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Chapter 1

Introduction

This document contains a few hands-on experiments with Z3. We useF# andC#
several places for writing code and pseudo-code for illustrating the use of the managed
binary API.

1.1 Acknowledgments

We wish to thank Utkarsh Upadhyay, Wolfgang Grieskamp and Ruzica Piskac for in-
valuable feedback on preparation of these exercises.
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Chapter 2

SAT encodings

This chapter contains exercises for using SAT and bit-vector encodings into Z3. You
can use bit-vectors directly to save energy for encoding common idioms that can oth-
erwise directly be encoded in SAT.

2.1 n-queens

The classicaln-queens puzzle is to placen queens on ann× n chess-board so that no
two queens attack each other. The exercise asks you to encodeann queens placement
problem and then have Z3 enumerate solutions. The followingtext contains a guided
walk through of how this can be accomplished. You can try yourown encoding ideas
as well.

2.1.1 Placing queens on a chess-board

1. We will allocate ann bit bit-vector per row. So letr1, . . . , rn ben n-bit bit-
vectors. In SMT-LIB the declaration forr1, . . . , r8 looks as follows:

:extrafuns ((r1 BitVec[8]) (r2 BitVec[8]) (r3 BitVec[8])
(r4 BitVec[8]) (r5 BitVec[8]) (r6 BitVec[8])
(r7 BitVec[8]) (r8 BitVec[8]))

2. Each vectorri should have at most one bit set. There are various ways of encod-
ing this. The simplest is to create

(

n+1

2

)

axioms per row of the chessboard. For
example, for rowr1 one can assert the axioms:

r1[7] → ¬r1[6], r1[7] → ¬r1[5], . . .

r1[7] → ¬r1[0], . . .

r1[6] → ¬r1[5], r1[6] → ¬r1[4], . . .

r1[6] → ¬r1[0], . . .
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We use the notationr1[7] for accessing the most significant bit ofr1. The other
bits are at positions 0 to 6. This is not the most succinct way,however. Consider
the formula

bv0[8] = (r1&(r1 − 1))

wherebv0[8] is a bit-vector of length 8 consisting of all zeros. It says that taking
the bit-wise and ofr1 andr1 − 1 results in 0. The arithmetical circuit for this
formula is much smaller.

3. Now consider the columns; for each columnk there should be exactly one row
ri, such thatri[k] is set. How would you encode this using as few constraints as
possible?

4. Finally consider the diagonals. Also at most one bit should be set on diagonals.
How can you express succinctly that in each diagonal there isat most one bit set?

5. Write a program that takes a numbern as input and generates a problem in SMT-
LIB format for then-queens placement.

6. Write a program that takes a numbern as input, uses the Z3 API to enumerate
placements of queens.

2.1.2 Enumerating solutions

This section applies if you are using the programmatic API. Suppose we wish to enu-
merate several solutions forn-queens. We would need toblock previous solutions when
resuming search. For this purpose Z3 exposesmodels that assigns values to variables.
One can take the values and construct new formulas to block with.

With the managed API, the relevant calls are:

• LBool result = z3.CheckAndGetModel(ref model); If the cur-
rent context is satisfiable, then the result isLBool.True. The reference argu-
mentmodel is populated with an object containing the satifiable assignment.

• int r1 val = model.GetNumeralValueInt(model.Eval(r1)) re-
trieves the numeric value assigned to rownr1.

• TermAst eq1 = z3.MkEq(z3.MkNumeral(r1 val, row type), r1);
is the equation stating thatr1 has valuer1 val.

• z3.AssertCnstr(z3.MkNot(z3.MkAnd(assignment))); . If assignment
is an array containing the current assignment to the variables as equalities, then
the current assignment gets blocked by asserting the negation of these.

2.1.3 Symmetry reduction

We might not care about enumerating solutions that are symmetric. That is, we don’t
need to enumerate solutions that can be obtained by turning the chess-board around.

A symmetry breaking predicate is an additional constraint that restricts the search
space by ruling out symmetric alternative solutions.
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1. Find a symmetry breaking predicate that reduces the placements on the first row.

