
MUX: Algorithm Selection for Software Model Checkers

Varun Tulsian* Aditya Kanade
Indian Institute of Science
(* Now at Walmart Labs)

{varuntulsian,kanade}@csa.iisc.ernet.in

Rahul Kumar Akash Lal Aditya V. Nori
Microsoft Research India

{rahulku,akashl,adityan}@microsoft.com

ABSTRACT
With the growing complexity of modern day software, software

model checking has become a critical technology for ensuring cor-
rectness of software. As is true with any promising technology, there
are a number of tools for software model checking. However, their
respective performance trade-offs are difficult to characterize accu-
rately – making it difficult for practitioners to select a suitable tool
for the task at hand. This paper proposes a technique called MUX
that addresses the problem of selecting the most suitable software
model checker for a given input instance. MUX performs machine
learning on a repository of software verification instances. The algo-
rithm selector, synthesized through machine learning, uses structural
features from an input instance, comprising a program-property pair,
at runtime and determines which tool to use.

We have implemented MUX for Windows device drivers and eval-
uated it on a number of drivers and model checkers. Our results are
promising in that the algorithm selector not only avoids a significant
number of timeouts but also improves the total runtime by a large
margin, compared to any individual model checker. It also outper-
forms a portfolio-based algorithm selector being used in Microsoft
at present. Besides, MUX identifies structural features of programs
that are key factors in determining performance of model checkers.

Categories and Subject Descriptors:
D.2.4 [Software Engineering]: Software/Program Verification–Model
checking; D.2.8 [Software Engineering]: Metrics–Performance mea-
sures; I.2.6 [Artificial Intelligence]: Learning–Parameter learning

General Terms:
Performance, Reliability, Verification

Keywords:
Algorithm selection, machine learning, software model checking

1. INTRODUCTION
With the growing complexity of modern day software, it is be-

coming increasingly challenging to ensure correctness of software
through manual and informal processes. Software model checking
is a technique for proving properties of software or detecting buggy
execution traces that violate the properties. Thus, they can not only
verify correctness of software but can also generate debugging infor-
mation, and have been hugely successful in practice (e.g., [45, 6]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

Even though a large research community continues to work tirelessly
on improving performance of such tools, very little attention has
been given to the difficulties faced by practitioners who focus on
deploying them in the real-world.

To increase the adoption of these techniques in practice, there are
two major aspects that require attention: (1) design of specification
languages that are easy to use and (2) support for selecting the right
tool for a task at hand. The need for the former is served to an ex-
tent with the design of both graphical (e.g., UML [20]) and textual
(e.g., SDL [26], JML [34], SLIC [8]) specification languages. As is
true with any promising technology, there are a number of compet-
ing tools for software model checking (e.g., [45, 19, 36, 7, 38, 32,
24]). They use a variety of algorithmic techniques and offer different
trade-offs in terms of efficiency and completeness. For instance, one
tool may succeed in model checking where another fails. Unfortu-
nately, developers make tool choices either in an ad-hoc manner or
using rules of thumb such as selecting the tool that gives the best
average runtime over a repository of software verification instances.
As we shall show with concrete examples later, these may not nec-
essarily be the optimal choices. While it might be feasible for a
developer to evaluate all tools on a few instances relevant to her, in
the industrial setting requiring deployment on large code bases, this
would entail a huge cost, both in terms of time and money. The
objective of this paper is to present an algorithmic solution for se-
lection of optimal (in terms of runtime) and accurate (in terms of
correctness of results) software model checkers.

Software model checking is an undecidable problem [43]. Never-
theless, the existing tools work successfully in practice on most, if
not all, problem instances; but their performance is difficult to ana-
lyze theoretically. Besides, a lot of engineering optimizations [37]
go into the design of these tools whose utility can only be under-
stood by the tool designers. We therefore take a novel approach,
based on machine learning, to synthesize an algorithm selector [39]
for software model checkers. Our technique, called MUX, generates
a many-to-one selector by training different machine learning algo-
rithms on a repository of data obtained from runs of the tools. The
synthesized algorithm selectorAS uses structural features extracted
from a program-property pair (i.e., an input instance) at runtime and
determines which tool to use.

Figure 1 shows the schematic view of MUX. The algorithm selec-
torAS is synthesized offline by MUX in four steps. The first step in-
volves running the available tools on a set of program-property pairs
(P1, ϕ1), . . . , (Pn, ϕn) provided by the tool designers. Alterna-
tively, the developers who use these tools could also supply them or
these can be obtained from benchmarks used in software verification
competitions [9]. The model checking problem being undecidable,
the model checkers are only semi-algorithms and may not terminate
in some cases. Therefore, MUX takes a timeout value ∆ for running
the tools. Software model checkers use complex data structures and

Tool
Designers

Feature
Extractor

Encoder Software
Verification
Repository

Machine
Learning

Algorithm
Selector

(AS)

T1 Tm
. . .

. . .

Optimal
Tool

Run

Feature
ExtractorDeveloper

Properties ϕ1, . . . , ϕn

Programs P1, . . . , Pn

Timeout ∆

Expected Results r1, . . . , rn

Features

. . .

