
Choosing Beacon Periods to Improve Response Times
for Wireless HTTP Clients ∗

Suman Nath Zachary Anderson
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

{sknath,zra,srini}@cs.cmu.edu

Srinivasan Seshan

ABSTRACT
The IEEE 802.11 wireless LAN standard power-saving mode
(PSM) allows the network interface card (NIC) to periodi-
cally sleep between receiving data. In this paper, we show
that 802.11 PSM performs poorly due to the fact that an
access point is unable to adapt to the requirements of each
client. Therefore, we propose a novel power saving algo-
rithm, named Dynamic Beacon Period, where the access
point uses different beacon periods for different clients. Dur-
ing HTTP downloads, each client carefully chooses a good
beacon period for itself, based on the RTT of its current
connections, and informs the access point of this beacon
period. This technique enables download times for Web
pages that are comparable to those without any power-
saving and provides energy savings comparable to the stan-
dard 802.11 PSM. We show, using real-world measurements
and emulation-based experiments, that it is feasible for both
clients and access points to efficiently support such per-client
beacon periods, instead of having a common, static beacon
for all clients. The solution is simple enough that it can be
implemented with just small enhancements to the existing
802.11 specification.
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C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design—Wireless communication
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1. INTRODUCTION
The wireless network interface card (NIC) is a signifi-

cant contributor to the total energy consumption on many
battery-powered mobile computing devices. As a result,
minimizing the energy usage of the NIC can significantly
improve the battery life of a mobile device. One way to
address this issue is to transition the NIC to a lower-power
sleep mode when data is not being received or transmitted.
For example, the popular IEEE 802.11 wireless LAN stan-
dard specifies a power-saving mode (PSM) that periodically
turns the NIC off to save energy, and on to communicate [7].
When 802.11 PSM is enabled, the access point buffers data
destined for the client/mobile device. At the end of every
beacon period, which is typically 100ms (but can be set to
a multiple of 100ms), the client’s NIC wakes up to receive
a beacon from the access point. The beacon contains infor-
mation about the data buffered by the access point for the
client while it’s NIC has been off. If the client finds that the
access point has data buffered for it, it pulls that data.

Past work [8] has shown that the static power-saving algo-
rithm used by 802.11 PSM (we call it SBP for static beacon
period hereafter) is not optimized for browsing the Internet.
First, the static beacon period is too coarse-grained for most
Web accesses, which download small objects through TCP
connections. For them, the choice of a 100 ms (or multi-
ples of 100ms) beacon period can cause observed round-trip
times (RTTs) to be rounded up to the nearest multiple of the
beacon period. This rounding effect can hurt performance
dramatically, by increasing the RTT significantly. Second,
SBP is too fine-grained when the NIC is mostly idle, and
forces the NIC to wake up frequently and consume energy.

We claim that one major reason for this suboptimal per-
formance of SBP is that an access point is unable to adapt to
the requirements of each client. For example, consider two
clients A and B downloading Web pages from two servers
having RTTs1 of 20ms and 200ms respectively. In this case,
a static and common beacon period of 100ms would result
in a suboptimal download time for client A and a subop-
timal energy consumption for client B. Note that even if
SBP uses a smaller beacon period, like 10ms2, it may ensure
optimal download times for both clients, but it will incur un-
necessarily high energy overhead for client B. In an optimal
strategy, the access point would use two different carefully

1We use the term RTT to denote the sum of network level
RTT and the application level processing time.
2This is a hypothetical value; in SBP, the beacon period is
always a multiple of 100ms.
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chosen beacon periods for these two clients (a smaller one for
client A and larger one for client B) that minimizes power
and maximizes performance for each client.

In this paper, we propose a novel power saving algorithm,
named Dynamic Beacon Period (DBP), where the access point
uses different beacon periods for different clients. During
HTTP downloads, each client carefully chooses a good bea-
con period for itself, based on the RTT of its current HTTP
connection, and informs the access point of it. Like SBP,
the NIC sleeps between the successive beacon periods, and
the access point buffers any incoming data that arrives dur-
ing this period. The access point sends beacons and data
to each client separately, with a period set by the client.
As we will show later, this allows individual clients to inde-
pendently optimize their Web page download times without
significantly increasing their energy overheads.

