2 Enumerating solutions

This section applies if you are using the programmatic ARpse we wish to enu-
merate several solutions farqueens. We would need Ibock previous solutions when
resuming search. For this purpose Z3 expasedels that assigns values to variables.
One can take the values and construct new formulas to bldtk wi

With the managed API, the relevant calls are:

e LBool result = z3.CheckAndGet Model (ref nodel); Ifthecur-
rent context is satisfiable, then the resultBool . Tr ue. The reference argu-
mentnodel is populated with an object containing the satifiable asaigmt.

e int rl.val = nodel.Get Nuneral Val uel nt (nodel . Eval (r1)) re-
trieves the numeric value assigned to rawn

e TermAst eql = z3. MKEq(z3. MKkNureral (rlval, rowtype), rq);
is the equation stating that has valug 1 _val .

e 23. Assert Cnstr(z3. MkNot (z3. MkAnd(assi gnnment))); .Ifassi gnnent
is an array containing the current assignment to the varsad$ equalities, then
the current assignment gets blocked by asserting the negatthese.

2.1.3 Symmetry reduction

We might not care about enumerating solutions that are syrian@&hat is, we don't
need to enumerate solutions that can be obtained by turménghtess-board around.

A symmetry breaking predicate is an additional constraint that restricts the search
space by ruling out symmetric alternative solutions.

1. Find a symmetry breaking predicate that reduces the plaets on the first row.

2. Can you think of other symmetry breaking predicatesifgueens?

2.2 Longest path

The shortest path between two nodes in a graph is a classagath @lgorithm prob-
lem. Dijkstra’s algorithm uses a heap to solve the problem®(nlogn); and when

edge weights are integers, there are even more efficienticaedu To find a longest
path between two nodes in a directed graph is on the otherdrahdP complete prob-
lem. In this exercise we will convert longest path problents ia Boolean constraint
satisfaction problem.

2.2.1 Primesand Grey codes

We first need a graph. Of course there are many graphs to mok flThe graph we
use here is constructed in a peculiar way. Lebe the set of primes betweé&n00
and 10000. We connect two nodes in,w € V, such thatv < w, iff the decimal
representation of andw has one digit differing by only one.

A sample program for generating the graph, courtesy of dtkbipadhyay, is pro-
vided below.

let rec sieve (arr:int array ref) step idx=
if idx>=(larr).Length then () else
((larr).[idx] <- 0; sieve arr step (step+idx))

let main fromtill =
l et nunbers = ref (Array.init (till+1) (funi ->1i)) in
(!"nunbers).[1] <- O;

for ii =2 to int(ceil(sqrt(float(till)))) do

if (!'nunbers).[ii]>0 then sieve nunbers ii (2xii);
done;
Array.filter

(fun v -> v>0)
(Array.sub (!nunbers) from (till-fromtl))

let get_pairs fromtill =
let prines = main fromtill in
let rec grey diff =
if di ff=0 then fal se /1 Sanme nunber.
elif diff=1 then true
elif diffod0 <> 0 then false
else diff / 10 |> grey

in
let pairs =ref [] in
for i =0 to (prinmes.Length-1) do

for j =0 to (primes.Length-1) do
if (grey (abs(prinmes.[j]-prines.[i]))) then

pairs := (i, j)::(!'pairs);
done;
done;
(primes, !pairs)

| et prine_index, prime_conn = get_pairs 1000 10000

2.2.2 Encoding the graph

The next task we have to face is how one can encode a graph atld fingling prob-
lem. So far we have a gragh= (V, E), whereV is a set ofn verticies, andF is a set
of m edges. We now sketch one possible encoding of the problem.

Suppose the set of vertic®sis {vy, . . ., v, }, then associate bit-vectorsord;, . . ., ord,,
each of[logn] bits (the nearest natural number that is greater than od &gl n).
We will refer to these bit-vectors agdinals. The purpose of the ordinals is to guess an
ordering of each vertex, a prefix of the ordering will correisg to a path in the graph.
This can be encoded by asserting for each verteand for each numbér=1, ..., n:

((ord; ~ k) A (k < maz_path)) — \/ ((vi,v;) € E A ord; =k+1)
v; eV

The bit-vectormaz _path is the length of the maximal path
We also require that some vertex has ordinal O:

\/ ord; ~ 0
v, €V

There is a problem with the encoding.

e What is the practical problem, assuming there are around 1€gices?
e Find a compact encoding.

e Write a program that converts the grapime_index, prime_conn into a con-
straint for Z3.

e Write a wrapper aroun@heckAndGet Model to find the maximal value of
mazx _path.

