THE Loaic IN COMPUTER SCIENCE COLUMN

BY

YuRi GUREVICH

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA
gurevich@microsoft.com

FOUNDATIONS OF FINITE SymBoLIC T REE
T RANSDUCERS

Margus Veanes Nikolaj Bjgrner

Abstract

Finite transducers on trees are fundamental to computensei They
form the basis of many applications that manipulate strengs trees. The
conventional representation of finite transducers assuinéeaset of states
and a finite alphabet. Classical algorithms and represensainake essen-
tial use of both of these assumptions. In many cases, thelegitypof the
algorithms is computed based on the number of states andlephize. But
how important are these assumptions really for the mainatioers and de-
cision problems? We have recently pursued applicationgité firansducers
in the context of web security as a foundation for sanitmatf potentially
malicious data. For these applications we have found tfimgithe finite
alphabet restriction to be useful to enablaogent symbolic analysis and
we have developed symbolic counter-parts of the main dalseperations
on finite automata. We here define Symbolic Tree Transduseasgener-
alization of Regular Transducers as finite state inputidutiee automata
with logical constraints over a background theory. The gemknd theory

*Microsoft Research, Redmond, WA, US#Aargus, nbjorner}@microsoft.com

http://research.microsoft.com/
gurevich@microsoft.com
{margus,nbjorner}@microsoft.com

is a parameter of the formalization. We examine key closuopegrties of
Symbolic Tree Transducers and we develop a compositiomitigoand an
equivalence decision procedure for single-valued traresdu

1 Introduction

State machines are fundamental to computer science. Geoengutations are
captured by Abstract State Machings/[20]. An important spease is captured
by Finite State Machines. The languages accepted by fiaite stachines are the
ubiquitous regular languages. Several applications,imgnfgom web-sanitizers,
XML transformations to generic functional programs, retfimite state machines
that transform strings or trees into strings or trees. Statie snachines can con-
veniently be captured by tree transducers. Finite treesthacers accept regular
languages and produce regular languages. As usual, a @adgiaharacterized
by a set of words or trees that are labeled by symbols from gimabket. From
a computational point of view, letters from a finite alphatmetn the nucleus of
the finite state machines: letters can be stored and re@djimainit space and in
unit time. Furthermore, finite state machines are amenalipdrations and anal-
ysis that eludes more general notions of computation. Thaleeship problem,
whether a word or tree is accepted by a finite state machimgdslable. Finite
state machines are closed under the Boolean operationsiasf, Lintersection,
complementation. They form arffective Boolean Algebra. Furthermore, the
question of whether two finite state machines accept the samgeiage, known
as the equivalence question, is also decidable. The dlgugtcomplexity of
most fundamental decision problems over finite automatdrandducers depend
on thesize of the alphabet &s well asthe number of statesthintersection of
nondeterministic finite word automata has compler?) (c.f. [24, p. 59]),
determinization of nondeterministic finite word automat®{k2") (c.f. [24, The-
orem 2.1]), (implying the upper bound(k2") for deciding the equivalence of
nondeterministic finite word automata), and minimizatiérdeterministic finite
word automata i©(k nlogn) (c.f. [24, Exercise 3.30]). Under some mild restric-
tions, equivalence can also be checked between two finitetséansducers.

In the context of analysis and operations, is the finite ddphassumption es-
sential? Of course, we cannot expect unit storage spacecaadsatime for letters
from an infinite alphabet, but what about analysis? Our mesnlts establish how
the representation of alphabets can be generalized. Inifeptactice, we have
found that a symbolic representation of even finite alplsabat be an advantage

1Some algorithms do not depend on the size of the alphabetma@bly: epsilon-elimination
unreachable-state-eliminatipmnd dead-end-eliminatiorfa dead-end is a noninitial state from
which no final state is reachable).

for these operations. We develop the results for the mostrgéoase of finite
tree transducers, and we call thedgmbolic Tree Transduce(STTs). The al-
phabets of STTs are defined modulo a background theory. SETsasily seen
more expressive than tree transducers defined over finitaladts, yet our main
results establish that composing STTs and equivalencéictgeior single valued
STTs is computable, modulo the background theory. Symli@itsducers are
also practically useful for exploitingfigcient symbolic solvers when performing
basic automata-theoretic transformations. In our priokwWid1,22] on symbolic
string recognizers and transducers we took advantagesablisiervation. We here
investigate the case of the more expressive clageetransducers. We first ex-
amined symbolic tree transducers(in/[40], where we estaddishat equivalence
checking for the special case lifiear single-valued tree transducers was decid-
able. Roughly, a tree transducer is linear if the state ttiansrelation does not
require more than one state per sub-tree. The decisionguoeeve developed
there created a product automaton and checked for pathsoapd In the re-
sulting product automaton that could produce a countemeiato equivalence.
We left it as an open problem whether the restriction on ligaould be lifted.
The question is settled in théfiamative here. We provide a decision procedure
for the equivalence problem of generial single-valued sylicliree transducers.
They don’t have to be linear. This paper furthermore prowithe foundations for
symbolic tree transducers. We show that symbolic regutar languages form an
effective Boolean Algebrarovided the alphabet is alsiective. All decision pro-
cedures are of course provided modulo decidability of thetsylic background
component.

This paper can be read as a self-contained introduction eeiew of sym-
bolic tree automata and tree transducers. While it becoewdsical, we only use
elementary notions, well-known from classical automagoti curriculal[24]. It
builds on top of results from [40] and we include several difins and relevant
examples from that work when useful.

The rest of the paper is organized as follows. Sediion 2 diEsisome of
the background for our study of tree transducers over a sholoo parametric,
alphabet. As background for the technical development wallrpreliminaries
in Section(B, and then develop the foundations for SymbaleeTAutomata in
Section 4, and Sectidd 5 introduces Symbolic Tree Transduc@ur new algo-
rithm for equivalence checking of single-valued STTs isvided in Sectiori 6.
Sectiorl Y contains conclusions.

2 Parametricity

Before devling into technical details let us discuss a mhente of this paper.
We develop Symbolic Tree Transducers that are finite stathimes modulo a
method for checking constraints on the alphabets used &b flab trees. The re-
sults are parametric in the underlying representation@fiphabet and we iden-
tify the suficient conditions on constraint solving for the labeling.efdis also
a branch of theorem proving dedicated to satisfibility ofitegiformulas modulo
background theories. It is known as Satisfiability Module®hes (SMT). Here,
the interpretation of the logical formulas are provided mioda suitable back-
ground theory. The two paradigms are not disconnected:cintlfee parametric
alphabets in the symbolic tree automata and transducerbecamstantiated by
formulas that can be solved using SMT solvers. This has asa the method of
choice in the Automaffitools available from Microsoft Research. The tool uses
the state-of-the-art SMT solver Z3 [8].

Our results on STTs can also be seen as connected tmallalar theory
combination problem. The problem of modularly combinintyscs for diferent
theories is identifying the minimal necessary anflisient interfaces between the
solvers. Our procedures for symbolic tree automata are haoidLa very transpar-
ent way. The algorithms on automata use symbolic solveréaa& box oracles.
The interface to the symbolic solver comprises checkingchigatisfiability on
transition guards.

2.1 Automata and Transducers

Before covering work on symbolic automata and transdudetsis here briefly
recall some of the important references on classical autothaory. Tree trans-
ducers and various extensions thereof provide a syntacteid view of studying
different formal models of transformations over tree structwata [17]. Top-
down tree transducers were originally introduced in [34,f87 studying proper-
ties of syntax-directed translations. Basic compositioneesults of tree trans-
ducers were established in [4, 9]. The handbook [18] pravaleniform treat-
ment of foundational properties of tree transducers aratiogls to context-free
languages. A newer handbook on tree automata has beenbéwataan online
resource for several years naw [6]. It is a comprehensivecedor recent results
on tree automata.

Decidability of equivalence of single-valued top-downetrtgansducers fol-
lows from the decidability result of single-valuednessag-tiown tree transduc-
ers [10/ 15]. A specialized method for checking equivalesfadeterministidop-

’http://rise4fun.com/bek

http://rise4fun.com/bek

down tree transducers is provided|in [7]. Decision probless. equivalence, for
specific classes of tree transducers are often based otigstalpunique normal
forms and considering deterministic transducers, indgdiring transducers|[5],
top-down tree transducers [13], and top-down tree-tmgtiansducers [29].

