Software Engineering and Automated Deduction

Willem Visser
Stellenbosch University
Stellenbosch, South Africa
visserw@sun.ac.za

ABSTRACT

Software poses a range of engineering challenges. How do we cap-
ture the expected behavior of the software? How can we check if
such behavioral descriptions are consistent and valid? How do we
generate test instances that explore and examine different parts of
the software. We focus on the underlying technology by which a
number of these problems can be reduced to a logical form and
answered using automated deduction. In the first part we briefly
summarize the use of automated deduction within software engi-
neering. Then we consider some of the current and future trends in
software engineering and the type of advances it may require from
automated deduction. We observe that in the past software engi-
neering problems were solved by merely leveraging advances in
automated deduction, especially in SAT and SMT solving, whereas
we are now entering a phase where advances in automated deduc-
tion are also driven by software engineering requirements.

1. INTRODUCTION

Can software engineering really be that hard? Software is com-
posed of a number of lines of code. Each line has a well-specified
effect on program execution. Modern computers can execute these
lines of code rapidly and deliver quick feedback. Yet, software
projects continue to fail in spectacular ways even as massive re-
sources are devoted to testing and debugging software. An em-
pirical approach to software development has its strengths, but for
many critical applications, we need analytical tools and techniques
that are rooted in sound theory but are practical enough to predict
the behavior, both correct and anomalous, of something as complex
as software.

Logic is integral to thinking about software, and indeed to com-
puting as a whole [57]. Like programming, logic is characterized
by the use of a formal language. While a programming language is
read as a recipe for a computation, logical formulas describe states
of affairs. Logic can thus be used to characterize the possible inputs
to a program, the range of values assigned to variables at a program
point, the possible execution steps of a program, the effects of these
execution steps on the program state, or the properties of execution
traces of a program. The suitability of logic for computing stems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE 2014 Hyderabad, India

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Nikolaj Bjgrner
Microsoft Research
. Redmond, WA, USA
nbjorner@microsoft.com

Natarajan Shankar
SRI Computer Science Lab
Menlo Park, CA, USA
shankar@csl.sri.com

SE application needs:
theories, explanations, trusted certificates, benchmarks, interoperability

Software
Engineering

Automated
Deduction

AD advances:
scale and power, tool-supported logical formalisms, evidential tool bus

Figure 1: A virtuous cycle of influences between software engi-
neering needs and advances in automated deduction.

from the ability of logic to abstractly characterize states of affairs
coupled with the technology to reason systematically with these ab-
stract descriptions. Logic can then be used as an interface layer to
mediate between problems and tools, so that many different kinds
of problems can be mapped to queries of logical validity or satisfia-
bility, and many different tools can be used to answer these queries.

The connection between logic and software was established early
on. Before there was even a concept of a programming language,
logical formalisms for lambda calculus, automata, and equational
reasoning provided a foundation for computability. Already in
the late 1940s, Turing [79] and von Neumann and Goldstine [82]
worked out examples of assertional verification of imperative pro-
grams. McCarthy [77] introduced the idea of recursion—induction
as a way of reasoning about functional programs over recursively
defined datatypes. He also showed how assertional reasoning
about flowchart programs could be reduced to recursion—induction.
Floyd [49] outlined an assertional method for reasoning about the
total correctness of flowchart programs, and Hoare [58] presented
an axiomatic framework for assertional proofs of programs. These
early ideas have been extended in a number of directions such as al-
gebraic, denotational, and operational semantics, inductive theorem
proving, predicate transformer semantics, temporal logics, model
checking, test generation, and program synthesis. An early survey
paper by Elspas, Levitt, Waldinger, and Waksman [45] describes
some of the deep links between logic and program correctness, and
a more recent survey by Shankar [101] describes a number of ad-
vances in the use of automated deduction for verification.

The focus of this paper is on the use of logic, specifically au-
tomated deduction, to solve problems in software engineering. In
addition, we provide a roadmap for the future of deduction-based
software engineering. Until recently, one could argue that software



engineering techniques simply benefitted from the exceptional ad-
vances in automated deduction, whereas we are now in a phase
where a number of advances in automated deduction are actually
driven by the needs and constraints of software engineering. Fig-
ure 1 summarizes this view as a virtuous cycle including the main
themes covered in this paper.

1.1 The Value Proposition for Software Engi-
neering

Many software engineering tasks depend critically on the ability
to solve logic problems. We enumerate a few examples:
Semantics: What is the semantics of signed twos-complement
representation of integers? An N-bit word or bit-vector can be
represented as a function from the subrange interval [0, N) to the
Booleans {0,1}. Given an N-bit word A, let |A| represent the un-
signed magnitude of A, namely A[0] +A[1] x2+... +A[N — 1] X
2N=1_ The signed magnitude ||A|| is |A|, if |A] < 2V~!, and is
|A| — 2V, otherwise. The same approach can be used to give the
semantics of floating point arithmetic, machine language instruc-
tions, and for programming languages in general.

Specifications: Write a program that given a bit-vector returns the
next highest bit-vector (according to the unsigned semantics) with
the same number of 1-bits. Specifications succinctly and precisely
characterize the range of inputs and the expected output for each in-
put. Specifications can be given for anything ranging from a small
subroutine to a library or a large application. In the case of reac-
tive programs, the specification might capture a temporal pattern
of interaction between a module and its environment. Deductive
methods can be used to check specifications for various properties
including consistency and completeness.

Correctness: Does a given program meet its specification? For
example, does a binary search procedure find the index of a given
element in an array, when it exists? Automated deduction tech-
niques can be used to show termination, i.e., that the program halts
on all well-formed inputs, and partial correctness, i.e., that the re-
sult when the program halts conforms to the specification. In some
cases, the correctness is demonstrated by means of a refinement
proof between the specification and the program.

Deductive Synthesis: Is there a procedure that can construct a
program meeting a given specification? Techniques such as res-
olution and inductive theorem proving can be used to systemati-
cally synthesize algorithmic solutions to given problems. Decision
procedures can also be used to fill holes in algorithmic templates,
to synthesize reactive programs for temporal specifications, and to
construct environment models.

Static analysis: Can we derive properties of variables and control
states from the program? Deduction is used to construct abstract
domains, transfer functions that approximate program behavior on
the abstract domains, and for extended type checking and assertion
checking.

Test generation: Is there a valid input that drives a program along
a specified path or to a specific state? There are several variants on
this basic procedure, but the question of finding a test input is essen-
tially a logical one. A classic example is the generation of test cases
to reach program statements. An approach based on symbolic ex-
ecution was introduced in the mid-seventies by Boyer, Elspas, and
Levitt [15], Clarke [31] and King [65], to find a model for a con-
junction of constraints over the input variables (i.e., assignments
to the input variables that will reach a program location). Sym-
bolic execution never really got traction in software engineering
until satisfiability checkers became more efficient, about 20 years
later (mid-nineties).

Note also that software engineering problems are typically

Value Propositions | Newer Trends

Semantics Model based development
Specifications Trusted Security
Correctness High-integrity Systems

Deductive Synthesis
Static analysis
Test-case generation

Inductive Deductive Synthesis
Education
Biology

Table 1: Established Value Propositions and Newer Trends

highly structured, whereas automated deduction tools have histor-
ically been more general purpose. Exploiting the structure of the
problems within the automated deduction tools allow more efficient
analysis and is a major research trend.

1.2 Software Engineering Trends

In Section 4.4 we highlight a number of trends in software en-
gineering research that will critically depend on advances in auto-
mated deduction for their success. In Table 1 we summarize the
established value propositions just mentioned together with a set of
newer trends that are identified in Section 4.4. Note that some of
the trends are not new and have been around for decades, but we
believe there is a resurgence in these areas (synthesis and education
being prime examples).

1.3 Paper Layout

The first part of the paper contains a description of automated
deduction tools and how they address software engineering issues.
The second part of the paper will highlight some areas we believe
where the future research focus will be for the use of automated
deduction in software engineering.