2.3 Sudoku

The popular Sudoku puzzle is to place numbers 1-9 6rxad board, such that each
number occurs only once in every row and column. Furtherpibg®u dividde the
board into 9 sub-grids each of sidex 3, then each of these sub-grids should also
be covered by different numbers. Sudoku puzzles come wistidsothat have been
partially occupied with numbers. The puzzle is to occupyrémaining fields in such

a way that the constraints on rows, columns, and sub-grelsatisfied. A sample
Sudoku problem is given in Figure 2.1.

3 | 7 |
6 1/9]s
9|8 6
6 3
P (8| [3
2] 6
6 2|8
41|09
' 8 7

Figure 2.1: Sample Sudoku board

1. Assume that Sudoku problems are given in the form:

102000,
..9.63...
3....814.
.9....83.
.. 4.7.6..
L3702,
.159....2
...48.5..
... 1.3,

2. Write a program that converts Sudoku problems into:

(a) an SMT formula using Bit-vectors,
(b) an SMT formula using integers,
(c) calls over the Z3 binary API, and use it to enumerate gwigt

3. Test the program on your favorite puzzle.

Note: If you don’t really want to do this exercise, you can fandolution and a set
of puzzlesorht t p: / / nodant e. googl epages. com sudokusol ver.

Chapter 3

Integer differencelogic

3.1 Rush Hour

Rush Hour is a popular sliding puzzle board game. It was iractby Nob Yoshigahara
in the late 1970s. Itis sold in the US by ThinkFun since 199¢ problem is to move
a car out of a traffic jam. Cars and trucks can only be moved bafikth, they cannot
turn or fly. The Rush Hour problem is PSPACE complete [1].

This exercise asks you to encode the rush-hour problem défiegence logic and
bounded model checking.

3.1.1 Bounded model checking

Letpy,..., p, be aset of transitions. That is they are binary relations ovgent and
next-state variables andz’. Let © be a formula that summarizes an initial state. We
can check whether a predicatér) can be satisfied ik steps by checking satisfiability
of the formula:

k—1 n
CRAN (p(fj) AT =T A/ pi(@ﬁjﬂ)) A p(T) (3.1)

j=1 i=1
That is,p(Z1) holds in®, or some transition is taken to reach state Thenp eventu-

ally holds in statek.

3.1.2 Theexercise

e How would you encode a Rush Hour puzzle omas N board with a set of cars

and trucksey, . .., ¢k, each having length, . . ., £, and orientatiorvy, . .., o
(vertical or horizontal), and row or column affinity;, ..., a, (wherea; €
[1..N]).

e Encode the bounded reachability problem using Z3.

e Use it to solve Rush Hour problems. You can find a few from
http://ww. puzzl es. conl product s/ rushhour. ht m

Chapter 4

Arrays

4.1 Encoding queueswith arrays

Suppose we have support for the theory of arrays. Z3 doe<scirhéave support for
arrays. If you specify an SMT-LIB file in the theo@F_AUFLI A you will be able to
refer to functionsel ect andst ore.

Va,i,v . store(a,i,v)[i] ~v (4.2)
Va,i,j,v.i~j V store(a,i,v)[j] = a[j] 4.2)
Va,b.(Vj.a[j] =bj]) — a=~b (4.3)

We can encode queues using arrays by associating with eacie qitriple
(a, hd, tl)

whereq is an array holding the queue elemerits,is a pointer to the front element in
the queue, and is a pointer to the end of the queue.

1. Axiomatize the following queue operations in SMT-LIB.

(@) append({a, hd,tl),e) - append elemert to the queuda, hd, tl), return
the resulting queue.

(b) head({a, hd, tl)) - extract the head of the queue.
(c) tail({a, hd,tl)) - return queue where the head has been removed.
(d) empty({a, hd, tl)) - test if the queue is empty.

2. Prove using Z3-empty(q) — head(q) = head(append(q,e))
3. Add an operatioprepend (e, (a, hd, tl)) that pre-pends a value to a queue.
4. Why can’t you prove:

prepend (e, empty) = append(empty, e)?