Property ϕ

Program P

Offline

Figure 1: The schematic view of the MUX approach

algorithms, and may themselves contain faults, resulting in incorrect
output in some cases. MUX therefore also takes the expected results
r1, . . . , rn as input where ri indicates whether Pi |= ϕi or not. If
the tools are believed to be free of faults then this input can be omit-
ted. The second step extracts features from each program-property
pair. MUX extracts over a hundred features from the input instances.
The features include statistics about the structure of programs such
as the number of pointers, variables, functions, loops, and so on –
some of which potentially affect tool performance. The properties
to be model checked are typically given in the form of monitor func-
tions encoding safety automata. Among other statistics, the number
of states in these automata is also included as a feature. The feature
vectors obtained from the input instances are encoded along with the
timing and correctness results of the tools in the third step and are
stored in a repository. In the final step, supervised machine learning
algorithms are trained and the best machine-learned model among
these is synthesized in the form of the algorithm selector AS.

MUX offers the following key benefits compared to a manually-
designed, heuristic-based algorithm selector: (1) In MUX, the mech-
anism for algorithm selection depends only on the features extracted
from program-property pairs and is independent of internals of model
checkers. Therefore, with suitable data, MUX can extend its set of
choices with any model checker. Since it is difficult for humans
to mine rules from large amounts of data, for manual design, this
would require the developer to have a deep understanding of the
tools. (2) Every time a new tool arrives or an existing tool improves
its performance, manually updating the algorithm selector is not a
viable option. In the fast moving field of software model checking,
the algorithmic solution provided by MUX can continue to predict
the most suitable tool from all the options available at any point of
time – in a completely automated manner.

The notion of algorithm selection has been applied successfully in
several other software engineering activities, e.g., in compiler opti-
mizations [44], code generation [27], and parallel programming [42].
In the verification domain, algorithm selection applied to satisfiabil-
ity checking (SAT) produced impressive results, outperforming in-
dividual SAT solvers and winning competitions [47]. To the best
of our knowledge, this paper is the first application of algorithm
selection to software model checking. This work applies MUX to
software model checkers for sequential C programs. Model check-
ing is a popular technique with many tools available for concurrency
model checking and bounded or symbolic model checking of soft-

ware. Some benchmarks (e.g., [1, 2]) are designed by the research
community for evaluating them. With an appropriate selection of
features, the MUX approach can potentially be applied to such model
checkers as well.

To evaluate MUX, we have implemented the approach for Win-
dows device drivers and safety properties, specified in the SLIC
specification language [8], obtained from the Static Driver Verifier
(SDV) framework. SDV is available as part of the Windows Driver
Kit. There are currently three software model checkers available in
SDV: SLAM [5], Yogi [38], and Corral [32]. These tools are based
on different algorithmic techniques. More specifically, SLAM uses
counter-example guided abstraction-refinement (CEGAR), Yogi com-
bines static analysis and testing, whereas Corral performs bounded
goal-directed symbolic search using SMT solvers. Since MUX does
not require knowledge about internals of model checkers, these al-
gorithmic variations pose no difficulty to MUX.

The feature extraction and algorithm selection, applied at runtime,
add very little overhead but result in significant productivity gains.
We experimented with 79 device drivers and the three model check-
ers. Each driver was model checked on all properties that were ap-
plicable from the set of 193 pre-defined properties in SDV. About
half of the drivers were used for training and validation (i.e., in the
offline phase), and the other half for testing the performance of the
algorithm selector AS synthesized by MUX.

Over the test instances, AS outperformed each of the individual
tools. It reduced both the number of timeouts and the total runtime
significantly. While SLAM results in timeout on 194 instances, Yogi
and Corral result in timeout on 75 and 62 instances. AS performs
the selection in a manner that results in only 37 instances timing
out. Of these, all tools result in timeout on 16; this implies that
AS makes only 21 incorrect choices (with respect to timeouts) over
a few thousand test instances considered. Further, we compare the
total time taken by AS selected tools and each of the individual
tools on those instances where both finish within the timeout. On
these instances,AS selected tools take less than 55% and 68% time
respectively when compared to SLAM and Yogi. We note that each
model checking run can be expensive, possibly running into hours.
To put the productivity gain in perspective, while Yogi took over 4
days of CPU time, AS successfully completed the same tasks with
only 2 days and 18 hours of CPU time.

Out of the instances available to us, there were 11 instances for
which the output of some tool was incorrect. These cases arise from

Table 1: Average time taken by the tools on the benchmark pro-
grams: The optimal choices are underlined.

Property SLAM Yogi Corral

ϕ1 7657s 7192s 4577s
ϕ2 3508s 6737s 3793s
ϕ3 3422s 3647s 237s
ϕ4 3326s 4304s 387s
ϕ5 1649s 3384s 2480s

Any 3912s 4407s 2295s

implementation bugs in the tools. We trained MUX together on cor-
rect and incorrect instances with an appropriate encoding that differ-
entiates between them. The algorithm selector obtained could avoid
incorrect choices in the test instances in all but one case.

The algorithm selectorAS is derived by MUX after extensive ex-
perimental evaluation of 25 machine learning problems which in-
clude a variety of classification and regression problems. In this, we
also experimented with different encodings of the training instances.
While in some encodings, all instances were treated as equal, in oth-
ers the instances were weighted by the difference in the runtime of
the best tool and the worst tool – thereby, assigning more importance
to avoiding more expensive mistakes. Similarly, the machine learn-
ing algorithms were encouraged to avoid selecting a tool that could
give an incorrect result. Non-linear support vector machine (SVM)
classifier with weighted instances was the best performer over the
validation data, and was synthesized as the algorithm selector AS.

The SDV toolkit for Microsoft Windows uses a manually-designed
portfolio-based algorithm selector [25] called Q. Over the test in-
stances, Q could not prevent 51 timeouts, whereas the time taken
by AS selected tools was only 78% of the time taken by the tools
selected by Q. These results suggest that machine-learned algorithm
selectors can outperform manually-designed algorithm selectors.

