
The Logic in Computer Science Column
by

Yuri Gurevich

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

Foundations of Finite Symbolic Tree
Transducers

Margus Veanes Nikolaj Bjørner∗

Abstract

Finite transducers on trees are fundamental to computer science. They
form the basis of many applications that manipulate stringsand trees. The
conventional representation of finite transducers assume afinite set of states
and a finite alphabet. Classical algorithms and representations make essen-
tial use of both of these assumptions. In many cases, the complexity of the
algorithms is computed based on the number of states and alphabet size. But
how important are these assumptions really for the main operations and de-
cision problems? We have recently pursued applications of finite transducers
in the context of web security as a foundation for sanitization of potentially
malicious data. For these applications we have found that lifting the finite
alphabet restriction to be useful to enable efficient symbolic analysis and
we have developed symbolic counter-parts of the main classical operations
on finite automata. We here define Symbolic Tree Transducers as a gener-
alization of Regular Transducers as finite state input-output tree automata
with logical constraints over a background theory. The background theory

∗Microsoft Research, Redmond, WA, USA{margus,nbjorner}@microsoft.com

http://research.microsoft.com/
gurevich@microsoft.com
{margus,nbjorner}@microsoft.com

is a parameter of the formalization. We examine key closure properties of
Symbolic Tree Transducers and we develop a composition algorithm and an
equivalence decision procedure for single-valued transducers.

1 Introduction

State machines are fundamental to computer science. General computations are
captured by Abstract State Machines [20]. An important special case is captured
by Finite State Machines. The languages accepted by finite state machines are the
ubiquitous regular languages. Several applications, ranging from web-sanitizers,
XML transformations to generic functional programs, rely on finite state machines
that transform strings or trees into strings or trees. Such state machines can con-
veniently be captured by tree transducers. Finite tree transducers accept regular
languages and produce regular languages. As usual, a language is characterized
by a set of words or trees that are labeled by symbols from an alphabet. From
a computational point of view, letters from a finite alphabetform the nucleus of
the finite state machines: letters can be stored and recognized in unit space and in
unit time. Furthermore, finite state machines are amenable to operations and anal-
ysis that eludes more general notions of computation. The membership problem,
whether a word or tree is accepted by a finite state machine, isdecidable. Finite
state machines are closed under the Boolean operations of union, intersection,
complementation. They form an effective Boolean Algebra. Furthermore, the
question of whether two finite state machines accept the samelanguage, known
as the equivalence question, is also decidable. The algorithmic complexity of
most fundamental decision problems over finite automata andtransducers depend
on thesize of the alphabet kas well asthe number of states n:1 intersection of
nondeterministic finite word automata has complexityO(kn2) (c.f. [24, p. 59]),
determinization of nondeterministic finite word automata isO(k2n) (c.f. [24, The-
orem 2.1]), (implying the upper boundO(k2n) for deciding the equivalence of
nondeterministic finite word automata), and minimization of deterministic finite
word automata isO(k nlogn) (c.f. [24, Exercise 3.30]). Under some mild restric-
tions, equivalence can also be checked between two finite state transducers.

In the context of analysis and operations, is the finite alphabet assumption es-
sential? Of course, we cannot expect unit storage space and access time for letters
from an infinite alphabet, but what about analysis? Our main results establish how
the representation of alphabets can be generalized. In fact, in practice, we have
found that a symbolic representation of even finite alphabets can be an advantage

1Some algorithms do not depend on the size of the alphabet, most notably:epsilon-elimination,
unreachable-state-elimination, anddead-end-elimination(a dead-end is a noninitial state from
which no final state is reachable).

for these operations. We develop the results for the most general case of finite
tree transducers, and we call theseSymbolic Tree Transducers(STTs). The al-
phabets of STTs are defined modulo a background theory. STTs are easily seen
more expressive than tree transducers defined over finite alphabets, yet our main
results establish that composing STTs and equivalence checking for single valued
STTs is computable, modulo the background theory. Symbolictransducers are
also practically useful for exploiting efficient symbolic solvers when performing
basic automata-theoretic transformations. In our prior work [41, 22] on symbolic
string recognizers and transducers we took advantage of this observation. We here
investigate the case of the more expressive class oftree transducers. We first ex-
amined symbolic tree transducers in [40], where we established that equivalence
checking for the special case oflinear single-valued tree transducers was decid-
able. Roughly, a tree transducer is linear if the state transition relation does not
require more than one state per sub-tree. The decision procedure we developed
there created a product automaton and checked for paths and loops in the re-
sulting product automaton that could produce a counter-example to equivalence.
We left it as an open problem whether the restriction on linearity could be lifted.
The question is settled in the affirmative here. We provide a decision procedure
for the equivalence problem of generial single-valued symbolic tree transducers.
They don’t have to be linear. This paper furthermore provides the foundations for
symbolic tree transducers. We show that symbolic regular tree languages form an
effective Boolean Algebraprovided the alphabet is also effective. All decision pro-
cedures are of course provided modulo decidability of the symbolic background
component.

This paper can be read as a self-contained introduction and overview of sym-
bolic tree automata and tree transducers. While it becomes technical, we only use
elementary notions, well-known from classical automata theory curricula [24]. It
builds on top of results from [40] and we include several definitions and relevant
examples from that work when useful.

The rest of the paper is organized as follows. Section 2 discusses some of
the background for our study of tree transducers over a symbolic, or parametric,
alphabet. As background for the technical development we recall preliminaries
in Section 3, and then develop the foundations for Symbolic Tree Automata in
Section 4, and Section 5 introduces Symbolic Tree Transducers. Our new algo-
rithm for equivalence checking of single-valued STTs is provided in Section 6.
Section 7 contains conclusions.

2 Parametricity

Before devling into technical details let us discuss a main theme of this paper.
We develop Symbolic Tree Transducers that are finite state machines modulo a
method for checking constraints on the alphabets used to label the trees. The re-
sults are parametric in the underlying representation of the alphabet and we iden-
tify the sufficient conditions on constraint solving for the labeling. There is also
a branch of theorem proving dedicated to satisfibility of logical formulas modulo
background theories. It is known as Satisfiability Modulo Theories (SMT). Here,
the interpretation of the logical formulas are provided modulo a suitable back-
ground theory. The two paradigms are not disconnected: in fact the parametric
alphabets in the symbolic tree automata and transducers canbe instantiated by
formulas that can be solved using SMT solvers. This has also been the method of
choice in the Automata2 tools available from Microsoft Research. The tool uses
the state-of-the-art SMT solver Z3 [8].

Our results on STTs can also be seen as connected to themodular theory
combination problem. The problem of modularly combining solvers for different
theories is identifying the minimal necessary and sufficient interfaces between the
solvers. Our procedures for symbolic tree automata are modular in a very transpar-
ent way. The algorithms on automata use symbolic solvers as black box oracles.
The interface to the symbolic solver comprises checking logical satisfiability on
transition guards.

2.1 Automata and Transducers

Before covering work on symbolic automata and transducers,let us here briefly
recall some of the important references on classical automata theory. Tree trans-
ducers and various extensions thereof provide a syntax-directed view of studying
different formal models of transformations over tree structured data [17]. Top-
down tree transducers were originally introduced in [35, 37] for studying proper-
ties of syntax-directed translations. Basic compositionality results of tree trans-
ducers were established in [4, 9]. The handbook [18] provides a uniform treat-
ment of foundational properties of tree transducers and relations to context-free
languages. A newer handbook on tree automata has been available as an online
resource for several years now [6]. It is a comprehensive source for recent results
on tree automata.

Decidability of equivalence of single-valued top-down tree transducers fol-
lows from the decidability result of single-valuedness of top-down tree transduc-
ers [10, 15]. A specialized method for checking equivalenceof deterministictop-

2http://rise4fun.com/bek

http://rise4fun.com/bek

down tree transducers is provided in [7]. Decision problems, e.g. equivalence, for
specific classes of tree transducers are often based on establishing unique normal
forms and considering deterministic transducers, including string transducers [5],
top-down tree transducers [13], and top-down tree-to-string transducers [29].

Several extensions of top-down tree transducers have been studied in the lit-
erature (the following list is not exhaustive). Extended top-down tree transduc-
ers allow nonflat left-hand sides in rules [3]. Attributed tree-transducers describe
parse trees in attribute grammars [16]. Macro tree-transducers incorporate the no-
tion of implicit tree contexts [14] and have been studied in the context of analysis
of XML transformation languages, with macro attributed tree-transducers [17],
multi-return macro tree transducers [26], and macro foresttransducers [34] as
further extensions. Pebble tree transducers were introduced for type checking
XML query languages [31] and are extended to pebble macro tree transducers
in [12]. Formal relationships between monadic second orderlogic and macro
tree transducers is studied in [11]. Extended top-down treetransducers were re-
cently studied in the context of natural language processing, where it is shown
that several interesting cases are not closed under composition [30]. Higher-order
multi-parameter tree transducers [28] allow possibly infinite trees in the output
and can be applied to higher-order recursion schemes. A related notion of pattern-
matching recursion schemes is introduced in [33] to model functional programs
that manipulate algebraic data-types.

The dual extension of finite automata and transducers to oursmaintains a fi-
nite alphabet and instead admits an infinite number of states. For example, timed
automata [2] admit an infinite number of reachable states, but maintain decidabil-
ity for key problems because the states form a finite quotientwith respect to the
transition relations.

2.2 Symbolic Automata and Transducers

Many connections to classical automata theory and symbolicversions of automata
have surfaced in different variants. The corresponding symbolic generalization of
classical (Rabin-Scott) automata is originally studied in[32] where the motiva-
tion comes fromcomputational linguistics. There, the symbolic generalization of
a finite state (string) transducer is called apredicate-augmented finite state trans-
ducerand it is used in the context of natural language processing.The MONA
tool [27] uses automata over a finite but large alphabet. It uses multi-terminal
binary decision diagrams to label transition relations. This allows often encoding
with exponential savings alphabets of size 2n when they are represented usingn
binary values. The notion of symbolic automata is identifiedand developed in [41]
where the motivation came from the need to support regular expressions inparam-
eterized unit testing[38] and like-expressions (which are very much like regular

expressions) indatabase query analysis[42]. Such an extension seems straight-
forward at first glance, but raises many challenging questions and opens up new
approaches for automata algorithm design. For example, it is shown in [23] that
symbolic complementation by using a technique for minimizing symbolic repre-
sentations of Boolean functions leads to significant speedups compared to existing
state-of-the-art automata algorithm implementations. These techniques have also
been instrumental in applications for encoding string sanitization operations over
large (possibly infinite) alphabets for web security analysis [22]. Streaming trans-
ducers[1] provide another recent symbolic extension of finite transducers where
the label theories are restricted to be total orders.