The design of DBP raises two concerns: (1) Can a client
choose a good beacon period for itself? and (2) Can an ac-
cess point efficiently manage multiple beacon periods for the
clients? By analyzing traces collected from several clients
and access points in the Carnegie Mellon University campus,
and through extensive experimentation, we show that both
questions can be answered affirmatively. First, the RTTs of
Web servers remain relatively stable over the short duration
of HTTP downloads, and the clients can use their RTTs
to choose a reasonably good beacon period.3 Second, even
with a large user population, the number of clients using an
access point simultaneously and the number of concurrent
connections is relatively small, and, hence, it is feasible for
the access point to use different beacon periods for different
clients without high overhead.

In summary, we make the following contributions.

• We propose DBP, a power saving algorithm for using
wireless access points. It allows the clients to choose
their own beacon periods which significantly reduces
the download times of Web pages, with a comparable
energy consumption as SBP. We should note that we
never consider the energy consumption of the rest of
the device. However, it should be obvious that com-
pleting work more quickly would allow the remainder
of the device to also enter any appropriate idle mode,
thereby, increasing the energy savings of DBP.

• We show, using real workload measurements and re-
sults from emulation-based experiments, that it is fea-
sible for both clients and access points to support per-
client beacon periods, instead of having a common,
static beacon period for all clients. We show that our
solution can be implemented with a small enhance-
ment to the existing 802.11 specification.

The rest of the paper is organized as follows. Section 3
discusses the effect of beacon periods on HTTP download.
Section 4 describes our proposed algorithm DBP. DBP raises a
few practical concerns that we discuss in Section 5. Section 6
presents our evaluation of DBP. We present related work in
Section 2 and finally conclude in Section 7.

3Note that even if the RTT of a Web server has high vari-
ance, buffering at the access points helps DBP avoid dropping
packets when the client is in the sleep mode (unlike the pure
client-centric approach in [17].)

Mode of the NIC Power Consumption (mW)

Sleep 99
Listen 759
Idle 660

Transmission 1089

Table 1: Power consumption of the NIC.

2. RELATED WORK
A great deal of work has been done to improve the energy

efficiency of all parts of the wireless network stack. For
example, at the physical layer, many energy saving methods
are considered in [6]. Here, we discuss work primarily at the
higher layers.

A number of studies have explored MAC protocols (not
necessarily 802.11-based) that minimize energy consump-
tion. The EC-MAC protocol [14] minimizes power related to
wasted transmissions by avoiding collisions during reserva-
tion and data packet transmission. Other MAC approaches [13,
14] allow the NIC to easily identify when it is unable to
send or receive packets, thereby, allowing the NIC to en-
ter a low-power standby mode. At the network layer, most
work has concentrated on ad hoc routing protocols, which
currently optimize for shortest-hop, shortest-delay, or stable
routes. Recent work [16] has developed routing algorithms
that consider metrics such as energy consumed per packet,
and variance in power levels across mobile devices. Finally,
at the TCP layer, recent work [18] has analyzed the energy
properties of different versions of TCP. One obvious way
to reduce power is to minimize retransmissions and reduce
transfer duration by using existing techniques [4, 5].

Our work is most similar to efforts that try to exploit
the low power states of NICs [8, 17]. Note that our ap-
proach is significantly different from these existing solutions
which are mostly client-centric. The Bounded Slowdown al-
gorithm [8] attempts to avoid listening to useless beacons by
listening to beacons with decreasing frequency after the mo-
bile host has sent any data. This does not save energy during
slow start (the actual download time for most HTTP trans-
fers), and most of the savings come from long think times.
Thus the approach is orthogonal to DBP, and they both can
be used together. The client centric approach described in
[17] involves guessing packet arrival times during slow start.
However, it does not use the access point to buffer packets
arriving when the client’s NIC is sleeping. Thus, if RTT
variance is reasonably large, then packet arrival will not be
predicted correctly, and packets will be dropped, thereby,
greatly hurting performance.

3. EFFECT OF BEACON PERIOD ON HTTP
DOWNLOADS

To understand the effect of different beacon periods on
HTTP downloads to mobile devices, we use a number of
real-world experiments. The metrics we use to quantify per-
formance are the average amount of time used to download
an entire Web page and the average amount of energy used
for the download (computed by analyzing the packet level
trace and using the NIC power consumption numbers from
[1], as shown in Table 1). These metrics reflect the desired
goals of the user: fast downloads and long battery life.
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Figure 1: Impact of various beacon periods on ac-
cesses to superman.web.cs.cmu.edu.

