
38 IEEE softwArE | puBlIsHED By tHE IEEE computEr socIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Leveraging the
Crowd: How
48,000 Users
Helped Improve
Lync Performance
Robert Musson and Jacqueline Richards, Microsoft

Danyel Fisher and Christian Bird, Microsoft Research

Brian Bussone and Sandipan Ganguly, Microsoft

// A new analysis approach produces visualizations

to help development teams identify and prioritize

performance issues by focusing on performance

early in the development cycle, evaluating progress,

identifying defects, and estimating timelines. //

ReAL-WoRLd PeRfoRmAnce is
an aspect of software quality that his-
torically has been diffi cult to measure.
Software developers have devoted enor-
mous amounts of time and effort to
effectively predict how well a piece of
software will perform under various
real-world conditions. It’s especially
diffi cult to evaluate performance for

applications that rely on human com-
munication and network operations for
the majority of their functionality.

As mobile devices become more
prevalent and Web services and appli-
cations grow in market share, infor-
mation fl ow across networks and the
Internet is becoming an increasingly
important piece of most applications.

However, network environments are
often heterogeneous, and their latency
and bandwidth can vary wildly de-
pending on factors such as the physical
link used (wired versus Wi-Fi), rout-
ing hardware, protocols employed,
distance between endpoints, fi rewall
rules, and network saturation. In
each of these conditions, different use
cases—for example, large group meet-
ings or a two-person video chat—can
have radically different performance
characteristics. Despite this, users ex-
pect applications to perform well re-
gardless of environment. With the pri-
mary goal of performance monitoring
and improvement being high levels of
customer satisfaction, how can soft-
ware project stakeholders evaluate the
performance of network-reliant appli-
cations in a way that refl ects diverse,
real-world use?

Rather than improve methods of
simulating various operations, scenar-
ios, and environments as testing has
traditionally done,1 we can deploy soft-
ware in a controlled way to groups of
users during development and collect
performance data. We then dynami-
cally instrument the code to inspect sce-
narios of interest. Compared to labora-
tory testing or simulation, the resulting
data is both more diverse and more rep-
resentative because it comes from real
use and therefore represents customers’
actual experiences. Once this data has
been collected, we can break it down
into constituent dimensions—by usage
scenario, location, and machine con-
fi guration—and present the results in
ways that can help project stakehold-
ers make decisions. Finally, an analy-
sis dashboard, Engineering Intelligence
Analytics (EI Analytics) lets developers
investigate performance data.

We’ve carried out this type of
work with several teams, and in the
case study presented here, we de-
scribe our work with the team respon-
sible for Lync, Microsoft’s enterprise

FOCUS: SOFTWARE ANALYTICS: SO WHAT?

s4bir.indd 38 6/6/13 11:36 AM

	 July/August 2013 | IEEE Software � 39

communication tool. (For more infor-
mation, see the “Lync” sidebar.) Specif-
ically, we cover our techniques and ex-
periences in using live data, combined
with interactive surveys, to analyze
performance. Our performance-mon-
itoring approach has been successfully
deployed, has improved development
decisions, and is continuously in use
with a large-scale enterprise-level soft-
ware service.

Background
We start with a brief description of
Lync itself, then discuss real-world per-
formance and provide examples of the
types of questions that project stake-
holders often ask.

The Lync Application
One major issue for an application such
as Lync is maintaining acceptable levels
of responsiveness across its many fea-
tures—for instance, even if a text mes-
saging feature is quick, if looking up a
name is slow, then users will feel dissat-
isfied. Thus, as new features are devel-
oped and tested, the development team
might need to modify what data collec-
tion occurs at a low cost.

Lync has recently moved toward a
rapid release cycle. To accommodate
this change, versions must be com-
patible with each other, so there’s a
tendency to mutate previous versions
rather than start from scratch. In this
new model, the available time for the
stabilization phase of development de-
creases. Rather than reaching feature
completion and then focusing on per-
formance, Lync examines the perfor-
mance of each scenario during the en-
tire development cycle.