3 Preliminaries

We use basic notions from classical automata theory [24], classical logic, and
model theory [21]. Our notions regarding tree transducers are consistent with [17].
For finite state (string) transducers a brief introduction is given in [43].

3.1 Background Universe

We work modulo a multi-sortedbackgrounduniverseU . For each sortσ, U σ

denotes a nonempty sub-universe ofU . A predicate overσ or σ-predicateis an
effective finite representationϕ of a subset [[ϕ]] of U σ. Given a set ofσ-predicates
P(σ), we say that

(P(σ),∧,∨,¬,⊤,⊥)

is aneffective Boolean algebrawhen for each elementa ∈ U σ there is a predicate
ϕa in P(σ) such that [[ϕa]] = {a}, ⊤,⊥ ∈ P(σ), [[⊥]] = ∅, [[⊤]] = U σ, andP(σ)
is effectively closed under the operations for conjunction∧, disjunction∨, and
negation¬, such that

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] , [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]] , [[¬ϕ]] = ∁([[ϕ]]) = U
σ \ [[ϕ]] .

We writeϕ ≡ ψ for [[ϕ]] = [[ψ]]. Without loss of generality, we will assume that
σ-predicates are formulas with a fixed free variblex of sortσ.

Example 1. A practical example ofP(int) is the set of all quantifier free linear
arithmetic formulas over integers with at most one fixed freevariable x. For ex-
ample[[0 < x∧ x+ 1 < 3]] = [[0 < x]] ∩ [[x+ 1 < 3]] = {1}. ⊠

Example 2. Another practical example ofP(rational) is the set of all quantifier
free linear arithmetic formulas over rationals with at mostone fixed free variable
x. For example[[0 < x∧ x+ 1 < 3]] = {r ∈ U rational | 0 < r < 2}. ⊠

Example 3. A theoretical example ofP(int) is the set of allre-indices. ⊠

We use an abstract generic definition of finite trees that is taylored for the
symbolic extension and algorithms described below. Given asortσwe writet〈σ〉
for the sort ofσ-labeled treesU t〈σ〉 as theleastsetT such that:

• theempty treeǫ ∈ T ,

• if a ∈ U σ then〈a〉 ∈ T ,

• if a ∈ U σ and, fork ≥ 1, t1, . . . , tk ∈ T then〈a, t1, . . . , tk〉 ∈ T .

For a (k + 1)-tuple x̄ = 〈x0, . . . , xk〉, k ≥ 0, k is called therank of x̄, denoted
rank(x̄); for 0 ≤ i ≤ k, we let x̄[i]

def
= xi. For a nonempty treet, t[0] is calledthe

label oft and, for 1≤ i ≤ rank(t), t[i] is calledthe i’th subtree oft. We define the
maximum rankof t, or maxrank(t), to be:

maxrank(t)
def
=



















−1, if t = ǫ;
0, if rank(t) = 0;
max(rank(t),max1≤i≤rank(t){maxrank(t[i])}), otherwise.

When we want to be more specific about the rank, we fixk above. In particular,
for k = 2, t2〈σ〉 is the sort of allσ-labeled binary trees.

Example 4. For example the treet = 〈1, 〈2, ǫ, ǫ, ǫ〉, 〈3〉〉 is an int-labeled tree of
rank 2 and maximum rank 3. It is sometimes useful to think of the labela of a
nonempty tree together with its rank k as a uniquefunction symbolf k

a of arity k.
Thus,t can be thought of as the term f2

1 (f 3
2 (ǫ, ǫ, ǫ), f 0

3). ⊠

A symbolic label with input sortσ1 and output sortσ2, orσ1/σ2-label f, is an
effective representation of a function [[f]] from U σ1 to U σ2. We writeF (σ1 →

σ2) for a given effective set ofσ1/σ2-functors. Without loss of generality, we
assume thatf is a term of sortσ2 that has at most onefixedfree variablex of sort
σ1 that represents the input.

Example 5. A practical example ofF (int×int → int) is the set of all terms of sort
int with one free variable x of sortint × int, in the combined theory of quantifier
free linear arithmetic and tuples. For example if f is the term x[0] + x[1] then[[f]]
is the addition function. ⊠

Given a finite (possibly empty) base setY of terms, we defineterms over
F (σ1→ σ2) and Y, denotedTY(F (σ1→ σ2)), as the least setT such that:

• ǫ ∈ T, Y ⊆ T,

• if f ∈ F (σ1→ σ2) then〈 f 〉 ∈ T,

• if f ∈ F (σ1→ σ2) and, fork ≥ 1, t1, . . . , tk ∈ T then〈 f , t1, . . . , tk〉 ∈ T.

Given a termt and distinct variablesx1, . . . , xn, we use the standard notation
t(x1, . . . , xn) to indicate that all variables int occur among the variables inx1, . . . , xn.
Substitution is defined as usual, and for agroundterm t (term without variables),
we write [[t]] for the corresponding concrete value.

Example 6. Suppose t(x, y) is the term〈2 ∗ x, ǫ, 〈3∗ x, y〉〉 overF (int→ int) and
{y}. Then t(3, 〈4〉) = 〈2 ∗ 3, ǫ, 〈3 ∗ 3, 〈4〉〉〉 and[[t(3, 〈4〉)]] = 〈6, ǫ, 〈9, 〈4〉〉〉. ⊠

We write l〈σ〉 for theσ-list sort t1〈σ〉. We use the notation [e1, e2, . . . , en|t]
for 〈e1, 〈e2, . . . 〈en, t〉〉〉 and we write [e1, e2, . . . , en] when t = ǫ.

4 Symbolic tree automata

We introduce an extension of tree automata with an effective encoding of labels
by predicates that denotesetsof labels, rather than individual labels. We study
basic properties and algorithms for STAs. These propertiesand algorithms are
instrumental for proving further properties and developing decision procedures
for symbolic tree transducers.

Definition 1. A symbolic tree automaton(STA) AoverP(σ) is a quadruple (Q,Q0,Qa,R)
whereQ is a nonempty finite set ofstates, Q0 ⊆ Q is a set ofleaf states, Qa ⊆ Q
is a set ofaccepting states, andR is a finite set ofrules (q0, ϕ, q1, . . . , qk), where
k ≥ 0, andqi ∈ Q for 0 ≤ i ≤ k.

Example 7. We illustrate an STA A that accepts integer-labeled binary trees
whose labels are constrained according tocycle ordertraversal [39]:

A = ({qroot, qpre, qin, qpost, qǫ}, {qǫ}, {qroot},R),

where R consists of the rules

(qroot, ℓ=0, qpre, qpost), (qin, ℓ=0, qpost, qpre),
(qpre, ℓ<0, qpre, qin), (qpost, ℓ>0, qin, qpost),
(qpre, ℓ<0, qǫ, qǫ), (qin, ℓ=0, qǫ, qǫ), (qpost, ℓ>0, qǫ, qǫ)

Thus, the root has label 0, each “pre”-node has a negative label, each “post”-
node has a positive label, and each “in”-node has label 0. There is a single initial
state qǫ and a single accepting state qroot.

For example, the tree

0
−1 6

−2 0 0 5
3 −4

is in L (A). Classical tree recognizers that operate over a finite alphabet can of
course not recognizeL (A). ⊠

We useA as a subscript to identify a component, unlessA is clear from the
context. In the following letA = (Q,Q0,Qa,R) be a fixed STA. Given a rule
ρ = (p, ϕ, q̄) ∈ R, we use the following notations for extracting itsleft-hand-side
p, guardϕ, andright-hand-sidēq:

lhs(ρ)
def
= p, grd(ρ)

def
= ϕ, rhs(ρ)

def
= q̄.

Definition 2. Thelanguage of A for q∈ Q, denoted byL (A, q), is the least subset
of U t〈σ〉 such that:

• if q ∈ Q0 thenǫ ∈ L (A, q);

• if (q, ϕ, q1, . . . , qk) ∈ R, a ∈ [[ϕ]], and, for 1 ≤ i ≤ k, ti ∈ L (A, qi) then
〈a, t1, . . . , tk〉 ∈ L (A, q).

The language of Ais L (A)
def
=

⋃

q∈Qa L (A, q).

In the following we consider STAs that acceptbinary trees in order to avoid
cumbersome notations. The generalization to arbitrary trees is straightforward.
The definition ofA admits the following two possible classical views of tree au-
tomata:

1. As atop-downor root-to-frontierSTA, a treet is enabled at state qif t = ǫ
andq ∈ Q0, or t , ǫ and there exists (q, ϕ, q1, q2) ∈ R such thatt[0] ∈ [[ϕ]]
andt[i] is enabled atqi for i = 1, 2.

2. As abottom-upor frontier-to-root STA, if q ∈ Q0 thenǫ is enabled atq,
and if ti is enabled atqi for i = 1, 2 and there exists (q, ϕ, q1, q2) ∈ R then
〈a, t1, t2〉 is enabled atq for all a ∈ [[ϕ]].

In the general case of finite trees, the two views are symmetrical and do not affect
the expressiveness ofL (A) that is the set of all (finite) trees that are enabled at
some accepting state, unless additional restrictions are placed upon the class of
STAs under consideration. For top-down tree automata,Qa is typically assumed
to be a singleton set{q} andq is referred to as the initial state, whileQ0 is referred
to at the set of final states. For bottom-up tree automata the convention is the

opposite, i.e.,Q0 is assumed to be a singleton set{q} andq is referred to as the
initial state, whileQa is referred to at the set of final states. In order to avoid
possible confusion we will not use this terminology for STAs. The most important
subclasses of STAs are the following.