Optimal Beacon Period. To understand how the default
beacon period (100ms) for SBP compares with other possible
beacon periods, we download the Web site
http://superman.web.cs.cmu.edu, using several different
beacon periods between 0 and 100. The propagation RTT
to this Web site from the client is about 35ms. As shown in
Figure 1, the HTTP download is optimized when the beacon
period is chosen to be 38ms which is equal to the RTT. In
practice, we find that a beacon period slightly higher than
the RTT works best since it accomdates variability of the
RTT (e.g., due to queueing delay). With this slightly longer
beacon period, when the client wakes up to receive a beacon,
packets will either just be arriving from the server, or will,
at worst, been buffered for a very short period of time. Very
rarely will a client wake up and find that packets from the
server have yet to arrive; whereas, such occurrences might
be frequent with a slightly smaller beacon period.

Table 2 summarizes the results with a number of differ-
ent schemes. NOPSM denotes the scheme 802.11 uses when
the power saving mode is off. PSM(x) denotes the 802.11
PSM, with a beacon period of x. Finally, OPT denotes a (hy-
pothetical) optimal scheme that has complete knowledge of
future packet arrivals and, hence, wakes the NIC exactly
when there are packets to send or receive. Note that OPT is
not practical and it is used only for comparison purposes.
Figure 2 shows that using a beacon period of 38ms pro-
vides a near optimal performance in terms of both download
time and energy consumption. Interestingly, PSM(38ms) con-
sumes less energy than PSM(100ms) which is explained by
the fact that the latter has a longer download time and NIC
consumes energy even when it is in sleep mode.

Scheme Time(sec) Energy(mJ)
NOPSM 2.75 1930
OPT 2.75 390
PSM(38ms) 2.82 410
PSM(100ms) 3.12 420

Table 2: Average download time and energy re-
quired for accessing superman.web.cs.cmu.edu with
different schemes.

Variability of the Optimal Beacon Periods. To see
how the optimal beacon periods for different Web sites vary,
we conduct the above experiment for all the top 100 Web
sites given by Alexa [3] (experiment setup details are in Sec-
tion 6). For each site, we find the beacon period that min-
imizes the product of average energy used per object and
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delay-energy product for Alexa top 100 Web sites.
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Figure 3: The dynamic power saving algorithm.

average time spent per object. Figure 2 shows the CDF of
choosen beacon periods. The data demonstrates that the de-
sired beacon period varies widely from Web site to Web site;
and, hence, a single static beacon period can not provide op-
timal performance for all clients (who are downloading Web
pages from multiple sites).

Summary. The default 100ms beacon period for SBP is
suboptimal and the optimal beacon period is different for
different sites. Additional simulation results validating these
observations are omitted here for lack of space and can be
found in [11].

4. THE DBP ALGORITHM
The dynamic power saving algorithm (DBP) differs from

the standard 802.11 PSM (SBP) in that the access point
may maintain different beacon periods for different clients
currently sending or receiving data. For simplicity, we now
assume that the beacon periods can be arbitrary. Later,
we will relax the assumption and show how DBP can be in-
corporated into the 802.11 specification with only a minor
modification.

Figure 3 shows the core of the DBP algorithm run by a mo-
bile device. After initiating a HTTP connection, the mobile
device computes the RTT of the server, using a technique we
describe later. It then determines a good beacon period for
itself based on the RTT value and informs the access point
(AP) of this beacon period. Thus, an APs has a different
beacon periods, BPi, for each active (i.e., currently sending
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or receiving data) client, Ci. At the end of a beacon period
BPi, the AP sends a beacon containing a traffic indication
for the client Ci, followed by the data destined for the client.
Each active client Ci wakes up at every beacon period BPi

and polls the AP to receive any buffered data. Note that
the beacon period BPi is essentially a prediction of when
the next packet will arrive for the client i. Even if the pre-
diction is not perfect (e.g., due to RTT variability), the AP
will buffer the packets until the client wakes up. When mo-
bile client Ci does not have any ongoing HTTP connection,
it sets BPi to be a large value (3s in our evaluation).