2. Can you think of other symmetry breaking predicates forn-queens?

2.2 Longest path

The shortest path between two nodes in a graph is a classical graph algorithm prob-
lem. Dijkstra’s algorithm uses a heap to solve the problem inO(n log n); and when
edge weights are integers, there are even more efficient solutions. To find a longest
path between two nodes in a directed graph is on the other handan NP complete prob-
lem. In this exercise we will convert longest path problems into a Boolean constraint
satisfaction problem.

2.2.1 Primes and Grey codes

We first need a graph. Of course there are many graphs to pick from. The graph we
use here is constructed in a peculiar way. LetV be the set of primes between1000
and10000. We connect two nodes inv, w ∈ V , such thatv < w, iff the decimal
representation ofv andw has one digit differing by only one.

A sample program for generating the graph, courtesy of Utkarsh Upadhyay, is pro-
vided below.

let rec sieve (arr:int array ref) step idx=
if idx>=(!arr).Length then () else

((!arr).[idx] <- 0; sieve arr step (step+idx))

let main from till =
let numbers = ref (Array.init (till+1) (fun i -> i)) in
(!numbers).[1] <- 0;
for ii = 2 to int(ceil(sqrt(float(till)))) do

if (!numbers).[ii]>0 then sieve numbers ii (2*ii);
done;
Array.filter

(fun v -> v>0)
(Array.sub (!numbers) from (till-from+1))

let get_pairs from till =
let primes = main from till in
let rec grey diff =

if diff=0 then false // Same number.
elif diff=1 then true
elif diff%10 <> 0 then false
else diff / 10 |> grey

in
let pairs = ref [] in
for i = 0 to (primes.Length-1) do

for j = 0 to (primes.Length-1) do
if (grey (abs(primes.[j]-primes.[i]))) then
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pairs := (i, j)::(!pairs);
done;

done;
(primes, !pairs)

let prime_index, prime_conn = get_pairs 1000 10000

2.2.2 Encoding the graph

The next task we have to face is how one can encode a graph and a path finding prob-
lem. So far we have a graphG = (V,E), whereV is a set ofn verticies, andE is a set
of m edges. We now sketch one possible encoding of the problem.

Suppose the set of verticesV is{v1, . . . , vn}, then associaten bit-vectorsord1, . . . , ordn,
each ofdlogne bits (the nearest natural number that is greater than or equal to logn).
We will refer to these bit-vectors asordinals. The purpose of the ordinals is to guess an
ordering of each vertex, a prefix of the ordering will correspond to a path in the graph.
This can be encoded by asserting for each vertexvi, and for each numberk = 1, . . . , n:

((ord i ' k) ∧ (k < max path)) →
∨

vj∈V

((vi, vj) ∈ E ∧ ord j = k + 1)

The bit-vectormax path is the length of the maximal path inG.
We also require that some vertex has ordinal 0:

∨

vi∈V

ord i ' 0

There is a problem with the encoding.

• What is the practical problem, assuming there are around 1064 vertices?

• Find a compact encoding.

• Write a program that converts the graphprime index, prime conn into a con-
straint for Z3.

• Write a wrapper aroundCheckAndGetModel to find the maximal value of
max path.

2.3 Sudoku

The popular Sudoku puzzle is to place numbers 1-9 on a9 × 9 board, such that each
number occurs only once in every row and column. Furthermore, if you dividde the
board into 9 sub-grids each of size3 × 3, then each of these sub-grids should also
be covered by different numbers. Sudoku puzzles come with boards that have been
partially occupied with numbers. The puzzle is to occupy theremaining fields in such
a way that the constraints on rows, columns, and sub-grids are satisfied. A sample
Sudoku problem is given in Figure 2.1.
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Figure 2.1: Sample Sudoku board

1. Assume that Sudoku problems are given in the form:

..1.2....

..9.63...
3....814.
.9....83.
..4.7.6..
.37....2.
.159....2
...48.5..
....1.3..