Finding Performance in the Real World
The ultimate measure of application
performance is whether users are happy
with the application’s responsiveness.
This is subjective and difficult to di-
rectly measure (see the “Related Work

in Performance Testing” sidebar). Past
versions of Lync periodically solicited
performance testers’ judgment—they
would ask users if a particular scenario
“feels okay” or “isn’t slow.” However,
because this information wasn’t con-
nected to logged outcomes, it remained
difficult to assess performance over an
application’s development.

The Lync user-experience team has
long set target specification values as
goals for performance—for example,
“A video conference should connect
within 500 milliseconds.” However,
these would often be measured only in
laboratory testing.

In this article, performance refers
only to the wall-clock time of a given
network-bound operation. We divide
the user experience into a series of sce-
narios—each is a discrete operation or
set of operations that doesn’t require
user intervention.

Testing performance in a laboratory
is both costly and inaccurate relative to
real-world use. On one hand, test matri-
ces must be written to cover each pos-
sible combination of external factors
and scenarios, and testers must walk
through multiple scenarios to measure
them. It can be difficult for a laboratory
to simulate the possible external condi-
tions that users routinely experience.
For example, it’s hard to imagine a test
matrix that would cover one colleague
working in Africa calling another in

Europe, initiating screen-sharing dur-
ing the conversation, and adding in a
third colleague one office over.

Some of these externalities can
be simulated in vitro by randomly
dropping packets, introducing delay,
or misrouting traffic, but the sheer
amount of variation in real-world en-
vironments is nearly impossible to rep-
licate. Our solution is to embrace and
operate directly in these environments
rather than try to reproduce them.

Analytics Questions
With the many different features in
Lync, project stakeholders are begin-
ning to ask nuanced questions about
performance to understand how as-
pects of application usage affect it:

•	 What is the relative impact on per-
formance if everyone uses Lync for
four-person meetings, eight-person
meetings, and all-hands meetings?

•	 What is the performance difference
of four people talking versus one
person presenting while three are
watching?

•	 Are there differences in perfor-
mance by geographic region, dis-
tance to servers, or time of day?

•	 Does server type affect
performance?

Answers to these questions can help
project members make decisions

Lync
Lync is a large-scale enterprise communication system. In its current version, Lync
supports a vast number of features from awareness of user presence to large-scale
meetings. It also supports IP telephony, video-conference calling, and whiteboard
sharing, and integrates with address books, calendars, email, and even word
processors. As such, the Lync development team is large and contains many different
members, with different subsets of the team responsible for different features and
aspects of the tool.

s4bir.indd 39 6/6/13 11:36 AM

40	 IEEE Software | www.computer.org/software

FOCUS: Software analytics: So What?

about parts of the system to work on,
where to focus future development,
and what support teams might expect
after release.

Approach
The goal of our approach is to obtain
and analyze data that comes from ac-
tual use of Lync and to obtain this as
early in the development process as
possible. We describe here the relevant
details that let us achieve these dual
goals.

Early Deployment
Our approach requires that ordinary
users operate in-development versions
of Lync during the normal course of
their work. An in-house program lets
users from across Microsoft subscribe
to prerelease versions of the software
(known internally as “dogfood”); these
opportunities are advertised by email

notifications to mailing lists, promo-
tional material on the corporate in-
tranet, and physical media such as
posters in the workplace. Any user that
would like to help—or would like early
access to advanced features of upcom-
ing releases—can subscribe to develop-
ment versions. These versions of Lync
help us with performance reporting
and also have voting buttons that users
can press to indicate satisfaction (or an-
noyance) with a given feature. The dog-
food versions have passed through ba-
sic testing rounds but aren’t considered
to be release-quality code; new builds
are released as often as weekly.

Data Collection
Lync contains a subsystem for collect-
ing and transmitting performance data.
Over the course of the development cy-
cle, the team often needs to adjust the
data it collects with little impact to the

user and minimal work for the develop-
ment team.

