Proofs and Refutations, and Z3

Leonardo de Moura and Nikolaj Bjgrner
Microsoft Research

Abstract

Z3 [3] is a state-of-the-art Satisfiability Modulo Theorig®MT) solver freely available from
Microsoft Research. It solves the decision problem for dgjfianfree formulas with respect to com-
binations of theories, such as arithmetic, bit-vectongya, and uninterpreted functions. Z3 is used
in various software analysis and test-case generatioesat Microsoft Research and elsewhere.
The requirements from the user-base range from estalgdistaiidity, dually unsatisfiability, of first-
order formulas; to identify invalid, dually satisfiablerfoulas. In both cases, there is often a need
for more than just a yes/no answer from the prover. A modelecdribit why an invalid formula
is not provable, and a proof-object can certify the validifya formula. This paper describes the
proof-producing internals of Z3. We also briefly introdube model-producing facilities. We em-
phasize two features that can be of general interest: (1ptseduce a notion of implicit quotation
to avoid introducing auxiliary variables, it simplifies theeation of proof objects considerably; (2)
we produce natural deduction style proofs to facilitate oladproof re-construction.

1 Introduction

The title of our paper borrows from Imre Lakatos’s famouskon conjectures, proofs and refutations
in informal mathematics [7], yet our setting is machine deecproofs, that are penultimately given in a
context of formal systems where proofs are derived fromragioProofs in our context are derivations
from axioms, or derivations in theories that have solvargmlémented using efficient algorithms that
need only produce derivations implicitly. Part of the cealle is that efficiently and compact checkable
proofs, or certificates, are to be extracted from the solRedutations, also called models, are counter-
examples, that exhibit interpretations for formulas thandt follow from asserted axioms. Models are
also extracted from solvers.

Applications of SMT solvers that consume models benefit émously from a prover that produces
more than just a yes/no answer or a set of saturated claussslvés should therefore be able to com-
municate a model that can be represented finitely and cortsbyntine clients. Applications that mainly
require an indication of validity may in some cases furthenerbenefit from a certificate in the form of
a proof object. This paper describes the model-produciatyfes of Z3, currently available in the tool.
It also describes the proof-producing features in prejmran the next version of Z3. While this paper
can serve as an overview of the model- and proof-produciaijties in Z3, we point out the following
particularities of our approach:

1. We define a notion of implicit quotation that allows us t@ae a Tseitsin’ style clausification
without introducing auxiliary symbols. Other proof-prailug SMT systems that we are aware of
[18], [19], [2], [22], introduce auxiliary symbols (such peoxy literals) during clausification and
other transformations. Such symbols can impede optinoizatin the theory solvers (we provide
an example in Sectidn_3.3.2 where we can avoid introducitigaeSimplex Tableaux rows) and
make proof re-construction more involved.

2. We adapt an open-ended architecture for representirgfspr&roof rules can be introduced by
respective theory modules and combined with others. At thpgsitional level this is manifested
as we adapt a natural deduction style calculus. This cdsatvéith existing proof-producing SAT
solvers that generate resolution proofs directly [10, §§, 2¥e are obviously not the first to use
natural deduction in the context of SMT, for example, [9Yeastigates efficient proof checking of
natural deduction style proofs by implementing inferendes as rewrites.

Proofs and Refutations, and Z3 de Moura and Bjgrner

3. We also do not attempt to specify all inference rules frosmaller set of axioms. Instead we rely
on proof checking to be able to carry out a limited set of iafies, or refine proofs in a separate
pass. This choice obviously reflects a trade-off betweerrdqairements on the solver vs. the
proof checker. Our own experience has been that the coaasalgrity has in fact been sufficient
in order to catch implementation bugs. Future work includesstigating whether this approach
is practical in the context of proof checkers based on tdustees([1].