Definition 3. A is bottom-up-deterministicwhen|Q0| = 1 and, for allρ1, ρ2 ∈ R,
if rhs(ρ1) = rhs(ρ2) andgrd(ρ1) ∧ grd(ρ2) . ⊥ thenlhs(ρ1) = lhs(ρ2).

The following basic property holds for bottom-up-deterministic SFAs. Let

QA(t)
def
= {q ∈ Q | t ∈ L (A, q)} (for t ∈ U

t〈σ〉).

Proposition 1. If A is bottom-up-deterministic then|QA(t)| ≤ 1 for all t.

Proof. By structural induction over trees. Fort = ǫ the statement follows from
|Q0| = 1. For t = 〈a, t1, t2〉 assume|QA(ti)| ≤ 1. If for somei, QA(ti) = ∅, then
QA(t) = ∅, otherwiseQA(ti) = {qi} for someqi ∈ Q for i = 1, 2. Suppose there are
two rules (p, ϕ1, q1, q2) and (q, ϕ2, q1, q2) in Rwherea ∈ [[ϕ1]] ∩ [[ϕ2]]. Then p = q
sinceA is bottom-up-deterministic and thus|QA(t)| = |{p}| ≤ 1. �

Definition 4. A is top-down-deterministicwhen|Qa| = 1 and, for allρ1, ρ2 ∈ R, if
lhs(ρ1) = lhs(ρ2) andgrd(ρ1) ∧ grd(ρ1) . ⊥ thenrhs(ρ1) = rhs(ρ2).

For q̄ ∈ Q × Q let grdA(q̄) denote the disjunction of guards of all rules inA
whoseright-hand-sideis q̄:

grdA(q̄)
def
=

∨

ρ∈R, rhs(ρ)=q̄

grd(ρ)

Note that, if there is no rule inA whose right-hand-side is ¯q thengrdA(q̄) is⊥ (the
empty disjunction). We use the following property.

Definition 5. A is total when, for allq̄ ∈ Q× Q, grdA(q̄) ≡ ⊤.

The following basic property holds for total SFAs.

Proposition 2. If A is total then|QA(t)| ≥ 1 for all t.

Proof. Follows from the definition by structural induction over trees. �

The following construction is used for complementation of total bottom-up-
deterministic SFAs.

A
def
= (Q,Qǫ ,Q \ Qa,R)

Let elem({q})
def
= q.

Proposition 3. If A is total bottom-up-deterministic thenL (A) = ∁(L (A)).

Proof. By Propositions 1 and 2,t ∈ L (A) ⇔ elem(QA(t)) < Qa ⇔ t < L (A).
�

Two STAs A and B areequivalentwhenL (A) = L (B). Any STA can be
effectively transformed into an equivalent total STA by using the following trans-
formation whereqsink is a new state.

Tot(A)
def
= (Q∪ {qsink},Q0,Qa,

R∪ {(qsink,⊤, q̄) | q̄ ∈ Q× {qsink} ∪ {qsink} × Q∪ {(qsink, qsink)}}
∪ {(qsink,¬grdA(q̄), q̄) | q̄ ∈ Q× Q})

Note that, for all ¯q ∈ Q × Q, grdTot(A)(q̄) ≡ grdA(q̄) ∨ ¬grdA(q̄) ≡ ⊤, and for all
cases when one of the states is the sink state then there is a rule with guard⊤.
Thus,Tot(A) is total. The following properties hold.

Proposition 4. For all q ∈ Q, L (A, q) = L (Tot(A), q). If A is bottom-up-
deterministic thenTot(A) is bottom-up-deterministic.

Proof. Let q ∈ Q. ClearlyL (A, q) ⊆ L (Tot(A), q). For the directionL (A, q) ⊇
L (Tot(A), q) view A as a bottom-up STA and note that any use of a rule not in
R will introduce the sink state that cannot be eliminated. Next, assume thatA is
bottom-up-deterministic and let ¯q ∈ Q× Q. If (p, ϕ, q̄) ∈ R then for the new rule
(qsink,¬(ϕ∨ · · ·), q̄) it holds that¬(ϕ∨ · · ·)∧ ϕ ≡ ¬ϕ∧¬(· · ·)∧ ϕ ≡ ⊥. The other
cases are immediate. So bottom-up-determinism is preserved in Tot(A). �

It follows from the well-known fact in classical theory of finite tree automata
that top-down-deterministic STAs are less expressive thangeneral STAs, i.e., there
exists a tree language that is accepted by an STA that is not accepted by any top-
down-deterministic STA. However, as in the case of finite tree automata, bottom-
up-deterministic STAs have the same expressive power as general STAs. We lift
the classical powerset construction to STAs. LetP(X) denote the powerset of a
setX. Note thatP(∅) = {∅}. Thepowerset STAP(A) of an STAA is defined as
follows.

R(q1, q2)
def
= {ρ | ρ ∈ R, rhs(ρ) ∈ q1 × q2} (for (q1, q2) ∈P(Q) ×P(Q))

grd(S, q̄)
def
=

∧

ρ∈S

grd(ρ) ∧
∧

ρ∈R(q̄)\S

¬grd(ρ) (for S ∈P(R(q̄)))

lhs(S)
def
= {lhs(ρ) | ρ ∈ S} (for S ∈P(R))

P(A)
def
= (P(Q), {Q0}, {q ∈P(Q) | q ∩ Qa

, ∅},

{(lhs(S), grd(S, q̄), q̄) | q̄ ∈P(Q) ×P(Q), S ∈P(R(q̄))})

Note that the empty conjunuction is⊤ and thus, when̄q = (∅, _) or q̄ = (_, ∅) then
R(q̄) = ∅, grd(∅, q̄) = ⊤, and (∅,⊤, q̄) ∈ RP(A).

Theorem 1. For all STAsA:
(a)P(A) is total and bottom-up-deterministic;
(b) for all t, {QA(t)} = QP(A)(t);
(c) L (P(A)) = L (A).

Proof. Proof of (a). To show thatP(A) is total, fix a q̄ = (q1, q2) ∈ P(Q)2.
We need to show thatgrdP(A)(q̄) ≡ ⊤. Assume thatq1 , ∅ andq2 , ∅ or else
grdP(A)(q̄) ≡ ⊤ follows directly. LetR(q̄) = {ρi}i∈I and letϕi = grd(ρi) for i ∈ I .
We have that

grdP(A)(q̄) ≡
∨

{grd(S, q̄) | S ∈P(R(q̄))}

≡
∨

J∈P(I)

(
∧

i∈J

ϕi ∧
∧

i∈I\J

¬ϕi)

≡ ⊤

where the last equivalence follows from basic properties ofBoolean algebras,
sinceall possible Boolean combinations of truth assignments ofϕi are included in
the disjunction.

To show thatP(A) is bottom-up-deterministic, let̄q ∈P(Q) ×P(Q) and let
S1,S2 ∈P(R(q̄)) such thatS1 , S2. It suffices to show that

grd(S1, q̄) ∧ grd(S2, q̄) ≡ ⊥

which follows fromS1 , S2 and the definition ofgrd(S, q̄) because then there
exists a ruleρ ∈ R(q̄) such that [[grd(Si, q̄)]] ⊆ [[grd(ρ)]] and [[grd(S j, q̄)]] ⊆
[[¬grd(ρ)]] where{i, j} = {1, 2}.

Proof of (b). It follows from (a) and Propositions 1 and 4 that, for allt,
|QP(A)(t)| = 1. We prove (b) by induction over trees. The base caset = ǫ fol-
lows immediately from the definitions since{QA(ǫ)} = {Q0} = QP(A)(ǫ). For the
induction case supposet , ǫ and as IH assume that, fori = 1, 2, {QA(t[i])} =
{qi} = QP(A)(t[i]). Let q̄ = (q1, q2). The following statements are equivalent by
using the definitions and the IH for the equivalence between 2and 3. Letp ∈ Q.

1. p ∈ QA(t)

2. There exists (p, ϕ, q̄) ∈ R for someq̄ ∈ q1 × q2 such thatt[0] ∈ [[ϕ]].

3. There existsS ∈P(R(q̄)) such thatt[0] ∈ [[grd(S, q̄)]] and p ∈ lhs(S).

4. There existsq ∈P(Q) such thatp ∈ q andQP(A)(t) = {q}.

The equivalence of 1 and 4 for allp implies that{QA(t)} = QP(A)(t), that proves
(b). Finally, (c) follows from (b) by definition ofQa

P(A). �

The above constructions enable us to effectively complement langauges ac-
cepted by STAs. For complete closure under Boolean operations we use the fol-
lowing product construction that is a lifting of the standard product of finite tree
automata to STAs.

Definition 6. Let Ai = (Qi ,Q0
i ,Q

a
i ,Ri), for i = 1, 2, be STAs. Theproductof A1

andA2 is the following STA.

ρ1 × ρ2
def
= ((p1, p2), ϕ1 ∧ ϕ2, (q1, q2), (r1, r2)) (for ρi = (pi , ϕi, qi, r i) ∈ Ri)

A1 × A2
def
= (Q1 × Q2,Q

0
1 × Q0

2,Q
a
1 × Qa

2, {ρ1 × ρ2 | ρ1 ∈ R1, ρ2 ∈ R2})}

The following theorem implies that we can effectively intersect languages ac-
cepted by STAs.

Theorem 2. Let Ai = (Qi ,Q0
i ,Q

a
i ,Ri), for i = 1, 2, be STAs. Then:

(a) for all q1 ∈ Q1, q2 ∈ Q2, L (A1 × A2, (q1, q2)) = L (A1, q1) ∩L (A2, q2);
(b) L (A1 × A2) = L (A1) ∩L (A2);
(c) A1 × A2 is total if and only ifA1 andA2 are total;
(d) if A1 andA2 are bottom-up-deterministic then so isA1 × A2;
(e) if A1 andA2 are top-down-deterministic then so isA1 × A2.