Prior Microsoft systems relied on
teams adding instrumentation code to
their applications. Because instrumen-
tation was a low priority compared to
shipping features, the instrumentation
code would often be low priority and
low quality.

One alternative to this approach is to
build a system ready to be fully instru-
mented. As in many modern network-
based systems, Lync is built around
an event-driven API. This API creates
Windows events when any operating
system–level operation occurs, from
user interaction (UI) to socket com-
munication. When the development
team wishes to collect data regarding a
specific scenario, they first identify the
events that begin and end that scenario
(similar to defining pointcuts in aspect-
oriented programming2). The scenario

Related Work in Performance Testing
Performance analysis is a complex subject with a long history (for
example, see Henry Lucas Jr.’s survey on performance monitor-
ing and evaluation from 19711). Performance can take on multiple
meanings, from disk speed to graphics rendering. With the rise of
networked systems, performance analysis becomes more urgent,2
particularly in modern client-server scenarios. In these clients,
performance degradation can come from client-side issues, such
as network connections, and server-side issues, such as server
load and the time to service requests. Common approaches to
discover performance issues include modeling3 and creating
synthetic workloads,4 sometimes based on past user data.2 Our
system is different because we are able to deploy incremental
versions of the system to a broad set of users.

Dieter Haban and Dieter Wybranietz’s work is more similar to
ours.5 It comprises an event-driven system for monitoring distrib-
uted applications in situ that collects performance and behav-
ioral data, as well as Simple, a tool environment for performance
evaluation and modeling that includes multiple visualizations.

The Paradyn suite of tools is also similar to our approach in
functionality because it doesn’t require manual code modifica-
tion when the target areas for performance analysis change.

It automatically instruments code at runtime by modifying the
binary to report function calls and memory accesses.6 Our ap-
proach leverages event hooks as part of the core functionality
of the application—that is, it doesn’t require additional code or
code modifications.

References
	 1.	 H. Lucas Jr., “Performance Evaluation and Monitoring,” ACM Computing

Surveys, vol. 3, no. 3, 1971, pp. 79–91.
	 2.	 M.F. Arlitt and C.L. Williamson, “Internet Web Servers: Workload Character-

ization and Performance Implications,” IEEE/ACM Trans. Networking, vol. 5,
no. 5, 1997, pp. 631–645.

	 3.	 S. Balsamo et al., “Model-Based Performance Prediction in Software
Development: A Survey,” IEEE Trans. Software Eng., vol. 30, no. 5, 2004,
pp. 295–310.

	 4.	 A. Avritzer and E. Weyuker, “The Automatic Generation of Load Test Suites
and the Assessment of the Resulting Software,” IEEE Trans. Software Eng.,
vol. 21, no. 9, 1995, pp. 705–716.

	 5.	 D. Haban and D. Wybranietz, “A Hybrid Monitor for Behavior and Perfor-
mance Analysis of Distributed Systems,” IEEE Trans. Software Eng., vol. 16,
no. 2, 1990, pp. 197–211.

	 6.	 B.P. Miller et al., “The Paradyn Parallel Performance Measurement Tool,”
Computer, vol. 28, no. 11, 1995, pp. 37–46.

s4bir.indd 40 6/6/13 11:36 AM

 July/August 2013 | IEEE softwArE 41

might begin when the user clicks a UI
element and conclude when a particu-
lar I/O request completes. The team
specifi es the scenario and the names
of its constituent events and adds this
scenario to a large scenario table stored
on a server. A performance-monitoring
subsystem on the client periodically
checks for any changes to the scenario
table, records the timestamps of these
events, and transmits them to the per-
formance database server within Mi-
crosoft. Because the act of transmitting
collected data can affect performance,
the development team provides rules
for when and how often the data should
be transmitted.

Additional information about the
usage context that could help testers is
also collected, such as

•	 build numbers and versions,
•	 machine architecture (x86, x64,

ARM),
•	 main and video memory available,
•	 network protocols, and
•	 connections to the server’s geo-

graphic region.