MUX performs feature selection before training the machine learn-
ing algorithms. In this, it discovers 14 features, from over a hun-
dred features extracted from program-property pairs, that are highly-
correlated with performance of the model checkers. Even though
only empirically validated, these features may serve as a useful point
of reference to both researchers and practitioners to study the factors
affecting performance of the software model checkers.

To summarize, the main contributions of this paper are:
• A novel algorithmic solution to the problem of selecting soft-

ware model checkers on per instance basis.
• Identification of key structural features of program-property

pairs which are statistically correlated with the performance
of software model checkers.
• An empirical training and evaluation of several machine learn-

ing algorithms resulting in automated synthesis of an algo-
rithm selector that outperformed the individual tools and a
manually-designed algorithm selector.

2. MOTIVATING EXAMPLE
With an example, we now present the challenges in selecting the

optimal software model checker and motivate the MUX approach.
We consider five properties that are pre-defined in SDV in this ex-
ample. For brevity, these are denoted by ϕ1 to ϕ5. The data used in
this example is taken from the actual repository.

One simple, and perhaps, common heuristic for algorithm selec-
tion is to select the tool that gives the best average-case performance
on a benchmark. Table 1 gives the average time taken by each of the
three model checkers – SLAM, Yogi, and Corral – for the five prop-
erties, ϕ1 to ϕ5, on some benchmark programs. It also gives the
average time across all properties, tagged as “Any” in the property

Table 2: Performance of the tools on some programs that were
not in the set of benchmark programs: The optimal choices are
underlined. TO indicates timeout.

Instance SLAM Yogi Corral Q AVG AS
1 (P1, ϕ4) 2144s 1580s 1330s 1330s C Y
2 (P1, ϕ5) 1650s 1560s 1534s 2960s S Y
3 (P2, ϕ1) TO 1222s TO 2622s C[TO] Y
4 (P2, ϕ2) TO 1648s 2801s 3048s S[TO] Y
5 (P2, ϕ4) TO TO 1367s 1367s C Y[TO]
6 (P2, ϕ5) TO 2416s 2984s 3816s S[TO] C
7 (P3, ϕ1) TO TO 2416s TO C C
8 (P3, ϕ3) TO TO 2077s TO C C
9 (P3, ϕ5) TO TO 1114s 1114s S[TO] C

10 (P4, ϕ1) TO 1897s TO 3297s C[TO] Y
11 (P4, ϕ2) TO TO 2894s TO S[TO] Y[TO]
12 (P4, ϕ3) 2999s TO 2942s TO C C
13 (P4, ϕ5) TO TO 832s 832s S[TO] C
14 (P5, ϕ4) TO TO 1107s 1107s C C
15 (P6, ϕ2) TO 2046s TO 3446s S[TO] Y
16 (P6, ϕ3) TO 2771s TO 4171s C[TO] Y
17 (P6, ϕ4) TO 1484s TO 2884s C[TO] Y

Timeouts 14 8 5 4 10 2

column. In some cases, the tools result in timeout on the benchmark
programs. The timeout value here is set to 10K seconds. Time-
outs increase the average time taken by a tool proportionately. For
each row, the optimal choice is underlined. With the best average-
case heuristic, for properties ϕ2 and ϕ5, SLAM is the best choice,
whereas for the other three properties, Corral is the best choice. With
this data, Yogi is not selected for any property. Once a tool is se-
lected, the same tool is used for all input instances. This form of
algorithm selection is therefore also called “winner-takes-all”. We
denote the algorithm selector induced by this mapping by AVG. If
a tool is to be selected in property-agnostic manner then Corral will
be selected, based on the last row in Table 1.

The algorithm selector used by SDV is called Q. Technically, it
is a portfolio-based algorithm selector. A portfolio-based algorithm
selector maintains a set of tools and runs one or more of them on
an input instance, either parallelly or in a time-sliced manner [25].
In particular, out of the three model checkers, Q utilizes only Yogi
and Corral in the portfolio and runs Corral initially up to 1400s and
then runs Yogi with a higher timeout value. The design of Q is based
on two key observations: (1) Corral, when works, finishes fast. The
timeout of 1400s is obtained as a lower bound on the runtime of in-
stances on which Corral takes more time than Yogi. Thus, if Corral
does not finish in 1400s then switching to Yogi is beneficial. (2) Cor-
ral and Yogi mostly result in timeout on disjoint instances but Yogi
takes more time on an average for instances on which both succeed.
That is why Corral is run first. Note that the criterion used in Q is
completely agnostic to the input instances.

Table 2 gives the runtimes of the tools on some programs that
were not part of the benchmark programs. The properties in these
instances are from the properties listed in Table 1. TO indicates time-
out. The optimal choice for each instance is underlined. In these 17
instances, SLAM times out on 14, Yogi and Corral result in timeout
on 8 and 5 instances respectively. Note that the performance of the
property-agnostic variant of AVG, discussed above, coincides with
that of Corral. We now analyze the performance of AVG and Q on
the instances in Table 2. For the algorithm selectors, the choices
are abbreviated with the first letter of the tool name. AVG makes
6 optimal choices, only 1 sub-optimal choice (that succeeds with-
out timing out), but 10 choices that result in timeouts (worse than

any individual tool). On the other hand, Q makes 5 optimal and 8
sub-optimal choices, and times out on 4 instances.