Ideally, a client will awake just as the AP receives pack-
ets destined for it. However, this requires a perfect predic-
tion about when the next packets will arrive, and setting
the beacon period accordingly. Unfortunately, such accu-
rate predictions are impossible due to the high variance of
the RTT, resulting from congestion, loss, etc. The effective-
ness of DBP largely depends on the ability to choose a good
beacon period. In the next sections, we address how DBP

achieves this goal.

4.1 RTT Estimation
It is difficult to estimate RTTs at the receiver side because

it is hard to associate incoming packets with the outgoing
acknowledgement that triggers them [10]. Fortunately, TCP
provides a timestamp option4 that can be used to measure
RTT from either side when both the sender and receiver
agree to use the option (note that [17] uses the same tech-
nique). Once enabled, up-to-date timestamps are always
sent and echoed in the TCP header of each packet. Upon
receiving a packet, either endpoint can calculate a new RTT
sample as the time difference between the current timestamp
value and the echoed value.

However, it is not possible to get an accurate estimate of
the RTTs when packets get buffered at the AP before being
delivered to the client, since an unknown amount of buffer-
ing time at the AP is added to the RTT. To overcome this
issue, we require that the AP tags each packet delivered to
the client with the amount of time it has been buffered at
the AP. Adding this functionality is relatively easy. On re-
ceiving a packet from the server, AP tags it with the current
timestamp t1; and before delivering the packet to the client
at time t2, AP tags each packet as (t2− t1). Thus, the client
can subtract the buffering times from the sample RTTs.

The RTT estimate is maintained in the same way that
many implementations of TCP maintain it: as an exponen-
tial weighted moving average (ERTT = 7

8
ERTT+ 1

8
SRTT, where

ERTT is the RTT estimate, and SRTT is an RTT sample). The
client may periodically inform the access point of the RTT
estimate so that a good beacon period can be used for each
connection.

Furthermore, the client may keep a cache of RTT esti-
mates so as to avoid calculating an estimate on the fly. In
the absence of an entry in the cache for a particular remote
host, the client may leave its NIC in the higher power state
so that an RTT estimate can be calculated – based on the
time between sending a SYN packet and receiving an ACK
packet – before informing the access point of the desired
beacon period.

4TCP uses these accurate RTT samples to improve the qual-
ity of the TCP timeout value (RTO), which, in turn, im-
proves TCP performance. As a result, the TCP timestamp
option is used in most TCP implementations [15].

4.2 Beacon Period Selection
As shown by the results presented in Section 3, the opti-

mal beacon period for a client is very close to the RTT of
the Web site it is downloading the Web page from. How-
ever, a few other factors determine the actual chosen beacon
period.

First, we use beacon period = α×RTT, where α is a con-
stant slightly larger than 1. This allows DBP to cope with
variability in the actual RTTs.

Second, DBP scheme may limit the possible choices of bea-
con period to reduce the overhead on both the clients and
the access points. One optimization we use in DBP to reduce
this overhead is to have beacon periods chosen at a coarser
granularity – i.e., the beacon period is given as the next
closest multiple of the granularity. For example, if the bea-
con period granularity is 30ms, then two connections having
RTTs of 55ms and 48ms respectively will both have a single
beacon period of 60ms (thus, a granularity of 100ms emu-
lates the behavior of SBP). It reduces the number of distinct
beacon periods the clients and the access points need to
keep track of. We will evaluate the effect of the granularity
of beacon period in Section 6.

4.3 Enhancing 802.11 to Support DBP
DBP requires a small modification to the standard 802.11

protocol. The 802.11 specification already allows for a Lis-
tenInterval which defines the number of beacons a client can
skip. Each client can be configured to have its own Listen-
Interval. Thus, if a client has ListenInterval=2, it wakes up
to listen to every third beacon and the AP makes sure that
buffered packets destined for this client are delivered only on
every third beacon. With this feature, updating the exist-
ing 802.11 to support DBP should be straightforward. It only
requires that the AP should have a fixed but smaller (e.g.,
10 ms) beacon period (the current specification suggests it
to be a multiple of 100ms). With this change, a client can
choose a good beacon period (rounded to the nearest mul-
tiple of AP’s static beacon period) for itself by dynamically
configuring it with a suitable value of ListenInterval. Note
that the static beacon period of the AP defines the gran-
ularity at which each client can decide when it wakes up
to receive packets, but as we will show in our evaluation,
even a granularity of 20 ms provides a significantly better
performance than SBP.