2 Preliminaries

2.1 Terms and Formulas

Z3 uses basic multi-sorted first-order terms. Formulasustet¢rms of Boolean sort, and terms are built
by function application, quantification, and bound varblSorts range over a finite denumerable set of
disjoint primitive sorts. To summarize

s € Sorts = Boolean |Int|Proof | ...

t € Terms == f(t1,...,tn) function application
| = bound variable
| Vo:s.t | Jz:s.t quantification

There a a few built-in sorts, such 8®olean, Int, Real, BitVec[n] (for eachn, ann-bit bit-vector),
andProof. TheProof sort is used for proof-terms. Terms can be annotated by @agfor example,
guantifiers are annotated with patterns that control gfi@ninstantiation. Function symbols can be both
interpreted and uninterpreted. For example, numeralsrareded using interpreted functions. Function
symbols also have attributes, such as to indicate whetbgrate associative and/or commutative. Note
that there are no binding operators other than universaleaiglential quantification. A number of
function symbols are built-in to the base theory. We wiltaduce the set of proof-constructing terms as
we explain their origination, but here let us summarize tlannpre-declared function symbols. We use
the usual infix symbols,, vV, —, <« for Boolean conjunction, disjunction, implication andifmplication.
For each sort there is an equality relatior: s x s — Boolean. The relation~: Boolean x Boolean —
Boolean is used in proof terms. A proof ap ~ 1 establishes thap is equisatisfiable with). In
other words, if we close andiy by second-order existential quantification of all Skolemdhions and
constants, we obtain equivalent formulas.

2.2 Proof Terms

Proof objects are also represented as terms. So a prodbtjest a term where each inference rule is
represented by a function symbol. For example, considepribef-rule for modus ponens:

ip Lq
Y —p Y

modus_ponens %

In the rule,p is a proof-term for) — ¢, andgq is a proof fory. The resulting proof-term fop is
thenmp(p, q,). We will later elaborate on the function symbols for builglinasic proof terms that are
available in Z3.

Every proof term has aonsequentthe formula that the proof establishes. It is always thé las
argument in our proof terms. To access the consequent weisélthe notatiorzon(p). For example,

con(mp(p, q,) = .

Proofs and Refutations, and Z3 de Moura and Bjgrner

3 Proofs

3.1 Overview

Z3 applies multiple stages when attempting to verify a fdemurirst formulas are simplified using a
repository of simplification rules. The result of simplifian is then converted into an internal format
that can be processed by the solver core. We refer to thie@sagernalization The core comprises of
a SAT solver that performs Boolean search and a collectidenfry solvers. The solver for equality and
uninterpreted function symbols (congruence closurelfeatpredominantly as a theory solver in Z3 as
it dispatches constraints between the SAT solver and dieeries.

Input formula Simplifier (3.2) Internalizer[[3.B)
SAT solver [3.4.11) Theory Corel(3.41P.3.4.3)

As the figure illustrates, we will describe the various medtih the following sections, as we intro-
duce the proof terms that are produced as a side effect of tlaeles.

The figure does not reflect the full extent of Z3. We will not baberating on proof objects for
non-ground formulas in this paper. Z3 does produce prodaéatbjfor non-ground formulas. The re-
quired machinery introduces judgments stating equifsattifity of formulas. Furthermore, Z3 contains
a module that produces and integrates proofs in a supdgositlculus [[4]. The proof terms are the
usual superposition inferencés [12]. That material is heytbe scope of this paper.

3.2 Simplification Rewriting

In a first phase, formulas are simplified using a rewritingifier. The simplifier applies standard

simplification rules for the supported theories. For exanptrms using the arithmetical operations,
both for integer, real, and bit-vector arithmetic, are nalized into sums of monomials. A single axiom
calledrewrite is used to record the simplification steps.

rewrite(t ~ s), rewrite(p < 1) A proof for a local rewriting step that convertdo s or ¢ to ¢». The
head function symbol dfis interpreted. Sample instances of this proof object arerite (x+0 ~
x), rewrite(x + x ~ 2 -), andrewrite((p V false) <).