Proof. We prove (a) by induction over trees. For the base case we have

ǫ ∈ L (A1 × A2, (q1, q2))⇔ q1 ∈ Q0
1 ∧ q2 ∈ Q0

2 ⇔ ǫ ∈ L (A1, q1) ∧ ǫ ∈ L (A2, q2)

For the induction case assumet = 〈a, t1, t2〉 and as IH assume that, forall (q1, q2) ∈
Q1 × Q2 andi = 1, 2,

ti ∈ L (A1 × A2, (q1, q2))⇔ ti ∈ L (A1, q1) ∩L (A2, q2).

The following statements are equivalent for all (p1, p2) ∈ Q1 × Q2, where IH is
used for equivalence between 2 and 3:

1. t ∈ L (A1 × A2, (p1, p2))

2. There exist (q1
1, q

1
2), (q

2
1, q

2
2) ∈ Q1 × Q2 andϕ1, ϕ2 such that

• t1 ∈ L (A1 × A2, (q1
1, q

1
2)) andt2 ∈ L (A1 × A2, (q2

1, q
2
2)) and

• ((p1, p2), ϕ1 ∧ ϕ2, (q1
1, q

1
2), (q

2
1, q

2
2)) ∈ RA1×A2 anda ∈ [[ϕ1 ∧ ϕ2]].

3. There existq1
1, q

2
1 ∈ Q1, q1

2, q
2
2 ∈ Q2 andϕ1, ϕ2 such that

• t1 ∈ L (A1, q1
1), t2 ∈ L (A1, q2

1), (p1, ϕ1, q1
1, q

2
1) ∈ R1, a ∈ [[ϕ1]]

• t1 ∈ L (A2, q1
2), t2 ∈ L (A2, q2

2), (p2, ϕ2, q1
2, q

2
2) ∈ R2, a ∈ [[ϕ2]].

4. t ∈ L (A1, p1) andt ∈ L (A2, p2)

Equivalence of 1 and 4 proves the induction case and implies (a). (b) follows from
(a) by definition ofQa

A1×A2
.

Proof of (c). Assume first thatA1 andA2 are total. Letq = ((q1
1, q

1
2), (q

2
1, q

2
2)) ∈

(Q1 ×Q2)2. We need to show thatgrdA1×A2
(q) ≡ ⊤. Let q1 = (q1

1, q
2
1), q2 = (q1

2, q
2
2).

AssumegrdA1
(q1) =

∨

i≤mϕi andgrdA2
(q2) =

∨

j≤nψ j. Then

grdA1×A2
(q) ≡

∨

i≤m, j≤n

ϕi ∧ ψ j ≡ grdA1
(q1) ∧ grdA2

(q2) ≡ ⊤ ∧ ⊤ ≡ ⊤

where the second equivalence holds by de Morgan’s laws and the third equivalence
holds by using the assumption. For the opposite direction suppose one ofA1 or A2

is not total, sayA1. Then there existsq1 ∈ Q2
1 such thatgrdA1

(q1) . ⊤ and thus,
for anyq2 ∈ Q2

2, grdA1
(q1)∧ grdA2

(q2) . ⊤. It follows that the product is not total.
Proof of (d). Assume thatA1 andA2 are bottom-up-deterministic. Then clearly

|Q0
1 × Q0

2| = 1. Consider any two rules ((p, q), ϕ1 ∧ ψ1, (p1, q1), (p2, q2)) and
((p′, q′), ϕ2 ∧ ψ2, (p1, q1), (p2, q2)) whereϕ1 ∧ ψ1 ∧ ϕ2 ∧ ψ2 . ⊥ in the product.
Thenϕ1 ∧ ϕ2 . ⊥ andψ1 ∧ ψ2 . ⊥ and, by using the assumption, it follows that
p = p′ andq = q′.

Proof of (e). Similar to the proof of (d), note that|Qa
1 × Qa

2| = 1. �

We use the following definition for constructing the union oftree languages.

Definition 7. Let Ai = (Qi ,Q0
i ,Q

a
i ,Ri), for i = 1, 2, be STAs. Thesumof A1 and

A2 is the following STA. Assume states are renamed so thatQ1 ∩ Q2 = ∅.

A1 + A2
def
= (Q1 ∪ Q2,Q

0
1 ∪ Q0

2,Q
a
1 ∪ Qa

2,R1 ∪ R2)

Proposition 5. L (A1 + A2) = L (A1) ∪L (A2).

Proof. Immediate from definitions. �

Let q be some fixed state and define

⊥STA
def
= ({q}, {q}, ∅, {(q,⊤, q, q)}),

⊤STA
def
= ({q}, {q}, {q}, {(q,⊤, q, q)}),

Ac def
= P(A).

Let STA(P(σ)) denote the set of all STAs for some given label theoryP(σ). Let
L (STA(P(σ))) denote the corresponding set of tree langauges.

Theorem 3. (STA(P(σ)),×,+, c,⊥STA,⊤STA) is an effective Boolean algebra.

Proof. By using Propositions 3 and 5, and Theorems 1 and 2. Note that all STA
constructions are effective. �

We say thatP(σ) is decidableif the problem of decidingϕ ≡ ⊥ for ϕ ∈ P(σ)
is decidable. A ruleρ ∈ RA such thatgrd(ρ) . ⊥ is feasible. We sayA is cleanif
all rules inRA are feasible.

Theorem 4. If P(σ) is decidable thenSTA(P(σ)) is decidable.

Proof. AssumeP(σ) is decidable and letA be an STA overP(σ). We need to
show thatL (A) = ∅ is decidable. First, eliminate infeasible rules fromA by
using the decision procedure forP(σ). It follows easily from the definitions that
L (A) is unchaged. Next, assumeA is clean, view all label predicates as abstract
symbols, and use a standard reachability (finite tree automata) algorithm to decide
the emptiness. �

An efficient incremental procedure for product of STAs uses DFS (Depth First
Search) and starts from the accepting states to build the product while eliminating
all the infeasible rules, thus also eliminating allunreachablestates. Moreover, a
backwards reachability algorithm can be applied to eliminate all rules that contain
dead-endsthat are reachable states at which no tree is accepted.

An STA A can also be extended with a set ofepsilon rules Rε ⊆ Q× Q, such
that if (p, q) ∈ Rε thenL (A, q) ⊆ L (A, p). As with finite tree automata, epsilon
rules can be effectively eliminated and do not affect the expressive power of STAs
or the results.

5 Symbolic Tree Transducers

In this section we introduce an extension of tree transducers through a symbolic
encoding of labels by predicates. The main advantage of the extension is succinct-
ness and modularity with respect to the background theory oflabels.

Definition 8. A symbolic tree transducer (STT) over(P(σ1),F (σ1 → σ2)) is a
tuple (Q, q0,R) whereQ is a finite set ofstates, q0 ∈ Q is the initial state, and
R= Rǫ ∪

⋃

k≥0 Rk is a finite set ofrules, where a rule inRǫ, or ǫ-rule, is:

• q
ǫ
−→ u whereq ∈ Q andu ∈ T(F (σ1→ σ2)) is ground,

and a rule inRk, or k-rank-rule, is:

• q
ϕ
−→ u whereq ∈ Q, ϕ ∈ P(σ1) andu ∈ T{q(yi)|q∈Q,1≤i≤k}(F (σ1→ σ2)).

Note that a 0-rank rule does not contain any termsq(yi), but it may be non-
ground (the symbolic labels may depend on the input).

A rule q
ϕ
−→ u ∈ Rk corresponds to a conditional transformation of an input tree

of rankk from q: e.g., ifk = 2, t = 〈a, t1, t2〉 ∈ U t〈σ1〉 anda ∈ [[ϕ]] then t can be
transformed to a treeu ∈ U t〈σ2〉 by applying all the symbolic labels inu to a and
by replacing, fori = 1, 2, each occurrence ofp(yi) in u by some transformation of
ti from p.

In the following we assume thatRk
= ∅ for k , 2, i.e., the definition is over

binary trees. Generalization to arbitrary ranks is straightforward. The formal
semantics is as follows. Lety be a fixed variable,Y = {q(y), q(y1), q(y2) | q ∈ Q}
andu ∈ TY(F (σ1 → σ2)). The stateq(y) will be used for referencing the root of
an input tree, the statesq(y1) andq(y2) are used to reference the left, respectively
right child of an input tree. Given a setX we writeP(X) for the powerset ofX.
Then⌊u⌋A is defined as the following function fromU t〈σ1〉 to P(U t〈σ2〉).

⌊ǫ⌋A(t)
def
= {ǫ} (1)

⌊q(y)⌋A(ǫ)
def
= {[[t]] | q

ǫ
−→ t ∈ Rǫ} (q ∈ Q) (2)

⌊q(y)⌋A(t)
def
= ∪{⌊u⌋A(t) | q

ϕ
−→ u ∈ R, t[0] ∈ [[ϕ]] } (t , ǫ, q ∈ Q) (3)

⌊q(yi)⌋A(t)
def
= ⌊q(y)⌋A(t[i]) (i ∈ {1, 2}, q ∈ Q) (4)

⌊〈 f , u1, u2〉⌋A(t)
def
= {〈[[f]](t[0]), u1, u2〉 | u1 ∈ ⌊u1⌋A(t), u2 ∈ ⌊u2⌋A(t)} (5)

Informally, the rules for⌊u⌋A(t) create the set of output terms obtained by filling
out the states inu with the set of terms produced by transformingt. WhenA is
clear from the context we often omit the indexA.

Example 8. Consider the STT A= ({q0, q1, q2}, q0,R) where

R= { q0
⊤
−→ 〈x, q2(y1), q1(y2)〉,

q1
x<0
−−→ 〈x− 10, q1(y2), ǫ〉, q1

ǫ
−→ ǫ,

q2
x>0
−−→ 〈x+ 10, ǫ, q2(y1)〉, q2

ǫ
−→ ǫ }

Let t = 〈−1, ǫ, 〈−3, ǫ, ǫ〉〉. Then⌊q1(y)⌋A(t) = {〈−11, 〈−13, ǫ, ǫ〉, ǫ〉} but t is not
accepted at q2 becauset[0] is not positive, so⌊q2(y)⌋A(t) = ∅. ⊠

The semantics ofA is the following function fromU t〈σ1〉 to P(U t〈σ2〉).