2. AUTOMATED DEDUCTION TOOLS

The main question addressed by (automated) deduction can be
summarized as: Given a logical formula ¢, establish that it is valid.
Dually, given a logical formula ¢ establish that it is satisfiable, e.g.,
establish that there is a model M that satisfies ¢. We write M |= ¢
to say that M satisfies ¢. Note that ¢ is valid if and only if —¢
is unsatisfiable. In model checking, one is given a model M and
formula ¢ and the question is “only” to check if M = ¢ holds.
Here the model is (a Kripke structure) extracted from a program
and it can be very large or even infinite. On the other hand, deriving
program invariants and other properties is an instance of deriving an
abstraction from a model M. To summarize, we have the following
themes:

2E0 deduction

Mo
M =?  abstraction

model checking

One can also recast problem domains in terms of others. Model
checking is deduction in disguise: associate with a model M the
characteristic formula (M), and check validity of y (M) — ¢ [20,
90]. Logics and encodings are key to presenting these problems
in an effective way: x (M) can be directly encoded in linear time
temporal logic or higher-order logics [99]. If x(M) is given as a
least fixed-point uX.x(M,X), then it suffices to check satisfiabil-
ity of VX.(x(M,Reach)(X) — Reach(X)) A (Reach(X) — ¢) where
X are the free variables in ¢ and Reach is a fresh predicate. Refor-
mulations help encode problems according to the domains handled



by automated deduction tools, but solving such problems may re-
quire specialized automated deduction strategies and decision pro-
cedures.

2.1 Logics and Automated Deduction

Let us first summarize some main trends in automated deduction.
Automated first-order theorem proving tools, commonly known as
ATP tools, prove properties of theorems expressed in (pure classi-
cal) first-order logic. Classical first-order logic has been shown to
be very versatile even though it is based on a limited set of basic
notions. It has its roots in Aristotelean logic and it has been used
to encode problems from domains ranging from abstract algebra
to linguistic analysis. Propositional logic (SAT) comprises what
one can reasonably characterize as the smallest sensible subset of
first-order logic. From the point of view of first-order logic theo-
rem proving, it is a trivial case, but algorithms and tools that have
proved effective for solving propositional formulas have become a
highly active area in itself in the past two decades. Satisfiability
Modulo Theories (SMT) has been used to characterize an area of
theorem proving that integrates built-in support for domains that are
commonly found in programs and specialized algorithms to solve
these formulas. This contrasts pure first-order theorem proving that
has no built-in support for domains, such as integers, reals, or alge-
braic data-types. Specialized support for such theories is critical in
modeling and analyzing software systems. The area of automated
deduction includes also substantial developments in non-classical
and higher-order logics.

Thus we see automated deduction aligned around a set of broad
categories defined by the logics they handle. The lines along these
categories are naturally blurred as developments in one area influ-
ence other areas.

2.1.1 First-order Theorem Proving

Algorithms for automated deduction were developed well before
software engineering became a field. First-order logic is rooted in
logic and foundations for mathematics. Recall that formulas over
first-order logic are built from constants, bound variables, com-
pound terms and formulas are formed by combining predicates us-
ing logical connectives. Taking a minimalistic approach, formulas
are

term = var| f(term") | const
¢

Logical conjunction ¢ A ¢’ and negation —¢ can be used to define
disjunction @ V ¢’ := —=(=¢ A —¢’) and other connectives. First-
order satisfiability is concerned whether there is an interpretation
(model) that satisfies the given formula. A first-order model com-
prises of a domain (a set A), for each free constant a value in A,
and for each function a graph over A. Formulas are evaluated over
first-order models, and formulas that evaluate to true are satisfied.
Herbrand’s theorem from 1930, laid a foundation for effective
methods for first-order validity. A sentence is a formula with no
free variables, and it is valid if its negation is unsatisfiable. A
first-order sentence such as Ix.(p(x) = (Vy.p(y))) is valid if
its negation Vx.p(x) A —(Vy.p(y)) is unsatisfiable. The latter for-
mula can be placed in prenex form by moving all the quantifiers
outwards to get Vx.3y.p(x) A—p(y). This formula can be Skolem-
ized as Vx.p(x) A —p(f(x)), where f is a freshly chosen function
symbol. The latter formula is unsatisfiable if there is some Her-
brand expansion, namely a disjunction of instances of the formula,
that is propositionally unsatisfiable. In this case, the expansion
(p(c) A=p(f () V (p(f(c)) A=p(f(f(c))) is propositionally un-
satisfiable. Herbrand’s theorem thus reduces first-order unsatis-

P(term®) | term = term | @ A @ | =@ | Yvar.@

fiability to Boolean unsatisfiability, and methods like resolution
took advantage of propositional reasoning to systematically find
suitable Herbrand expansions through proof search. Our exam-
ple above succumbs easily to resolution: The Skolemized form
Vx.p(x) A —p(f(x)), yields two implicitly universally quantified
clauses p(x) and =p(f(y)), and with the unifier {x <— f(y)}, these
clauses resolve to yield a refutation. Tools for first-order theorem
proving mainly use the TPTP [107] (Thousand of Problems for
Theorem Provers) interchange format. The example from above
can be written in TPTP as:

fof (sample_first_order, conjecture,
(7 [X] (p(X) => 1 [Y] : p(Y) ) )).

The area of automated first-order deduction subsequently flour-
ished with constructive methods for proof search [103, 91]:
Gentzen in 1934 developed sequent calculi; twenty years later, Beth
introduced semantic tableaux methods; in 1960 Davis and Putnam,
thanks to a grant by the NSA, introduced ordered resolution for
proving theorems in first-order logic and when Davis later imple-
mented the procedure with Logemann and Loveland, identified the
DLL procedure that is at the heart of modern SAT solvers. A ma-
jor breakthrough in first-order automated deduction came in 1965
when J. Robinson developed first-order resolution, unification, and
subsumption (in the same paper [92]). This spurred a frenzy of
tool developments and gave rise to the use of theorem proving in
artificial intelligence and the Prolog systems. Today’s main tools,
E [97], Spass [114], Vampire [67], for first-order theorem proving
are based on refinements of Robinson’s resolution method.

2.1.2  Propositional Logic Theorem Proving

Formulas in propositional logic are first-order formulas without
any terms or quantifiers, thus SAT formulas can be built using just
propositional variables P, conjunction and negation:

¢ = Plorne|-o

The satisfiability problem is also simpler to represent: a model for
a propositional formula is an assignment of the propositional vari-
ables to truth values O or 1, such that the formula evaluates to 1 un-
der this assignment. The DIMACS format is the most popular way
to interface with SAT solvers. It represents formulas as a sequence
of clauses. Each clause is a disjunction of atomic propositions or
their negations (called literals). Suppose we wish to prove that im-
plication is transitive. As a formula, we would write (P} = P,) =
((P, = P3) = (P; = P3)) and check if this formula is a tautology.
Dually, the negation of the formula is unsatisfiable. We can write
the negation as a set of clauses: (=P VPy) A (=P, V P3) APy A—Ps
which in the DIMACS format is written, with p for “problem”, as
follows:

c This is a CNF example with 3 variables
c and 4 clauses. Each clause ends with 0.
p cnf 3 4

-120

-2 30

10

-3 0

The current trend in SAT solvers is around substantial refine-
ments of the DLL procedure. A renaissance was initiated in the
early 1990’s by a community effort around benchmarking and eval-
uations. Some of the recent highlights in SAT solving include
clause indexing introduced in the SATO tool. A groundbreaking
development in GRASP was to extend the basic DLL scheme with



| Year | Advance Solver |

1960 | Davis-Putnam procedure [38]
1962 | Davis-Logemann-Loveland [37]
1984 | Binary Decision Diagrams [19]
1992 | DIMACS SAT challenge [21]
1994 | Clause indexing SATO
1997 | Conflict clause learning GRASP
1998 | Search Restarts [52]
2001 | 2-watch literal, VSIDS zChaff
2005 | Preprocessing techniques SatELite

2007 | Phase caching RSAT

2008 | Cache optimized indexing MiniSAT
2009 | In-processing, clause management | Glucose
2010 | Blocked clause elimination Lingeling

Table 2: Progress in SAT solving

clause learning [76]. In a nutshell it gives SAT solvers the same
power as resolution, while retaining the better space properties of
DLL. It spurred a decade of SAT triumphs that we summarize in
Table 2. Following GRASP and zChaff, several SAT solving tools
have become available and are used as either stand-alone tools
for solving SAT formulas or integrated in model checkers. The
main tools are Lingeling [11], MiniSAT [44], and many tools built
around MiniSAT, e.g., Glucose that applies sophisticated garbage
collection [1], and several reference' and proprietary SAT solvers.
The state of SAT solving until 2009 is collected in [12] and is up-
dated in a forthcoming volume on SAT by Knuth.

2.1.3 Satisfiability Modulo Theories

The theory of arithmetic has been a central topic in logic ever
since symbolic logic took shape. Solving logical formulas with
arithmetical symbols is an instance of Satisfiability Modulo The-
ories (SMT). SMT formulas extend first-order logic with theories,
such as the theory of arithmetic. Yet most of the motivation for cur-
rent SMT solvers originate from using automated logic engines for
program analysis. These include the solver for the Stanford Pascal
Verifier [74], NQTHM [16], EHDM [93], and PVS [86], and more
recently Barcelogic [13], Boolector [17], CVC [6], MathSAT [18],
STP [50], Yices [43], Z3 [40].