The developer might be tempted to tweak the criteria discussed
above by observing some patterns in the data. For instance, if Q
sticks with Corral for longer then it can avoid all the 4 timeouts –
instances 7, 8, 11, and 12. However, this will penalize Q’s perfor-
mance on several other instances where Yogi must be used anyway.
Instead of manually exploring such ad-hoc selection criteria, we pro-
pose an algorithmic approach in this work.

The key limitation of the strategies discussed above is that they
are too coarse-grained. The performance of a model checker, or any
algorithm for that matter, is a function of all its inputs. However,
neither AVG nor Q analyze the input instances while selecting a tool
– they only rely on an approximate characterization of the past per-
formance of the tools. In contrast, our approach, called MUX, uses
structural features of input instances to learn and then predict the
best tool on each individual input instance. Similar to AVG and Q,
MUX also uses the past performance of the tools but tries to learn a
more accurate prediction model.

Table 2 shows the choices made by the algorithm selectorAS syn-
thesized by MUX (see the last column). AS makes optimal choices
on 12 instances and sub-optimal choices on 3 instances. It results in
timeout only in 2 cases which is less than timeouts for any individual
tool or the manually designed algorithm selectors.

Apart from timeouts, the total time taken to model check all the
instances is also an important metric affecting developer productiv-
ity. There are 12 instances on which neither AS nor Q timeout. On
these instances, the tools selected by AS take only 66% of the time
taken by the tools selected by Q. This is because whenever Q makes
a sub-optimal choice, its performance degrades sharply. In fact, it
takes more time than any individual tool. This is a consequence of
its time-slicing based scheduling which would run both Corral and
Yogi in such cases. In contrast, AS is a many-to-one selector and
hence, does not suffer overheads of running more than one tool.

3. SYNTHESIS OF ALGORITHM SELECTOR
In this section, we present the design steps of our approach and

the algorithm MUX for synthesis of an algorithm selector.

3.1 Design Steps
3.1.1 Feature Identification

In machine learning, the input instances are modeled as values of
a finite set of features. A feature is a numerical, efficiently com-
putable property of the input instance. For a machine learning al-
gorithm to learn good prediction models, the set of features should
characterize the input instances appropriately and at least some of
the features must correlate well with the expected output. Further,
the feature computation must be efficient. This requirement is even
more important in our setting. To obtain real benefits from algorithm
selection, the overheads of feature computation (and tool prediction)
should only be a small fraction of the time required for model check-
ing the corresponding instances.

MUX computes over a hundred structural features of a given veri-
fication instance (i.e., a program-property pair). Table 3 gives a rep-
resentative list of features. These include program-based features
like count of scalar variables of a primitive type such as integers,
count of void pointers, count of different types of statements in the
program, and so on. Besides, features about properties such as its
type (e.g., bit-vector, safety property) and count of states in the safety
automaton represented by the property are included. These features
are computed efficiently with a single pass over the entire program.

We give insights about how some of these features may affect run-
time of the model checkers. Corral [32] performs abstractions only
over global variables of a program, while maintaining local variables

Table 3: A representative list of features
Feature type Example features

Features extracted from programs
Scalar variables Count based on types e.g., integers,

floats, characters
Arrays Count based on types e.g., integer ar-

rays, character arrays
Aggregate datatypes Count of structs and unions
Pointers Count based on types e.g., integer

ptrs, function ptrs, void ptrs
Lexicographic scope
(applicable to all the
feature types above)

Separate counts for local and global
variables

Expressions Count of arithmetic expr., array in-
dexing, pointer dereferences

Statements Count of assignments, conditionals,
loops, function calls

Functions Count of recursive functions, Avg.
number of func. arguments

Complexity measure Cyclomatic complexity
Features extracted from properties

Property type Bit-vector, Safety property
Annotations Count of watch/guard constructs,

Number of state variables
States of automaton Count of entry/exit/total states

explicitly. MUX separately tracks the count of variables, pointers,
etc. by lexicographic scope (see Table 3). These features may help
differentiate programs on which Corral performs well from those on
which it does not. The abstraction computed by SLAM [7] is expo-
nential in the number of predicates. The initial set of predicates used
for refinement corresponds to the predicates in conditionals of the
program. Thus, count of conditional statements can play an impor-
tant role in predicting its performance. Pointers and function calls
are handled differently in different model checkers. For instance,
Yogi [38] computes aliasing information only during symbolic exe-
cution and may scale better on programs with many pointers.

While it might be possible to guess some features (such as above)
which could be useful for predicting performance of certain tools, in
designing MUX, we have tried to include as many features as pos-
sible. Thus, our design is not specific to the three model checkers
considered in this paper. Having more (and even spurious) features
does not affect the accuracy of MUX. Similar to most of the machine
learning approaches, MUX does feature selection to identify statis-
tically important features as a pre-processing step. In our experi-
ments, finally only 14 features were used in prediction. We discuss
the results of feature selection in Section 4.2.
3.1.2 Formulation as Machine Learning Problems

In the case of algorithm selection, since the best tool is known
for the training instances, it is natural to formulate it as a supervised
learning problem. In supervised learning, the training data is labeled
with desired outcome. Classification and regression are the two pre-
dominant classes of supervised learning problems [13].