Definition 9. Thetransductionof A is the functionTA
def
= ⌊q0

A⌋A.

Example 9. Consider A andt from Example 8. ThenTA(t) = {〈−1, ǫ, 〈−13, ǫ, ǫ〉〉}.
⊠

Definition 10. Thedomain of A for qisD(A, q)
def
= {t | ⌊q⌋A(t) , ∅} and thedomain

of A is D(A)
def
= D(A, q0

A).

Given a ruleρ = q
γ
−→ u ∈ R, whereγ = ǫ or γ ∈ P(σ1), q is called the

left-hand-sideof ρ, denotedlhs(ρ), γ is called theguardof ρ, denotedgrd(ρ), and
u is called theright-hand-sideof ρ, denotedrhs(ρ). Two rulesρ1, ρ2 ∈ Rǫ overlap
whenlhs(ρ1) = lhs(ρ2). Two rulesρ1, ρ2 ∈ Rk overlapwhenlhs(ρ1) = lhs(ρ2) and
grd(ρ1) ∧ grd(ρ2) . ⊥.

We say that ak-rank rule islinear if, for 1 ≤ i ≤ k, yi occurs at most once in
its right-hand-side.

Definition 11. A is linear when the right-hand-sides of all rules inA are linear.

Definition 12. A is single-valuedwhen, for allt, |TA(t)| ≤ 1.

Definition 13. A is deterministicwhen it contains no two overlapping rules with
distinct right-hand-sides.

Example 10.A classical top-down finite state transducer is over a finite alphabet,
say{ f , g} with f binary and g unary, and contains rewrite rules such as

q(f (y1, y2)) −→ f (q1(y2), g(q2(y1))), q1(g(y)) −→ f (q2(y), q1(y)),

where q, q1, q2 are states that are considered as unary functions symbols and y1, y2

are variables. SupposeU σ1 = {c f , cg}. The corresponding STT has the same states
and corresponding rules

q
x=c f
−−−→ 〈c f , q1(y2), 〈cg, q2(y1)〉〉, q1

x=cg
−−−→ 〈c f , q2(y1), q1(y1)〉,

in R2 and R1 respectively. The second rule is not linear.

In the following examples, all STTs are single-valued and linear. The first ex-
ample illustrates some simple transformations overint-labeled binary trees. The
point is to illustrate how global STT properties depend on the theoryP(σ1) of
labels.

Example 11. Let the input and the output domains be binary trees with integer-
labels. Swap is an STT that swaps the left and the right subtrees if the label is
non-zero. Neg is an STT that multiplies all labels by -1, Double multiplies labels
by 2. Cut is an STT that cuts the left subtree y1 of 〈x, y1, y2〉 when x> 0 and cuts

the right subtree y2 when x< 0.

Swap = ({q}, q, {q
ǫ
−→ ǫ, q

x,0
−−→ 〈x, q(y2), q(y1)〉, q

x=0
−−→ 〈x, q(y1), q(y2)〉})

Neg = ({q}, q, {q
ǫ
−→ ǫ, q

⊤
−→ 〈−x, q(y1), q(y2)〉})

Double = ({q}, q, {q
ǫ
−→ ǫ, q

⊤
−→ 〈2x, q(y1), q(y2)〉})

Cut = ({q}, q, {q
ǫ
−→ ǫ, q

x>0
−−→ 〈x, ǫ, q(y2)〉, q

x<0
−−→ 〈x, q(y1), ǫ〉,

q
x=0
−−→ 〈x, q(y1), q(y2)〉})

Note that global properties such as commutativity and idempotence of the STTs
clearly depend on the theory of labels, e.g., that multiplication by a positive num-
ber preserves polarity, implying in this case for example that Swap and Neg com-
mute, Cut and Double commute, and Cut is idempotent. Note also that none of the
examples can be expressed as a finite tree transducer. Our results about composi-
tion and equivalence checking for STTs, that are discussed in the sections below,
allow to establish equivalences, such as Cut is equivalent to Swap followed by
Neg,Cut, then finally Swap. The equivalence is modulo the theory of arithmetic
that establishes logical equivalences, such as−x < 0 ≡ x > 0. ⊠

The following example illustrates a nontrivial use of the label theory. The STT
Encodein the example represents the string sanitizerAntiXSS.EncodeHtml from
version 2.0 of the Microsoft AntiXSS library. The sanitizertransforms an input
string into an Html friendly format. For each characterx in the input string, either
x is kept verbatim or encoded through numeric Html escaping. The example can
be extended to be part of a tree transducer over abstract syntax trees of Html where
certain parts of the tree (corresponding to strings) are encoded usingEncode.

Example 12. The example illustrates a single-stateint-list STT Encodel〈int〉/l〈int〉

that transforms an input list of characters represented by positive integers, into an
encoded, possibly longer, list of characters. We assume that ‘...’ below repre-
sents the integer encoding of the given fixed (ASCII) character, e.g. ‘a’ = 97 and
‘z’ = 122. Letϕ[x] be the following linear arithmetic formula:

(‘a’ ≤ x ≤ ‘z’) ∨ (‘A’ ≤ x ≤ ‘Z’) ∨
(‘0’ ≤ x ≤ ‘9’) ∨ x = ‘ ’ ∨ x = ‘.’ ∨ x = ‘,’ ∨ x = ‘-’ ∨ x = ‘_’

Encode contains the following seven rules (QEncode= {q}):

q
ǫ
−→ ǫ

q
ϕ[x]
−−−→ [x|q(y1)]

q
¬ϕ[x]∧0≤x<10
−−−−−−−−−−→ [‘&’ , ‘#’ , d0(x), ‘;’ |q(y1)]

q
¬ϕ[x]∧10n≤x<10n+1

−−−−−−−−−−−−−→ [‘&’ , ‘#’ , dn(x), . . . , d0(x), ‘;’ |q(y1)] (for 1 ≤ n ≤ 4)

where
di(x)

def
= ((x÷ 10i)%10)+ 48

is a term in linear arithmetic representing the (ASCII) character value of the i’th
decimal position of x, where÷ is integer division,+ is integer addition, and%
computes the integer remainder after dividing its first operand by its second. By
using that ‘&’ = 38 (i.e.,d1(‘&’) = ‘3’ and d0(‘&’) = ‘8’) and thatϕ[‘&’] does not
hold, it follows for example that

TEncode([‘&’ , ‘a’]) = {[‘&’ , ‘#’ , ‘3’ , ‘8’ , ‘;’ , ‘a’]}.

Note that Encode is deterministic because all the guards aremutually exclusive.
Thus, Encode is also single-valued. ⊠

The following example illustrates another class of common single-valued list-
transductions over aninfinite label domain that are captured by a nondeterministic
STT but not by any deterministic STT. While it is well-known that nondetermin-
istic tree transducers are more expressive than deterministic tree transducers, the
following example illustrates a case where a deterministictree transducer would
exist if the label domain wasfinite.

Example 13. The example illustrates anint-list STT Extract that extracts from a
given input list all subsequences of elements of the form[‘<’ , x, ‘>’], where x,
‘<’. For example

TExtract([‘<’ , ‘<’ , ‘a’ , ‘>’ , ‘<’ , ‘<’ , ‘>’ , ‘<’ , ‘b’ , ‘>’]) = {[‘<’ , ‘a’ , ‘>’ , ‘<’ , ‘b’ , ‘>’]}

Extract has states{q0, q1, q2, q3} where q0 is the initial state. Extract can be visu-
alized as follows, where a rule q

ǫ
−→ ǫ is depicted by marking q as a final state,

and a rule q
ϕ[x]
−−−→ [t1, . . . , tn|p(y1)], for n ≥ 0, is depicted as a transition from q to

p having labelϕ[x]/[t1, . . . , tn]:

q2

q0 q0 q1

q3

x = ‘<’/ǫ
x , ‘<’/[‘<’ , x]

x , ‘<’/ǫ

x = ‘<’/ǫ

x = ‘>’/[‘>’]

x , ‘<’ ∧ x , ‘>’/ǫ

x , ‘<’/ǫ x = ‘<’/ǫ

A deterministic version would need a state to remember each element x, ‘<’
from q1 in order to later decide whether to output or to delete the elements, which
depends on whether x is followed by ‘>’ or not. ⊠

5.1 Composition of STTs

The composition of two transductionsT1 andT2 is the transduction

T1 ◦ T2(t)
def
=

⋃

u∈T1(t)

T2(u)

Notice that◦ applies firstT1, thenT2, contrary to how◦ is used for standard
function composition. (The definition follows the convention used in [17].)

Composition is well defined if the sorts used in the range ofT1 matches the
sorts used for the domain ofT2. In [40], we prove the following composition
theorem:

Theorem 5. Let A be an STT over (P(σ1),F (σ1→ σ)), and letB be an STT over
(P(σ),F (σ→ σ2)).

(a) ThenA ◦ B is an STT over (P(σ1),F (σ1→ σ2)) s.t.TA ◦ TB = TA◦B.
(b) If A andB are linear thenA ◦ B is linear.

6 Single-valuedness and equivalence of STTs

Equivalence checking of finite transducers is undecidable when the possible num-
ber of outputs for a given input is unbounded [19, 25]. The case that is practically
more directly relevant for us is when transducers are single-valued, since this case
corresponds closely to functional transformations computed by concrete programs
over structured data (possibly over a restricted input domain). For (top-down)
tree transducers it is known that equivalence is decidable for the single-valued
case [10, 15], or more generally, for thefinite-valuedcase [36] (when there exists
k such that, for allt, |TA(t)| ≤ k). Here we investigate the more restricted equiva-
lence problem forsingle-valuedSTTs as the practically most common case, while
the generalization to finite-valued STTs is left as a future research topic.

STTsA andB areequivalentif TA = TB. Equivalence ofA andB reduces to
two separate decision problems:

• Domain equivalence: D(A) = D(B).

• Partial equivalence A� B: for all t ∈ D(A) ∩D(B), TA(t) = TB(t).