4.4 Supporting Other Traffic Patterns
The techniques described above assume that a client has

at single HTTP connection at any point of time. However,
a power savings scheme must support more complex traffic
patterns such as multiple connections and non-TCP traffic.
DBP uses the following two techniques to support multi-

ple concurrent connections. First, each client independently
measures the RTT and uses it to estimate the next packet
arrival time for each connection. Second, it dynamically
sets its beacon period to the difference between the current
time and the soonest estimated packet arrival time among
all its connections. This essentially emulates the behavior
of multiple independent beacon periods.
DBP can also support non-TCP traffic. The core require-

ment for DBP is predictable traffic patterns. In TCP, we
use the fact that groups of packet arrivals are typically an
RTT apart to predict the next time that the NIC needs
to be awake to receive packets. For other traffic, such as
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constant-bit-rate (CBR) audio/video, we can make similar
predictions for packet arrival times. We envision that a DBP

implementation would include a set of standard APIs for
transport protocols and applications to register their pre-
dictions for their next packet arrival. DBP could then merge
the predictions and determine the appropriate beacon pe-
riod.

5. PRACTICAL CONSIDERATIONS
This section addresses two concerns with the practicality

of DBP. First, it is not clear whether a client can predict
when data will arrive accurately enough to set the beacon
period. Second, DBP may incur high overheads if there are a
large number of concurrent transfers by different clients of
the same access point.

5.1 RTT measurements
The effectiveness of DBP relies on the accuracy of the pre-

diction of when more data will be available at the access
point, which in turn relies on the accuracy of the client’s
estimate of the current RTT. To determine how the RTT
of a typical HTTP transfer varies over the duration of the
transfer, we download the top 100 Alexa Web pages from a
laptop behind a 3Mbps line. The RTTs were measured over
the course of several HTTP connections while loading the front
page of the Web sites and all top level objects. A typical
CDF of RTT (specifically, for the site http://www.nature.

com) is shown in Figure 4(a). The average RTT was 57ms
and the standard deviation was 37ms for this site. Note that
80% of the RTTs were less than 70ms. This indicates that
using a 70ms beacon period would work well for this site –
the client would rarely wake up to find no packets waiting
for it.

Our experimental results show that the variance of RTTs
for most of the tested Web sites are small enough (< 30ms)
that a beacon period slighly longer than the RTT would
work well for DBP. Note, that the variance is certainly large
enough that occasional errors are likely (i.e., the client could
wake up to find that it has missed the packet transmission).
Note that even if the prediction of the beacon period is not
accurate, the access point buffers the packets while the des-
tination client’s NIC is sleeping and, therefore, there is no
packet drop. This is one of the important differences be-
tween DBP and the client centered approach in [17]. The
client centric approach does not use the access point for
buffering and, hence, even slight errors in predicting packet
arrivals results in packets being lost since they arrive when
the client’s NIC is sleeping.

5.2 Access Point Population
DBP requires that an access point maintain separate bea-

con periods for each of the clients that have outstanding
connections. Maintaining separate beacon periods for each
client imposes additional overhead on the access point, since
it must maintain state associated with each client. Here, we
show, by analysis of a trace collected from a busy collection
of access points, that, in practice, each access point gener-
ally has a small number of clients downloading at the same
time5.

We have collected access point population data from 18
access points over the course of a work week from the Grad-
uate School of Industrial Administration building on the
Carnegie Mellon University campus. The data shows the
number of registered users for each access point at different
points of time in that work week. Figure 4(b) shows a CDF
of the access point populations. Over half the time the ac-
cess point was not populated at all or the population was
only one. In addition, 90 percent of the time an access point
was populated with fewer than 10 clients. It should be noted
that population provides an upper bound on load on the ac-
cess point; the actual number of concurrent connections will
be less than or equal to the population.

The increased traffic caused by additional beacons is ac-
ceptable because the access point population is typically
small, and the per connection beacons may consist of only a
few bytes. Also, in the rare case that the access point popu-
lation is large, the access point could be configured to revert
back to using the same beacon period for all the clients (sim-
ilar to SBP). This beacon period need not be the standard
100ms, but could be a value based on the beacon periods
being requested by the clients. Also, access points could en-
force a minimum beacon period in order to keep the wireless
channel from being flooded with beacons.