Several extensions of top-down tree transducers have begied in the lit-
erature (the following list is not exhaustive). Extendep-ttown tree transduc-
ers allow nonflat left-hand sides in rulés [3]. Attributeddftransducers describe
parse trees in attribute grammars![16]. Macro tree-tracesduncorporate the no-
tion of implicit tree contextd [14] and have been studiechm¢ontext of analysis
of XML transformation languages, with macro attributecetteansducers [17],
multi-return macro tree transducefs [26], and macro fomestsducers [34] as
further extensions. Pebble tree transducers were intemémr type checking
XML query languages_ [31] and are extended to pebble maceottemsducers
in [12]. Formal relationships between monadic second oloigic and macro
tree transducers is studied in [11]. Extended top-downttaesducers were re-
cently studied in the context of natural language procegssithere it is shown
that several interesting cases are not closed under cotiqnd80]. Higher-order
multi-parameter tree transducers|[28] allow possibly itditrees in the output
and can be applied to higher-order recursion schemes. fedatetion of pattern-
matching recursion schemes is introduced in [33] to modattional programs
that manipulate algebraic data-types.

The dual extension of finite automata and transducers toroamstains a fi-
nite alphabet and instead admits an infinite number of st&msexample, timed
automatal[2] admit an infinite number of reachable statesnlaintain decidabil-
ity for key problems because the states form a finite quotigtht respect to the
transition relations.

2.2 Symbolic Automata and Transducers

Many connections to classical automata theory and symbeigions of automata
have surfaced in elierent variants. The corresponding symbolic generalinaifo
classical (Rabin-Scott) automata is originally studied32] where the motiva-
tion comes froncomputational linguisticsThere, the symbolic generalization of
a finite state (string) transducer is calledradicate-augmented finite state trans-
ducerand it is used in the context of natural language processiing. MONA
tool [27] uses automata over a finite but large alphabet. dtunulti-terminal
binary decision diagrams to label transition relationsisEhllows often encoding
with exponential savings alphabets of siZewhen they are represented usimg
binary values. The notion of symbolic automata is identified developed in[41]
where the motivation came from the need to support regulaessions iparam-
eterized unit testing38] and like-expressions (which are very much like regular

expressions) imatabase query analysjg2]. Such an extension seems straight-
forward at first glance, but raises many challenging questand opens up new
approaches for automata algorithm design. For example sithown in[[23] that
symbolic complementation by using a technique for miningzsymbolic repre-
sentations of Boolean functions leads to significant speedampared to existing
state-of-the-art automata algorithm implementationseseitechniques have also
been instrumental in applications for encoding stringtszation operations over
large (possibly infinite) alphabets for web security analj&2]. Streaming trans-
ducers[1] provide another recent symbolic extension of finite s@ducers where
the label theories are restricted to be total orders.

3 Preliminaries

We use basic notions from classical automata theory [24fsotal logic, and
model theoryi[21]. Our notions regarding tree transducersansistent with [17].
For finite state (string) transducers a brief introduct®given in [43].

3.1 Background Universe

We work modulo a multi-sortedackgrounduniverse? . For each sortr, %7
denotes a nonempty sub-universeZof A predicate ovewr or o-predicateis an
effective finite representatignof a subset §] of 7. Given a set oé--predicates
P(o), we say that

(P(o), A, V,—, T, 1)

is aneffective Boolean algebrahen for each elemeite % there is a predicate
¢" in P(o) such that p*] = {a}, T, L € P(0), [L] =0, [T] = 7, andP(0)
is effectively closed under the operations for conjunctigndisjunctionv, and
negation-, such that

[e Avl =Tl nT¥l. e vyl =6l Vvl [-¢] = CdeD) = 277\ [4].

We writep = y for [¢] = [¥]. Without loss of generality, we will assume that
o-predicates are formulas with a fixed free variklef sorto.

Example 1. A practical example of(int) is the set of all quantifier free linear
arithmetic formulas over integers with at most one fixed fraeable x. For ex-
ample[0 < xAX+1<3]=[0<X] n[x+1<3]={1}. X

Example 2. Another practical example @?(rationaL) is the set of all quantifier
free linear arithmetic formulas over rationals with at maste fixed free variable
x. Forexampld0 < xAx+1< 3] ={re ™™ |0<1r<2}. X

Example 3. A theoretical example &#(int) is the set of alte-indices. X

We use an abstract generic definition of finite trees thatyilted for the
symbolic extension and algorithms described below. Giveorar we writet{o)
for the sort ofo-labeled trees/ ™’ as theeastset.7 such that:

e theempty trees € .7,
e if ae Z7 then(a) € .7,
e ifaeZ7 and, fork > 1,t1,...,tx € 7 then(a,t1,...,t) € 7.

For a k + 1)-tuplex = {Xo,..., %), k > 0, k is called therank of X, denoted
rank(X); for 0 < i < k, we letx[i] £ x. For a nonempty treg t[0] is calledthe

label oft and, for 1< i < rank(t), t[i] is calledthe i'th subtree of. We define the
maximum ranlof t, or maxrankt), to be:

-1, ift=¢
maxrankt) £{ 0, if rank(t) = 0;
max(rank(t), maxi<anky{maxrankt[i])}), otherwise.

When we want to be more specific about the rank, we fbove. In particular,
for k = 2, %(0) is the sort of allb--labeled binary trees

Example 4. For example the treé = (1, (2, ¢, €, €), (3)) is anint-labeled tree of
rank 2 and maximum rank 3. It is sometimes useful to think@fabela of a
nonempty tree together with its rank k as a uniduection symbolf¥ of arity k.
Thus,t can be thought of as the terni(f3(e, €, €), f.). b

A symbolic label with input soktr; and output sort-,, oro1/o»-label f, is an
effective representation of a functiod][from % 7* to Z 2. We write ¥ (o7, —
o) for a given dfective set ofo;/o,-functors. Without loss of generality, we
assume that is a term of sortr, that has at most orfexedfree variablex of sort
o1 that represents the input.

Example 5. A practical example of (ntxINT — INT) IS the set of all terms of sort
iNT With one free variable x of sortr X T, in the combined theory of quantifier
free linear arithmetic and tuples. For example if f is themeq0] + x[1] then[]
Is the addition function. X

Given a finite (possibly empty) base sétof terms, we definderms over
F (o1 — o) and Y, denoted/v(F (o1 — 075)), as the least st such that:

e ceT,YCT,

o if f GT(O’l —)0'2) then<f> eT,
o if feF(or— 0y)and, fork>1,t,,...,tce T then(f,ty,...,t,) € T.

Given a termt and distinct variablexy, ..., X,, we use the standard notation
t(xs, ..., X,) to indicate that all variables troccur among the variablesxy, . . ., X,.
Substitution is defined as usual, and fagraundtermt (term without variables),
we write [t] for the corresponding concrete value.

Example 6. Suppose(k, y) is the ternX2 = X, €, (3 * X, y)) over# (Nt — 1) and
{y}. Then (3,(4)) = (2% 3,¢€,(3x 3,(4))) and[t(3, (4))] = (6, €,(9, (4))). X

We write (o) for the o-list sortt(c"). We use the notatiore[, e, ..., <]
for (e, (&, ...(ey, 1))y and we write @, &, ..., €] whent = e.

4 Symbolic tree automata

We introduce an extension of tree automata with fieactive encoding of labels
by predicates that denogetsof labels, rather than individual labels. We study
basic properties and algorithms for STAs. These propesatwsalgorithms are
instrumental for proving further properties and develgpdecision procedures
for symbolic tree transducers.

Definition 1. A symbolic tree automatq(STA AoverP(c) is a quadruple®, Q°, Q3 R)
whereQ is a nonempty finite set aftates Q° c Q is a set ofleaf statesQ? € Q

Is a set ofaccepting statesandR is a finite set ofrules (qo, ¢, 1, - - ., k), Where
k>0,andg € QforO<i <k

Example 7. We illustrate an STA A that accepts integer-labeled binaggd
whose labels are constrained accordingciale ordettraversal [39]:

A= ({qroot, Qpre> Gin> Upost 0}, {de}, {Oroot}s R),

where R consists of the rules

(qroot’ =0, Qpres qpost)’ (qm’ =0, Opost qpre)’
(Qpre, <0, Qpre, Gin)» (qposb >0, Qn, onst),
(qprea €<09 Qe qE), (qin, 520, Qe qE), (qposb f>0, Qe qE)

Thus, the root has label 0, each “pre”-node has a negativeelabach “post’-
node has a positive label, and each “in”-node has label 0. r€hg a single initial
state ¢ and a single accepting state.g.

For example, the tree

~

-2 0/

~ ~N
3/0_ 5

4

is in Z(A). Classical tree recognizers that operate over a finite alptacan of
course not recogniz&’(A). X

We useA as a subscript to identify a component, unléss clear from the
context. In the following letA = (Q, Q% Q2 R) be a fixed STA. Given a rule
o =(p, e, Q) € R, we use the following notations for extracting i&t-hand-side
p, guard ¢, andright-hand-sideg:

Ihs(p) = p, grd(o) = ¢, rhs(p) = g
Definition 2. Thelanguage of A for ¢ Q, denoted by (A,), is the least subset
of 2™ such that:

e if ge Q°thene € Z(A, q);

e if(Q,¢0,0,,...,) € Rae[g¢], and, for1<i <k, tj € Z(A q) then
(a,tl,...,tk) EX(A,C])

Thelanguage of As Z(A) = Ugeqa-Z(A, 0).