SMT formulas are first-order formulas, except that some func-
tion and predicate symbols may have pre-defined interpretations.
For example, the formula:

y=x+2 = f(select(store(a,x,3),y—2)) = f(y—x+1)

uses arithmetical functions +, — besides constants 1,2,3. It uses
the functions select and store where store(a, i,v) is characterized by
select(store(a,i,v), j) = if i = j then v else select(a, j). The func-
tion f is not interpreted by any built-in theory. The SMT-LIB22
interchange format is used by current SMT solvers and our exam-
ple formula can be given to SMT solvers as:

(declare-fun x () Int)
(declare—-fun y () Int)
(declare—-fun a () (Array Int Int))
(declare—-fun f (Int) Int)

(assert (= y (+ x 2)))

(

assert (not

"http://www-cs-faculty.stanford.edu/~knuth/
programs/satl3.w

Zhttp://www.smtlib.org

(= (£ (select (store a x 3) (- vy 2)))
(£ (+ (=y x) 1)))))
(check-sat)

Note the following: The sort of integers Int is built in, the built-in
sort constructor for arrays, Array, takes two sorts for the domain
and range, and a unary uninterpreted function £ is declared to take
one Int and produce an Int. The original formula is negated
and split into two assertions. The left side of the implication is
asserted separately, and the negation of the right side of the im-
plication is also asserted. Finally, we check satisfiability of the
assertions. The conjunction of assertions are unsatisfiable, in other
words, the negation of the conjunction is valid.

Many applications rely on solving logical formulas using arith-
metic, and this theory remains an important theory in SMT solving.
There are many sub-categories of arithmetical formulas that are
handled by modern SMT solvers: linear (additive, where multipli-
cation between variables is disallowed) arithmetic over integers and
real numbers, polynomial arithmetic over reals, linear arithmetic
over two variables (with unit coefficients) per inequality. But there
are many other theories that are of relevance to software engineer-
ing: the theory of arrays is used when modeling memory heaps, the
theory of bit-vectors is used for representing machine integers, al-
gebraic data-types are natural when analyzing functional programs
and specifications with Herbrand terms, and more recently SMT
solvers have started supporting floating point numbers with IEEE
semantics. SMT solving technologies leverage several techniques
developed in the context of first-order theorem proving and SAT
solvers. The over-arching focus is on how to efficiently integrate
specialized solvers for theories, such as arithmetic, that solve effi-
ciently satisfiability problems for Boolean combinations of logical
constraints.

SMT solvers are a good fit for many software engineering ap-
plications due to the support for domains that are directly relevant
to software development and analysis. We summarized also first-
order automated deduction and SAT solvers. Both first-order theo-
rem proving and SAT solving are integral components in SMT solv-
ing, and applications that can be described in propositional logic or
in pure first-order logic can be solved using dedicated SAT solvers
or ATP systems.

2.2 Deduction with Interaction

Automation is critical to many of the applications of logic in
computing mentioned above. Formulas arising from hardware and
software analysis and planning and scheduling can be large. Soft-
ware and hardware verification can generate proof obligations that
are in a where there is no complete inference procedure. Even when
the inference procedure is complete, i.e., it is capable of proving
any valid proof obligation, the automation might not be be efficient
enough to handle large formulas or search spaces. An automated
attempt to verify a proof obligation could fail due to the incom-
pleteness or inefficiency of the inference procedure, or because the
proof obligation was not valid. In situations where the inference
procedure can fail, it becomes important to interact with the system
to locate the root cause of the failure. In either case, interaction is
needed to find the source of the problem and repair it.

Automation can also fail for mathematically challenging proofs
that need clever inductions or careful decomposition into lemmas.
Interaction is critical for nudging the proof search along a produc-
tive direction by allowing the user to suggest induction schemes,
lemmas, case splits, and quantifier instantiations. Without such
guidance, an automated strategy can spend a lot of time in fruit-
less paths in the search space by employing irrelevant lemmas, def-
inition expansions, and quantifier instantiations. Interaction is also



helpful as a way of composing automated techniques and exploring
proof strategies for the purpose of mechanization. Most interactive
provers support user-defined proof strategies that are typically de-
veloped using the insights gained from interactive proofs.

A productive deductive environment combines automation with
interaction augmented with user-defined proof strategies. Fully
automatic inference procedures are not that helpful in providing
feedback when they fail, and lack the controls for fine-tuning the
proof search. On the other hand, interaction without automation
can quickly turn tedious. Even when it is possible to define proof
strategies, these are not as efficient as bespoke inference procedures
such as SAT solvers, SMT solvers, and rewriting engines. Automa-
tion is therefore useful in focusing user attention on the mathe-
matically interesting aspects of a proof. Proof environments such
as ACL2 [64], Coq [8], HOL [54], Isabelle [84], Nuprl [33], and
PVS [86] explore different sweet spots in the space of automation,
interactivity, and customization. PVS, for example, has a specifica-
tion language based on higher-order logic enhanced with predicate
subtypes, recursive datatypes, parametric theories, and theory inter-
pretations. Many of these features make even the typechecking un-
decidable, but the undecidability only manifests itself through the
generation of proof obligations. Simplification and rewriting sup-
ported by decision procedures for combinations of theories makes
it possible to discharge these proof obligations with a significant
degree of automation. ACL?2 uses a logic based on an applicative
subset of Common Lisp so that the functions defined in the ACL2
logic are directly executable as Lisp programs. Other interactive
theorem provers feature logics that have executable fragments and
code can be generated for expressions in these fragments.

Interactive deductive environments or proof assistants have been
used to formalize large libraries of mathematical knowledge, and
significant accomplishments include the formalization of founda-
tional proofs in metamathematics [98]; the CLI stack verifying a
hardware processor, an assembler, a compiler, and an operating
system kernel [9]; the verification of the seL4 hypervisor [66]; the
verification of air traffic control algorithms [23]; the Four Color
Theorem [53]; and the verification of compilers for realistic lan-
guages [73]. In all of these instances, the proofs were outlined by a
human while the gaps were filled in either by the built-in automa-
tion (e.g., SMT solvers, automated theorem provers) or through
user-defined automated proof strategies. The integration of au-
tomation and interaction has made it possible to efficiently develop
large-scale formalizations in mathematics and computing.

2.3 Evidential Tool Bus

Most software analysis methods involve a workflow integrating
multiple tools such as type checkers, static and dynamic analyzers,
SAT and SMT solvers, termination checkers, and theorem provers.
Examples of such workflows include counterexample-guided ab-
straction refinement, concolic execution, test generation, and com-
positional verification. An assurance case integrates a number of
claims, both formal and informal, about the software. These claims
can cover traceability between system requirements, software re-
quirements, and various design and implementation artifacts such
as the specification, source code, object code, test cases, and perfor-
mance measurements. An assurance case consists of claims about
these artifacts that are supported by arguments based on evidence.
The arguments include formal deductive arguments as well as those
based on empirical and subjective evaluation. Both the formal and
informal parts of the argument can employ tools to process the ev-
idence. A tool integration framework is needed to systematically
define workflows involving multiple tools to construct arguments.
In contrast to an ad hoc script for applying different tools, a tool

integration framework offers a unified platform where tools can be
plugged in and invoked as services, and woven into robust work-
flows.

The Evidential Tool Bus (ETB) is a distributed framework for
orchestrating workflows for building assurance cases [94, 35]. ETB
uses Datalog as its metalanguage both for representing workflows
and arguments. Tools are invoked using Datalog predicates through
wrappers, so that checking the satisfiability of an SMT-LIB formula
in a file handle f, could be written as smtCheck(f, Result), where
the variable Result is bound to either sat or unsat. Workflows
are defined by Datalog programs so that for example, a bounded
model checking query could be written as the Horn clause

bme(M, P, K, Result)
:— unfold(M,P,K,F),smtCheck(F,Result)

where unfold is implemented by a tool wrapper that takes a model
M (from a file) and property P, and generates the unfolded for-
mula F (in a file). Evaluating a query like bmc(m, p,k, Result) on a
specific model m, property p, and bound k triggers the correspond-
ing execution of the wrappers associated with the predicates unfold
and smtCheck. An ETB network consists of a collection of servers,
where each server can offer a set of services. These services can
be accessed through client interface for uploading files and launch-
ing queries to interactively construct the artifacts, claims, evidence,
and arguments that go into an assurance case.