The algorithm selection problem can be formulated as a multi-
class classification problem as follows: Given a program-property
pair (P,ϕ) determine its label – where label ranges over identifiers
of the model checking tools. Unlike binary classification which con-
siders only two labels, multi-class classification works over any fi-
nite set of labels. The labeling results in a mis-classification if the
tool identified by the classification model (i.e., model learned by the
classification learning algorithm) does not give the lowest runtime
among all the available tools. When a tool produces an incorrect re-

Table 4: Machine learning problems solved in MUX

Machine learning algorithm ML problems

Non-linear SVM without weights 3 binary, 1 multi-class
Non-linear SVM with weights 3 binary, 1 multi-class
Non-linear SVM with discretized weights 3 binary, 1 multi-class
Linear SVM without weights 3 binary, 1 multi-class
Linear SVM with weights 3 binary, 1 multi-class
Linear SVM with discretized weights 3 binary, 1 multi-class
Linear regression Ridge regression
Total number of problems 25

sult (due to a fault), its runtime is set to a constant higher than the
timeout value. This discourages the machine learning algorithms
from selecting the tool for other instances where the tool is likely to
produce incorrect results. This also provides them with a uniform,
quantitative criterion (runtime) to optimize.

Considering all the tools together as part of a classification prob-
lem may affect accuracy of prediction unnecessarily, if a tool is not
suitable in most cases. To overcome such a possibility, we consider a
more fine-grained classification problem, namely, multiple instances
of binary classification – where we consider every pair of tools sep-
arately. The notion of mis-classification, defined above for multi-
class classification, remains the same but is restricted to only the
two tools being considered.

In the setting of algorithm selection, for each input instance we
can try to predict the runtime of each tool. This version can be for-
mulated as a regression problem: Given a program-property pair
(P,ϕ), predict the runtime of each tool. The goal of regression is
to learn a regression model, also called an estimator, of the actual
function which in our case determines the runtime. Once we obtain
regression models for all the tools, on every input instance, the tool
which has the lowest predicted runtime is selected.
3.1.3 Definitions of Objective Functions

The features identified in Section 3.1.1 define the input to a ma-
chine learning problem. We now formalize the output.

The algorithms to solve classification and regression problems
have well-defined objective functions. In classification, the objec-
tive is to minimize the mis-classifications. In regression, it is to
minimize the mean squared error or some variant of it (e.g., root
mean squared error) between the function and its estimation com-
puted by the algorithm. It is also common to consider weighted in-
stances in classification where a mis-classification penalty is scaled
by the weight of the instance being mis-classified. In our context,
we derive weights by considering the runtimes of the tools. In par-
ticular, apart from unweighted instances, MUX encodes two types
of weighted instances, where (1) weight is equal to the difference in
runtime between the best and the worst tool and (2) weight is equal
to discretization level of the difference in runtime between the best
and the worst tool. For the latter, we select a discretization value,
say δ. If d is the difference in runtime then the discretized weight is
k such that (k − 1).δ < d ≤ k.δ.

Clearly, the weight indicates importance of an instance whereas
without weights, all instances are equal. It is undesirable to select
a sub-optimal tool when the difference in runtimes is high. Con-
versely, when the difference is low, a sub-optimal choice is accep-
tible, providing more flexibility in machine learning. The weight is
likely to be high for instances where (1) one of the tools times out
and another does not, or (2) one of the tools produces an incorrect
result and another does not. As we discuss in Section 4, a classifica-
tion algorithm with weights gave the best results in our experiments.

The classification and regression problems can be solved with lin-
ear as well as non-linear techniques. Table 4 gives the list of machine

Algorithm 1: Algorithm MUX

Input: Program-property pairs (P1, ϕ1), . . . , (Pn, ϕn), the
corresponding expected results r1, . . . , rn, model
checkers T1, . . . , Tm, and timeout ∆

Output: An algorithm selector AS
1 begin
2 DB ← ∅ // Initialize the repository

3 foreach program-property pair (Pi, ϕi) do
4 foreach model checker Tj do
5 T imeij ← Run Tj up to time ∆ to check Pi |= ϕi

6 if T imeij < ∆ then
7 Let Resultij be the result of Tj on (Pi, ϕi)
8 if Resultij 6= ri then T imeij ← 2×∆

9 end
10 FVi ← Extract structural features from (Pi, ϕi)
11 DB ← DB ∪ {〈FVi, T imei1, . . . , T imeim〉}
12 end

// Select training and validation sets

13 TS ← Select a subset of {(P1, ϕ1), . . . , (Pn, ϕn)}
14 VS ← {(P1, ϕ1), . . . , (Pn, ϕn)} \ TS

// Perform feature selection

15 F ← Select a subset of most useful features using TS
// Train ML models

16 Train classification models on DB restricted to TS and F
17 Train regression models on DB restricted to TS and F

// Select the best ML model

18 C ← Select the best classification model wrt VS
19 R← Select the best regression model wrt VS
20 B ← Select the best model between C and R

// Synthesize the algorithm selector AS

21 AS ← Synthesize B as a program from feature vectors to
identifiers of the model checking tools

22 end

learning algorithms that were evaluated as part of MUX. In the table,
the weight measure that uses difference in runtime of the best and the
worst tool is denoted simply as “with weights”. The discretized vari-
ant of it is denoted as “with discretized weights”. The first six rows
correspond to different classification algorithms. For each of them,
MUX solves 4 classification problems: 3 of them are binary classi-
fication problems (over the pairs of the three software model check-
ers considered) and 1 is a multi-class classification problem (over
all three model checkers). The multi-class classification problem is
solved by taking majority vote among the binary classifiers. In our
setting, in the case of a tie, we want to select a specific model checker
(Corral). Existing approaches for generating multi-class classifiers
may break the ties arbitrarily and hence, we do not use them. The
non-linear support vector machine (SVM) algorithms are used with
Gaussian kernel. In all, MUX solves 25 machine learning problems
and selects the best solution.