6. EVALUATION
In this section, we compare DBP with a number of exist-

ing algorithms in terms of the download time and energy
consumed. First, we explore the impact of various tuning
parameters on DBP’s performance. We use this evaluation
to determine parameters to use in the rest of the evalua-
tion. Second, we consider the performance of a variety of
schemes in accessing actual Internet Web sites. Finally, we
explore the sensitivity of the algorithms to various factors
in a laboratory setting.

6.1 Evaluation Methodology
This section describes our evaluation methodology. We

discuss the algorithms we compare with DBP, the metrics we
use to quantify performance, and the setup of our experi-
ments.

Algorithms Compared. We compare DBP with the fol-
lowing five algorithms.

1. BSD (bounded slowdown protocol, described in [8]). We
use a default beacon period of 100ms, and a slowdown
parameter of 1/2 in our evaluation.

2. CC (The client-centric approach, described in [17]). CC

guesses the future packet arrival times and awakens

5Note that DBP does not care about the total population
registered to an access point at any time; it only cares about
how many clients are downloading at the same time.
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the NIC only at that time. Any packets that arrive
while the client’s NIC is in sleep mode get dropped.

3. NOPSM: The standard 802.11 protocol, with the power
saving mode off.

4. SBP: The standard 802.11 protocol, with the power sav-
ing mode on and with a static beacon period of 100ms.

5. OPT: An oracle, that knows all future packet arrivals,
and lets the NIC wake up only when the packet ar-
rives. It should provide the same download time as,
but should be more energy efficient than NOPSM. Note
that because of the requirement of knowing the future,
this algorithm is not practical. We present it only for
comparison with the other algorithm.

We have implemented these algorithms (except OPT) in a
Linux kernel module. The implementations use Netfilter [2],
a generalized framework of hooks in the network stack of
Linux. Our code implements queues and timers to emulate
the buffering and beaconing at the access point (for SBP,
DBP, and BSD). It also drops packets for individual clients
to emulate CC’s behavior when packets arrive at the client’s
NIC while it is in sleep mode. Finally, we use the KURT
real-time patch [9] to provide the high resolution timing nec-
essary for accurate reproduction of real behavior. For OPT,
we use tcpdump to log all the packets sent or received by
the client and later analyze the logs to infer the optimal
performance.

Metrics. We use two metrics in our evaluation: download
time and energy consumed. The download time metric for a
Web page is defined as the time elapsed between the trans-
mission of a HTTP GET request for the HTML page and
completion of the download of the page HTML page and all
its embedded objects to the client. The energy consumed
metric is defined as the energy used by the client’s NIC to
send and receive all the packets relevant to the downloaded
page. To measure this energy, we log all packets sent and
received by the client using the tcpdump tool. We compute
the total energy used by post-processing the log using the
power consumption numbers given in Table 1.

Experimental Setup. We use two experimental setups in
our evaulation: a real-world setup and laboratory emulation
setup. All the experiments are done from the Carnegie Mel-
lon University (CMU) network. We use a 1.8 GHz Pentium
IV laptop with 512 MB RAM and running Linux 2.4.18 as
the client accessing the Web pages. The bandwidth of the
access link to the test machine was 10Mbps.

Real-world Experiment Setup. In experiments with real
Internet traffic, we download the top 100 Web pages given
by Alexa [3]. We download each of the Web pages 30 times
using the Mozilla remote command line feature. The Web
pages are accessed from the network of CMU between the
hours of 5pm and 9am EST on weekdays. Note that mea-
surements at this off-peak period show a smaller variance in
the RTTs, which favors some of the algorithms (especially,
CC). Since DBP uses the access point to buffer data when the
estimation is not very accurate, RTT variation has little im-
pact on its performance, as we will show in Section 6.4.2.
Linux by default puts the jiffie count (10ms resolution) into
the timestamp field. In order to have more accurate timing,
we use a modified kernel that uses a millisecond resolution
timestamp. This allows us to analyze traces from our real
Internet experiments and infer RTT with high accuracy.
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Figure 5: Effect of granularity of beacon periods of
the DBP.