Notice that we do not axiomatize the legal rewrites. Instéadheck the rewrite steps, we rely on a
proof checker to be able to apply similar inferences for #te§built-in theories: arithmetic, bit-vectors
and arrays.

3.3 Internalization

Internalization is the process of translating an arbitfarmula ¢ into a normal form that can be con-
sumed by efficient proof-search procedures. We will distwssnternalizations: clausification and con-
version of arithmetical constraints into a format that canpbocessed using a global Simplex tableau.

3

Proofs and Refutations, and Z3 de Moura and Bjgrner

Internalization often introduces auxiliary variablestthee satisfiability preserving definitional exten-
sions of the original problem. We will introduce a simplet bpparently unrecognized, technique of
implicit quotationto allow us introducing these definitional extensions, lbtha same time take advan-

tage of the fact that the auxiliary variables can be vieweeatly as terms they are shorthand for. The
technique of implicit quotation makes the proof extractwacess fairly direct.

3.3.1 Clausification

Tseitsin’s clausal form conversion algorithm can be forted as a procedure that works by recursive
descent on a formula and produces a set of equi-satisfiatié dauses. A simple conversion algorithm
introduces one fresh name for each sub-formula, and defiremime using the shape of the sub-formula.
We here recall the basic idea by converting and-or formuiessCNF.

enf (o) = let ((,F)=cnf'(¢)inl AF
enf!(0) = (¢,true) /is a literal
enf' (=) = let ((,F) = cnf'(p)in (=, F)

enf'(p NY) = let (L1, F1) = enf'(p), (b2, F2) = cnf'(1) in

(0, L N2 N (=€ V =Ly Vp) A(=pV L) A(=pV L2)) pisfresh
enf'(p V) = let (1, F1) = enf'(p), (b2, Fy) = cenf' (1)) in

(0, FL ANFy ALy VLV =p) A(pV ~L1) A(pV —la)) pisfresh

More sophisticated CNF conversions that do not introdueshfmames for all sub-formulas exist[14].
They control the number of auxiliary literals and clausasoiuced during clausification.

Z3 does not introduce auxiliary predicates during intemadiion of quantifier-free formulas. Instead,
it re-uses the terms that are already used for represemingub-formulas. Thus, instead of introducing
a fresh variable, in the CNF conversion ap V ¢, we treat the ternp Vv ¢ as aliteral. To clarify that a
sub-formula plays the role of a literal below, \weoteit. So the literal associated withV v is [V 9].

So the CNF conversion @f Vv ¢ produces the pair:

(leVvyl, LA ANV LV [V P]) A(fe V]V =l) A([e V]V b))

It may appear that we need to justify the auxiliary clauggs/ /> V —[p V ¢]), ([¢ V¢ vV —=¢1), and
(e V] Vv —£y) by appealing to the equi-satisfiablility, but the justificatfor these clauses happens
in fact to directly use equivalence. First note that it feloby induction on the clausification algorithm
that ¢, is equivalent top and/, is equivalent toyy. Each of the auxiliary clauses introduced during
clausification is therefore justified as propositional tdogies. Only limited propositional reasoning is
required to justify these. The proof terms correspondirtécuxiliary clauses are tagged as definitional
axioms. For example, the axiofp V ¢] V —¢ is represented by the terdef _aziom((p V) V =p).

We introduced quotation here to clarify in which contextitad) connectives were to be used. Our
implementation in Z3 does not use quotation at all.