In the following we consider STAs that accdphary trees in order to avoid
cumbersome notations. The generalization to arbitramstie straightforward.
The definition ofA admits the following two possible classical views of tree au
tomata:

1. As atop-downor root-to-frontier STA, a treet is enabled at state i t = ¢
andq e Q° ort # € and there existxy ¢, 01, 02) € Rsuch that[0] € [¢]
andt[i] is enabled ag; fori = 1, 2.

2. As abottom-upor frontier-to-root STA, if g € Q° thene is enabled at,
and ift; is enabled at; for i = 1,2 and there existx)(¢, 01, 2) € Rthen
(a,t1,t,) is enabled at) for all a € [¢].

In the general case of finite trees, the two views are symoa¢gind do not fiect

the expressiveness ¢f (A) that is the set of all (finite) trees that are enabled at
some accepting state, unless additional restrictions laeg upon the class of
STAs under consideration. For top-down tree autom@fas typically assumed

to be a singleton s¢t)) andq is referred to as the initial state, whi@®® is referred

to at the set of final states. For bottom-up tree automata dheention is the

opposite, i.e.Q° is assumed to be a singleton $gt andq is referred to as the
initial state, whileQ? is referred to at the set of final states. In order to avoid
possible confusion we will not use this terminology for STA&e most important
subclasses of STAs are the following.

Definition 3. A is bottom-up-deterministiwhen|Q° = 1 and, for allpy, p» € R,

if rhs(p;) = rhs(pz) andgrd(p;) A grd(pz) £ L thenlhs(p;) = Ihs(py,).
The following basic property holds for bottom-up-deterisiic SFAS. Let

Q) E{qe Q|te . Z(Aq)} (forte %)
Proposition 1. If Ais bottom-up-deterministic the@a(t)| < 1 for all t.

Proof. By structural induction over trees. For= e the statement follows from
IQ% = 1. Fort = {qa,t1,t,) assumeQa(t)| < 1. If for somei, Qa(t) = 0, then
Qa(t) = 0, otherwiseQa(ti) = {q;} for someq; € Q fori = 1, 2. Suppose there are

two rules @, ¢1, 01, 02) and @, ¢2, A1, G2) iIn Rwherea € [¢1] N[¢2]. Thenp =g
sinceA is bottom-up-deterministic and thi@a(t)| = [{p}| < 1. O

Definition 4. Ais top-down-deterministizvhen|Q? = 1 and, for allp1, p» € R, if

Ihs(o1) = Ihs(p2) andgrd(p;) A grd(o1) £ L thenrhs(p;) = rhs(o,).

Forqg € Q x Q let grd,(q) denote the disjunction of guards of all rulesAn
whoseright-hand-sides q:

grda@E \/ grd(p)
pER ths(p)=q

Note that, if there is no rule iA whose right-hand-side gthengrd,(q) is L (the
empty disjunction). We use the following property.

Definition 5. Aiis total when, for allge Q x Q, grd,(Q) = T.
The following basic property holds for total SFAs.
Proposition 2. If Ais total thenQa(t)| > 1 for all t.
Proof. Follows from the definition by structural induction overdse]

The following construction is used for complementationatht bottom-up-
deterministic SFAs.

AZ(QQ%Q\Q"R
Letelen({q) £ q.

Proposition 3. If Ais total bottom-up-deterministic the#f(A) = C(Z(A)).

Proof. By Proposition§1l andl 2, ¢ Z(A) & elen(Qa(t)) ¢ Q* & t ¢ Z(A).
O

Two STAsA andB are equivalentwhen Z(A) = Z(B). Any STA can be
effectively transformed into an equivalent total STA by using tollowing trans-
formation wheragsjnk is a new state.

def

TOt(A) = (Q U {qsink}, QOa Qi
RU {(QSink, T, C_]) | qe Q ><iqsink} U {QSink} X Q U {(qsink, q$ink)}}
U {(Gsink, ~9rda(d). @) | g € Q x Q})

Note that, for allg € Q X Q, grdryyx(Q) = grda(@) v —grd,(q) = T, and for all
cases when one of the states is the sink state then there lis withh guardT.
Thus,Tot(A) is total. The following properties hold.

Proposition 4. For allg € Q, Z(A,q) = Z(Tot(A),q). If Ais bottom-up-
deterministic theMot(A) is bottom-up-deterministic.

Proof. Letq € Q. Clearly.Z(A,q) € -Z(Tot(A),q). For the directionZ(A, q) 2
Z(Tot(A),) view A as a bottom-up STA and note that any use of a rule not in
R will introduce the sink state that cannot be eliminated. tNagsume thah is
bottom-up-deterministic and legte Q x Q. If (p, ¢,) € Rthen for the new rule
(Gsinks ~(@ V -+ +), Q) it holds that=(¢ V- - -) A = =p A=(---) A = L. The other
cases are immediate. So bottom-up-determinism is preseniot(A). |

It follows from the well-known fact in classical theory of fie tree automata
that top-down-deterministic STAs are less expressivegiemeral STAs, i.e., there
exists a tree language that is accepted by an STA that is neptedd by any top-
down-deterministic STA. However, as in the case of finite iatomata, bottom-
up-deterministic STAs have the same expressive power asg@e®TAs. We lift
the classical powerset construction to STAs. EZé¢X) denote the powerset of a
setX. Note thatZZ(0) = {0}. Thepowerset STA?(A) of an STAA is defined as
follows.

RO1d) = {olpeRrhs(p) € dux s} (for (dr,d2) € 2(Q) x 2(Q))
grd8.a) = /\ordp)a [\ -grd(p) (forS e Z(R@)

pES pER@\S
lhs(S) £ {lhs(p) |p €S} (forSe 2(R)
PN = (2(Q.{Q°%.{ge 2(Q) | qn Q*+ 0},
{(Ihs(S), grd(S, 9),a) | g € #(Q) x 2(Q), S € Z(RQ))})

Note that the empty conjunuctionisand thus, wheq = (0,) orq = (_, 0) then
R(Q) = 0,grd(0,q) = T, and , T, Q) € Ryy.

Theorem 1. For all STASA:
(a) Z(A) is total and bottom-up-deterministic;
(b) for all't, {Qa(t)} = Qa)(1);
(©) Z(2(A) = Z(A).

Proof. Proof of (a) To show thatZ?(A) is total, fix aq = (g, q2) € Z(Q)>.
We need to show thajrd,,(q) = T. Assume that); # 0 andg, # 0 or else
grd (@) = T follows directly. LetR(q) = {pilier and lety; = grd(o;) fori € .
We have that

grdy(@ = \/(9rd(S.9) 1S € Z(R@)))
=\ (N\en N -e
JeZ(l) ied iel\Jd
= T

where the last equivalence follows from basic propertie8oblean algebras,
sinceall possible Boolean combinations of truth assignments afe included in
the disjunction.

To show thatZ(A) is bottom-up-deterministic, lef € 22(Q) x £2(Q) and let
S1, S, € Z(R(Q)) such thaS; # S,. It suffices to show that

grd(S1,q) A grd(S,, Q) = L

which follows fromS; # S, and the definition ofyrd(S, g) because then there
exists a rulep € R(q) such that prd(S;,q)] < [grd(p)] and [grd(S;.q)] <
[-grd(o)] wherei, j} = {1, 2}.

Proof of (b) It follows from (a) and Propositiors 1 amd 4 that, for gl
Q) (1)l = 1. We prove (b) by induction over trees. The base dasec fol-
lows immediately from the definitions sin¢@a(e)} = {Q°} = Qun)(€). For the
induction case suppose# e and as IH assume that, for= 1,2, {Qa(t[i])} =
{a} = Qun(t[i]). Let g = (d1.qz). The following statements are equivalent by
using the definitions and the IH for the equivalence betweand3. Letp € Q.

1. pe Qalt)

2. There existsf, ¢, q) € R for someq € q; x g, such that[0] € [¢].

3. There exist$ € Z(R(q)) such that[0] € [grd(S,)] and p € Ihs(S).
4. There existg| € 22(Q) such thatp € g andQua)(t) = {q}.

The equivalence of 1 and 4 for gllimplies that{Qa(t)} = Q) (t), that proves

(b). Finally, (c) follows from (b) by definition on}?(A). O

The above constructions enable us fteetively complement langauges ac-
cepted by STAs. For complete closure under Boolean opesati@ use the fol-
lowing product construction that is a lifting of the stardi@roduct of finite tree
automata to STAs.

Definition 6. Let Ay = (Q,, Q°, Q% R), fori = 1,2, be STAs. Theroductof A
andA; is the following STA.

p1xp2 = ((P1, P2)s @1 A @2, (01, G), (r1, 12)) (For pi = (pi, @i, G, i) € R)

def

ALx Ay = (Q1xQQfx Q0 Q8 x Q5 {p1xp21p1€ R p2 € R

The following theorem implies that we caffectively intersect languages ac-
cepted by STAs.