Laboratory Emulation Setup. We use a more controlled
laboratory environment to study the sensitivity of the al-
gorithms to different parameters of the environment. In
this setup, we configure an Apache Web server to run on
a machine (with the same configuration as the client ma-
chine mentioned above) in the same local area network as
the client. The server serves a Web page identical to http:

//www.microsoft.com and all its associated embedded ob-
jects (total size is around 168 KB). The rshaper kernel mod-
ule [12] running on the server machine regulates the band-
width between the client and the server. The RTT of the
client and the server is normally distributed with the mean
of 60ms and a variance of 5ms. In the experiments with
varying RTT, we use the Netfilter module to impose de-
lays on packet arrival time.

6.2 Choosing Parameter Values for DBP
As mentioned in Section 4, DBP has two parameters: the

value of α which gives the beacon period of a client as beacon
period = α×RTT , and the granularity of the individual bea-
con periods. We should note that the exact optimal value
of α depends greatly on the relation between RTT and RTT
variance in the environment. Our experience with DBP in-
dicates that a value of α around 1.1 works well (details in
[11]). In all the experiments in rest of the section, we use
a value of α = 1.13. In the rest of the section, we describe
experiments (done in the emulated environment) designed
to help choose a good values for the beacon granularity

We evaluate the impact of different beacon period gran-
ularities on the performance of the DBP algorithm using ex-
periments on our emulation setup. We take the RTT dis-
tribution of the connections required to download the top
100 Alexa Web pages, and take every 20% percentile of that
distribution. For each of those five RTTs, we set up an em-
ulation configuration with an RTT of RTTi and download
our test page 30 times.

Figure 5 reports the average download time and energy
consumption of all the downloads over all the buckets. Both
the download time and the energy consumption are normal-
ized to the corresponding values found with 10ms granular-
ity. As the figure shows, a small granularity reduces down-
load time and energy consumption. This is because a smaller
value allows a client to set its beacon period closer to the
desired value, which reduces the time that packets remain
buffered at the access point. This significantly reduces the
total download time and also reduces energy consumption
but to a lesser extent. Note, a small granularity imposes

48



 0

 5

 10

 15

 20

 25

 30

 35

 10  20  30  40  50  60  70  80  90  100

Lo
ad

 T
im

e(
s)

RTT(ms)

SBP
DBP

CC
BSD

NOPSM
OPT

 0

 5

 10

 15

 20

 25

 10  20  30  40  50  60  70  80  90  100

E
ne

rg
y(

J)

RTT(ms)

SBP
DBP

CC
BSD

NOPSM
OPT

(a) Average download times (b) Energy consumed

Figure 6: Effect of varying RTTs of the Web sites.

Scheme Time(S) Energy(J) Time × energy

OPT 4.85 1.38 6.7
SBP 9.19 2.17 19.96

NOPSM 4.85 3.57 17.31
DBP 4.89 1.8 8.8
BSD 4.82 3.7 17.84
CC 6.09 4.07 24.77

Table 3: 80 percentile of the average download time
and average energy consumed by different protocols.

greater overhead since different connections are more likely
to choose different wake up times. Unfortunately, this over-
head is not accurately reproduced in our measurements. We
choose to use a 20ms granularity for beacons since smaller
granularities seem to provide minimal performance gains
and possibly incur larger overheads.

6.3 Real-World Experiments
Table 3 shows the 80th percentile of average download

time and average energy consumed to download the top 100
Web sites given by Alexa (the CDF of these measurements
can be found in [11]). First, note that these results show
that DBP provides a near optimal average download time.
The only other practical (OPT is not practical) schemes that
provide such near optimal download times are NOPSM and
BSD. NOPSM provides the optimal download time since, by
definition, it keeps the NIC awake all the time and, thus,
never delays packets to save power. BSD gives a near opti-
mal download time since it keeps the NIC awake during the
slow start period, and most HTTP transfers finish during
this period6. Second, note that DBP also provides near opti-
mal energy consumption. Both the NOPSM and BSD schemes,
which provide similar performance, do not allow the NIC
to sleep during small HTTP transfers. As a result, both
schemes consume a large amount energy, as shown in the
second column of Figure 3.