3.2 Algorithm
The algorithm MUX (see Algorithm 1) takes as input a set of

program-property pairs (P1, ϕ1), . . . , (Pn, ϕn), the expected results
r1, . . . , rn where ri indicates whether Pi |= ϕi or not, a set of
model checking tools T1, . . . , Tm, and a timeout value ∆. The out-
put of MUX is an algorithm selector AS: a program to map feature
values of a program-property pair to a tool identifier.

MUX uses a repository DB to store the information about each
model checking run. It initializes DB to the empty set (line 2).
The algorithm then runs each available tool Tj on every program-
property pair (Pi, ϕi) to obtain the time taken by the tool for check-
ing whether Pi |= ϕi (line 5). Let T imeij be the time taken by Tj

on (Pi, ϕi). If Tj does not terminate before the timeout occurs then
MUX aborts the model checking run, setting T imeij to the timeout
value ∆. If Tj finishes before the timeout (line 6) but its result is
incorrect (line 8) then MUX resets T imeij to a value higher than
∆. In this work, we set it to 2 × ∆ but this is configurable. MUX
stores the feature vector FVi for (Pi, ϕi) along with runtimes of all
the tools in the repository (lines 10 and 11).

The next step partitions the data into training set TS and vali-
dation set V S (lines 13 and 14). The training data TS is used for
training the machine learning algorithms and the validation data V S
is used for comparing their performance in order to identify the best
model to be synthesized as the algorithm selector.

In a fine-grained partitioning, the individual program-property pairs
can be partitioned into two sets. With such a partitioning, for the
same programPi, data on some properties may end up in the training
set and data on other properties in the validation set. For instance,
consider a program-property pair (P1, ϕ1) belonging to the valida-
tion set such that some (P1, ϕ

′
1) is present in the training set. We

note that the set of features pre-dominantly include features about
programs (see Section 3.1). During validation, a machine learned
model may give an accurate result on (P1, ϕ1) due to its similar-
ity to (P1, ϕ

′
1). Due to this, with the fine-grained partitioning, the

machine learned model selected by MUX could be the one that is
over-fitted to the training data. Consequently, it is more likely to fail
(in selecting the optimal, accurate model checker) on an instance
(P2, ϕ2) such that there is no instance (P2, ϕ

′
2) in the training set.

MUX avoids such a situation by partitioning programs (instead of
program-propery pairs) into two sets A and B and then puts all
program-property pairs (Pi, ϕi) into the training set TS if Pi ∈ A.
Analogously, all program-property pairs (Pj , ϕj) such that Pj ∈ B
are included the validation set V S.

To start with, the features that are important for good predic-
tion are not known. MUX computes all features and then selects
a promising subset using a suitable feature selection mechanism
(line 15). More specifically, it computes Pearson’s correlation co-
efficient [29] of every feature with the runtime of each of the tools.
Pearson’s correlation coefficient is the numerical measure of the
strength of linear correlation between two statistical variables. The
coefficient value close to 1 indicates that the two variables have a
strong linear dependence on each other. It then selects the features
whose correlation coefficient is above a threshold (which is 0.35 in
the current implementation) for at least one tool. Let F be the set of
features selected. The subsequent training and validation steps are
performed only with respect to these features.

MUX now trains the classification and regression algorithms on
the training data TS (lines 16 and 17). For multi-class classification,
MUX encodes a training instance 〈FVi, T imei1, . . . , T imeim〉 as
a triple 〈FVi, `i, wi〉 where FVi is the feature vector restricted to
the features from the set F , `i is the expected label, and wi is the
weight. MUX computes the label `i as `i = arg minj T imeij for
j ∈ {T1, . . . , Tm}. Let

maxi = max{T imei1, . . . , T imeim} and
mini = min{T imei1, . . . , T imeim}.

The weight wi can take one of the following values depending on
whether weighted/unweighted instances are used:

wi = κ unweighted instances
wi = maxi −mini diff. in runtime of best/worst tools
wi = d(maxi −mini)/δe discretized difference in runtime

The constant δ is the discretization value and κ is an arbitrary posi-
tive constant. The aim of machine learning in this case is to derive a
function from feature vectors to the set of labels {T1, . . . , Tm}.

For binary classification, from one training instance, multiple en-
codings – one each for every pair of tools – are created. An indi-
vidual encoding is analogous to the encoding for multi-class classi-
fication but restricted to only the pair of tools being considered. In
the case of regression, MUX generates one encoding each for every
tool. The encoding of an instance 〈FVi, T imei1, . . . , T imeim〉 for
a tool Tj is simply 〈FVi, T imeij〉 and the aim of (linear) regression
learning is to compute an (linear) estimator of the function from the
feature vectors to the runtime of the tool. The objective functions
for all the machine learning problems, with and without weights, are
defined in Section 3.1.3.

MUX identifies the best classification model, from the trained
ones, on the validation set V S (line 18). Since some classifiers do
not use weights and others use one of the two notions of weights,
to compare them uniformly, MUX assigns the score for a predic-
tion as runtime of the predicted tool. Given the feature vector FVi

of an instance ı = 〈FVi, T imei1, . . . , T imeim〉, if a classification
model selects label ` then the score is S(ı, `) = T imei`. The aggre-
gate score of a classification model C over the validation set is equal
to

∑
ı∈V S S(ı, C(FVi)). Naturally, a mis-classification results in

a higher increment of the aggregate score. The best classification
model is the one with the least aggregate score.