Theorem 2. Let A = (Q;, Q°, Q% R), fori = 1,2, be STAs. Then:

(@) forallgy € Q1,02 € Qa, L(A1 X Az, (O1, G2)) = L (A1, O1) N L (A2, 02);
(b) Z(A1 x Ag) = L (A1) N Z(A);

(c) Ay x Ay is total if and only ifA; andA; are total,

(d) if A andA, are bottom-up-deterministic then soAg x A,;

(e) if A, andA; are top-down-deterministic then soAg x A;.

Proof. We prove (a) by induction over trees. For the base case we have
e L(AXA(0nG) ©heQRAGeQ e eec L(ALh)Aee L (A)

For the induction case assume (a, t1, t,) and as IH assume that, foradj;(q,) €
Q1 xQ, andi =1, 2,

ti € g(Al X AZ’ (ql’ QZ)) A ti € g(Ala ql) N g(AZ’ QZ)

The following statements are equivalent for gl ,(p,) € Q1 X Q,, where IH is
used for equivalence between 2 and 3:

1. te Z(AL X A, (P1, P2))
2. There existd}, g3), (07, 93) € Q1 X Q2 andg, ¢, such that

o t; € L(A1x Ay, (g}, q)) andt, € Z(Ar X Ay, (£, g3)) and

o (P, P2), 1 A @2, (a7, 0), (07, B3)) € Rayxa, @anda € [A o]
3. There existf}, 62 € Qu, 03, 05 € Q2 andgy, ¢, such that

L 1:1 € g(Al’ Qi), 1:2 € g(Al’ qi)’ (pl’ ®1, Qi, Cﬁ) € Rl’ ae I[Sol]l
o t1 € ZL(Ao, Q) t2 € L (Ao, B5), (P2: #2, G, BB) € Ro, a € [2].

4. t e Z(A1, p1) andt € Z(Az, p2)

Equivalence of 1 and 4 proves the induction case and imgjeglf) follows from
() by definition ofQ3 4. -

Proof of (c) Assume first tha®y andA; are total. Lety = ((q7, 03), (03, 43)) €
(Q1 x Q2)%. We need to show thatrd, ., (0) = T. Letay = (a1, 02), 02 = (a3, G3).-
Assumegrdy (ch) = Vicmei andgrdy, (dz2) = Vj<n ¢¥j. Then

0ascn (@ = \/ @i APy = 0rdy (@) AQrdp () = TAT=T

i<mj<n

where the second equivalence holds by de Morgan’s laws attitlal equivalence
holds by using the assumption. For the opposite directippase one of\; or A,
is not total, sayA;. Then there existg; € Q3 such thagrd, (0:) # T and thus,
for anyq, € Q3, grda, (du) A grda,(de) # T. It follows that the product is not total.
Proof of (d) Assume thaf\; andA, are bottom-up-deterministic. Then clearly
|QY x Q)] = 1. Consider any two rules [§(q), ¢1 A ¢1, (P, th). (P2, G2)) and
(P), g2 A Y2, (P1, Ga), (P2, O2)) Wheregs A ¢a A w2 A2 # L in the product.
Theng; A ¢ £ L andy; A ¥, # L and, by using the assumption, it follows that
p=pandqg=d.
Proof of (e) Similar to the proof of (d), note th#D$ x Q5| = 1. |
We use the following definition for constructing the unionafe languages.

Definition 7. Let A = (Q;, IO % R), fori = 1,2, be STAs. Thesumof A, and
A; is the following STA. Assume states are renamed so@hat Q, = 0.

def

A+A £ (QUQ,QRQUQSL QUL RURY)
Proposition 5. Z(A; + A) = Z(A) U Z(Ay).
Proof. Immediate from definitions. O

Let g be some fixed state and define

Lsta = ({9 {9}, 0,{(q, T, g, Q)

def

TSTA = ({q}9 {q}9 {q}9 {(q9 T’ q’ q)})9
A = P(A).

Let STAP (o)) denote the set of all STAs for some given label theB(y). Let
Z(STAP(0))) denote the corresponding set of tree langauges.

Theorem 3. (STAP(0)), X, +, ¢, Lsta Tsta) iS an dfective Boolean algebra.

Proof. By using Propositions|3 arid 5, and Theorérs 1[and 2. Note {HaTA
constructions areffective. |

We say thai(o) is decidablef the problem of deciding = L for ¢ € P(0)
is decidable. A rulep € Ry such thagrd(p) # L is feasible We sayA is cleanif
all rules inRx are feasible.

Theorem 4. If P(o) is decidable the®TAP(0)) is decidable.

Proof. AssumeP(o) is decidable and leA be an STA overP(o). We need to
show thatZ(A) = 0 is decidable. First, eliminate infeasible rules fragxby
using the decision procedure (o). It follows easily from the definitions that
Z(A) is unchaged. Next, assumes clean, view all label predicates as abstract
symbols, and use a standard reachability (finite tree autyrabgorithm to decide
the emptiness. |

An efficient incremental procedure for product of STAs uses DFP(DEirst
Search) and starts from the accepting states to build theuptevhile eliminating
all the infeasible rules, thus also eliminating atireachablestates. Moreover, a
backwards reachability algorithm can be applied to elir@rdl rules that contain
dead-endshat are reachable states at which no tree is accepted.

An STA A can also be extended with a setegfsilon rules RC Q x Q, such
that if (p,g) € R then Z(A, q) € Z(A, p). As with finite tree automata, epsilon
rules can beféectively eliminated and do noffact the expressive power of STAs
or the results.

5 Symbolic Tree Transducers

In this section we introduce an extension of tree transduitgough a symbolic
encoding of labels by predicates. The main advantage oktle@sion is succinct-
ness and modularity with respect to the background theolgbafs.

Definition 8. A symbolic tree transducer (STT) ov@(o1), F (01 — 07)) is a
tuple @, 9%, R) whereQ is a finite set ofstates g° € Q is theinitial state, and
R = R U | RCis afinite set ofules where a rule iR, or e-rule, is:

e g uwhereq € Qandu € 7(F (o1 — o)) is ground,

and a rule irR¥, or k-rank-rule is:

e (“u whereq € Q, ¢ € P(01) andu € T gy)geq.1<i<k (F (071 = 02)).

Note that a O-rank rule does not contain any teqfy), but it may be non-
ground (the symbolic labels may depend on the input).

Aruleq S ueR corresponds to a conditional transformation of an inpu tre
of rankk from q: e.g., ifk = 2,t = (a,t1,t2) € ™V anda € [¢] thent can be
transformed to a tree € % ™°2 by applying all the symbolic labels mto a and
by replacing, foii = 1, 2, each occurrence @y;) in u by some transformation of
tj from p.

In the following we assume th& = 0 for k # 2, i.e., the definition is over
binary trees. Generalization to arbitrary ranks is straytvard. The formal
semantics is as follows. Lgtbe a fixed variableY = {q(y), q(y.), a(y2) | q € Q}
andu € 7v(F (o1 — 0)). The statey(y) will be used for referencing the root of
an input tree, the stategy.) andq(y.) are used to reference the left, respectively
right child of an input tree. Given a s&twe write #2(X) for the powerset oK.
Then|u]a is defined as the following function frory ™“v to (% ™7?).

lelat) = {e) (1)
lay)late) = {[tllg>teR} (@eQ) (2)
LAy a0 £ Ullula®) lgSueR 0] e[¢l} (t#eqeQ) (3)
lay)Ja®) = Law)atl) (€12}, geQ) (4)

L(Fu, ula(t) = KLFICHOD), 1y, 1) [13 € [UgJa(t), 12 € [U2Ja(t)} (5)

Informally, the rules forlu]a(t) create the set of output terms obtained by filling
out the states i with the set of terms produced by transformingWVhenA is
clear from the context we often omit the ind&x

Example 8. Consider the STT A ({Qo, 01, G2}, o, R) where
R={ do— (X Ga(ys). Gu(y2)).

<0 €

G —— (X— 10, e(Y2). €), U1 €,
>0 €

G 25 (X + 10, €, Ga(Y1)), Go— €}

Lett = (-1,6,(-3,¢€,¢)). Thenlgi(y)Ja(t) = {(-1L(-13 ¢, ¢€),€)} butt is not
accepted at gbecause[0] is not positive, sog(y)a(t) = 0. X

The semantics oA is the following function fromz/ ™ to (% ™2).
Definition 9. Thetransductiorof A is the functionZa = | a.

Example 9. Consider A and from Examplé8. Thefa(t) = {(-1,¢,(-13 €, €))}.
X

def

Definition 10. Thedomain of A for gs Z(A, q) = {t | |ga(t) # 0} and thedomain
of Ais 2(A) € 2(A, o).