Note that both problems are independent of each other and together imply equiv-
alence. Partial equivalence in the single-valued case can be reduced to deciding
single-valuedness of STTs. Similar to STAs, STTs can be extended to haveep-
silon rules, that are rules of the formp −→ q and, for allt, ⌊p⌋A(t) ⊇ ⌊q⌋A(t).

Definition 14. Let A andB be STTs. AssumeQA ∩ QB = ∅ and letq be a new
state. Thesumof A andB is the STT

A+ B
def
= (QA ∪ QB ∪ {q}, q,RA ∪ RB ∪ {q −→ q0

A, q −→ q0
B}).

The following proposition follows directly from definitions.

Proposition 6. For all t, TA+B(t) = TA(t) ∪TB(t).

Epsilon rules can be effectively eliminated and in the following we consider
only STTs without epsilon rules.

6.1 Domain Equivalence.

Domain equivalence of STTs uses STAs. We use the following definition for
u ∈ T{q(y1),q(y2)|q∈Q}(F (σ1→ σ2)):

St(yi , u)
def
= {q | q(yi) occurs inu}.

Example 14. St(y1, f (q1(y1), f (q2(y2), q3(y1)))) = {q1, q3}. ⊠

Definition 15. Thedomain automatonfor STT A is the STAd(A):

d(A)
def
= (Q,Q0, {{q0

A}},R),

where,Q0,Q ⊆P(QA) andR⊆ Q× P(σ1) × Q× Q are least such that

1. ∅ ∈ Q, {q0
A} ∈ Q, ∅ ∈ Q0, (∅,⊤, ∅, ∅) ∈ R,

2. if q = {q1, . . . , qn} ∈ Q then

(a) if, for all i, 1≤ i ≤ n, there is a ruleqi
ϕi
−→ ui in R2

A then,

i. let, for j = 1, 2, p j =
⋃n

i=1 St(yj , ui),

ii. (q,
∧n

i=1 ϕi, p1, p2) ∈ R, p1, p2 ∈ Q,

(b) if, for all i, 1≤ i ≤ n, there is a ruleqi
ǫ
−→ ei in Rǫ

A, thenq ∈ Q0.

Note that the state∅ ∈ Qd(A) is used when an input subtreeyj does not occur in
the right-hand-side of a rule inRA, thus any input-subtree is allowed, i.e.,p j = ∅

andL (d(A), p j) = U t〈σ1〉. Note also that all states inQd(A) are singletons when
A is linear, it is only when a nonlinear rule occurs when non-singleton states are
introduced intoQd(A) in step 2(a)ii. Moreover,d(A) can be implemented using
DFS and where step 2(a)ii is performed only if the conjuctionof the guards is
feasible, thus guaranteeing that the resulting STA is cleanand unreachable states
are pruned away.

Proposition 7. Let A be an STT. Then

(a) For allq ∈ Qd(A), L (d(A), q) =











⋂

q∈q D(A, q), if q , ∅;

U t〈σ1〉, if q = ∅.
(b) L (d(A)) = D(A).

Proof. We prove (a). The case whenA is linear follows directly from the defi-
nitions, then the rules ind(A) correspond to the reachable rules ofA and where

the output terms are omitted. Suppose there is a nonlinear rule q
ϕ
−→ u, sayq1(y1)

andq2(y1) occur inu, whereq1 , q2, and an input tree〈a, t1, t2〉 is transformed
at q wherea ∈ [[ϕ]]. Then t1 is simultaneously transformed fromq1 andq2 and
must therefore be enabled from both states at the same time, i.e., ⌊q1⌋A(t1) , ∅
and⌊q2⌋A(t1) , ∅. This corresponds tot1 being enabled at state{q1, q2} in d(A).
Formally, (a) follows by induction over trees. Statement (b) follows from (a) by
choosingq = {q0

A}. �

Proposition 8. Domain equivalence of STTs is decidable ifP(σ1) is decidable.

Proof. By using Theorem 4 and Proposition 7. �

Note that the size ofd(A) is at most singly expontential in the size ofA and
the size of guards grows at most linearly in the size ofA.

For many practical considerations, domain equivalence ofA andB is often not
as relevant as partial equivalence because the transductions ofA andB are known
to correspond tototal functions fromU t〈σ1〉 to U t〈σ2〉, i.e., D(A) = D(B) =
U t〈σ1〉, reflecting arobustnessassumption of the underlying programs.

6.2 Single-valuedness.

We design an algorithm for deciding single-valuedness of STTs. Partial equiva-
lence of single-valued STTs reduces effectively to single-valuedness of STTs. For
this reduction we make use of the following construction.

Definition 16. Let A be an STT andD and STA. AssumeFD = {q0
D}. Thedomain

restrictionof A with respect toD is an STTA↾D = (Q, q0,R) with Q = {〈p, q〉 |
p ∈ QA, q ∈ QD} as a new set of states,q0

= 〈q0
A, q

0
D〉, and

R= {〈p, q〉
ϕ∧ψ
−−−→ u⊗ (q1, q2) | 〈p, q〉 ∈ Q, p

ϕ
−→ u ∈ RA, (q, ψ, q1, q2) ∈ RD}

whereu⊗ (q1, q2) denotes the term obtained fromu by replacing all occurences of
r(y1) (resp.r(y2)) for r ∈ QA with 〈r, q1〉(y1) (resp.〈r, q2〉(y2)).

Example 15. f (f (r1(y1), r2(y2)), f (r3(y1), r1(y2))) ⊗ (q1, q2)
= f (f (〈r1, q1〉(y1), 〈r2, q2〉(y2)), f (〈r3, q1〉(y1), 〈r1, q2〉(y2))). ⊠

Similar to product and domain automaton constructions, domain retriction can
be implemented most efficiently using DFS that avoids unreachable states and
keeps the resulting STT clean. The following property follows from the definition.

Proposition 9. Let A be an STT andD and STA. Then
(a)D(A↾D) = D(A) ∩L (D);
(b) for all t ∈ D(A↾D), TA↾D(t) = TA(t).

Proof. By induction over trees. �

We use the following proposition to reduce partial equivalence of single-valued
STTs to single-valuedness of an STT.

Proposition 10. Let A andB be single-valued STTs. Then
A � B iff (A+ B)↾(d(A) × d(B)) is single-valued.

Proof. Assume thatA andB are single-valued STTs. The following statements
are equivalent by making use of the properties proved above.

1. A � B

2. Fort ∈ D(A) ∩D(B) TA(t) = TB(t)

3. Fort ∈ L (d(A) × d(B)) TA(t) = TB(t)

4. Fort ∈ L (d(A) × d(B)) |TA+B(t)| = 1

5. (A+ B)↾(d(A) × d(B)) is single-valued.

The single-valuedness assumption is used for equivalence of 3 and 4. �

We now develop an algorithm for deciding single-valuednessof STTs. Let
A = (Q, q0,R) be a fixed STT. In the following we assume thatP(σ1) is decidable.
Above, we did not make any assumptions about the symbolic labels. In the fol-
lowing we need to strengthen the decidability assumption toallow us to effectively
reason about labels. The following properties are assumed to be decidable:

• For f , g ∈ F (σ1→ σ2) andϕ ∈ P(σ1), f andg areequivalent forϕ:

f ≡ϕ g
def
= ∀ a ∈ [[ϕ]] ([[f]](a) = [[g]](a)).

• For f ∈ F (σ1→ σ2) andϕ ∈ P(σ1), f is constant forϕ:

Constϕ(f)
def
= ∀ a, b ∈ [[ϕ]] ([[f]](a) = [[f]](b)).

• If Constϕ(f) then find a witnessb, such that, fora ∈ [[ϕ]], [[f]](a) = b.

Example 16. Suppose for example thatF (int → int) is the set of quantifier free
linear arithmetic terms with one variable x andP(int) is the set of quantifier
free linear arithmetic formulas with one variable x. Then Constϕ(f) holds iff the
following quantifier free linear arithmetic formula (with two variables) isunsatis-
fiable: ϕ(x1) ∧ ϕ(x2) ∧ f (x1) , f (x2). Note also that f≡ϕ g holds iff the formula
ϕ(x)∧ f (x) , g(x) is unsatisfiable, that formula is inP(int) since a single variable
is sufficient. ⊠

SinceA is clear from the context, we writeD(q) for D(A, q) and

D(q)
def
=

⋂

q∈q

D(q) (for nonemptyq ⊆ Q),

i.e.,D(q) is the set of trees that aresimultaneouslyenabled at all states inq. Let
y be a fixed variable of sortt〈σ1〉. For a termu ∈ T{q(y)|q∈Q}(F (σ1→ σ2)) we let

D(u)
def
= D(St(y, u)).

i.e.,D(u) is the set of trees that aresimultaneouslyenabled at all statesq such that
q(y) occurs inu.

Definition 17. Given a nonempty subsetq of Q andq ∈ q we say thatq is constant
for q when|

⋃

{⌊q(y)⌋A(t) | t ∈ D(q)}| = 1.

Example 17. The state q1 is constant for{q0, q1} in Swap1.

Swap1 =

















{q0, q1}, q0,















q0
ǫ
−→ ǫ, q0

x,0
−−→ 〈x, q1(y2), q0(y1)〉,

q0
x=0
−−→ 〈x, q0(y1), q1(y2)〉, q1

⊤
−→ 〈0, ǫ, 〈1, ǫ, ǫ〉〉































⊠

In other words,q is constant forq, if independent from the input tree inD(q),
the resulting transformation fromq is some fixed output tree. It also follows that
D(q) is non-empty. We can effectively decide ifq is constat forq and construct
a concrete output tree, by using a DFS procedure. We omit the details of this
procedure but note that the decision procedure forConstϕ(f) is used.

The following definition is used as a key notion in the single-valuedness algo-
rithm.

Definition 18. Let u andv be terms, andq a nonempty subset ofQ such that all
states inu andv occur inq. Thenu is 1-equal to v forq, is defined as

u
1
=q v

def
= ∀t(t ∈ D(q) ⇒ |⌊u⌋(t) ∪ ⌊v⌋(t)| = 1)

Note that 1-equality is not reflexive because⌊u⌋(t) may contain more than
one element; 1-equality is a generalization of single-valuedness of STTs because
q0(y)

1
={q0} q0(y) holds precisely whenA is single-valued.