3. SOFTWARE ENGINEERING TOOLS

Here we consider the software engineering domains that most
benefit from automated deductions technologies. We will try to
provide a reasonable, but by no means complete, list of tools and
techniques and how they use automated deductions tools.

Proof Assistants: One of the classic ways of using automated de-
duction during a verification process is when automated theorem
proving is used to assist humans in proving functional properties
of code. One of the best, recent, examples of this is the verifica-
tion of the seL4 microkernel by using the Isabelle/HOL theorem
prover[66]. In general theorem provers like ACL2, Coq, HOL,
Isabelle, Nuprl, and PVS can be used for formalizing a range of
computational models, including the semantics of programming
languages and hardware representations. ACL2 formalizes an ap-
plicative fragment of the Common Lisp programming language.
However the human effort required for using these tools to verify
software can be prohibitive. For example, the seL.4 effort required
20 person years for doing the proofs, and the authors estimate it
will take 6 person years, if they had to reuse the methodology on a
similar project. This amount of effort is why completely automated
approaches are far more popular.

Model checking is one of the most popular fully automated ap-
proaches to verifying properties of software systems. Most model
checkers analyze designs of systems expressed in various custom
notations, but more recently there has been a move to analyze code
written in C, Java and other programming languages. Some model
checkers, especially so-called explicit-state model checkers, such
as SPIN [59] and Java PathFinder (JPF) [111] use almost no auto-
mated deduction in their core functionality. Symbolic model check-
ers (for example, in NuSMV [28] and SAL [39]), using binary de-
cision diagrams (BDDs), can in certain cases analyze extremely
large state spaces by exploiting some of the special properties of
BDDs. Bounded model checkers [29], that translates transition sys-
tems and properties to be checked into constraints uses SAT and
SMT solvers as backends. Another approach to model checking
that has been very popular is the use of abstraction and refine-



| Year [ Program Verifier | Solver | Reference |

1979 | Pascal Verifier Custom [81]
1998 | ESC Modula-3 Simplify [71, 42]
2002 | ESC-Java Simplify [48, 26]
2003 | SPARK Custom 4]
2004 | Spec# Boogie/Z3 | [5]
2007 | KeY Custom [7, 96]
2009 | VCC Boogie/Z3 | [32]
2010 | HAVOC Boogie/Z3 | [3]
2010 | Dafny Boogie/Z3 | [70].
2012 | Frama-C Various [36]

Table 3: Program Verifiers and their Solvers

ment in the so-called counter-example guided abstraction refine-
ment (CEGAR) loop [30]. Here automated deduction tools such as
SMT solvers and other decision procedures (especially for linear
arithmetic) plays a major role. The approach involves starting with
an over approximation of a system description and then checking
whether a possible counter-example (i.e. a path to an error) is fea-
sible for the real system; if it is not a decision procedure is used
to derive a new abstract system that is refined according to predi-
cates that make the infeasible path no longer executable. This pro-
cess continues until a real counter-example is found or an abstract
system doesn’t exhibit an error. Some of the first model checkers
targeting source code, used this approach: Static Driver Verifier
(previously SLAM) [2] and BLAST [10].

Program Verifiers: There are a large number of verification tools
that operate at the level of annotated code for C, Java, and related
languages (see Table 3). The Pascal Verifier [81], followed by ESC
Modula-3 [71], ESC-Java [48, 26], and the Spec# [5] system ad-
dressed extended type safety of programs: programs that success-
fully pass a check by these systems are guaranteed to not encounter
a class of runtime errors, such as division by 0 and null-pointer
dereferences. In order to ensure these properties, these tools rely
on Floyd-Hoare-Dijkstra calculi for analyzing program statements
that may potentially produce a runtime error. The result of the anal-
ysis is a logical formula that is passed to a theorem prover. An
experience has been that the more suitable automated deduction
tools for this task combine strong domain reasoning for data-types
that are part of programs (integers, bit-vectors, pointers), with rela-
tively light-weight handling of quantification (to encode properties
of data-structures and heaps). The Simplify [41] theorem prover
was built to support ESC Modula-3 [42] and was since used in
many software engineering projects. Simplify is a so-called SMT
solver and modern SMT solvers have by now supplanted Simplify.
The Boogie intermediate language and tool [72] is intended as an
intermediate layer on which program verifiers can be built. It uses
the Z3 SMT solver to check properties of the annotated Boogie
code. A number of program verifiers use Boogie as a backend:
VCC [32], HAVOC [3] and Dafny [70]. Frama-C is a software
analysis platform for C code that supports various analysis plug-
ins [36]. One of these plug-ins support weakest pre-condition based
reasoning that discharges verification conditions with the Alt-ergo
SMT solver or the Coq proof assistant. A related plugin uses Jessie
which in turn uses the Why3 platform (that the Krakatoa tool for
Java also uses as a backend) that can translate the wide variety of
proof assistants and automatic solvers. A more crosscutting ap-
proach is taken by the KeY formal software development tool [7]
which can analyze UML diagrams to check Object Constraint Lan-
guage (OCL) specifications as well as Java code. It uses its own

theorem prover backend that supports first-order dynamic logic for
Java [96]. One of the most successful commercial applications of
verification technology is AdaCore’s SPARK tool [4], that analyses
annotations in a restricted subset of Ada code. It uses the Examiner
tool to analyze the code for conformance to the semantics of the
language subset and generates verification conditions that are then
analyzed by the Simplifier tool.

Symbolic execution: As mentioned in the introduction, a program
analysis technique that has benefitted a great deal from the ad-
vances in automated deduction has been symbolic execution. Sym-
bolic execution is a static analysis that “executes" code with sym-
bolic inputs and collects constraints (path conditions) on the input
for paths through the code. Whenever a branch condition is reached
during the analysis both the true and the false branch condition is
added and checked for feasibility. This check is performed with the
aid of decision procedures, such as those found in SMT solvers.
A number of symbolic execution based systems exists and two
of the most popular is KLEE [24] and Symbolic PathFinder [89].
Dynamic symbolic execution (also referred to as concolic execu-
tion) has recently become very popular. The approach involves the
concrete execution of a program, but on an instrumented environ-
ment where all the constraints on the path being executed can be
recorded. One of the constraints is then negated and the resulting
constraints are then checked for feasibility; if feasible a solution
for each input variable is extracted and the code is run with these
new inputs. A number of concolic execution systems exist with
some of the most popular being DART, CUTE, CREST, Pex and
SAGE [25]. For instance, SAGE checks for classic security issues
such as buffer overflows and has had great success at Microsoft in
finding serious issues that the standard fuzz testing missed [14].
Static runtime checking: Symbolic execution forms the basis of a
number of static analysis tools that checks for runtime errors. The
Prefix program analysis tool [22] pioneered large scale program
analysis by building and using symbolic procedure summaries. It
uses a custom incomplete theorem prover for checking path fea-
sibility. The Z3 solver was integrated with Prefix to check path
feasibility with bit-precise semantics such that Prefix could report
integer overflow bugs. Coverity [78], likewise, relies on a com-
bination of analyses for defect reporting. SAT solvers and other
automated deduction engines have on occasion been mentioned al-
though they seem somewhere deep in the trenches, engulfed by the
hard reality of prioritizing actionable bugs to customers.

Test case generation: Writing unit tests by hand to obtain high
code coverage can sometimes be a cumbersome exercise. Symbolic
execution is ideally suited to this task, since a path condition that
reaches the coverage condition (statement, branch, etc.) just need
to be solved to find assignments to the input. Concolic execution
systems of course requires the functionality to generate tests, by
definition, since it needs to be able to run on the newly created
inputs. The more classic symbolic execution tools, such as SPF,
has the facility to generate tests for obtaining a number of different
coverage criteria [112].

4. FUTURE OF DEDUCTION-BASED
SOFTWARE ENGINEERING

Here we will highlight some new trends in software engineer-
ing and the requirements they have of automated deduction. We
first consider changes that will likely come to automated deduction
due to requirements in software engineering and internally (Sec-
tion 4.1). In Section 4.2 we consider the role of competitions and
how it influences the automated deduction field, and how it is start-
ing to make an impact in software engineering. Standard notations



in automated deduction made a number of advances possible, and
we we will consider the influence of these in Section 4.3. Lastly,
in Section 4.4, we list a number of recent software engineering re-
search directions that require the use of automated deduction tools.

4.1 Automated Deduction

We here outline selected trends in automated deduction of rele-
vance to software engineering. We use these trends as an overall
characterization of a very large number of efforts in the context of
automated deduction and we describe how applications from soft-
ware engineering have inspired and are driving these directions.