Chapter 5

Soft-coding theories

5.1 Recursivedata-types

The theory of lists is not built into Z3 v1.3. If you want to usethen you need to

supply a sufficient number of additional axioms. The follog/iexercise goes over
the steps required to axiomatize a theory of integer listgrthiermore, if you want

to extract meaningful models from the solver, then you needhaintain additional

book-keeping.

5.1.1 Axiomsfor atheory of lists

We will be working with a standard theory of lists axiomatizselow.

Va, b . nil # cons(x,l) (5.1)

Va,l . hd(cons(z,l)) = x (5.2)

Y, L. tl(cons(z,0)) =4 (5.3)

V0.0 =mil V 3z, 0 . 0= cons(z,) (5.4)

YVl—=3In, x1,. .., 2, . L = cons(xy, cons(xa, ..., cons(x,,l))) (5.5)

1. The first (5.1) axiom says that elements produced by eéiffeconstructors are
different.

2. The second and third axiom (5.2), (5.3) says the construot:s is injective.
Injectivity is implied because ifons(x, ¢) = cons(z’,¢'), then the two axioms
imply thatz = 2’ and¢ = ¢'.

3. The fourth axiom (5.4) is domain closure. Every varialseging over lists is
obtained by applyingsil or cons.

4. The last axiom (5.5) is theccurs check. A recursive list cannot contain itself.

10

5.1.2 Listsof integersinZ3

As shown below, we can declare an abstract typst , the constanhi | and con-
structorcons:

let int_type = z3. Ml nt Type()
let list_type = z3. MkType("list")

let nil = z3.MkConst("nil",list_type)
l et cons = z3. MkFuncDecl ("cons", int_type, list_type, list_type)
let mk_cons x | = z3. MkApp(cons, x, |)

5.1.3 Programmatic axiomatization in Z3
Axiom (5.1)

We could state the axiom directly as given.

let x = z3. MkBound(1ul, int_type)
let | = z3.MBound(Oul, list_type)
let types = [| int_type; list_type |] /1 types of bound vari abl es
let nanes = [| "x"; "I" |] /1 nanes of bound vari abl es

let patterns = [| z3.MPattern [|nk_cons x ||] |]
do assert_cnstr (z3.MForall (Oul, patterns, types, nanes,
z3. MKNot (z3. MKEq(ni |, nk_cons x 1)))) // body

We used the auxiliary functioassert _cnstr to assert and print a constraint.
The auxiliary functionsassert _cstr andpr ove are provided below.

| et assert_cnstr (fm:Termist) =
Consol e. WiteLine("Assert: {0}", fm);
z3. AssertCnstr(fm)

| et prove (fm:Termist) =
z3. Push();
Consol e. WiteLine("Prove: {0}", fnml);
z3. AssertCnstr(z3. MkNot fm);
assert (z3.Check() = LBool.Fal se);
z3. Pop()

The console output generated from the first axiom is:
Assert: (forall (x int) (I list) { ((cons x 1)) } (not (= nil (cons x 1))))

This approach does not scale too well for data-types withtiplelconstructors.
Instead we could use a trick by introducingepresentation function and obtain a
linear number of axioms:

let rep = z3. MkFuncDecl ("Rep", list_type, int_type)
let mk_rep x = z3. MkApp(rep, (x:TermAst))

I et nunD z3. MKNuneral (0, int_type)

I et nunl z3. MKNurrer al (1,int_type)

11

do assert_cnstr(z3. MKEq(nk_rep nil, nunD))
do assert_cnstr(z3. MForall (Oul, patterns, types, nanes,
z3. MKEq(nk_rep (nk_cons x 1), nunl))) // body

This time we generate the console output:

Assert: (= (Rep nil) 0)

Assert: (forall (x int) (I list) { ((cons x 1)) } (= (Rep (cons x 1)) 1))
Axiomatization in the Simplify for mat

Those familiar with the Simplify format, will recognize tladove axioms in the form:
(BG_PUSH (FORALL (x y) (PATS (cons x y)) (NOT (EQnil (cons x y)))))
(BG_PUSH (EQ (rep nil) 0))

(BG_PUSH (FORALL (x y) (PATS (cons x y)) (EQ (rep (cons x y)) 1)))

Axioms (5.2) (5.3)

e Exercise: State the axioms for injectivity.

Domain closure (5.4)
Exercise:
e Encode the domain closure axiom.
e What pattern should be used for it?
e What is the problem with the pattern, assuming you identifieel?

As you should have observed, the domain closure axiom isinettty amenable
to an axiomatization using pattern-based triggers.