3.3.2 Arithmetic

Implicit quotation is also used when introducing auxiliagriables for theories, such as the theory for
linear arithmetic. Let us recall how the Simplex solver in8rks. Following [5], a theory solver for
linear arithmetic, and integer linear arithmetic can beeldasn a Simplex Tableau of the form:

X Z ai;xrj x; € B, (1)
ijN

Proofs and Refutations, and Z3 de Moura and Bjgrner

where B and ' denote the set of basic and nonbasic variables, respgctifdéle sets3 and A are
assumed disjoint, and each basic variable occurs in exaetyrow. Thus, the values of basic variables
are determined by the values of the non-basic variablegdditian to this tableau, the solver state stores
upper and lower bounds andw; for every variabler; and a mapping’ that assigns a rational value
B(x;) to every variable:;. The bounds on nonbasic variables are always satisfigt] by the following
invariant is maintained by the tableau operations

ij S N, lj < 6(.%]) < u;. (2)
A tableau issatisfiedif the same inequalities hold for the basic variables:
ij € B, lj < 5(1']) < u;. 3)

Bounds constraints for basic variables are not necessailgfied by, so for instance, it may be the
case that, > ((z;) for some basic variable;, but pivoting steps can be used to fix bounds violations,
or detect an unsatisfiable tableau.

Formally, Simplex-based solvers for linear arithmetic gaterface with Boolean combinations of
inequalities by introducing one slack variable and a tableav for every (maximal) linear arithmetic
sub-term in a formula. For example, it is by now common for Saélvers to transform problems of the
form:

[(z+y>2)AN 2 —y <2 V[(f(z+2x)>5)Az<3 4)
to the following equi-satisfiable formula:

[(s1>2) A(s2 <2)]V[(f(s3) 25) Az <3 (5)
AN s>+ yANso~2r—yANsg~z+zx

The definitions for the slack variables translate into rawa Simplex tableau. If we representby the
quotation[z+y], ands, by [22—y], andss by [z+], we observe directly that the additional equalities
are tautologies and therefore have trivial justificatiof&irthermore, all Simplex tableau operations,
including pivoting, are equivalence preserving (pivotiggplaces equals for equals, and divides rows
by constants), so the justifications for the Simplex rowsaias a matter of expanding quotations and
checking equalities using linear arithmetic. The abovenlagion can be used to reconstruct proofs from
unsatisfiable tableaux in a direct manner. In contrast,f@ypsed an encoding of arithmetical constraints
by introducing slack variables for potentially every amititical subterm (including potentially a slack
variable forz in z < 3). The slack variables allowed for tracking explanationd axrtracting proofs
from infeasible tableaux.

We now explain how proofs are extracted from unsatisfialidéetaix without modifying the trans-
lation phase. With a tableau row of the forfd (1) associatestiema and infima of implied by the
coefficients, namely, let, be the coefficients from the row aingdandw; be the lower and upper bounds
that are asserted by the literals < u; andl; < z;, then:

sup(a,) = Z arjj + Z arjl; (6)
xje./\/+ Z‘J'ENi

inf(a,) := Z arjl; + Z ArjUj (7)
z;eN T z;eN~

whereN~™ = {z; | a;; < 0}, andN™" = {z; | a,; > 0}; and as usual, we setip(a,;) = oo if either
somez; € N, u; = oo, or for somer; € N, [; = —oc.

5

Proofs and Refutations, and Z3 de Moura and Bjgrner

Then an unsatisfiable tableau can be identified by an infieasitv , where
u, < inf(a,) andz, < wu, is asserted, o, > sup(a,) andi, < x, is asserted (8)
Corresponding to an infeasible row, we can extract a theanflict by accumulating the bounds that

were used to derive a contradiction. So for example, in chsg & inf(x,), the conflict clause is of the
form

—(z, <up)V \/ —(l; <xj) Vv \/ —(zj < uy) 9)
ijNJr SC]‘EN7

It is now simple to prove the conflict clause:

Ty = zxje./\/'arjxj I <xp1, xr1 € N

Tyr 2 (ije./\/ arjwj) — ap1Tr1 + ar1l Tro < Up2, Xpg € N™

Tr 2 (g, e N @rjTj) = G121 + Grilry — arpr2 + Gratiry

x, > inf(a,) Ty < Up
L
(@ Sup) V \/:BjEN+ —(lj < xj) Vv ije./\/’* —(zj <u;) @

lemma

The left-most antecedent is a tautology in the theory ofdirerithmetic, the other antecedents are hy-
potheses. Thé&mma inference rule collects (see Sectlon]3.4) the disjunctiath@negated hypotheses
used for derivinglL. The intermediary inferences correspond to basic inetyuatopagation. Our im-
plementation in Z3 only produces the theory lemma directihhout listing the equality corresponding
to the infeasible row.