Although we primarily gathered
data from employees within Microsoft,
privacy is still an important concern—
that is, although some companies don’t

treat their employees’ work activities as
private within the company, Microsoft
does. We collect identifying data that we
believe could affect performance such as
geographical region, but we don’t trans-
mit or record any personally identifi able
information such as username or con-
tent of messages to our database.

For Lync, we have defi ned approxi-
mately 350 scenarios over the course of
development. More than 48,000 users
have participated in the dogfood pro-
gram, and have thus used at least one
such prerelease version of Lync.

Visualization and Analytics
The Lync development team can ex-
plore the data results through a re-
porting website, EI Analytics. The ap-
plication lets users examine high-level
scenario performance results and,
when desired, explore the data at a
fi ner granularity in more detail

Figure 1 depicts a snippet of Lync’s
entry page, which contains a high-level
view of three scenarios’ statuses (the full
page contains many more scenarios).
Each scenario is depicted by an infor-
mational box showing its name, how its
performance compares to expected lev-
els, and the frequency of success. Figure
2 shows how EI Analytics presents per-
formance data for one service scenario.

The histogram is generated from the
timings (or durations) for all users run-
ning that scenario. This particular case
identifi es three distinct user experience
groups, represented by three Gaussian
curves. The Gaussians are generated by
decomposing the durations’ probability
distribution functions. The dotted line
shows the Gaussians’ actual fi tted linear
combination. The rightmost Gaussian
denotes the worst user experience group
in terms of performance and warrants
engineer attention.

EI Analytics also lets users compare
datasets for differences between condi-
tions. Users can select different fi lters
from a menu. For example, a developer
might be concerned that the 64-bit ver-
sion of an application is behaving dif-
ferently than the 32-bit version. In Fig-
ure 3, one scenario is split across uses
in these two versions of the Lync client.
The left side of the fi gure shows event
timing distributions on top of each
other, and the right side displays a more
compact view of the data in boxplot
form. The target specifi cation value for
the scenario is depicted with a bold ver-
tical black line.

One of our goals with this project is
to monitor performance over time dur-
ing development. Typically, builds go
through a rhythm—features are added,

FIGURE 1. A sample of high-level view results for four scenarios in Lync. In each cell, the color re� ects the overall prognosis (gray is untested;

red and green show performance levels). The fails summary provides the number of attempts that didn’t succeed; the other buttons lead to

various visualizations and detailed reports on the scenario.

s4bir.indd 41 6/6/13 11:36 AM

42 IEEE softwArE | www.computEr.org/softwArE

FOCUS: SOFTWARE ANALYTICS: SO WHAT?

and then developers focus on perfor-
mance. We therefore provide a time
trend analysis for each scenario, depict-
ing a variable width notched boxplot
showing the performance distribution

for a scenario for each build along a
calendar time line. Figure 4 shows one
such build-over-build comparison.

The Lync team is also interested
in international performance. User

experience quality can be affected
by distance from servers, local net-
work conditions, and international
fi rewalls and barriers. The world per-
formance map (see Figure 5) indicates

0 1,000 2,000

22,036 events

3,000 4,000
Duration (ms)

De
ns

ity

0.
00

00
0.

00
00

2
0.

00
04

0.
00

06
0.

00
08

0.
00

10
0.

00
12

Gaussian 1

Gaussian 2

Gaussian 3

Gaussian sum

0.
00

0
0.

00
1

0.
00

2
0.

03
0.

00
4

0.
00

5
0.

00
6

0 500

Target: 350 ms

1,000 1.500
Duration (ms)

De
ns

ity 64-bit

32-bit

FIGURE 2. A histogram of the durations for a single scenario for a given build. The durations are � t to the sum of Gaussians, which each

represent a different user experience.