2. Write a program that converts Sudoku problems into:

(a) an SMT formula using Bit-vectors,

(b) an SMT formula using integers,

(c) calls over the Z3 binary API, and use it to enumerate solutions.

3. Test the program on your favorite puzzle.

Note: If you don’t really want to do this exercise, you can finda solution and a set
of puzzles onhttp://modante.googlepages.com/sudokusolver.
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Chapter 3

Integer difference logic

3.1 Rush Hour

Rush Hour is a popular sliding puzzle board game. It was invented by Nob Yoshigahara
in the late 1970s. It is sold in the US by ThinkFun since 1996. The problem is to move
a car out of a traffic jam. Cars and trucks can only be moved backor forth, they cannot
turn or fly. The Rush Hour problem is PSPACE complete [1].

This exercise asks you to encode the rush-hour problem usingdifference logic and
bounded model checking.

3.1.1 Bounded model checking

Let ρ1, . . . , ρn be a set of transitions. That is they are binary relations over current and
next-state variablesx andx′. Let Θ be a formula that summarizes an initial state. We
can check whether a predicatep(x) can be satisfied ink steps by checking satisfiability
of the formula:

Θ ∧

k−1
∧

j=1

(

p(xj) ∧ xj = xj+1 ∧

n
∨

i=1

ρi(xj , xj+1)

)

∧ p(xk) (3.1)

That is,p(x1) holds inΘ, or some transition is taken to reach statex2. Thenp eventu-
ally holds in statek.

3.1.2 The exercise

• How would you encode a Rush Hour puzzle on anN×N board with a set of cars
and trucksc1, . . . , ck, each having length̀1, . . . , `k and orientationo1, . . . , ok

(vertical or horizontal), and row or column affinitya1, . . . , an (whereai ∈
[1..N ]).

• Encode the bounded reachability problem using Z3.
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• Use it to solve Rush Hour problems. You can find a few from
http://www.puzzles.com/products/rushhour.htm.
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Chapter 4

Arrays

4.1 Encoding queues with arrays

Suppose we have support for the theory of arrays. Z3 does in fact have support for
arrays. If you specify an SMT-LIB file in the theoryQF AUFLIA you will be able to
refer to functionsselect andstore.

∀a, i, v . store(a, i, v)[i] ' v (4.1)

∀a, i, j, v . i ' j ∨ store(a, i, v)[j] ' a[j] (4.2)

∀a, b . (∀j . a[j] ' b[j]) → a ' b (4.3)

We can encode queues using arrays by associating with each queue a triple

〈a, hd , tl〉

wherea is an array holding the queue elements,hd is a pointer to the front element in
the queue, andtl is a pointer to the end of the queue.

1. Axiomatize the following queue operations in SMT-LIB.

(a) append(〈a, hd , tl〉, e) - append elemente to the queue〈a, hd , tl〉, return
the resulting queue.

(b) head(〈a, hd , tl〉) - extract the head of the queue.

(c) tail(〈a, hd , tl〉) - return queue where the head has been removed.

(d) empty(〈a, hd , tl〉) - test if the queue is empty.

2. Prove using Z3¬empty(q) → head(q) = head(append(q, e))

3. Add an operationprepend(e, 〈a, hd , tl〉) that pre-pends a value to a queue.

4. Why can’t you prove:

prepend(e, empty) = append(empty , e)?
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Chapter 5

Soft-coding theories

5.1 Recursive data-types

The theory of lists is not built into Z3 v1.3. If you want to useit, then you need to
supply a sufficient number of additional axioms. The following exercise goes over
the steps required to axiomatize a theory of integer lists. Furthermore, if you want
to extract meaningful models from the solver, then you need to maintain additional
book-keeping.

5.1.1 Axioms for a theory of lists

We will be working with a standard theory of lists axiomatized below.