4.1.1 Scale and Expressive Power

An important enabling factor for making automated deduction
relevant in software engineering tools has been fueled by the last
decade of triumphs in SAT solving: from a very high-level point
of view, the fundamental insights have been to understand how to
prune search space efficiently using conflict learning, how to tai-
lor data-structures for efficiently indexing and managing (memory)
overhead during search, and how to prioritize search heuristics.
These advances have been mainly inspired by applications in hard-
ware and software engineering and one can expect this virtuous
cycles to continue.

A foundational challenge in automated deduction is how to in-
tegrate first-order reasoning (with quantification) and theory solv-
ing. The combination leads quickly to highly intractable problem
classes, but software engineering applications do not necessarily
need to draw on the full power of both quantification and theo-
ries. As a case in point, automated deduction and heaps has been
a very popular topic in the past decade [85]. Many heap reachabil-
ity properties are essentially what can be characterized as locally
finite theories: only a fixed finite number of quantifier instantia-
tions are required to solve problems. The resulting ground prob-
lems can be solved using decision procedures. Combinations with
monadic second-order logic are also possible and are used for ana-
lyzing programs with data-structures [75]. The encoding of model
checking as satisfiability given in Section 3 produces quantified for-
mulas that are furthermore Horn clauses with constraints (a Horn
clause is a disjunction that has at most one positive uninterpreted
relation, other uses of uninterpreted relations are negated; the con-
straints are arbitrary interpreted formulas over background theo-
ries). Automated deduction specialized to Horn clauses is an ac-
tive area of research. Solving satisfiability of Horn clauses is inti-
mately connected to finding inductive invariants for inductive pro-
gram verification and overall proof by induction. The FA fragment
(EFSMT), e.g., quantified formulas of the form 3V ¢, is also partic-
ularly well suited for several classes of systems analysis, including
cyber-physical systems [27].

Practical methods for decidable classes and extended decidable
classes is a fertile area where software engineering applications
stimulate progress in automated deduction: The classical theory
of strings is receiving current attention thanks to applications in
security, such as verifying and synthesizing web-facing string san-
itizers, and applications such as linguistics. The even more clas-
sical theory of non-linear arithmetic over polynomials is receiving
a breath of fresh air thanks to insights from model-producing SAT
solving search. Finally, sub-classes of first-order logic that are triv-
ial from the point of view of expressive power (relative to full first-
order logic) are finding applications in symbolic model checking
of parametric hardware descriptions and heap manipulating pro-
grams. These fragments include QBF (Quantified Boolean For-
mulas), EPR (Effectively PRopositional logic, also known as the
Bernay’s Schonfinkel class), and even more succinct logics, such

as quantified formulas over bit-vectors and uninterpreted functions.

4.1.2  Information from Deduction

Answering just the question whether a formula is satisfiable is
valuable, but many applications need much more information. Test-
case generation tools rely on models to produce test cases and high-
integrity applications benefit from proofs to certify correctness be-
yond a blind trust in a debugged, but potentially buggy theorem
prover. Other useful information can be extracted from automated
deduction: Interpolants can be extracted as by-products of proofs,
or alternatively as by-products of models and unsatisfiable cores.
An example of an application that requires this functionality is au-
tomated fault localization, where an unsatisfiable core can indicate
the part of the program that must be changed to remove an error.
This is used within the BugAssist tool [63]. An extension of bug
analysis is automated program repair [83] that rely on automated
deduction tools for finding repairs, typically specified over a gram-
mar of possible legal program fragments. Abstract interpretation
based on logical formulas can use consequence finding (the set of
consequences that can be derived from logical formulas). Quanti-
tative information, such as extracting the number of solutions to a
problem (#SAT), and obtaining optimal solutions from deduction
problems is increasingly sought after. The number of solutions al-
low one to calculate the probability of an execution occurring in
a program (given an input distribution) [51, 95] as well as the re-
liability of the code [46]. However this work has so far mostly
been applied to programs manipulating linear integer arithmetic,
whereas the domains of heaps and strings (for example) brings new
challenges.

In an informal survey of software engineering researchers, the
question was posed as to what would they want to see from au-
tomated deduction tools to enable new research directions and/or
solve current problems they might have. The answer was almost
unanimous: they want more insight into the working of the de-
duction systems. In short they want to know why the result was
obtained, not just what the result is. This is not a new request and
the ability to provide the unsatisfiable core to the user (rather than
just to say a formula is unsatisfiable) is an example of where new
research were spawned when the deduction tools provided some of
the why. This is a trend we believe should accelerate in the future.

4.1.3 Deduction with Interaction

There are two related trends in interactive verification. One trend
is toward integrating automated tools, particularly through the use
of SAT and SMT solvers as well as first-order proof search en-
gines. SAT and SMT solvers can greatly simplify reasoning in spe-
cialized theories and theory combinations, for example, the com-
bination of bit-vectors, arrays, and uninterpreted function symbols.
The second trend is toward increasing levels of trust. Some systems
like HOL, HOL-Light, and Isabelle have simple logics with small
kernels, but others like Coq and PVS have complex logics with
correspondingly large proof kernels. The Kernel of Truth (KoT)
project [100] associated with PVS defines a kernel for ZF set the-
ory that can be used to capture the semantics of other formalisms.
We will continue to see interactive theorem provers evolve toward
greater automation coupled with deeper trust.

4.1.4 Evidential Tool Bus

The ETB architecture is evolving toward wider distribution from
a system operating over a local-area network to one that is dis-
tributed across the internet. Deduction and analysis services can
then be offered over the cloud, so that distributed workflows can
be defined in terms of these web services. These workflows can



be operating continuously to preserve relationships defined by the
workflows even as some of the inputs change.

4.2 Competitions

The automated deduction community uses a variety of competi-
tions to stimulate advances in the field. The CADE ATP Systems
Competition (CASC) [109, 88] that evaluates fully automatic the-
orem proving systems has been running since 1996 at the CADE
and IJCAR conferences. The most recent one was with [JCAR
2013 [108]. A competition for SMT solvers, called SMT—COMP3,
has been running since 2005 and has been co-located with various
conferences. Such competitions have a number of positive impacts
on the field, not least of which is a set of benchmarks for compari-
son. Competitions is something the software engineering commu-
nity can do well to try and emulate. They provide useful impetus
to address a pervasive shortage of good benchmarks in the field.

Recently there has been some attempts at doing this, with
the Software Verification Competition (SV-COMP) the most well
known example. SV-COMP* has been running since 2012 and
is co-located with the TACAS conference. The problem however
is that to make a competition like this work it has to be carefully
scoped, and for SV-COMP it is that they only evaluate tools using
C as input. SV-COMP uses benchmark programs provided from
a variety of sources, including the participants of the competition.
The RERS challenge [60] on the other hand evaluates model check-
ers, but on artificially produced examples. The Static Analysis Tool
Exposition (SATE’), run by NIST, attempts to evaluate static anal-
ysis tools and has been going since 2008. SATE is explicitly not a
competition, but rather aims to collect large benchmarks, encour-
age tool development and to spur adoption of the tools via valida-
tion on large, real-world benchmarks. SATE has three language
tracks (Java, C/C++ and PHP) and focusses on security vulnerabil-
ities. SATE uses open source programs with known vulnerabilities
as example cases, thus allowing tools to be evaluated on real-world
examples. New competions directly relevant to software engineer-
ing problems are emerging: The SyGuS-COMP 2014° addresses
synthesis problems and expressible as search over a grammar and
SynthComp 20147 aims to evaluate reactive synthesis solvers.

We believe organizations with real-world problems should be en-
couraged to provide benchmark examples and to sponsor awards
for solutions that they can adopt, in this way it will be a win-win
situation.

4.3 Interoperability

One of the reasons why competitions are so successful in the
automated deduction environment is that tools take standard nota-
tions as input (for example those mentioned before such as TPTP,
DIMACS and SMT-LIB(2)). Note that automated deduction tools
historically also supports their own custom interface in addition to
the standard ones. A good practice when integrating with these
tools is to interface with the standard notation, since this allows
one to plug and play to see which tools delivers the best results.
Often times the custom interfaces provide additional functionality
and also the textual format of the standard notations can be expen-
sive to parse, so once one determines the tool that performs the best
it might be worth considering the custom interface.

A trend in software engineering tools is to use layers above the
deduction tools to allow simple switching of the backend tools and

3http://smtcomp.sourceforge.net/
“http://sv-comp.sosy-lab.org/
Shttp://samate.nist.gov/SATE.html
Ohttp://www.sygus.org
7http://www.syntcomp.org/

to add some additional functionality that can speed up the analysis.
For example in symbolic execution two such front-end tools are
metaSMT [56] and GREEN [110]. metaSMT is used by KLEE [87]
and provides a translation to the native interfaces of a variety of
SAT and SMT solvers, thus reducing the burden of a developer to
translate to each one themselves. GREEN also supports various
backends, but its main feature is that it uses caching across analysis
runs, to allow results from the deduction tools to be reused (KLEE
also supports caching but only within one run).