Note that the criterion, defined above, for identification of the best
classification model differs from the usual notions of accuracy and
precision [13]. In our setting, the total time taken by the predicted
tools is more important that the individual predictions. For instance,
the tools predicted by a classification model C1 with 90% precision
may take more time to finish the tasks than those predicted by an-
other classification model C2 with, say only 80% precision. In such
a case, MUX prefers C2 over C1.

As discussed in Section 3.1, MUX trains one regression model
for each of the tools. The prediction of the combined regression
model R on an instance ı is the tool with smallest predicted run-
time. Suppose ` is the tool predicted by R. The definitions of score
S(ı, `) and aggregate score here are the same as the definitions in the
classification case. MUX then selects the best model, by aggregate
score, between the best classification model and the best regression
model (line 20). Finally, the algorithm selector AS is synthesized.
It is a straightforward encoding of the function defined by the best
machine-learned model.

4. EVALUATION
We use Static Driver Verifier (SDV) as our framework for imple-

menting MUX. The feature extraction is implemented in OCaml,
as an extension of the SDV compiler. Feature selection is imple-
mented with Weka [23] and the machine learning algorithms are im-
plemented using Matlab1, LibLinear [17], and LIBSVM [15].

Research Questions. We evaluate the following questions about
the design choices made by MUX during the offline phase:

(RQ1) Selection of important features – Which features are iden-
tified by MUX as the most important ones for predicting the optimal
and accurate software model checkers?

(RQ2) Choice of the machine learned model – Which machine
learned model is used by MUX as the algorithm selector AS?

(RQ3) Performance and scalability – How does MUX perform in
the training and validation steps?

Next, we evaluate effectiveness of the algorithm selector AS syn-
thesized by MUX in the online phase:

(RQ4) Reduction in the number of timeouts – Does the algorithm
selector AS reduce the number of timeouts, compared to the indi-
vidual tools and Q?
1http://www.mathworks.com/products/matlab/

http://www.mathworks.com/products/matlab/

Table 5: Features identified by MUX as important for algorithm
selection and their correlation coefficients

Feature description Corr. coefficients
SLAM Yogi Corral

1 Total number of local variables 0.45 0.39 0.46
2 Total number of conditional statements 0.39 0.31 0.31
3 Total number of formals and local variables 0.45 0.40 0.47
4 Total number of function calls 0.45 0.27 0.47
5 Total number of local integer-type variables 0.46 0.39 0.46
6 Total number of local scalar variables 0.45 0.29 0.45
7 Total number of local struct or union variables 0.52 0.39 0.50
8 Total number of local pointers 0.46 0.31 0.48
9 Total number of local pointers to struct or union 0.46 0.42 0.49

10 Total number of local void pointers 0.46 0.30 0.34
11 Total number of local function pointers 0.45 0.45 0.45
12 Is the driver implemented using C++ (or only C)? 0.07 0.13 0.08
13 Does the property utilize bit-vector operations? 0.03 0.04 0.02
14 The number of states of the property automaton 0.10 0.26 0.18

(RQ5) Productivity gain – Does the algorithm selector AS im-
prove the total time required for model checking large code bases?

(RQ6) Performance and scalability – Does the algorithm selector
AS add runtime overheads in the online phase?

4.1 Experimental Setup
For our experiments, we chose the test suites that are available in

the SDV framework. Specifically, due to its inherent complexity, we
use the Windows Driver Model (WDM) driver test suite, which con-
tains 79 drivers, developed independently by different teams. This
test suite consists of production as well as test drivers that range
from 1K to 50K LOC in size. For the WDM drivers, SDV contains
a total of 193 properties. However, not all properties are applicable
to each driver. Using the above test suite, we get a total of 5717
program-property pairs for evaluation. Thus, MUX is evaluated on
a large, industrial code base and a large number of verification in-
stances. In our experiments and data collection, we used a machine
with two Intel Xeon processors (16 logical cores) executing at 2.4
GHz and a total of 32 GB RAM. The model checkers are sequential
and analyze an instance only on a single core.

The usual practice in machine learning is to train the algorithms
with examples that are reflective of the test data. In our case, we
need examples of drivers for which each model checker gives the
least total runtime over all the properties; otherwise, the training
data would be under-representative of the test data. We therefore
partitioned the drivers according to the best model checker. The
drivers from each set were then classified randomly into training,
validation, and test data. More specifically, only 35% drivers (and all
their properties) were used for training, whereas 15% drivers were
used for validation. The remaining 50% drivers were presented to
the algorithm selector AS only at runtime. In terms of program-
property pairs, 2797 pairs were used in the offline phase (for training
plus validation) and the remaining 2920 pairs were used in the online
phase (for testing). We call this setup baseline setup and evaluate
MUX in Sections 4.2 and 4.3 using it.

In this repository, there were additional 11 instances for which
the output of some tool was incorrect. We evaluate MUX by adding
these instances to the baseline setup in Section 4.4.

4.2 Evaluation of the Offline Phase
We now evaluate the offline phase in which MUX solves the ma-

chine learning problems (see Table 4) in order to identify and syn-
thesize the best algorithm selector.
(RQ1) Selection of important features

MUX starts with a feature set of 131 structural features over the
program-property pairs and identifies the most important features

Table 6: Comparison of machine learning algorithms
Machine learning algorithm Time Timeouts

Non-linear SVM without weights 19760s 0
Non-linear SVM with weights 19510s 0
Non-linear SVM with discretized weights 19588s 0
Linear SVM without weights 42016s 2
Linear SVM with weights 53163s 3
Linear SVM with discretized weights 41744s 2
Linear regression 44259s 2

through statistical analysis as discussed in Section 3.2. MUX dis-
covers that only a few features shown in Table 5, are important for
prediction. In the remaining steps, MUX performs machine learning
with respect to only these features.