∀x, ` . nil 6= cons(x, `) (5.1)

∀x, ` . hd(cons(x, `)) = x (5.2)

∀x, ` . tl(cons(x, `)) = ` (5.3)

∀` . ` = nil ∨ ∃x, `′ . ` = cons(x, `′) (5.4)

∀`¬∃n, x1, . . . , xn . ` = cons(x1, cons(x2, . . . , cons(xn, `))) (5.5)

1. The first (5.1) axiom says that elements produced by different constructors are
different.

2. The second and third axiom (5.2), (5.3) says the constructor cons is injective.
Injectivity is implied because ifcons(x, `) = cons(x′, `′), then the two axioms
imply thatx = x′ and` = `′.

3. The fourth axiom (5.4) is domain closure. Every variable ranging over lists is
obtained by applyingnil or cons.

4. The last axiom (5.5) is theoccurs check. A recursive list cannot contain itself.
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5.1.2 Lists of integers in Z3

As shown below, we can declare an abstract typelist, the constantnil and con-
structorcons:

let int_type = z3.MkIntType()
let list_type = z3.MkType("list")
let nil = z3.MkConst("nil",list_type)
let cons = z3.MkFuncDecl("cons", int_type, list_type, list_type)
let mk_cons x l = z3.MkApp(cons, x, l)

5.1.3 Programmatic axiomatization in Z3

Axiom (5.1)

We could state the axiom directly as given.

let x = z3.MkBound(1ul, int_type)
let l = z3.MkBound(0ul, list_type)
let types = [| int_type; list_type |] // types of bound variables
let names = [| "x"; "l" |] // names of bound variables
let patterns = [| z3.MkPattern [|mk_cons x l|] |]
do assert_cnstr (z3.MkForall(0ul, patterns, types, names,

z3.MkNot(z3.MkEq(nil, mk_cons x l)))) // body

We used the auxiliary functionassert cnstr to assert and print a constraint.
The auxiliary functionsassert cstr andprove are provided below.

let assert_cnstr (fml:TermAst) =
Console.WriteLine("Assert: {0}", fml);
z3.AssertCnstr(fml)

let prove (fml:TermAst) =
z3.Push();
Console.WriteLine("Prove: {0}", fml);
z3.AssertCnstr(z3.MkNot fml);
assert (z3.Check() = LBool.False);
z3.Pop()

The console output generated from the first axiom is:

Assert: (forall (x int) (l list) { ((cons x l)) } (not (= nil (cons x l))))

This approach does not scale too well for data-types with multiple constructors.
Instead we could use a trick by introducing arepresentation function and obtain a
linear number of axioms:

let rep = z3.MkFuncDecl("Rep", list_type, int_type)
let mk_rep x = z3.MkApp(rep, (x:TermAst))
let num0 = z3.MkNumeral(0,int_type)
let num1 = z3.MkNumeral(1,int_type)
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do assert_cnstr(z3.MkEq(mk_rep nil, num0))
do assert_cnstr(z3.MkForall(0ul, patterns, types, names,

z3.MkEq(mk_rep (mk_cons x l), num1))) // body

This time we generate the console output:

Assert: (= (Rep nil) 0)
Assert: (forall (x int) (l list) { ((cons x l)) } (= (Rep (cons x l)) 1))

Axiomatization in the Simplify format

Those familiar with the Simplify format, will recognize theabove axioms in the form:

(BG_PUSH (FORALL (x y) (PATS (cons x y)) (NOT (EQ nil (cons x y)))))
(BG_PUSH (EQ (rep nil) 0))
(BG_PUSH (FORALL (x y) (PATS (cons x y)) (EQ (rep (cons x y)) 1)))

Axioms (5.2) (5.3)

• Exercise: State the axioms for injectivity.

Domain closure (5.4)

Exercise:

• Encode the domain closure axiom.

• What pattern should be used for it?

• What is the problem with the pattern, assuming you identifiedone?

As you should have observed, the domain closure axiom is not directly amenable
to an axiomatization using pattern-based triggers.

We can encode the domain closure axiom by using the followingobservation. Let
t1, . . . , tn be the terms of typeint list in the ground formulaϕ we wish to check.
For each of the terms add the axiom

ti = nil ∨ ti = cons(xi, `i)

wherexi and`i are fresh variables (we removed the existential quantifier).
Exercise

• Write a function to traverse terms and enumerate terms of typelist type.