Given arulep = ¢ Loue R, wherey = € or y € P(o1), qis called the
left-hand-sideof p, denotedhs(p), y is called theguard of p, denotedyrd(p), and
uis called theright-hand-sideof p, denotedhs(p). Two rulesp,, p» € R€ overlap
whenlhs(p,) = Ihs(p,). Two rulesps, p» € R¢ overlapwhenlhs(p,) = Ihs(p,) and
grd(os) A grd(pz) # L.

We say that &-rank rule islinear if, for 1 <i < k, y; occurs at most once in
its right-hand-side.

Definition 11. Ais linear when the right-hand-sides of all rulesArare linear.
Definition 12. Ais single-valuedvhen, for allt, | Za(t)| < 1.

Definition 13. A is deterministiovhen it contains no two overlapping rules with
distinct right-hand-sides.

Example 10. A classical top-down finite state transducer is over a finiphabet,
say{f, g} with f binary and g unary, and contains rewrite rules such as

q(f(ys, ¥2)) = f(au(y2), 9(d2(y1))), au(@(y)) — f(d(y), du(y)),

where qQy, g, are states that are considered as unary functions symbalyawg,
are variables. Supposg “* = {c¢, ¢g}. The corresponding STT has the same states
and corresponding rules

q = e Oa(Y2), (cg> (Y1), =5 (e, (Y1), Qu(Y1))s

in R2 and R respectively. The second rule is not linear.

In the following examples, all STTs are single-valued anddir. The first ex-
ample illustrates some simple transformations avefabeled binary trees. The
point is to illustrate how global STT properties depend oa ttneory®(o-;) of
labels.

Example 11. Let the input and the output domains be binary trees withgigrte
labels. Swap is an STT that swaps the left and the right sebtifethe label is
non-zero. Neg is an STT that multiplies all labels by -1, Deubultiplies labels
by 2. Cutis an STT that cuts the left subtre®/(X, y1, y>) when x> 0 and cuts

the right subtree ywhen x< 0.

Swap = ({0}, 6, {a-> €, -2 (%, qya), AV A - (X Aya), AY2)))
Neg = ({g},q,{a= €.q — (-x.q(y2). A(y2))))

Double = ({q}. g, {q—> .G — (2x, (y1). A(y2))})
Cut = (6,605 €05 (X ,q¥)), 4 - (X), €),

a5 (x, o(ys). a2)))

Note that global properties such as commutativity and idetemce of the STTs
clearly depend on the theory of labels, e.g., that multgilan by a positive num-
ber preserves polarity, implying in this case for exampba ®wap and Neg com-
mute, Cut and Double commute, and Cut is idempotent. Natdlzds none of the
examples can be expressed as a finite tree transducer. Quitsedout composi-
tion and equivalence checking for STTs, that are discuss#tki sections below,
allow to establish equivalences, such as Cut is equivalei@vtap followed by
Neg Cut, then finally Swap. The equivalence is modulo the thebayithmetic

that establishes logical equivalences, such-as< 0= x > 0. X

The following example illustrates a nontrivial use of thiedatheory. The STT
Encoddan the example represents the string sanitizari XSS . EncodeHtml from
version 2.0 of the Microsoft AntiXSS library. The sanitizeansforms an input
string into an Html friendly format. For each characten the input string, either
X is kept verbatim or encoded through numeric Html escapirigg @&xample can
be extended to be part of a tree transducer over abstraeidyaes of Html where
certain parts of the tree (corresponding to strings) areasat using=ncode

Example 12. The example illustrates a single-state-list STT Encodé&"/«~m
that transforms an input list of characters represented bsifive integers, into an
encoded, possibly longer, list of characters. We assunte tha’ below repre-
sents the integer encoding of the given fixed (ASCII) charaely. a’ = 97 and
'z =122 Lety[X] be the following linear arithmetic formula:

(‘a’SXS‘Z’)V(‘A’SXS‘Z’)\/
(0 <Xx<‘'9) vX=""VvXx="Vvx=‘,VvXx=‘-"VvXx="_

Encode contains the following seven rules{Qie= {q}):
5 €
¢[X]

— [Xaly)]

—p[X]A0<x<10

q

q

q —) [‘&,'#,do(X)," ;' 1a(ys)]

q PTEAT i a0, Ao, la)] (for 1< n< 4)

where
def

di(x) = ((x + 10)%10)+ 48

is a term in linear arithmetic representing the (ASCII) cheter value of the i'th
decimal position of x, where is integer division+ is integer addition, andb
computes the integer remainder after dividing its first @et by its second. By
using that & = 38(i.e.,d(‘&) =3 anddo(‘'&') = *8) and thaty[* &] does not
hold, it follows for example that

Tencodd[&, @]) ={['&,#,°3,°8,";","a']}.

Note that Encode is deterministic because all the guardsraraually exclusive.
Thus, Encode is also single-valued. X

The following example illustrates another class of commingls-valued list-
transductions over anfinitelabel domain that are captured by a nondeterministic
STT but not by any deterministic STT. While it is well-knowmat nondetermin-
istic tree transducers are more expressive than detetiitrise transducers, the
following example illustrates a case where a determintstie transducer would
exist if the label domain wafnite.

Example 13. The example illustrates ant-list STT Extract that extracts from a
given input list all subsequences of elements of the fogmx, ‘>'], where x#
‘<. For example

%Xtract([l<1,l<1’lal’l>l’l<l’l<l’l>l’l<l,lb1,l>1]):{[l<l,lal,l>1,l<l,lb1,l>1]}
Extract has statef)o, 01, Oz, 03} Where @ is the initial state. Extract can be visu-
alized as follows, where a rule 6 ¢ is depicted by marking g as a final state,

and a rule qﬂ [t1,...,tlp(Y1)], for n > O, is depicted as a transition from g to
p having labelp[X]/[ty, ..., t]:

x=">'/[>]

X#'< AX#E D [e
A deterministic version would need a state to remember ebrhemt x# ‘<

from q in order to later decide whether to output or to delete theredats, which
depends on whether x is followed by 6r not. X

5.1 Composition of STTs

The composition of two transductiong and.7 is the transduction

Zio M E |] AW

ue 74 (t)

Notice thato applies first.7;, then.%, contrary to howo is used for standard
function composition. (The definition follows the convemtiused in[[117].)

Composition is well defined if the sorts used in the rangeZptatches the
sorts used for the domain o¥;. In [40], we prove the following composition
theorem:

Theorem 5. Let Abe an STT over®(o1), ¥ (01 — 0)), and letB be an STT over
(P(0), F (00 — 07)).

(@) ThenAo Bis an STT over®(o1), F (o1 — 02)) S.t. a0 Tg = Tpos.

(b) If AandB are linear therA o B is linear.

6 Single-valuedness and equivalence of STTs

Equivalence checking of finite transducers is undecidablenthe possible num-
ber of outputs for a given input is unbounded|[19, 25]. Thee¢hat is practically
more directly relevant for us is when transducers are singleed, since this case
corresponds closely to functional transformations comgbl concrete programs
over structured data (possibly over a restricted input donaFor (top-down)
tree transducers it is known that equivalence is decidalie¢hie single-valued
case([10, 15], or more generally, for theite-valuedcase([36] (when there exists
k such that, for alt, | Za(t)] < k). Here we investigate the more restricted equiva-
lence problem fosingle-valuedSTTs as the practically most common case, while
the generalization to finite-valued STTs is left as a futesearch topic.

STTsA andB areequivalentf .7, = 5. Equivalence ofA andB reduces to
two separate decision problems:

e Domain equivalenceZz(A) = 2(B).
e Partial equivalence A= B: for all t € 2(A) N 2(B), Za(t) = Z&(1).

Note that both problems are independent of each other arth@gimply equiv-
alence. Partial equivalence in the single-valued case earduced to deciding
single-valuedness of STTs. Similar to STAs, STTs can benebei® to havesp-
silon rules that are rules of the formpp— g and, for allt, [pJa(t) 2 Lg]a(t).

Definition 14. Let A andB be STTs. Assum@ N Qg = 0 and letq be a new
state. Thesumof AandBis the STT

def

A+B=(QaUQsU ()0 R\ URs U{g— o, q— aB)).
The following proposition follows directly from definitian
Proposition 6. For allt, Zx,g(t) = Za(t) U J5(1).

Epsilon rules can befkectively eliminated and in the following we consider
only STTs without epsilon rules.

6.1 Domain Equivalence.
Domain equivalence of STTs uses STAs. We use the followirfgnitlen for
U € Tigyn.av2)iee(F (01 = 072)):

St(y:, u) = {q | q(y:) occurs inu}.

Example 14. Sty:, f(au(y1), f(d2(y2), 9z(y1)))) = {01, O3} b
Definition 15. Thedomain automatofor STT A is the STAd(A):

d(A) = (Q Q° i} R.
where,Q°% Q € Z(Qa) andR € Q x P(01) X Q x Q are least such that
1.0€Q,{Q)eQ 0eQ% (0, T,0,0) e R
2. ifg=1{qs...,qn € Qthen

(a) if, foralli, 1<i < n, thereis a rulg; = u; in R2 then,
i. let, for j =1,2,p; = UL, Sty;, w),
ii. (0, AL1¢i,P1,P2) € R p1,p2 € Q,
(b) if, foralli, 1<i < n, there is a rulg; — € in R;, theng € Q°.