We will in the following define a notion of a most general 1-unifier (1-mgu)
and then develop an algorithm that finds the 1-mgu when they exist. A subterm
q(yi) is treated as avariable in the following definitions. That is, we treatq1(y1),
q2(y1), q1(y2), q2(y2) as four different variables. This convention allows us to form
substitutions that map variables of the formq(yi) to output terms. The variable
q(yi) is called ayi-output variable.

Definition 19. The substitutionθ is a 1-unifier foru, v andψ if uθ andvθ have the
same tree structure, and the symbolic labels are equal modulo the constraintψ. In
other words, for each pathπ to a symbolic labelvθ|π ≡ψ uθ|π.

Definition 20. The substitutionθ is a most general 1-unifier (1-mgu) foru, v and
ψ whenθ is a 1-unifier and also every other 1-unifierθ′ is an instance ofθ.

Unlike standard unification of first-order terms, the unification problem for
STTs is not unitary. There can be many different incompatible unifiers without a
most general unifier. The following algorithm succeeds onlywhen there is a most
general unifier.

Definition 21. Two tree termsu andv 1-unify forψ with the substitutionθ when
the following conditions hold. Letqi = St(yi , u) ∪ St(yi , v) for i = 1, 2. Initializeθ
to the empty substitution [].

1. u andv unify in the usual sense with unifierθ, if all symbolic labels are
assumed identical.

2. For all positionsπ such thatu|π andv|π are symbolic labels,u|π ≡ψ v|π.

3. For all positionsπ in u andv such thatu|π is ay1-output variablep(y1) then
(symmetrically fory2-output variables):

(a) If v|π contains a symbolic label that is not constant forψ thenfail , else
assume that all symbolic labels inv|π are constant by replacing each
symbolic labelf in v|π with [[f]](a) for somea ∈ [[ψ]]

(b) If v|π contains ay2-output variableq(y2), then if q is not constant for
q2 then fail , else assume thatv|π contains noy2-output variables by
replacing them with the corresponding fixed output trees.

(c) If v|π contains noy1-output variables, thenv|π is ground andp must be
constant forq1 and the value must be equal to [[v|π]].

(d) If p(y1) occurs properly under a function application inv|π, thenfail ,
else add toθ the substitutionp(y1) 7→ v|π. Apply the substitutionθ to
u andv and continue.

Whenu andv 1-unify for ψ, the mappingθ is called a1-unifier of u and v. The
algorithm ensures that it maps fromyi-output variables to terms that have con-
stant symbolic labels and contain at least oneyi-output variable and noyj-output
variables, where{i, j} = {1, 2}.

Example 18.The terms〈2x, q1(y1), q2(y2)〉 and〈3x, q1(y1), q2(y2)〉 1-unify forψ ≡
x = 0. They don’t 1-unify forψ ≡ x > 0. The terms〈2x, q1(y1), q2(y2)〉 and
〈3x, q1(y1), 〈1, ǫ, ǫ〉〉 1-unify forψ ≡ x = 0 when the transition for q2 derives a

term that is equal to〈1, ǫ, ǫ〉 underψ. For example: q2
⊤
−→ 〈x+ 1, ǫ, ǫ〉.

The terms〈max(0, x), q1(y1), q2(y2)〉 and 〈0, 〈x, q2(y1), q3(y2)〉, q3(y1)〉 1-unify

for ψ ≡ x ≤ 0 when q3 is given by q3
⊤
−→ 〈0, ǫ, ǫ〉. The 1-unifier is the substitution

[q1(y1) 7→ 〈x, q2(y1), 〈0, ǫ, ǫ〉〉]. It would also 1-unify even if q3 does not derive the
constant term, but as long as q3 is constant for{q2, q3}.

The terms f(x, q1(y1), g(q2(y2))) and f(x, g(q2(y1)), q1(y2)) 1-unify with the sub-
stitution[q1(y1) 7→ g(q2(y1)), q1(y2) 7→ g(q2(y2))].

The terms f(x, q1(y1), g(q1(y2))) and f(x, g(q2(y1)), q2(y2)) 1-unify with the sub-
stitution[q1(y1) 7→ g(q2(y1)), q2(y2) 7→ g(q1(y2))].

Consider the STT A= ({p0, p1, p2}, p0,R) where

R= { p0
⊤
−→ 〈x, p1(y1), p2(y1)〉,

p1
x≥0
−−→ 〈x, p1(y1), p1(y2)〉, p1

ǫ
−→ ǫ,

p2
x≤0
−−→ 〈x, p2(y1), p2(y2)〉, p2

ǫ
−→ ǫ }

Let u be〈x, p1(y1), p2(y1)〉 and v be〈−x, p2(y1), p2(y1)〉. Then u and v 1-unify for
ψ : x = 0. In the algorithm for 1-unification, we see that the setq1 is {p1, p2}

so we are only considering trees that are accepted by following both p1 and p2.
The constraint x= 0 implies that the outputs generated from p1 and p2 will be
identical. ⊠

The single-valuedness algorithm is a constraint saturation procedure over 1-
equalities. The set of constraints is represented as a mapC from Q ×P(Q) to
terms inT{q(y)|q∈Q}(F (σ1→ σ2)) with constant symbolic labels. Initially

C = {(q0, {q0}) 7→ q0(y)}.

A constraint ((p, q) 7→ u) ∈ C stands for the assertionq = D(u) and p(y)
1
= u.

The intuition is as follows: The statep is the current state we check for single-
valuedness and we check it over a specialization over a partial outputt with the

statesq. All these states should produce the same output modulo the guards on
transitions overq. We will ensure that all statesq in t are applied to either onlyy
(the variable used for the root symbol) or onlyy1 (variable for the left sub-term)
or only y2 (variable for the right sub-term). There is a frontierF ⊆ Q ×P(Q)
of unexploredstate combinations. Initially F = {(q0, {q0})}. The general idea is
that constraints are added toC for unexplored state combinations by exhaustively
considering all rules from the states in the state combination. When a conflict of
1-equalities arises, it follows thatA is not single-valued. If no conflicts arise,C
gets saturated (a fixpoint is reached) and it follows thatA is single-valued. The
detailed description is as follows.

1. Choose (p, q) ∈ F and remove (p, q) from F. Let q = {q1, . . . , qk} and
t = C(p, q).

2. For each combination of rulesp
ǫ
−→ u, q1

ǫ
−→ u1, . . . , qk

ǫ
−→ uk ∈ Rǫ:

• Let θ = {q1(yi) 7→ u1, . . . , qk(yi) 7→ uk}, whereyi is eithery, y1 or y2.

• If [[u]] , [[tθ]] then fail .

3. For each combination of rulesp
ϕ
−→ u, q1

ϕ1
−→ u1, . . . , qk

ϕk
−→ uk ∈ R2 such that

ψ = ϕ ∧ ϕ1 ∧ · · · ∧ ϕk . ⊥:

• Let v = t{q1(yi) 7→ u1, . . . , qk(yi) 7→ uk}, whereyi is eithery, y1 or y2.

• If u andv do not 1-unify forψ thenfail .

• Let θ be a 1-mgu foru andv. Notice that each mapping inθ will either
usey1 or y2, but not both.

• Call Insert(θ, ψ), which is defined recursively below:

The procedure Insert(θ, ψ) is defined:

1. For each (p(yi) 7→ w(yi)) ∈ θ do:

• Let q beSt(y1,w).

• If C contains no constraint for (p, q) then add the constraint (p, q) 7→ w
to C; add (p, q) to the frontierF.

• Otherwise,C contains a constraint (p, q) 7→ w′. If w does not 1-unify
with w′ for ψ then fail else letθ′ be the 1-mgu ofw andw′, replace
(p, q) 7→ w′ by (p, q) 7→ wθ′, and call Insert(θ′, ψ).

The algorithm is a constructive proof of the following Proposition.

Proposition 11. Single-valuedness of STTs is decidable ifP(σ1) is decidable.

Correctness of the algorithm is established by checking that it implements
an exhaustive case analysis for checking single-valuedness. The algorithm, and
in particular the procedure Insert terminates as one shouldexpect: Let us first
notice that the algorithm maintains an invariant ((p, q) 7→ t(yi)) ∈ C implies that
St(yi , t) = q and thatt only contains eithery1, y2 or y variables. Now notice that
a 1-unifier substitution produces termst(yi) with fewer states than the the states
from w andw′. In other words we have the descending measure:St(yi , t(yi)) ⊂
St(yi ,w) = St(yi ,w′) = q.

The resulting algorithm works for single-valued symbolic tree transducers.
This is more general than the algorithm that we developed in [40], which checked
1-equality of single-valuedlinear symbolic tree transducers. That algorithm visits
at most|QA| × |QB| states. The current algorithm fornon-linear symbolic tree
transducers visits at most|(QA∪QB)×P(QA∪QB)| states. It is an open problem
whether this is the tightest upper bound.

Propositions 8 and 11 imply:

Corollary 1. If P(σ1) is decidable then the question whether two STTs are single
valued and equivalent is decidable.

The algorithm can be implemented using any SMT solver or constraint solver
as an oracle that supports satisfiability checking and modelgeneration (that is
needed above). In our implementations we have used the SMT solver Z3 [8].

The equivalence algorithm for two symbolic transducers checks the logical
statement∀x . A(x) ≡ B(x) for validity. Dually, it checks satisfiability of a formula
of the formA(x) . B(x). Can we also check satisfiability of formulas of the form
A(x) ≡ B(x)? The answer turns out to beno as the following simple theorem
establishes.

Theorem 6. Satisfiability of equality is undecidable for finite alphabet tree trans-
ducers.

Proof. Recall the PCP (Post’s Correspondence Problem). Givenv1, . . . , vk and
w1, . . . ,wk wherevi ,wi ∈ Σ

∗ (for some output alphabetΣ). The question, does
there existi1, . . . , im, m > 0, such thatvi1vi2 . . . vim = wi1wi2 . . .wim, is known to be
undecidable.