We can encode the domain closure axiom by using the followbggrvation. Let
ty,...,t, be the terms of typent _| i st in the ground formula we wish to check.
For each of the terms add the axiom

t; =nil V t; = cons(x;,¢;)

wherex; and/; are fresh variables (we removed the existential quantifier)
Exercise

e Write a function to traverse terms and enumerate terms efltyjst _t ype.

e Write a function to instantiate the domain closure axiomthvthe resulting
terms.

e Which resulting sub-terms may not be covered by domain ckoatithis point?

e Why is this not harmful?

12

Occurscheck (5.5)

There are infinitely many instances of the occurs check axicnema. It is of course
impractical to enumerate them all. So which axioms do we feed

There are two possible approaches:
Approach 1 - using axioms, Exercise

e Letty, ..., t, be the terms usingons in ¢. So there arer sub-terms whose
top-most function symbol isons in the input formula. Prove that the following
axioms sulffice:

Va1, ..., Zn, . L # cons(xy, cons(xa, ..., cons(zy,L)))

Va1, ... Tpo1,l. L # cons(x1, cons(xa, ..., cons(x,—1,L)))

Yy, 29,0 . £ # cons(x1, cons(xa, L))
Yy, L. L # cons(xy,)
¢ Indicate what patterns should be used in the axioms.
e Encode the axioms using Z3.
Approach 2 - using model checking, Exercise
e Suppose Z3 returns a model where some list terp @valuates to a cyclic list.
e How would you block this term, or any other cycle of that ldntyi re-appear?

e Does it matter if the model introduces a cycle only invoviiagns not inp (but
introduced later for domain closure)?

e Write the function that checks a model for cycles and addsKirg clauses.

5.1.4 Working with model generation

The decision procedure we have outlined for recursive tlgias reduces the satisfi-
ability problem from recursive lists to plain first-ordertiséiability. In other words,
for every quantifier free formula over the signature of recursive lists, we produce a
quantifier-free formula), such that

Tp UTL U{p} is satisfiable iff 7z U {p, ¢} is satisfiable

In other wordsp is satisfiable in the theory;, of recursive lists, and the theofy; of
equality, iff ¢ A ¢ is satisfiable in the theory of equality. Unfortunatelysthioes not
mean that the model obtained fprA « corresponds directly to a model where every
subterm ofy evaluates to a list. It may be the case that the modepfory does not
specify fully how subterms ip should be extended to a list, it just says that there is
some extension. So how do we find a reasonable extension?

The Z3 API supplies a collection of methods for inspectinglals. We summarize
some of the main relevant methods here:

13

1.l et graphs = nodel . Get Functi onGraphs() returnsadictionary from
function declarations to the finiggaph of the functions. Only functions that take
at least one argument are listed in this dictionary. Funetior rather constants,
that don't take any arguments are not listed.

2. graphs[func_decl] results in an object with two fields:

e Entri es - afinite array of argument/value pairs.

e El se - a default value. The function evaluates to tHese value on all
argument combinationwt listed inEnt ri es.

Exercise:

e Lettbe asub-termip. Suppose thatodel . Eval (t) isavaluethatisin the
range of the arragr aphs[cons_decl] . Entri es. What can be said about
the value oft in nodel ?

e Supposeons(hd,tl)is asub-terminv, and thatrodel . Eval (cons(hd, tl))
is a value equal tgr aphs[cons_decl] . Ent ri es. What can be said about
all sub-terms of typént I i st in ?

e The functionnodel . Get Val ueType(Vv) returns the type associated with a
model valuev. Write a function that given andel and a model valug of
typei nt | i st determines whetharodel evaluates it to a value of the form
cons(ht,tl) ornil.

e Supposd is a sub-term inp, and letv = nodel . Eval (t). Why doesv
correspond to either@ons orni | ?

e Write a function that for a value corresponding to@ns, returns theail value
(thatis, the second argumenta@dns).

e Do the tail values necessarily correspond toas orni | ?

e (*) Suppose we are given a model where some tail value does mepooid to
acons orni | . We can refine the model by adding some additional assertions
and callingCheckAndGet Model again to refine the model further to either
bind the tail value tani | orcons. Write the API calls that perform this model
refinement.

14

Bibliography

[1] Gary William Flake and Eric B. Baum. Rush hour is pspaoeiplete, or "why
you should generously tip parking lot attendantdheor. Comput. Sci., 270(1-
2):895-911, 2002.

15