4.4 New Software Engineering Trends

Here we list a few software engineering trends that we think we
will have an impact on automated deduction technology in the fu-
ture.

Synthesis: There is a renewed focus on program synthesis in
various disguises [55, 104], such as synthesizing program frag-
ments based on templates also known as sketching [105] and syntax
guided synthesis. inductive methods: a set of input-output exam-
ples are supplied to a deductive engine that searches a state-space
of program templates. Related to synthesis is the use of deduction
for doing a semantic search for code in a library [106].
Model-Based Development: Some systems for model-based soft-
ware development, such as [61, 62], rely increasingly on automated
deduction engines. Not unlike the efforts on program synthesis,
automated deduction is here used for synthesis, such as deriving
system configurations. Model-based analysis of safety-critical al-
gorithms, such as [80], has spawn substantial investment into au-
tomation and interactive tool support. This may lower the barrier of
entry for future analysis efforts, and a possible future opportunity
is to also use qualitative and quantitative results from automated
deduction to synthesize parts of designs.

Education: Being able to program is becoming a required skill and
many initiatives are springing up to try and teach people from all
walks of life how to write code. The use of automated deduction
to aid the understanding of what a piece of code is doing can facil-
itate this learning. An interesting example of this is the Pex4Fun
project® that allows one to try and write code to match a hidden
specification. Behind the scene the Z3 SMT solver is leveraged to
generate test cases to show why the code fails or succeeds. One can
also see how analyzing large numbers of programs and the mistakes
programmers make can be used to find common programming mis-
takes which can then in turn help with teaching.

Trusted Security: has long been a hot topic and we have men-
tioned already the need for analyses over the string domain in this
context. Moreover, recent prominence around privacy and security
motivates security software to be open and certifiable (i.e. to ensure
no unwanted surveillance code was inserted or that cryptographic
functionality is not open to backdoors). This certification process
will require new (or at least more efficient) approaches to program
analysis and automated deduction.

High-integrity Systems: Besides the security demands already
mentioned, high-integrity software systems can also require strin-
gent safety demands to be met. Avionics software is a well known
example where demanding certification processes must be adhered
to in order to be used on commercial airplanes. DO-178C, the most
recent version of the certification process required for flight soft-
ware now includes mention of formal methods based approaches
for the first time. However, the burden for certification is about
to tested by the widespread use of self-driving car technology. Ex-
actly, how one will be able to certify such software is an open prob-
lem both from a technical point of view (since these are probabilis-

8http://pex4fun.com



tic systems) and from a procedural point of view (how to make all
the car manufactures work together). The analysis of probabilistic
systems is a popular new research direction with techniques us-
ing probabilistic and statistical model checking [68, 69] as well as
probabilistic symbolic execution [51] appearing recently.

Biology: Although not strictly speaking software engineering, the
analysis of biological systems with the use of techniques from the
analysis of software and hardware is becoming an increasingly ac-
tive research field [47]. Although these analyses already use auto-
mated deduction (see for example the use of Z3 in [34]) we believe
new theories and search algorithms may be required especially for
analyzing the probabilistic aspects of the systems.

5. CONCLUSIONS

Software engineering has benefitted greatly from the advances
in automated deduction in the last few decades. Many great ideas
from decades past, suddenly became feasible with the major ad-
vances in automated deduction. Similarly the constant optimiza-
tions of the deduction tools and the addition of new theories has
kept on fueling new software engineering research. However, it is
fair to say software engineering is starting to give something back:
research in automated deduction is now also driven by software en-
gineering requirements. Automated deduction tools tended to be
very general in the past, but in future some aspects will be fine-
tuned for the more structured problems coming from software en-
gineering. In addition deduction tools tended to be almost black-
box, but now software engineers want to look under the hood to
make use of some of the internal results. We foresee a much closer
relationship between software engineering tools and the underlying
automated deduction tool infrastructure.

6. ACKNOWLEDGMENTS

This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Number
88210), as well by NASA Cooperative Agreement NNA13AC55C
and NSF Grant CNS-0917375.

7. REFERENCES

[1] G. Audemard and L. Simon. Predicting Learnt Clauses
Quality in Modern SAT Solvers. In C. Boutilier, editor,
IJCAI pages 399-404, 2009.

[2] T. Ball, E. Bounimova, V. Levin, R. Kumar, and
J. Lichtenberg. The static driver verifier research platform.
In Proceedings of the 22Nd International Conference on
Computer Aided Verification, CAV’10, pages 119-122,
Berlin, Heidelberg, 2010. Springer-Verlag.

[3] T. Ball, B. Hackett, S. K. Lahiri, S. Qadeer, and J. Vanegue.
Towards scalable modular checking of user-defined
properties. In G. T. Leavens, P. W. O’Hearn, and S. K.
Rajamani, editors, VSTTE, volume 6217 of Lecture Notes in
Computer Science, pages 1-24. Springer, 2010.

J. Barnes. High Integrity Software: The SPARK Approach to
Safety and Security. Addison-Wesley, 2003.

M. Barnett, M. Fiahndrich, K. R. M. Leino, P. Miiller,

W. Schulte, and H. Venter. Specification and verification:
the Spec# experience. Commun. ACM, 54(6):81-91, 2011.
C. Barrett and C. Tinelli. CVC3. In W. Damm and

H. Hermanns, editors, CAV, volume 4590 of Lecture Notes
in Computer Science, pages 298-302. Springer, 2007.

B. Beckert, R. Hihnle, and P. H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach. LNCS 4334. Springer-Verlag, 2007.

[4

—

(5

—

[6

—_

[7

—

[8] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development. Springer, 2004. Coq home page:
http://coq.inria.fr/.

[9] W.R. Bevier, W. A. Hunt, Jr., J. S. Moore, and W. D.
Young. An approach to systems verification. Journal of
Automated Reasoning, 5(4):411-428, Dec. 1989.

[10] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The
Software Model Checker Blast: Applications to Software
Engineering. Int. J. Softw. Tools Technol. Transf.,
9(5):505-525, Oct. 2007.

[11] A. Biere. Lingeling, Plingeling and Treengeling Entering
the SAT Competition 2013. In Proceedings of SAT
Competition 2013, volume B-2013-1 of Department of
Computer Science Series of Publications B, pages 51-52,
2013.

[12] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. 10S Press, 2009.

[13] M. Bofill, R. Nieuwenhuis, A. Oliveras,

E. Rodriguez-Carbonell, and A. Rubio. The Barcelogic
SMT solver. In A. Gupta and S. Malik, editors, Computer
Aided Verification, 20th International Conference, CAV
2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings,
volume 5123 of Lecture Notes in Computer Science, pages
294-298. Springer, 2008.

[14] E. Bounimova, P. Godefroid, and D. Molnar. Billions and
billions of constraints: Whitebox fuzz testing in production.
In Proceedings of the 2013 International Conference on
Software Engineering, ICSE 13, pages 122-131,
Piscataway, NJ, USA, 2013. IEEE Press.

[15] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT—A
formal system for testing and debugging programs by
symbolic execution. ACM SIGPLAN Notices,
10(6):234-245, June 1975.

[16] R.S. Boyer and J. S. Moore. A Computational Logic
Handbook. Academic Press, NY, 1988.

[17] R. Brummayer and A. Biere. Boolector: An Efficient SMT
Solver for Bit-Vectors and Arrays. In S. Kowalewski and
A. Philippou, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 5505 of
Lecture Notes in Computer Science, pages 174-177.
Springer Berlin Heidelberg, 2009.

[18] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and
R. Sebastiani. The MathSAT 4 SMT solver. In A. Gupta and
S. Malik, editors, Computer Aided Verification, 20th
International Conference, CAV 2008, Princeton, NJ, USA,
July 7-14, 2008, Proceedings, volume 5123 of Lecture
Notes in Computer Science, pages 299-303. Springer, 2008.

[19] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. I[EEE Transactions on Computers, 1986.

[20] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 10%° states and
beyond. Information and Computation, 98(2):142-170,
June 1992.

[21] M. Buro and H. K. Biining. Report on a SAT Competition.
Bulletin of the EATCS, 49, 1993.

[22] W.R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors. Softw., Pract.
Exper., 30(7):775-802, 2000.