We use the following encoding into PCP: LetΣ′ be the input alphabet{1, . . . , k}

and letA have statesq0 andq1 (q1 is final), and transitions{q0
i/vi
−−→ q1, q1

i/vi
−−→ q1},

for eachi. Likewise, letB have statesp0 and p1 (p1 is final), and transitions

{p0
i/wi
−−→ p1, p1

i/wi
−−→ p1}, for eachi. Then∃x(A(x) ≡ B(x)) iff the given PCP

instance has a solution Note that bothA andB are deterministic. �

6.3 Checking Non-equivalence Symbolically

Let us recall from [40] also how we can formulate a simple semi-decision pro-
cedure for checking non-equivalence of symbolic tree transducers. It does not
assume single-valuedness. Here, we formulate a version that applies to non-linear
symbolic transducers. Given a transducerA, that does not containǫ loops, we can
encode a predicateAccA(q0

A, t, s, n), such thatA takes the termt and produces the
term s with at mostn transitions along any given branch. Non-equivalence can
then be checked by showing that

∃t, s, n .

(

(AccA(q0
A, t, s, n) ∧ ¬AccB(q0

B, t, s, n))
∨ (¬AccA(q0

A, t, s, n) ∧ AccB(q0
B, t, s, n))

)

.

The definition is given by:

AccA(q, f (t0, t1, t2), s, n) ≡
∨

τ∈RA



































n > 0∧ ϕ[t0]∧
s= u[t0, ℓ1(s), . . . , ℓk(s)]∧

k
∧

i=1

AccA(qi , t ji , ℓi(s), n− 1)



































AccA(q, ǫ, ǫ, n) ≡ true

where, as usual,τ is of the formq(f (x, y1, y2))
ϕ
−→ u[x, q1(yj1), q2(yj2), . . .qk(yjk)],

j i is either 1 or 2, andℓi(s) selects the subterm ofs corresponding to the path
supplied inu. The formulas produced by unfoldingAccA are always ground, and
satisfiability of the formulas can be checked using the background label theory
together with the theory of algebraic data-types. For single valued linear STTs we
can fix n to |QA × QB| to bound unfolding; for general STTs we can convert the
definition into first-order formulas whose instantiations correspond to step-wise
unfoldings of the transition relation.

7 Conclusions

We investigated the classes of Symbolic Tree Automata and more generally Sym-
bolic Tree Transducers as a generalization of tree automataand transducers over
finite alphabets. We established that symbolic tree automata form an effective
Boolean algebra, provided the underlying symbolic domain is also effective. As
a side-effect it is possible to define tree automata over alphabets of tree-automata
ad infinum. We also established, by providing an algorithm, that equivalence of
single-valued symbolic tree transducers is decidable. This settled a question left
open in [40].

A generalization of our equivalence checking algorithm to the finite-valued
case is not expected to be straightforward, because the corresponding general-
ization of decidability of equivalence for finite-valued tree transducers [36] uses
results from combinatorics and is mathematically challenging.

We are using symbolic automata and symbolic transducers in applications re-
lated to web-sanitizers and test case generation. There arelikely many other ap-
plications of symbolic analysis of automata and transducers; and our experience
so far indicates that coupling the analysis of the symbolic automata and trans-
ducers with SMT solvers offers a compelling combination. There are also many
interesting problems to work on in this area. For example, ongoing work includes
addingregistersto symbolic string transducers. Registers allow storing characters
from the input for an indefinite number of transitions. The resulting automata and
transducers are strictly more general, and without furtherrestrictions, are Turing
complete. So a challenge is identifying such extensions that are both useful and
admit practical analysis.

References

[1] R. Alur and P. Cerný. Streaming transducers for algorithmic verification of single-
pass list-processing programs. In38th ACM SIGACT-SIGPLAN Symposium on
Princples of Programming Languages (POPL’11), pages 599–610. ACM, 2011.

[2] R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science,
126:183–235, 1994.

[3] A. Arnold and M. Dauchet. Bi-transductions de forêts. InProc. 3rd International
Colloquium on Automata, Languages and Programming (ICALP’76), pages 74–86,
Edinburgh, 1976. Edinburgh University Press.

[4] B. S. Baker. Composition of top-down and bottom-up tree transductions.Inform.
and Control, 41:186–213, 1979.

[5] C. Choffrut. Minimizing subsequential transducers: a survey.Theoretical Computer
Science, 292(1):131–143, 2003.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

[7] B. Courcelle and P. Franchi-Zannettacchi. Attribute grammars and recursive pro-
gram schemes.Theoretical Computer Science, 17:163–191, 1982.

[8] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. InTACAS’08, LNCS.
Springer, 2008.

[9] J. Engelfriet. Bottom-up and top-down tree transformations – a comparison.Math.
Systems Theory, 9:198–231, 1975.

http://www.grappa.univ-lille3.fr/tata

[10] J. Engelfriet. Some open questions and recent results on tree transducers and tree
languages. In R. V. Book, editor,Formal Language Theory, pages 241–286. Aca-
demic Press, New York, 1980.

[11] J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and mso
definable tree translations.Information and Computation, 154:34–91, 1999.

[12] J. Engelfriet and S. Maneth. A comparison of pebble treetransducers with macro
tree transducers.Acta Informatica, 39:2003, 2003.

[13] J. Engelfriet, S. Maneth, and H. Seidl. Deciding equivalence of top-down XML
transformations in polynomial time.Journal of Computer and System Science,
75(5):271–286, 2009.

[14] J. Engelfriet and H. Vogler. Macro tree transducers.J. Comp. and Syst. Sci., 31:71–
146, 1985.

[15] Z. Esik. Decidability results concerning tree transducers.Acta Cybernetica, 5:1–20,
1980.

[16] Z. Fülöp. On attributed tree transducers.Acta Cybernetica, 5:261–279, 1981.

[17] Z. Fülöp and H. Vogler.Syntax-Directed Semantics: Formal Models Based on Tree
Transducers. EATCS. Springer, 1998.

[18] F. Gécseg and M. Steinby.Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[19] T. Griffiths. The unsolvability of the equivalence problem forΛ-free nondetermin-
istic generalized machines.J. ACM, 15:409–413, 1968.

[20] Y. Gurevich, M. Veanes, and C. Wallace. Can abstract state machines be useful in
language theory?Theor. Comput. Sci., 376(1):17–29, 2007.

[21] W. Hodges.Model theory. Cambridge Univ. Press, 1995.

[22] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M.Veanes. Fast and precise
sanitizer analysis with Bek. In 20th USENIX Security Symposium, pages 1–16, San
Francisco, CA, August 2011. USENIX Association.

[23] P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for string anal-
ysis. In R. Jhala and D. Schmidt, editors,VMCAI 2011, volume 6538 ofLNCS,
pages 248–262. Springer, 2011.

[24] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, 1979.

[25] O. Ibarra. The unsolvability of the equivalence problem for Efree NGSM’s with
unary input (output) alphabet and applications.SIAM Journal on Computing, 4:524–
532, 1978.

[26] K. Inaba and H. Hosoya. Multi-return macro tree transducers. InProc. 6th ACM
SIGPLAN Workshop on Programming Language Technologies forXML, San Fran-
cisco, California, January 2008.

[27] N. Klarlund. Mona & Fido: The Logic-Automaton Connection in Practice. InCSL,
pages 311–326, 1997.

[28] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. InProceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL’10, pages 495–508. ACM, 2010.

[29] G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi. Normalization
of sequential top-down tree-to-word transducers. InLanguage and Automata Theory
and Applications (LATA), LNCS, pages 352–363. Springer, 2011.

[30] A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The power of extended top-down
tree transducers.SIAM J. Comput., 39:410–430, June 2009.

[31] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. InProc.
19th ACM Symposium on Principles of Database Systems (PODS’2000), pages 11–
22. ACM, 2000.

[32] G. V. Noord and D. Gerdemann. Finite state transducers with predicates and identi-
ties. Grammars, 4:263–286, 2001.

[33] C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional programs with
pattern-matching algebraic data types. In38th ACM SIGACT-SIGPLAN Symposium
on Princples of Programming Languages (POPL’11), pages 587–598. ACM, 2011.

[34] T. Perst and H. Seidl. Macro forest transducers.Information Processing Letters,
89(3):141–149, 2004.

[35] W. C. Rounds. Context-free grammars on trees. InProc. ACM Symp. on Theory of
Comput., pages 143–148. ACM, 1969.

[36] H. Seidl. Equivalence of finite-valued tree transducers is decidable.Math. Systems
Theory, 27:285–346, 1994.

[37] J. W. Thatcher. Generalized sequential machine maps.J. Comput. Syst. Sci., 4:339–
367, 1970.

[38] N. Tillmann and W. Schulte. Parameterized unit tests. In ESEC/FSE’05, pages 253–
262. ACM, 2005.

[39] M. Veanes and J. Barklund. On the number of edges in cycletrees. Information
Processing Letters, 57:225–229, 1996.

[40] M. Veanes and N. Bjørner. Symbolic tree transducers. InE. M. Clarke, I. Vir-
bitskaite, and A. Voronkov, editors,Perspectives of System Informatics (PSI’11),
LNCS. Springer, 2011.

[41] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolicregular expression
explorer. InThird International Conference on Software Testing, Verification and
Validation (ICST 2010), pages 498–507. IEEE Computer Society, 2010.

[42] M. Veanes, N. Tillmann, and J. de Halleux. Qex: SymbolicSQL query explorer. In
LPAR-16, LNAI. Springer, 2010.

[43] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors,Handbook of
Formal Languages, volume 1, pages 41–110. Springer, 1997.

	Introduction
	Parametricity
	Automata and Transducers
	Symbolic Automata and Transducers

	Preliminaries
	Background Universe

	Symbolic tree automata
	Symbolic Tree Transducers
	Composition of STTs

	Single-valuedness and equivalence of STTs
	Domain Equivalence.
	Single-valuedness.
	Checking Non-equivalence Symbolically

	Conclusions