Note that the stat@ € Qq(a) iS used when an input subtrgedoes not occur in
the right-hand-side of a rule iR,, thus any input-subtree is allowed, i.pj,= 0
and.Z(d(A), p;) = #™v. Note also that all states iQq are singletons when
A'is linear, it is only when a nonlinear rule occurs when nargkdton states are
introduced intoQq(a) in step[Z(a)ii. Moreoverd(A) can be implemented using
DFS and where stegp 2(a)ii is performed only if the conjuctdrthe guards is
feasible, thus guaranteeing that the resulting STA is cégmhunreachable states
are pruned away.

Proposition 7. Let Abe an STT. Then

(a) For allg € Qqea), -Z(d(A),q) = {
(b) Z(d(A)) = Z(A).

Naeqg Z(A,0Q), if q#0;
wUr, if g =0.

Proof. We prove (a). The case whexis linear follows directly from the defi-
nitions, then the rules id(A) correspond to the reachable rulesfofind where

the output terms are omitted. Suppose there is a nonlinmqlaﬁb u, saydi(y1)
anddz(y1) occur inu, whereq; # g, and an input treéa, t;, t,) is transformed
atq wherea € [¢]. Thent; is simultaneously transformed from andg, and
must therefore be enabled from both states at the same tienggi [a(t1) # 0
and|gxa(t1) # 0. This corresponds tg being enabled at state,, g,} in d(A).
Formally, (a) follows by induction over trees. Statementf@lows from (a) by
choosingg = {d%}. O

Proposition 8. Domain equivalence of STTs is decidabléifo-,) is decidable.
Proof. By using Theorerl4 and Propositioh 7. m]

Note that the size odl(A) is at most singly expontential in the size Afand
the size of guards grows at most linearly in the sizéof

For many practical considerations, domain equivalen@aidB is often not
as relevant as partial equivalence because the transdsictié andB are known
to correspond tdotal functions from#%/ ™ to ™2 i.e., 2(A) = 2(B) =
v reflecting aobustnessissumption of the underlying programs.

6.2 Single-valuedness.

We design an algorithm for deciding single-valuedness ofsSTPartial equiva-
lence of single-valued STTs reducdEeetively to single-valuedness of STTs. For
this reduction we make use of the following construction.

Definition 16. Let Abe an STT and) and STA. Assumé&p = {q%}. Thedomain
restriction of A with respect taD is an STTAID = (Q, % R) with Q = {(p,q) |
p € Qa, g € Qp} as a new set of states, = (a3, g%, and

R={(p,q) 2, U® (01 &) | (P) € Q, P> U € Ra, (G ¥, G, O) € Ro}

whereu® (q;, gz) denotes the term obtained framby replacing all occurences of
r(ys) (resp.r(yz)) for r € Qa with (r, di)(y1) (resp.(r, G2)(y2)).

Example 15. f(f(ri(y1), ra(y2)), f(ra(ys), ri(y2))) ® (s, d2)
= F(f((re, ao(ys), (rz, d2)(¥2)), F((ra, du)(yu), {ri, de)(y2))). b

Similar to product and domain automaton constructions,alometriction can
be implemented mostfiéciently using DFS that avoids unreachable states and
keeps the resulting STT clean. The following property fadrom the definition.

Proposition 9. Let Abe an STT an® and STA. Then
(@) Z(AID) = 2(A) n Z(D);
(b) for allt € Z(AID), Zarp(t) = Za(t).

Proof. By induction over trees. |

We use the following proposition to reduce partial equimakeof single-valued
STTs to single-valuedness of an STT.

Proposition 10. Let A andB be single-valued STTs. Then
A = Biff (A+ B)[(d(A) x d(B)) is single-valued.

Proof. Assume thatA and B are single-valued STTs. The following statements
are equivalent by making use of the properties proved above.

1. A=B
2. Fort € 2(A) N 2(B) Ja(t) = (1)
3. Fort € Z(d(A) x d(B)) Za(t) = F&(t)
4. Fort € Z(d(A) xd(B)) |7as(t) = 1
5. (A+ B)[(d(A) x d(B)) is single-valued.
The single-valuedness assumption is used for equivaldrarmd 4. O

We now develop an algorithm for deciding single-valuedrefsSTTs. Let
A = (Q,d% R) be afixed STT. In the following we assume tiR{tr,) is decidable.
Above, we did not make any assumptions about the symbolaldabin the fol-
lowing we need to strengthen the decidability assumpti@htov us to €fectively
reason about labels. The following properties are assumbd tecidable:

e Forf,ge F(o1 — o) andp € P(o1), f andg areequivalent forp:
f=,0 £ Vaelel(fI(a) = [dl(a).
e Forf € ¥(oy — 0) andy € P(oy), f is constant fory:

Const(f) = Vabe[el([fI(a) = [f1(0)).

e If Const(f) then find a witness, such that, fon € [¢], [f](a) = b.

Example 16. Suppose for example th&(int — int) is the set of quantifier free
linear arithmetic terms with one variable x arf(int) is the set of quantifier
free linear arithmetic formulas with one variable x. ThennSp(f) holds jf the
following quantifier free linear arithmetic formula (witkvo variables) isunsatis-
fiable: o(x1) A p(%2) A f(Xx1) # f(X2). Note also that f=, g holds jf the formula
e(X) A T(X) # g(X) is unsatisfiable, that formula is #R(int) since a single variable
is syficient. X

SinceA is clear from the context, we write’(q) for Z(A, q) and

7(@) () 2(@ (for nonemptyq < Q).

a<q

l.e., 2(q) is the set of trees that asemultaneouslgnabled at all states op Let
y be a fixed variable of sott(c1). For a termu € 7qy)qeq (7 (01 = 072)) we let

2(U) = 2(Sty, u)).

i.e., Z(u) is the set of trees that asamultaneouslgnabled at all stategsuch that
g(y) occurs inu.

Definition 17. Given a nonempty subsgbf Q andq € q we say that) is constant
for g when| U{La(y)a(t) | t € 2(q)}] = 1.

Example 17. The state gis constant fofqo, ¢} in Swap.

€ x#0
Swap = [{QO, Q1},C10,{ o 7:06, do — (X, Ga(Y2), Go(Y1)), }]

do — (X, Qo(Y1), Ga(¥2)), Q1 5 (0,6, (L e, €))
=

In other wordsg is constant fon, if independent from the input tree a(q),
the resulting transformation frompis some fixed output tree. It also follows that
2(q) is non-empty. We canfiectively decide ifg is constat forg and construct
a concrete output tree, by using a DFS procedure. We omit ekelsl of this
procedure but note that the decision procedureConst(f) is used.

The following definition is used as a key notion in the singdduedness algo-
rithm.

Definition 18. Let u andv be terms, and| a nonempty subset @ such that all
states inu andv occur ing. Thenu is 1-equal to v foq, is defined as

def

u=qv = Vi(te 2(q) = ILul(t) U Lv]®)l = 1)

Note that 1-equality is not reflexive becausg(t) may contain more than
one element; 1-equality is a generalization of single-sdhess of STTs because
9°(y) = §°(y) holds precisely whe is single-valued.

We will in the following define a notion of a most general 14igvi (1-mgu)
and then develop an algorithm that finds the 1-mgu when thisy.eX subterm
q(y;) is treated as &ariablein the following definitions. That is, we tregi(y1),
d2(Y1), a1(y2), 02(y») as four diferent variables. This convention allows us to form
substitutions that map variables of the fogfy;) to output terms. The variable
q(y;) is called ay;-output variable

Definition 19. The substitutio is a 1-unifier foru, v andy if ud andvo have the
same tree structure, and the symbolic labels are equal mtueiconstraing. In
other words, for each pathto a symbolic label|, =, udl,.

Definition 20. The substitutio® is a most general 1-unifier (1-mgu) foyv and
¥ whend is a 1-unifier and also every other 1-unifééiis an instance of.

Unlike standard unification of first-order terms, the unifica problem for
STTs is not unitary. There can be manyfeient incompatible unifiers without a
most general unifier. The following algorithm succeeds aviien there is a most
general unifier.

Definition 21. Two tree termsus andv 1-unify fory with the substitutior® when
the following conditions hold. Led; = St(y;, u) U St(y;, v) fori = 1, 2. Initialize 6
to the empty substitution [].

1. u andv unify in the usual sense with unifigr if all symbolic labels are
assumed identical.