3.4 Modular Proofs

A basic underlying principle for composing and building gi®in Z3 has been to support a modular
architecture that works well with theory solvers that reediteral assignments from other solvers and
produce contradictions or new literal assignments. Therthsolvers should be able to produce inde-
pendent and opague explanations for their decisions.

Conceptually, each solver acts upon a set of hypothesesraddge a consequent. The basic proof-
rules that support such an architecture can be summarizeflyasthesis, that allow introducing an
assumption/emma, that eliminates hypotheses, andit_resolution that handles basic propagation.
We say that a proof-term idosedwhen every path that ends with a hypothesis contains ancayipln
of rule lemma If a term is not closed, it ispen To summarize, these core rules are:

hypothesis(¢) Mark ¢ as a hypothesis. The resulting proof term is open.

lemma(p,—p1 V...V —p,) The proof term has one antecedensuch thatcon(p) = false butp is
open with hypotheseg, . . ., ¢,. The resulting proof term is closed.

unit_resolution(po,p1,- -, Pn, V1 V... V) Wherecon(pg) = o1 V...V Vb1 V...V ¢y,
con(p1) = =1, ... con(py) = 2pn.

We will next describe how these rules integrate within a DPLLarchitecture.

6

Proofs and Refutations, and Z3 de Moura and Bjgrner

3.4.1 Proofs from DPLL(T)

The propositional inference engine in Z3 is based on a DPlafchitecture. We refer td [13] for an
exposition on a basic introduction on DPLIL)Y as a transition system. The main points we will use is
that DPLL(I") maintains a state of the ford/ | F' during search, wher@/ is a partial assignment of
the atomic predicates in the formutd Furthermore, we assuntéis in conjunctive normal form. The
search keeps assigning atomslihbased on unit propagatiotheory propagation (for example > 3
implies thatz > 0 by the theory of arithmetic), and guesses (also called wessuntil either it reaches
a state where the assignment satisfies all clausgs an some clause ' contradicts the assignment in
M.

The DPLL(") proof search method lends itself naturally to producirgphetion style proofs. Sys-
tems, such as zChaff, and a version of MiniSAT![10, 6, 21]dpoe proof logs based on logging the
unit propagation steps as well as the conflict resolutiopsst&he resulting log suffices to produce a
propositional resolution proof. This approach works eVeugh the SAT solver can choose to restart or
garbage collect learned conflict clauses that were proddesdg search.

The approach taken in Z3 bypasses logging, and insteadshuitebf objects during conflict resolu-
tion. With each clause we attach a proof. Clauses that weduped as part of the input have proofs
that were produced from the previous steps. A clause thab@uped during conflict resolution depends
on some state of the partial modél. In particular, the learned clause is contradictory witmeasub-
set of the decision literals i/, either directly because the learned clause containsidediterals, or
because the learned clause contains a literal that washeltay propagation. Given a conflict clause
C : 01V V. . VL, we build a proof term of the forremma(p, ¢1 V42 V...V {,), wherep is constructed
by examining the justifications fot/q, ..., —¢,. If =/; is a decision literal, then the justification fe¥;
is a termhypothesis(—¢;). If =¢; was inferred by unit propagation (so there is a faét in M, with
justificationC' v —¢;), then it is proved using unit-resolution and the justifimatfor the clause’ v —¢;.

We see that this approach does not require logging resolstiEps for every unit-propagation, but
delays the analysis of which unit propagation steps arailsefil conflict resolution. The approach also
does not produce a resolution proof directly. It produceatanal deduction style proof with hypotheses.