[23] R. Butler, G. Hagen, J. Maddalon, C. Muiioz,

A. Narkawicz, and G. Dowek. How formal methods impels
discovery: A short history of an air traffic management



(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

project. In C. Muiloz, editor, Proceedings of the Second
NASA Formal Methods Symposium (NFM 2010),
NASA/CP-2010-216215, pages 34-46, Langley Research
Center, Hampton VA 23681-2199, USA, April 2010.
NASA.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, pages 209-224. USENIX
Association, 2008.

C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu,

K. Sen, N. Tillmann, and W. Visser. Symbolic execution for
software testing in practice: preliminary assessment. In

R. N. Taylor, H. Gall, and N. Medvidovic, editors, ICSE,
pages 1066-1071. ACM, 2011.

P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond
Assertions: Advanced Specification and Verification with
JML and ESC/Java2. In E. S. de Boer, M. M. Bonsangue,
S. Graf, and W. P. de Roever, editors, FMCO, volume 4111
of Lecture Notes in Computer Science, pages 342-363.
Springer, 2005.

C.-H. Cheng, N. Shankar, H. Ruess, and S. Bensalem.
EFSMT: A logical framework for cyber-physical systems.
arXiv preprint arXiv:1306.3456, 2013.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,

M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMYV 2: An OpenSource Tool for Symbolic Model
Checking. In E. Brinksma and K. Larsen, editors, Computer
Aided Verification, volume 2404 of Lecture Notes in
Computer Science, pages 359-364. Springer Berlin
Heidelberg, 2002.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
checking using satisfiability solving. Form. Methods Syst.
Des., 19(1):7-34, July 2001.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM, 50(5):752-794, Sept.
2003.

L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Transactions on
Software Engineering, 2(3):215-222, Sept. 1976.

E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
practical system for verifying concurrent C. In Theorem
Proving in Higher Order Logics, pages 23—42. Springer,
2009.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and
S. F. Smith. Implementing Mathematics with the Nuprl
Proof Development System. Prentice Hall, Englewood
Cliffs, NJ, 1986. Nuprl home page: http://www.cs.
cornell.edu/Info/Projects/NuPRL/.

B. Cook, J. Fisher, E. Krepska, and N. Piterman. Proving
stabilization of biological systems. In R. Jhala and

D. Schmidt, editors, Verification, Model Checking, and
Abstract Interpretation, volume 6538 of Lecture Notes in
Computer Science, pages 134—149. Springer Berlin
Heidelberg, 2011.

S. Cruanes, G. Hamon, S. Owre, and N. Shankar. Tool
Integration with the Evidential Tool Bus. In VM CAI, pages
275-294, 2013.

P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

and B. Yakobowski. Frama-C a software analysis
perspective. In G. Eleftherakis, M. Hinchey, and

M. Holcombe, editors, SEFM, volume 7504 of Lecture
Notes in Computer Science, pages 233-247. Springer, 2012.
M. Davis, G. Logemann, and D. W. Loveland. A machine
program for theorem-proving. Commun. ACM,
5(7):394-397, 1962.

M. Davis and H. Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201-215, 1960.

L. de Moura, S. Owre, H. RueB, J. Rushby, N. Shankar,

M. Sorea, and A. Tiwari. SAL 2. In R. Alur and D. Peled,
editors, Computer Aided Verification, volume 3114 of
Lecture Notes in Computer Science, pages 496-500.
Springer Berlin Heidelberg, 2004.

L. M. de Moura and N. Bjgrner. Z3: An efficient SMT
solver. In C. R. Ramakrishnan and J. Rehof, editors, Tools
and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008,
volume 4963 of Lecture Notes in Computer Science, pages
337-340. Springer, 2008.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365-473,
2005.

D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Technical Report 159, COMPAQ
Systems Research Center, 1998.

B. Dutertre and L. de Moura. A fast linear-arithmetic solver
for DPLL(T). In T. Ball and R. B. Jones, editors, CAV,
volume 4144 of Lecture Notes in Computer Science, pages
81-94. Springer, 2006.

N. Eén and N. Sorensson. An Extensible SAT-solver. In

E. Giunchiglia and A. Tacchella, editors, SAT, volume 2919
of Lecture Notes in Computer Science, pages 502-518.
Springer, 2003.

B. Elspas, K. N. Levitt, R. J. Waldinger, and A. Waksman.
An assessment of techniques for proving program
correctness. ACM Comput. Surv., 4(2):97-147, 1972.

A. Filieri, C. S. Pasareanu, and W. Visser. Reliability
analysis in Symbolic Pathfinder. In Proceedings of the 2013
International Conference on Software Engineering, ICSE
"13, pages 622-631, Piscataway, NJ, USA, 2013. IEEE
Press.

J. Fisher, D. Harel, and T. A. Henzinger. Biology as
reactivity. Commun. ACM, 54(10):72-82, Oct. 2011.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,

J. B. Saxe, and R. Stata. Extended Static Checking for Java.
In J. Knoop and L. J. Hendren, editors, PLDI, pages
234-245. ACM, 2002.

R. W. Floyd. Assigning meanings to programs. In
Mathematical Aspects of Computer Science, Proceedings of
Symposia in Applied Mathematics, volume XIX, pages
19-32. American Mathematical Society, Providence, Rhode
Island, 1967.

V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In W. Damm and H. Hermanns,
editors, CAV, volume 4590 of Lecture Notes in Computer
Science, pages 519-531. Springer, 2007.

J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic
symbolic execution. In Proceedings of the 2012
International Symposium on Software Testing and Analysis,
ISSTA 2012, pages 166-176, New York, NY, USA, 2012.
ACM.



[52] C.P. Gomes, B. Selman, and H. A. Kautz. Boosting
combinatorial search through randomization. In J. Mostow
and C. Rich, editors, AAAI/IAAL, pages 431-437. AAAI
Press / The MIT Press, 1998.

[53] G. Gonthier. Formal proof: The four-color theorem. Notices
of the AMS, 55(11):1382-1394, Dec. 2008.

[54] M. J. C. Gordon and T. F. Melham, editors. Introduction to
HOL: A Theorem Proving Environment for Higher-Order
Logic. Cambridge University Press, Cambridge, UK, 1993.
HOL home page: http:
//www.cl.cam.ac.uk/Research/HVG/HOL/.

[55] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI *11, pages 62-73, New York,
NY, USA, 2011. ACM.

[56] F. Haedicke, S. Frehse, G. Fey, D. Grosse, and R. Drechsler.
metaSMT: Focus On Your Application Not On Solver
Integration. In Proceedings of the First International
Workshop on Design and Implementation of Formal Tools
and Systems (DIFTS),, 2011.

[57] J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis,

M. Vardi, and V. Vianu. On the unusual effectiveness of
logic in computer science. The Bulletin of Symbolic Logic,
7(2):213-236, 2001.

[58] C. A. R. Hoare. An axiomatic basis for computer
programming. Comm. ACM, 12(10):576-583, 19609.

[59] G.J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

[60] F. Howar, M. Isberner, M. Merten, B. Steffen, and D. Beyer.
The RERS Grey-Box Challenge 2012: Analysis of
Event-Condition-Action Systems. In T. Margaria and
B. Steffen, editors, ISoLA (1), volume 7609 of Lecture
Notes in Computer Science, pages 608—614. Springer, 2012.

[61] D. Jackson. Alloy: A new technology for software
modelling. In J.-P. Katoen and P. Stevens, editors, TACAS,
volume 2280 of Lecture Notes in Computer Science,
page 20. Springer, 2002.

[62] E. K. Jackson and W. Schulte. Formula 2.0: A language for
formal specifications. In Z. Liu, J. Woodcock, and H. Zhu,
editors, ICTAC Training School on Software Engineering,
volume 8050 of Lecture Notes in Computer Science, pages
156-206. Springer, 2013.

[63] M. Jose and R. Majumdar. Cause clue clauses: Error
localization using maximum satisfiability. SIGPLAN Not.,
46(6):437-446, June 2011.

[64] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach, volume 3 of
Advances in Formal Methods. Kluwer, 2000.

[65] J. C. King. Symbolic execution and program testing.
CACM, 19(7):385-394, 1976.

[66] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel.4:
formal verification of an operating-system kernel. Commun.
ACM, 53(6):107-115, 2010.

[67] L. Kovécs and A. Voronkov. First-Order Theorem Proving
and Vampire. In Sharygina and Veith [102], pages 1-35.

[68] M. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic Model Checking for Performance and
Reliability Analysis. SIGMETRICS Perform. Eval. Rev.,

36(4):40-45, Mar. 2009.