2. For all positionsr such thaul, andv|, are symbolic labelsy|; =, V.

3. For all positionsr in u andv such thau, is ay;-output variablep(y;) then
(symmetrically fory,-output variables):

(a) If vl, contains a symbolic label that is not constantfdhenfail, else
assume that all symbolic labels), are constant by replacing each
symbolic labelf in v, with [f](«) for somea € [¢]

(b) If v|, contains ay,-output variabley(y,), then if g is not constant for
g, thenfail, else assume that, contains noy,-output variables by
replacing them with the corresponding fixed output trees.

(c) If vi, contains noy;-output variables, thew,, is ground andg must be
constant foig; and the value must be equal ta.f].

(d) If p(y1) occurs properly under a function applicatiorMp, thenfalil,
else add t@ the substitutiorp(y,) + V|,. Apply the substitutio to
u andv and continue.

Whenu andv 1-unify for ¢, the mapping is called al-unifier of u and v The
algorithm ensures that it maps froyroutput variables to terms that have con-
stant symbolic labels and contain at least greutput variable and ng;-output
variables, wherdi, j} = {1, 2}.

Example 18. The terms2x, g:1(Y1), Gz(Y2)) and(3Xx, g1(Y1), Gz(y2)) 1-unify fory =

x = 0. They don’t 1-unify fory = x > 0. The terms(2x, g:(y1), 92(y»)) and
(3%, q1(Yr), (1, €, €)) 1-unify foryy = x = 0 when the transition for gderives a
term that is equal td1, €, €) undery.. For example: ¢ 5 (X+ 1, €, ¢).

The terms(max(Q X), du (Y1), d2(Y2)) and (0, (X, dz(y1), 9a(¥2)), da(Y1)) 1-unify
fory = x < 0Owhen g is given by g 5 (0, €, €). The 1-unifier is the substitution
[a:(y1) — (X O2(y), (O, €, €))]. It would also 1-unify even ifydoes not derive the
constant term, but as long ag § constant fofqp, gs}.

The terms €, 1(y1), 9(c(y2))) and f(x, 9(02(y1)), ca(y2)) 1-unify with the sub-
stitution[g1(y1) > 9(d2(Y1)), da(Y2) — 9(d2(y2))]-

The terms €x, du(y1), 9(au(y2))) and f(x, 9(g2(y1)), Az(Y2)) 1-unify with the sub-

stitution[qg1(y1) = 9(d2(y1)) d2(y2) = 9(qx(Y2))].
Consider the STT A ({po, P1, P2}, Po, R) where

R={ Po— (X Pa(ys), P2(yo)),
x>0 €
p1 — (X, P1(Y1), P1(Y2)), P1— €,
<0 €
P2 = (X, Pa(Ya), Pa(Y2))s P2~ €}

Let u be(x, pi(y1), P2(y1)) and v be&(—x, pa(y1), P2(y1)). Then u and v 1-unify for
Y : X = 0. In the algorithm for 1-unification, we see that the getis {p1, P2}
so we are only considering trees that are accepted by foligvaoth p and p.
The constraint x= 0 implies that the outputs generated fromand p will be
identical. X

The single-valuedness algorithm is a constraint saturgirocedure over 1-
equalities. The set of constraints is represented as aGrfapm Q x Z2(Q) to
terms in7 qy)geqi(F (01 — 02)) with constant symbolic labels. Initially

C = {(d (a”}) = ().

A constraint (p,q) — u) € C stands for the assertian= %(u) and p(y) = u.
The intuition is as follows: The stafeis the current state we check for single-
valuedness and we check it over a specialization over aaparitputt with the

statesg. All these states should produce the same output modulouaelg on
transitions over. We will ensure that all statesin t are applied to either only
(the variable used for the root symbol) or oply(variable for the left sub-term)
or only y, (variable for the right sub-term). There is a frontferc Q x #(Q)

of unexploredstate combinationsinitially F = {(d°, {q°})}. The general idea is
that constraints are added@dor unexplored state combinations by exhaustively
considering all rules from the states in the state comlmnatwhen a conflict of
1-equalities arises, it follows th#t is not single-valued. If no conflicts aris€,
gets saturated (a fixpoint is reached) and it follows #hat single-valued. The
detailed description is as follows.

1. Choose §§,q) € F and remove |§,q) from F. Letq = {Qi,...,0} and
t=C(p.).

. . € € €
2. For each combination of rulgs— u,q; — Uy, ..., 0k— W € R

o Letd = {qu(y) = Uy, ..., q(y) = U}, wherey; is eithery, y; orys.
o If [u] # [t4] thenfail.

3. For each combination of rulepsi u, 0z AN U, ..., 0k SN ux € R? such that
Y=@ANp1 A A #E L

Letv = t{du(yi) > U, ..., a(Yi) = W}, wherey; is eithery, y; or y,.

If uandv do not 1-unify fory thenfail .

Let 6 be a 1-mgu fou andv. Notice that each mapping éwill either
usey; ory,, but not both.

Call Insertf,), which is defined recursively below:

The procedure Inseri(y) is defined:
1. For eachf(y,) — w(y;)) € 6 do:

e Letq beSty,w).

e |f C contains no constraint fop(q) then add the constrainp(q) — w
to C; add (o, q) to the frontierfF.

e OtherwiseC contains a constrainp(q) — w'. If wdoes not 1-unify
with w’ for thenfail else let¢’ be the 1-mgu ofv andw’, replace
(p,q) = W by (p,q) — w&, and call Inser{, v).

The algorithm is a constructive proof of the following Prejimn.

Proposition 11. Single-valuedness of STTs is decidabl®(tr;) is decidable.

Correctness of the algorithm is established by checkingithenplements
an exhaustive case analysis for checking single-valusdnBse algorithm, and
in particular the procedure Insert terminates as one shexpect: Let us first
notice that the algorithm maintains an invariam, () — t(y;)) € C implies that
Stly;,t) = q and thatt only contains eitheyy, y, or y variables. Now notice that
a 1-unifier substitution produces teritfg) with fewer states than the the states
from w andw’. In other words we have the descending meas8Big;, t(y,)) c
Styi, w) = Sty;, w) = q.

The resulting algorithm works for single-valued symbolieet transducers.
This is more general than the algorithm that we developeddih vhich checked
1-equality of single-valuelinear symbolic tree transducers. That algorithm visits
at most|Qa| x |Qg| states. The current algorithm foon-linear symbolic tree
transducers visits at mogQa U Qg) x Z2(Qa U Q)| states. Itis an open problem
whether this is the tightest upper bound.

Proposition§8 and 11 imply:

Corollary 1. If £(o1) is decidable then the question whether two STTs are single
valued and equivalent is decidable.

The algorithm can be implemented using any SMT solver ortcaim$ solver
as an oracle that supports satisfiability checking and mgedekration (that is
needed above). In our implementations we have used the SMar8 [8].

The equivalence algorithm for two symbolic transducersckbehe logical
statemen¥x . A(x) = B(x) for validity. Dually, it checks satisfiability of a formula
of the formA(x) £ B(x). Can we also check satisfiability of formulas of the form
A(X) = B(X)? The answer turns out to bye as the following simple theorem
establishes.

Theorem 6. Satisfiability of equality is undecidable for finite alphabree trans-
ducers.

Proof. Recall the PCP (Post’'s Correspondence Problem). Giyen., vy and
Wi, ..., Wk Wherev;,,w; € X* (for some output alphabé&t). The question, does
there existy, ...,im, m> 0, such thati, v, ... vi = Wi,W, ...W_, iS known to be
undecidable.

We use the following encoding into PCP: B&tbe the input alphabgl, .. ., k}
and letA have stategy andq; (g, is final), and transition§yy LAN 01, 0 EAN 01}
for eachi. Likewise, letB have statepo and p; (p; is final), and transitions
{Po LALN P1, P1 i, p.}, for eachi. Thendx(A(X) = B(X)) iff the given PCP
instance has a solution Note that bétlandB are deterministic. |

6.3 Checking Non-equivalence Symbolically

Let us recall from[]40] also how we can formulate a simple sdawision pro-
cedure for checking non-equivalence of symbolic tree ttaners. It does not
assume single-valuedness. Here, we formulate a versibagptes to non-linear
symbolic transducers. Given a transduégthat does not containloops, we can
encode a predicat&cc (a9, t, s, n), such thatA takes the ternt and produces the
term s with at mostn transitions along any given branch. Non-equivalence can
then be checked by showing that

Ttsn (ACG(da, t. S, 1) A ~ACGs(d, T, 5.1)
2 v (FACG(.t s n) A Acgs(0g, T, s, n)) |
The definition is given by:

n>0A ¢[tg]A
S = U[to, £1(S), ..., tk(9)]A

k
Rl [\ Aca(@ by, 6(9),n - 1)
i=1

Acc(g,e,e,n) = true

ACQA(CL f (t07 t19 t2)9 S, n)

where, as usuat; is of the formq(f (X, y1, Y2)) 4 ulx, ch(yi)s 92(Yj,) - - - ak(Yj)l,

Ji is either 1 or 2, and;j(s) selects the subterm & corresponding to the path
supplied inu. The formulas produced by unfoldircc, are always ground, and
satisfiability of the formulas can be checked using the bemkad label theory
together with the theory of algebraic data-types. For singlued linear STTs we
can fixn to |Qa X Qgl| to bound unfolding; for general STTs we can convert the
definition into first-order formulas whose instantiatiomsrespond to step-wise
unfoldings of the transition relation.