Other propositional rules that are used during proof-retraction are:

asserted(yp) The formulay is a user-supplied assumption.

goal(p) The formulay is a user-supplied goal. A goal is symmetria@gsertedbut allows retaining the
distinction between goals and assumptions in proof ohjects

mp(p, q,) Proof of o by modus ponens. Assume thain(p) = ¢ and thatcon(q) is eithery — ¢
or ¢ «— . The latter form is used extensively in the simplifier to gppuivalence-preserving
simplification steps.

3.4.2 Congruence Proofs

In Z3, the congruence closure implementation is tightlggnated with the Boolean satisfiability core.
It serves as a main hub for equality propagation. The effi@iraction of minimal justifications for
congruence closure proofs has been studied extensivély,\le here summarize the proof objects that
are extracted from the justifications.

The theory of equality can be captured by axioms for refleéxigymmetry, transitivity, and substi-
tutivity of equality. We encode these axioms as inferendestiand furthermore only specify that these
inference rules apply for any binary relation that is reflexisymmetric, transitive, and/or reflexive-
monotone. We use the terminology, reflexive-monotone,dlations that are reflexive and monotone in

7

Proofs and Refutations, and Z3 de Moura and Bjgrner

a given function symbof. In particular, the relation- (from Sectioi Z.11) is also an equivalence relation,
and reflexive-monotone over conjunction and disjunctiomtt® rules are:

refl(R(t,t)) A proof for R(t,t), whereR is a reflexive relation.
symm(p, R(t,s)) A proof of R(t, s), whereR is a symmetric relation, anebn(p) = R(s,t).
trans(p,q, R(t,s)) A proof of R(t,s), whereR is transitive, andcon(p) = R(t,u) and con(q) =

R(u, s).
monotonicity (p1, .., pn, R(f(t1,..,tn), f(S1,..,8,))) A proof of R(f(t1,..,tn), f(s1,.., 1)), Where
con(p1) = R(t1,s1), ..., con(pn) = R(t,,sn), and R is reflexive and monotone ifi. The

antecedenp; can be suppressedtif = s;. That is, reflexivity proofs are suppressed to save space.

Our congruence closure core maintains a congruence taldengruence table enables propagation
of equalities over function symbols, so that for examplé (if, ¢) is a term, and’ is equal tos, then
when creatingf (s, ¢) it is detected that the potentially new term is in the samegnoence class as
f(s,t). The implementation also treats equality as a function,emsaly equality is also inserted to the
congruence table. This makes detecting implied dis-etipglsimple: given two terms andt, search
the congruence table for an existing entry §ar ¢. If the table contains such a literal, then check if the
literal is assigned téalse To make this use of the congruence table effective it utaleds commutative
operations, such as equality. This implicit use of comninitatgets reflected in the generated proof
terms, and we include a special rule for commutative funstidt can be instantiated for equalities.

comm(f(s,t) ~ f(t,s)), comm(f(s,t) < f(t,s)) wheref is a commutative function (relation).

3.4.3 Theory lemmas

In the DPLL(I") architecture, decision procedures for a theBngentify sets of assertéfi-inconsistent
literals. Dually, the disjunction of the negated literate &'-tautologies. Consequently, proof terms
created by theories can be summarized using a single foma chded Theory lemmas.

th_lemma(p1,...,pn,p) Generic proof rule for theory lemmas. The formute(p1)A. . . Acon(p,) —
 should be &’-tautology.

3.5 Applications

Z3 with proofs is still under development and has not beezasadd yet. An obvious current application
is that proofs offer a simple litmus test on the implementafor soundness bugs. We integrate a simple,
but partial (it does not check-lemmas) proof-checker in Z3 for this purpose. A much mofective
strategy for debugging bugs in theory solvers has been tpdhmT-lemmas as they are produced.
Similar to [20], we can then apply an independent solver @gnour previous version of Z3) on the
T-lemmas. We found this approach very effective in debuggiptimizations that turned out to be
unsound.