FIGURE 3. Empirical distributions for a scenario for a given build drawn from users using 32-bit (blue) and 64-bit (green) versions of Lync. The

black line indicates the target speci� cation. More compact boxplots of the data are shown on the right.

s4bir.indd 42 6/6/13 11:36 AM

 July/August 2013 | IEEE softwArE 43

whether performance is suffering in-
ternationally and supports decisions
about investments in network and
server infrastructure.

impact
These techniques are only of value if
their use positively impacts software
development. Ultimately, this impact
would result in improved customer sat-
isfaction, but we’re too early in release
to see results on that outcome. Nonethe-
less, we do have evidence that EI Analyt-
ics is having a positive impact on the de-
velopment process and decision making.

Organizational Change and Adoption
The availability of EI Analytics data
is driving an organizational change
within the Lync team. Historically, the
team reserved performance testing for
late in the deployment process because
it was diffi cult to get performance data
in an easily consumable fashion for the
entire development process. Thus, most
of the focus on performance occurred
in the fi nal weeks before release. This is
changing as a result of our techniques.

We’re using a phased approach as
we roll out EI Analytics to the Lync de-
velopment team. In the initial phase,
which is where we are right now, it’s be-
ing used in Lync “ship room,” a weekly
meeting the project managers use to
make decisions about shipping dates
and feature cuts. Scenario performance
provides an indication of whether a
given feature needs additional work,
should be considered for removal, or is
ready to ship.

Some teams have begun to incor-
porate EI Analytics into their regular
use outside ship room meetings. We’re
working on the next phase of roll out,
which will comprise incorporating the
approach’s use in feature lead devel-
opers’ daily routines. By continuously
monitoring performance during devel-
opment, teams can catch issues before
they reach the ship room.

4,420

4,000

3,000

2,000

1,000

0

Build numbers

Du
ra

tio
n

(m
s)

4,485 4,487 4,488 4,493

FIGURE 4. A build-over-build analysis. Red indicates a statistically signi� cant difference from

the previous build. Width indicates the number of users who used this scenario for this build.

Height shows the interquartile range.

FIGURE 5. An example (not real, for con� dentiality reasons) of a world performance map for

a single scenario and build. This map indicates how the global user population experiences the

application.

s4bir.indd 43 6/6/13 11:36 AM

44 IEEE softwArE | www.computEr.org/softwArE

FOCUS: SOFTWARE ANALYTICS: SO WHAT?

Detected Performance Issues
To demonstrate the way that EI Analyt-
ics has improved performance evalua-
tion, we share two performance defects
that it uncovered that would not have
been identifi ed using prior, conven-
tional methods. These defects are rep-
resentative of many issues that our ap-
proach has found.

Three ways to go. Soon after deploying
our system and examining the data be-
ing returned by it, we saw anomalies in
one broadly used scenario. We found
that this scenario was being invoked
in three different ways. Much to our
surprise, the scenario’s performance
closely correlated with how it was in-
voked—one method of invocation took
more than 10 times longer than the
others, which led to further investiga-
tion and more fi ne-grained data gath-
ering. The method of invocation that
took the longest was a result of passive
use of the scenario, so users and tes-
ters didn’t explicitly notice it. We were

unaware of the impact on performance
because it had gone unnoticed until we
began using EI Analytics.

IPv6. Figure 6 depicts data for a fre-
quent scenario from an early build of
Lync. Although the desired time was
around 300 milliseconds, a second
peak was visible around 21,000 mil-
liseconds. Although members of the
ship room recognized that the behav-
ior was aberrant, they couldn’t imme-
diately determine the cause. However,
domain experts who were familiar
with recent system changes were able
to quickly determine that this was be-
ing caused by timeouts in the IPv6
stack. Performance results from the
test lab on the same build of the ap-
plication didn’t show such a prob-
lem: the test machines that used IPv6
weren’t running the code that trig-
gered the timeouts.

After developers deployed a fi x, the
data showed that the next build still
had the bump, albeit smaller, around

21,000 milliseconds. Although perfor-
mance had improved for many users,
some were still encountering the issue.
Neither the initial problem, nor the fact
that the fi x didn’t completely resolve it,
would have been determined without
EI Analytics.