7 Conclusions

We investigated the classes of Symbolic Tree Automata ame generally Sym-
bolic Tree Transducers as a generalization of tree autoamatdransducers over
finite alphabets. We established that symbolic tree au@rfatn an &ective
Boolean algebra, provided the underlying symbolic domsialso &ective. As
a side-éfect it is possible to define tree automata over alphabetgefautomata
ad infinum. We also established, by providing an algorithmt equivalence of
single-valued symbolic tree transducers is decidables $éitled a question left
open in [40].

A generalization of our equivalence checking algorithmtte finite-valued
case is not expected to be straightforward, because thespamding general-
ization of decidability of equivalence for finite-valuee@ér transducers$ [36] uses
results from combinatorics and is mathematically chaliegg

We are using symbolic automata and symbolic transducengglications re-
lated to web-sanitizers and test case generation. Thelkalemany other ap-
plications of symbolic analysis of automata and transdyjcand our experience
so far indicates that coupling the analysis of the symbalimmata and trans-
ducers with SMT solversfters a compelling combination. There are also many
interesting problems to work on in this area. For examplgpamy work includes
addingregistersto symbolic string transducers. Registers allow storireyatters
from the input for an indefinite number of transitions. Theuleing automata and
transducers are strictly more general, and without funtbstrictions, are Turing
complete. So a challenge is identifying such extensionsateaboth useful and
admit practical analysis.

References

[1] R. Alur and P. Cerny. Streaming transducers for algarithverification of single-
pass list-processing programs. 38th ACM SIGACT-SIGPLAN Symposium on
Princples of Programming Languages (POPL’1pages 599-610. ACM, 2011.

[2] R. Alur and D. Dill. A theory of timed automataTheoretical Computer Science
126:183-235, 1994.

[3] A. Arnold and M. Dauchet. Bi-transductions de foréts. Aroc. 3rd International
Colloquium on Automata, Languages and Programming (ICABR’pages 74-386,
Edinburgh, 1976. Edinburgh University Press.

[4] B. S. Baker. Composition of top-down and bottom-up tremsductions.Inform.
and Contro] 41:186-213, 1979.

[5] C. Chdtrut. Minimizing subsequential transducers: a surddyoretical Computer
Science292(1):131-143, 2003.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Léding, F. Jacqueth®. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and apphecatiAvailable on:
http://www.grappa.univ-1lille3. fr/tata, 2007. release October, 12th 2007.

[7] B. Courcelle and P. Franchi-Zannettacchi. Attributargmars and recursive pro-
gram schemesTheoretical Computer Scienc&7:163—-191, 1982.

[8] L. de Moura and N. Bjgrner. Z3: Anficient SMT Solver. INTACAS'08 LNCS.
Springer, 2008.

[9] J. Engelfriet. Bottom-up and top-down tree transforiorag — a comparisonMath.
Systems Theoy9:198-231, 1975.

http://www.grappa.univ-lille3.fr/tata

[10] J. Engelfriet. Some open questions and recent resaltsee transducers and tree
languages. In R. V. Book, editoFormal Language Theorypages 241-286. Aca-
demic Press, New York, 1980.

[11] J. Engelfriet and S. Maneth. Macro tree transducetspate grammars, and mso
definable tree translationformation and Computatiqri54:34-91, 1999.

[12] J. Engelfriet and S. Maneth. A comparison of pebble tragsducers with macro
tree transducerdActa Informatica 39:2003, 2003.

[13] J. Engelfriet, S. Maneth, and H. Seidl. Deciding eqlémae of top-down XML
transformations in polynomial time.Journal of Computer and System Science
75(5):271-286, 2009.

[14] J. Engelfriet and H. Vogler. Macro tree transduce&ksComp. and Syst. ScB1:71-
146, 1985.

[15] Z. Esik. Decidability results concerning tree transehs. Acta Cybernetica5:1-20,
1980.

[16] Z. Fulop. On attributed tree transducefscta Cyberneticab:261-279, 1981.

[17] Z. Fulop and H. VoglerSyntax-Directed Semantics: Formal Models Based on Tree
Transducers EATCS. Springer, 1998.

[18] F. Gécseg and M. Steinbyree AutomataAkadémiai Kiadd, Budapest, 1984.

[19] T. Griffiths. The unsolvability of the equivalence problem Aefree nondetermin-
istic generalized machines. ACM 15:409-413, 1968.

[20] Y. Gurevich, M. Veanes, and C. Wallace. Can abstrac¢e steachines be useful in
language theoryTheor. Comput. S¢i376(1):17-29, 2007.

[21] W. Hodges.Model theory Cambridge Univ. Press, 1995.

[22] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, andWanes. Fast and precise
sanitizer analysis with E. In 20th USENIX Security Symposiupages 1-16, San
Francisco, CA, August 2011. USENIX Association.

[23] P. Hooimeijer and M. Veanes. An evaluation of automégar@thms for string anal-
ysis. In R. Jhala and D. Schmidt, editokMCAI 2011 volume 6538 ofLNCS
pages 248-262. Springer, 2011.

[24] J. E. Hopcroft and J. D. Ulimarntroduction to Automata Theory, Languages, and
Computation Addison Wesley, 1979.

[25] O. Ibarra. The unsolvability of the equivalence praobléor Efree NGSM’s with
unary input (output) alphabet and applicatioB8AM Journal on Computingt:524—
532, 1978.

[26] K. Inaba and H. Hosoya. Multi-return macro tree trarcsgtg. InProc. 6th ACM
SIGPLAN Workshop on Programming Language TechnologieXNtlr, San Fran-
cisco, California, January 2008.

[27] N. Klarlund. Mona & Fido: The Logic-Automaton Conneanti in Practice. IrCSL,
pages 311-326, 1997.

[28] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order tinparameter tree trans-
ducers and recursion schemes for program verificatiorRrtweedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Principles of @nogning lan-
guages POPL'10, pages 495-508. ACM, 2010.

[29] G. Laurence, A. Lemay, J. Niehren, S. Staworko, and Mnif@si. Normalization
of sequential top-down tree-to-word transducerd.dnguage and Automata Theory
and Applications (LATALNCS, pages 352—-363. Springer, 2011.

[30] A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The penof extended top-down
tree transducersSIAM J. Comput.39:410-430, June 2009.

[31] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML tnaformers. InProc.
19th ACM Symposium on Principles of Database Systems (PZDD@) pages 11—
22. ACM, 2000.

[32] G. V. Noord and D. Gerdemann. Finite state transducéfs predicates and identi-
ties. Grammars 4:263-286, 2001.

[33] C.-H. L. Ong and S. J. Ramsay. Verifying higher-ordendtional programs with
pattern-matching algebraic data types38th ACM SIGACT-SIGPLAN Symposium
on Princples of Programming Languages (POPL'1dages 587-598. ACM, 2011.

[34] T. Perst and H. Seidl. Macro forest transducehstormation Processing Letters
89(3):141-149, 2004.

[35] W. C. Rounds. Context-free grammars on treesPrioc. ACM Symp. on Theory of
Comput, pages 143-148. ACM, 1969.

[36] H. Seidl. Equivalence of finite-valued tree transdsdsrdecidable Math. Systems
Theory 27:285-346, 1994.

[37] J. W. Thatcher. Generalized sequential machine magSomput. Syst. Sc#:339—
367, 1970.

[38] N. Tillmann and W. Schulte. Parameterized unit testiE SEGFSE’05 pages 253—
262. ACM, 2005.

[39] M. Veanes and J. Barklund. On the number of edges in trgds. Information
Processing Letter$7:225-229, 1996.

[40] M. Veanes and N. Bjgrner. Symbolic tree transducers.E.IM. Clarke, 1. Vir-
bitskaite, and A. Voronkov, editor§lerspectives of System Informatics (PSI;11)
LNCS. Springer, 2011.

[41] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbeégular expression
explorer. InThird International Conference on Software Testing, \ation and
Validation (ICST 201Q)pages 498-507. IEEE Computer Society, 2010.

[42] M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symb&@L query explorer. In
LPAR-16 LNAI. Springer, 2010.

[43] S. Yu. Regular languages. In G. Rozenberg and A. Salpegditors,Handbook of
Formal Languagesvolume 1, pages 41-110. Springer, 1997.

	Introduction
	Parametricity
	Automata and Transducers
	Symbolic Automata and Transducers

	Preliminaries
	Background Universe

	Symbolic tree automata
	Symbolic Tree Transducers
	Composition of STTs

	Single-valuedness and equivalence of STTs
	Domain Equivalence.
	Single-valuedness.
	Checking Non-equivalence Symbolically

	Conclusions