We also have a facility for displaying proof-terms, but threqd term visualization very easily be-
comes too large to be of any use.

In future applications, we envision applications of prowfsZ3, such as: Proof-mining [17]; can
proofs be mined for strategies that are helpful for speedmgroofs for a class of problems? Interpola-
tion. Proof visualization. Finally, in the context of IsdleéHOL, it has been suggested [8] to translate
HOL formulas (which use polymorphism), into first-order ypad formulas. A potentially unsound
translation is then run through first-order provers, butpheduced proofs (currently apparently only
Prover9), can be checked for whether they use inferencesdhgradict the types.

8

Proofs and Refutations, and Z3 de Moura and Bjgrner

3.6 The overhead of enabling proofs

We benchmarked proof generation on a few selected, butmadaktexamples from SMT-LIB. The
samples show a memory overhead of between 3x-40x, and pordisng slowdowns of 1.1x to 3x.

H Benchmark \ Without Proofs \ With Proofs \

NEQO16size7 26.01secs 9.1 MB 39.84 secs 426 MB
PEQO01Qsize8 6.65secs 9.3MB 7.63secs 40MB
fischer6-mutex-14 7.01 secs 14 MB| 16.38 secs 142 MB

cache.invl6 15.99 secs 11 MB| 24.61 secs 159 MB
Xs.20.40 2.2 secs 5.8 MB 2.70 secs 15.5 MHE
4 Models

We will very briefly summarize the model generation featineg3. More material is available on-line
onhttp://research. mcrosoft. confprojects/z3/ nodels. htnil

Z3 has the ability to produce models as part of its output. dodssign values to the constants in
the input and generate finite or partial function graphs fedjtates and function symbols.

A model comprises of a set of partitions, each partition istpd as:* k, wherek is a non-negative
number. Each partition is associated with a set of consfans the input, and is associated with a
concrete value. A concrete value can be either a Booleaadr falsg, a numeral (with typént, Real,
or BitVec[n]), an array (represented as a finite map), a tuple (repreddayt a constructor and sequence
of values for the fields), or an an uninterpreted ur-eleméftelements are internally represented as
natural number numerals, but with an uninterpreted type.

By default Z3, produces a full (and compact) interpretafmfree functions. There is an option to
force Z3 to not assign interpretations to functions wheir tredues don’t influence the truth assignment
to the formula.

Z3 version 2 integrates a superposition theorem praover\Mhen it is able to finitely saturate the
set of non-ground input clauses, it can also report that tregnound formula that was provided is
satisfiable, but there are no other mechanisms for extraeiitditional information from the saturated
set of clauses.

4.1 Applications

Models are by now used in a number of Z3 clients. The main tdidmat use models are the program
exploration and test-case generation tools Pex and SAGEefeeto [3] for all pointers). They extract
symbolic path conditions by monitoring program executiansl use Z3 to find alternate inputs that
can guide the next execution into a different branch. Moadeésalso used for improved debugging
feedback from Spec# and for iterative counter-example egliigtcfinement in the context of bounded
model checking of model programs.

We also believe that the availability of models can in futapplications play a useful role in the
context of model-based quantifier instantiation and irgtigg external decision procedures with Z3.

5 Conclusions
We presented the proof and model generation facilities in Mi®dels have already shown particular

usefulness in the context of SMT applications. Proofs walldvailable in Z3 v2, and we hope, in light
of this introduction, that users will be able to find usefuplgations of the feature.

9

http://research.microsoft.com/projects/z3/models.html

Proofs and Refutations, and Z3 de Moura and Bjgrner

References

[1]
(2]

(3]
[4]
[5]
[6]

[7]
(8]

[9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

Aaron Stump and Duckki Oe. Towards an SMT Proof Forma6'th International Workshop on SM2008.
Alessandro Cimatti, Alberto Griggio, and Roberto Sdlzas. Efficient Interpolant Generation in Satisfiabil-
ity Modulo Theories. In Ramakrishnan and Rehof [15], padEs-312.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An Efficient $NBolver. In Ramakrishnan and Rehlof [15].
Leonardo de Moura and Nikolaj Bjgrner. Engineering DL+ Saturation. INJCAR’08 2008.