• Write a function to instantiate the domain closure axioms with the resulting
terms.

• Which resulting sub-terms may not be covered by domain closure at this point?

• Why is this not harmful?
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Occurs check (5.5)

There are infinitely many instances of the occurs check axiomschema. It is of course
impractical to enumerate them all. So which axioms do we need?

There are two possible approaches:
Approach 1 - using axioms, Exercise

• Let t1, . . . , tn be the terms usingcons in ϕ. So there aren sub-terms whose
top-most function symbol iscons in the input formula. Prove that the following
axioms suffice:

∀x1, . . . , xn, ` . ` 6= cons(x1, cons(x2, . . . , cons(xn, `)))

∀x1, . . . , xn−1, ` . ` 6= cons(x1, cons(x2, . . . , cons(xn−1, `)))

. . .

∀x1, x2, ` . ` 6= cons(x1, cons(x2, `))

∀x1, ` . ` 6= cons(x1, `)

• Indicate what patterns should be used in the axioms.

• Encode the axioms using Z3.

Approach 2 - using model checking, Exercise

• Suppose Z3 returns a model where some list term inϕ evaluates to a cyclic list.

• How would you block this term, or any other cycle of that length to re-appear?

• Does it matter if the model introduces a cycle only invovlingterms not inϕ (but
introduced later for domain closure)?

• Write the function that checks a model for cycles and adds blocking clauses.

5.1.4 Working with model generation

The decision procedure we have outlined for recursive data-types reduces the satisfi-
ability problem from recursive lists to plain first-order satisfiability. In other words,
for every quantifier free formulaϕ over the signature of recursive lists, we produce a
quantifier-free formulaψ, such that

TE ∪ TL ∪ {ϕ} is satisfiable iffTE ∪ {ϕ, ψ} is satisfiable

In other words,ϕ is satisfiable in the theoryTL of recursive lists, and the theoryTE of
equality, iffϕ ∧ ψ is satisfiable in the theory of equality. Unfortunately, this does not
mean that the model obtained forϕ ∧ ψ corresponds directly to a model where every
subterm ofϕ evaluates to a list. It may be the case that the model forϕ ∧ ψ does not
specify fully how subterms inϕ should be extended to a list, it just says that there is
some extension. So how do we find a reasonable extension?

The Z3 API supplies a collection of methods for inspecting models. We summarize
some of the main relevant methods here:
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1. let graphs = model.GetFunctionGraphs() returns a dictionary from
function declarations to the finitegraph of the functions. Only functions that take
at least one argument are listed in this dictionary. Functions, or rather constants,
that don’t take any arguments are not listed.

2. graphs[func decl] results in an object with two fields:

• Entries - a finite array of argument/value pairs.

• Else - a default value. The function evaluates to theElse value on all
argument combinationsnot listed inEntries.

Exercise:

• Let t be a sub-term inϕ. Suppose thatmodel.Eval(t) is a value that is in the
range of the arraygraphs[cons decl].Entries. What can be said about
the value oft in model?

• Supposecons(hd, tl) is a sub-term in$, and thatmodel.Eval(cons(hd,tl))
is a value equal tographs[cons decl].Entries. What can be said about
all sub-terms of typeint list in ϕ?

• The functionmodel.GetValueType(v) returns the type associated with a
model valuev. Write a function that given amodel and a model valuev of
typeint list determines whethermodel evaluates it to a value of the form
cons(ht,tl) or nil.

• Supposet is a sub-term inϕ, and letv = model.Eval(t). Why doesv
correspond to either acons or nil?

• Write a function that for a value corresponding to acons, returns thetail value
(that is, the second argument ofcons).

• Do the tail values necessarily correspond to acons ornil?

• (*) Suppose we are given a model where some tail value does not correpond to
acons or nil. We can refine the model by adding some additional assertions
and callingCheckAndGetModel again to refine the model further to either
bind the tail value tonil or cons. Write the API calls that perform this model
refinement.
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