This experience also taught us
that although our approach is strong
at showing if there are problems and
which scenarios they relate to, these
are simply signposts rather than ways
to identify the cause of the problem.
That task still requires domain exper-
tise. The value of our approach is that it
maximizes the effectiveness of experts’
time by pointing them to issues quickly.

t hese successes with the Lync
team have encouraged three
other network-based prod-

ucts and services to adopt our tool and
monitoring technique.

Currently, testers determine speci-
fi cation thresholds. Ideally, we would

0 10,000 20,000 30,000 40,000
Duration (ms)

De
ns

ity

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

Target: 300 ms

FIGURE 6. A histogram of durations for a scenario for a given build. Note the peak around 21,000 milliseconds, which alerted testers to an

IPv6 timeout defect that didn’t manifest in standard testing.

s4bir.indd 44 6/6/13 11:36 AM

 July/August 2013 | IEEE softwArE 45

like to know precisely what’s accept-
able to the majority of users and set
that value as the goal. This might be de-
rived from usage and performance data
or from satisfaction surveys and will
enable us to know where to place our
emphasis in improving performance.

Our technique currently displays
the results of the analysis to project
stakeholders, but it doesn’t analyze
the data to provide recommenda-
tions. Because the data can be sliced
in many ways, it would be useful to
have analysis that automatically looks
for problems. For example, one analy-
sis might look through the data to see
if there are specifi c geographical re-
gions experiencing poor performance
and alert a team member who could
then use fi ne-grained data to investi-
gate possible causes.

Our technique has been used with
beta testers, but we plan to continue
using it after release. Lync users will
be able to opt in to the data collection
program, at which point we can collect
timing data to track performance and
identify problems as they occur after
release. We plan to continue improv-
ing performance monitoring and analy-
sis as we strive for data-driven decision
making in development.

References
 1. A. Avritzer and E. Weyuker, “The Automatic

Generation of Load Test Suites and the
Assessment of the Resulting Software,” IEEE
Trans. Software Eng., vol. 21, no. 9, 1995, pp.
705–716.

 2. G. Kiczales et al., “Aspect-Oriented
Programming,” Proc. European Conf.
Object Oriented Programming (ECOOP 97),
Springer, 1997, pp. 327–353.

RoBeRt mUsson is a principle data scientist on the Lync/Skype team at Microsoft. His
research interests include process data and trends to improve the quality of the Lync product.
Contact him at rmusson@microsoft.com.

JAcQUeLine RicHARds is a program manager lead at Microsoft.
Her research interests include increasing the engineering capabilities
of teams by delivering shared, Microsoft-wide engineering services and
systems. Richards received a BA from the University of South Florida.
Contact her at jacqrich@microsoft.com.

dAnyeL fisHeR is a researcher in information visualization and
human-computer interaction at Microsoft Research. His research
interests include ways to help people work together around big data
by providing easy-to-use data visualizations. Fisher received a PhD in
information and computer science from the University of California,
Irvine. Contact him at danyelf@microsoft.com.

cHRistiAn BiRd is a researcher in empirical software engineering
at Microsoft Research. His research interests include how large teams
develop software, both in industrial and open source contexts. Bird
received a PhD in computer science from the University of California,
Davis. Contact him at cbird@microsoft.com.

BRiAn BUssone is a principal development lead on the Services
Engineering Team at Microsoft. His research interests include providing
insights from data. Bussone received a BS in electrical engineering
from Michigan Technological University. Contact him at bbussone@
microsoft.com.

sAndiPAn gAngULy is a senior data scientist at Microsoft. His
research interests include developing machine learning algorithms
using MapReduce for big data environments. Ganguly received a PhD
in industrial engineering from Arizona State University. Contact him at
sagangul@microsoft.com.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s4bir.indd 45 6/6/13 11:36 AM