Bruno Dutertre and Leonardo de Moura. A Fast Linearmietic Solver for DPLL(T). INCAV’06, LNCS
4144, pages 81-94. Springer-Verlag, 2006.

Niklas Eén and Niklas Sorensson. An Extensible SAxa0 In Enrico Giunchiglia and Armando Tacchella,
editors,SAT, volume 2919 of_ecture Notes in Computer Scienpages 502-518. Springer, 2003.

Imre Lakatos.Proofs and RefutationsCambridge University Press, 1976.

Jia Meng and Lawrence C. Paulson. Translating Highete©Clauses to First-Order Clauses. Autom.
Reasoning40(1):35-60, 2008.

Michal Moskal. Rocket-Fast Proof Checking for SMT Salve In Ramakrishnan and Rehof [15], pages
486-500.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, lantZhang, and Sharad Malik. Chaff: Engineering
an efficient sat solver. IDAC, pages 530-535. ACM, 2001.

Robert Nieuwenhuis and Albert Oliveras. Proof-PradgaCongruence Closure. In Jurgen Giesl, editor,
RTA volume 3467 ot.ecture Notes in Computer Scienpages 453-468. Springer, 2005.

Robert Nieuwenhuis and Albert Rubio. Paramodula8ased Theorem Proving. In Robinson and Voronkov
[16], pages 371-443.

Roberto Niewenhuis, Albert Oliveras, and Cesare Tin8olving SAT and SAT modulo theories: From an

abstract Davis-Putnam-Logemann-Loveland procedure toLDB. Journal of the ACM53(6):937-977,
November 2006.

Andreas Nonnengart and Christoph Weidenbach. Comgutinall clause normal forms. In Robinson and
Voronkov [16], pages 335-367.

C. R. Ramakrishnan and Jakob Rehof, editdigols and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Helha of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, &ynlylarch 29-April 6, 2008. Proceedings
volume 4963 ol ecture Notes in Computer Scien&pringer, 2008.

John Alan Robinson and Andrei Voronkov, editorslandbook of Automated Reasoning (in 2 volumes)
Elsevier and MIT Press, 2001.

S. Schulz. Learning Search Control Knowledge for Eaunatl Theorem Proving. In F. Baader, G. Brewka,
and T. Eiter, editorsProc. of the Joint German/Austrian Conference on Artifidigtklligence (KI-2001)
volume 2174 oLNAI, pages 320-334. Springer, 2001.

Aaron Stump, Clark W. Barrett, and David L. Dill. Produg proofs from an arithmetic decision procedure
in elliptical If. Electr. Notes Theor. Comput. S&G0(2), 2002.

Aaron Stump and David L. Dill. Faster Proof Checking live tEdinburgh Logical Framework. In Andrei
Voronkov, editor,CADE, volume 2392 ofLecture Notes in Computer Scienqeages 392—-407. Springer,
2002.

Geoff Sutcliffe. Semantic Derivation Verification: dleniques and Implementatioimternational Journal on
Artificial Intelligence Tools15(6):1053-1070, 2006.

Tjark Weber and Hasan Amjad. Efficiently checking prsitional refutations in HOL theorem provers.
Journal of Applied LogigcJuly 2007.

Yeting Ge and Clark Barrett. Proof Translation and SMB- Benchmark Certification: A Preliminary
Report. In6'th International Workshop on SM2008.

10

	Introduction
	Preliminaries
	Terms and Formulas
	Proof Terms

	Proofs
	Overview
	Simplification Rewriting
	Internalization
	Clausification
	Arithmetic

	Modular Proofs
	Proofs from DPLL(T)
	Congruence Proofs
	Theory lemmas

	Applications
	The overhead of enabling proofs

	Models
	Applications

	Conclusions