It is also interesting to note that the client-centric ap-
proach performs worse than other algorithms in both the
metrics. This occurs for two reasons. First, the variance of
the RTT is so high that the algorithm fails to make a right
guess of the sleep time. Second, most Web pages contain
embedded objects and most browsers (like Mozilla) use con-

6The BSD paper [8] primarily focuses on providing good
performance for long HTTP transfers.

current connections to download them. In the presence of
concurrent connections, the client-centric approach does not
get enough chance to keep the NIC in sleep mode.

In summary, these results show that DBP provides the
unique combination short download times, close to that given
by NOPSM, and low energy consumption, close to that given
by SBP. To compare the schemes with a single metric, we
use the value of download time × energy consumed. As the
third column of Figure 3 shows, DBP performs very close to
the optimal and outperforms all the other practical schemes.

6.4 Emulation Results
In this section, we use our emulated setup to study how

sensitive different algorithms are to the different parameters
of the environment.

6.4.1 Effect of RTT
Figure 6 shows performance of different algorithms as the

RTT of the server from the client changes. The RTTs have
a variance of 5ms. Figure 6(a) shows that, as expected,
download time increases as the RTT increases. SBP pays
a high penalty in download times, showing that its 100ms
sleep time is too coarse grained for typical HTTP transfers.
DBP performs very close to the OPT, NOPSM, and BSD under
the entire range of RTT values. Note that CC performs very
similar to other algorithms (in contrast to our real-world
experiments in 6.3), since our emulated variance in RTT is
much smaller than what we found in the real world.

Figure 6(b) shows that the energy consumed by DBP is
independent of the RTT, a very attractive property shown
by the SBP as well. This is due to the fact that even though
the increase of RTT increases the download time, both these
algorithms can sleep effectively and wake up only to receive
the packets buffered in the access point. Both NOPSM and
BSD keep the NIC awake during the entire download period,
which increases with RTT. Therefore, the energy consumed
by these two algorithms increases linearly with RTT. The
same behavior is shown by CC as well since it places the
NIC into sleep mode infrequently when multiple concurrent
connections are in progress. In addition, wrong guesses for
the sleep time make CC losses packets sent by the access
point.

6.4.2 Effect of RTT variance
Figure 7 shows the effect of the RTT variance on the per-

formance of different algorithms. For each value of the vari-
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Figure 7: Effect of variance of the RTTs of the Web sites.

ance, the RTTs are generated as follows: a random RTT is
picked from the normal distribution given by the mean RTT
of 60 ms; if the random value is less than 10ms, a value of
10ms is used. Note that this 10ms lower bound means that
increasing the variance effectively increases the mean RTT.
Therefore, the general trend of this graph is very similar to
that in the RTT graphs in Figure 6. However, as variance
increases, CC makes more mistakes in its guess of RTT, and
hence pays more penalty as shown by the graphs. Although
DBP also guesses RTT to determine the sleep time, it does
not suffer as significant a penalty for incorrect guesses since
packets arriving while the client’s NIC is asleep are buffered
by the access point. This cooperation from the access point
makes sure that packets are not dropped in DBP and, thus,
the download time and energy consumed remains almost
unaffected due to the variance in the RTT.

7. CONCLUSION
In this paper, we have shown that the standard 100ms

beacon period of 802.11 PSM provides poor Web brows-
ing performance. We have also shown that other existing
solutions are not suitable for HTTP download: BSD fails
to save energy for small HTTP transfers, client-centric ap-
proach fails to perform well in practice due to high vari-
ance of RTTs. Our approach, called DBP, allows each client
to choose their own beacon period at a much finer granu-
larity. Using a combination of simulation, laboratory and
wide-area experiments, we have shown that using a bea-
con period closely related to a connection’s RTT provides
a combination of transfer performance and power savings
that is unmatched by either the standard 802.11 power sav-
ing mode or other more recently proposed techniques [17,
8]. In addition, we have shown that DBP can support typical
access point demand with little overhead. In addition, DBP
is able to handle both RTT variation present in today’s en-
vironment as well as much larger variations that might be
present in some situations.

We believe that the availability of finer grain beacon peri-
ods can enable clever optimizations beyond those presented
in this paper. Promising future directions for this work in-
clude: 1) evaluating better techniques for handling concur-
rent connections without increasing the number of beacons
and 2) exploring interaction with power savings techniques
at other layers.
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