[69] A.Legay, B. Delahaye, and S. Bensalem. Statistical model

checking: An overview. In H. Barringer, Y. Falcone,

B. Finkbeiner, K. Havelund, I. Lee, G. Pace, G. Rosu,

0. Sokolsky, and N. Tillmann, editors, Runtime
Verification, volume 6418 of Lecture Notes in Computer
Science, pages 122-135. Springer Berlin Heidelberg, 2010.

[70] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In Logic for Programming, Artificial
Intelligence, and Reasoning, pages 348-370. Springer,
2010.

[71] K. R. M. Leino and G. Nelson. An extended static checker
for Modula-3. In K. Koskimies, editor, CC, volume 1383 of
Lecture Notes in Computer Science, pages 302-305.
Springer, 1998.

[72] K. R. M. Leino and P. Riimmer. A polymorphic
intermediate verification language: Design and logical
encoding. In Proceedings of the 16th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’10, pages 312-327,
Berlin, Heidelberg, 2010. Springer-Verlag.

[73] X. Leroy. Formal verification of a realistic compiler.
Commun. ACM, 52(7):107-115, 2009.

[74] D. C. Luckham, S. M. German, E. W. von Henke, R. A.
Karp, P. W. Milne, D. C. Oppen, W. Polak, and W. L.
Scherlis. Stanford Pascal Verifier user manual. CSD Report
STAN-CS-79-731, Stanford University, Stanford, CA, Mar.
1979.

[75] P. Madhusudan and X. Qiu. Efficient Decision Procedures
for Heaps Using STRAND. In E. Yahav, editor, SAS,
volume 6887 of Lecture Notes in Computer Science, pages
43-59. Springer, 2011.

[76] J. P. Marques-Silva and K. A. Sakallah. GRASP - A New
Search Algorithm for Satisfiability. In /ICCAD, 1996.

[77] J. McCarthy. Recursive functions of symbolic expressions
and their computation by machine. Commun. ACM,
3(4):184-195, 1960.

[78] S. McPeak, C.-H. Gros, and M. K. Ramanathan. Scalable
and incremental software bug detection. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 554-564, New York,
NY, USA, 2013. ACM.

[79] F. L. Morris and C. B. Jones. An Early Program Proof by
Alan Turing. Annals of the History of Computing,
6:139-143, 1984.

[80] C. A. Muioz, V. Carrefio, G. Dowek, and R. W. Butler.
Formal verification of conflict detection algorithms. ST7T,
4(3):371-380, 2003.

[81] G. Nelson. Techniques for program verification. Technical
Report CSL81-10, Xerox Palo Alto Research Center, 1981.

[82] J. v. Neumann and H. H. Goldstine. Planning and coding of
problems for an electronic computing instrument. Institute
for Advanced Study, Princeton, New Jersey, 1948.
Reprinted in [113].

[83] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
Semfix: program repair via semantic analysis. In D. Notkin,
B. H. C. Cheng, and K. Pohl, editors, ICSE, pages 772-781.
IEEE / ACM, 2013.

[84] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002.
Isabelle home page:



http://isabelle.in.tum.de/.

[85] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local
reasoning about programs that alter data structures. In
L. Fribourg, editor, CSL, volume 2142 of Lecture Notes in
Computer Science, pages 1-19. Springer, 2001.

[86] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal
Verification for Fault-Tolerant Architectures: Prolegomena

to the Design of PVS. IEEETSE, 21(2):107-125, Feb. 1995.

PVS home page: http://pvs.csl.sri.com.

[87] H. Palikareva and C. Cadar. Multi-solver support in
symbolic execution. In Sharygina and Veith [102], pages
53-68.

[88] F. Pelletier, G. Sutcliffe, and C. Suttner. The Development
of CASC. Al Communications, 15(2-3):79-90, 2002.

[89] C.S. Pasdreanu, W. Visser, D. Bushnell, J. Geldenhuys,

P. Mehlitz, and N. Rungta. Symbolic PathFinder:
Integrating symbolic execution with model checking for
Java bytecode analysis. Automated Software Engineering,
20(3):391-425, 2013.

[90] S. Rajan, N. Shankar, and M. Srivas. An integration of
model-checking with automated proof checking. In
P. Wolper, editor, CAV, volume 939 of LNCS, pages 84-97,
Liege, Belgium, June 1995. Springer Verlag.

[91] A. Robinson and A. Voronkov, editors. Handbook of
Automated Reasoning. Elsevier Science, 2001.

[92] J. A. Robinson. A machine-oriented logic based on the
resolution principle. JACM, 12(1):23-41, 1965. Reprinted
in Siekmann and Wrightson [103], pages 397—415.

[93] J. Rushby, F. von Henke, and S. Owre. An introduction to
formal specification and verification using EHDM.
Technical Report SRI-CSL-91-2, CSL, MP, Feb. 1991.

[94] J. M. Rushby. An evidential tool bus. In K.-K. Lau and
R. Banach, editors, ICFEM, volume 3785 of Lecture Notes
in Computer Science, pages 36-36. Springer, 2005.

[95] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static
analysis for probabilistic programs: Inferring whole
program properties from finitely many paths. In
Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
"13, pages 447-458, New York, NY, USA, 2013. ACM.

[96] P. H. Schmitt, M. Ulbrich, and B. Weif3. Dynamic frames in
Java dynamic logic. In B. Beckert and C. Marché, editors,
Revised Selected Papers, International Conference on
Formal Verification of Object-Oriented Software (FoVeOOS
2010), volume 6528 of LNCS, pages 138—152. Springer,
2011.

[97] S. Schulz. System Description: E 1.8. In K. McMillan,

A. Middeldorp, and A. Voronkov, editors, Proc. of the 19th
LPAR, Stellenbosch, volume 8312 of LNCS. Springer, 2013.

[98] N. Shankar. Metamathematics, Machines, and Godel’s
Proof. Cambridge Tracts in Theoretical Computer Science.
CUP, Cambridge, UK, 1994.

[99] N. Shankar. Using decision procedures with a higher-order
logic. In Theorem Proving in Higher Order Logics: 14th
International Conference, TPHOLs 2001, volume 2152 of
LNCS, pages 5-26, Edinburgh, Scotland, Sept. 2001.
Springer Verlag.

[100] N. Shankar. Trust and automation in verification tools. In
S. S. Cha, J.-Y. Choi, M. Kim, I. Lee, and M. Viswanathan,
editors, 6th International Symposium on Automated
Technology for Verification and Analysis (ATVA 2008),

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

volume 5311 of LNCS, pages 4-17. Springer Verlag, Oct.
2008.

N. Shankar. Automated deduction for verification. ACM
Comput. Surv, 41(4):20:1-56, 2009.

N. Sharygina and H. Veith, editors. Computer Aided
Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science.
Springer, 2013.

J. Siekmann and G. Wrightson, editors. Automation of
Reasoning: Classical Papers on Computational Logic,
Volumes 1 & 2. Springer-Verlag, 1983.

R. Singh, S. Gulwani, and A. Solar-Lezama. Automated
feedback generation for introductory programming
assignments. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI *13, pages 15-26, New York, NY,
USA, 2013. ACM.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and

V. Saraswat. Combinatorial sketching for finite programs.
In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, pages 404—415, New
York, NY, USA, 2006. ACM.

K. T. Stolee and S. Elbaum. Toward Semantic Search via
SMT Solver. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, FSE *12, pages 25:1-25:4, New York, NY,
USA, 2012. ACM.

G. Sutcliffe. The TPTP Problem Library and Associated
Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of
Automated Reasoning, 43(4):337-362, 2009.

G. Sutcliffe. The 6th IJCAR Automated Theorem Proving
System Competition - CASC-J6. AI Communications,
26(2):211-223, 2013.

G. Sutcliffe and C. Suttner. The State of CASC. Al
Communications, 19(1):35-48, 2006.

W. Visser, J. Geldenhuys, and M. B. Dwyer. Green:
Reducing, Reusing and Recycling Constraints in Program
Analysis. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, FSE "12, pages 58:1-58:11, New York, NY,
USA, 2012. ACM.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software Engg.,
10(2):203-232, Apr. 2003.

W. Visser, C. S. Pasdareanu, and S. Khurshid. Test input
generation with Java PathFinder. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’04, pages 97-107, New York,
NY, USA, 2004. ACM.

J. von Neumann. John von Neumann, Collected Works,
Volume V. Pergamon Press, Oxford, 1961.

C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen,

C. Theobalt, and D. Topic. SPASS version 2.0. In

A. Voronkov, editor, Automated Deduction — CADE-18,
volume 2392 of Lecture Notes in Computer Science, pages
275-279. Springer-Verlag, July 27-30 2002.