Against each feature, Table 5 indicates the correlation coefficients
of the feature with the runtime of each model checker. The first
11 features are selected by MUX and are all related to programs.
We therefore manually added the last three features. Among these,
the last two features are about the properties being model checked.
Without these features, the instances of the same program with dif-
ferent properties would be mapped to the same feature vector, po-
tentially affecting the machine learning accuracy adversely. The
other manually-added feature indicates whether C++ constructs are
involved since the tools handle them differently.

Interestingly, several features have high correlation with runtimes
of each of the model checkers. As remarked in Section 3.1, it is
known that the performance of SLAM gets affected by increase in
the number of conditional statements in the program, while the same
is not necessarily as critical for Yogi and Corral. The feature at po-
sition 2 in Table 5 captures this structural property of programs and
its correlation with SLAM is higher than the other tools. Another
interesting observation relates to the feature at position 4 which is
the count of the total number of funtion calls in the program. Corral
works by inlining function calls on demand. Clearly, the number of
function calls has a relevance to the performance of Corral and MUX
could identify this algorithmically, through statistical analysis. Even
though only empirically validated, we believe that the features iden-
tified by MUX can serve as a useful reference to researchers and
practitioners interested in design of efficient model checkers.
(RQ2) Choice of the machine learned model

MUX trains multiple machine learning algorithms on the training
data. Each of these algorithms takes one or more hyper-parameters.
The hyper-parameters capture the prior distribution from which the
training data is presumably sampled [13]. A right configuration of
hyper-parameters improves the performance of the machine learning
algorithm. MUX obtains candidate configurations of hyper-parameters
by uniformly sampling values from some ranges supplied by us.
This approach is referred to as grid search.

In all, 25 machine learning problems (see Table 4) are solved by
MUX. Each machine learned model is then evaluated on the vali-
dation set. Table 6 gives the runtime of the tools predicted by each
algorithm and the number of timeouts that would result from their
predictions. Similar to Table 4, the first six rows correspond to
classification algorithms and the last one corresponds to a regres-
sion algorithm. We recall that MUX trains 3 binary classifiers and 1
multi-class classifier using each of the classification algorithms (see
Section 3.1). The entries in the first six rows correspond to the best
classifier among the four classifiers trained by the same algorithm.
The optimal choices would have resulted in 0 timeouts and would
take 16095s for model checking the instances in the validation set.
MUX chooses the model which gives the least time on the validation
set, called the aggregate score in Section 3.2. The minimal runtime

is underlined in Table 6. It corresponds to non-linear support vector
machine (SVM) with the difference in runtime of the best and the
worst tool as the weight measure. Further, the classifier model (from
among the four classifiers trained through the same algorithm) corre-
sponds to a binary classifier between Yogi and Corral. This classifier
is synthesized by MUX as the algorithm selector AS.

Interestingly, Yogi and Corral are precisely the model checkers
used by Q also. However, unlike Q which tries these tools in a cer-
tain order (Corral followed by Yogi),AS predicts one of them algo-
rithmically. Besides, as our results on the test instances would show,
AS outperforms the hard-coded logic of Q.
(RQ3) Performance and scalability

MUX finishes the entire training and validation tasks within a
few minutes overall (the maximum is 7m). This includes the time
taken for learning models with different configurations of hyper-
parameters and in the case of the individual classification algorithms,
for all the four classifiers together. In the case of linear SVM, MUX
tried about 50 hyper-parameter configurations, whereas in all other
cases, these were about 200. Thus, the training and validation steps
of MUX scale very well and can efficiently identify the best machine
learning model from a large set of candidates.

Before training, for each software verification instance, we run
all the software model checkers to obtain respective timing and cor-
rectness results. For the purposes of our experiments, we divided the
available programs equally between the offline and online phases. In
practice, we expect a much larger number of programs being model
checked online compared to the offline phase, offsetting the cost of
collecting the training data.

4.3 Evaluation of the Online Phase
We now evaluate the performance of the algorithm selector AS

synthesized by MUX on the test data.
(RQ4) Reduction in the number of timeouts

Table 7 gives the timeouts on the test data for the individual tools
as well as the algorithm selectors AS and Q. The row/column num-
bers are indicated against the tool names. For simplicity, we refer
to a tool or an algorithm selector by its row/column number. An
(i, j)th entry in the table gives the number of program-property pairs
on which both the tool (or algorithm selector) labeling the ith row
and the tool labeling the jth column timeout. A diagonal entry (i, i)
gives the total timeouts for the ith tool. The matrix is symmetric
and hence only values in the lower triangle are given. The column
labeled “optimal” corresponds the actual optimal choices for the test
data. There are 16 instances on which all the model checkers time-
out. This is the number of timeouts corresponding to the optimal
choices, as these instances result in timeout irrespective of the choice
of the model checker. The timeout value in the experiments was set
to a substantially high value, 10K seconds, nearly 3 hours.

Among the software model checkers, Corral times out on the small-
est number of instances (62), whereas SLAM times out on the maxi-
mum number (194). In contrast, the AS selected tools timeout only
on 37 instances. As discussed above, 16 of them timeout with every
tool. Thus,AS makes only 21 choices in which theAS selected tool
times out but there is another tool which could have model checked
that instance within the timeout value. The manually-designed al-
gorithm selector Q, used in SDV currently, times out on a larger
number of instances (51) compared to AS.

For a pair of distinct tools i and j, the difference between (i, i)th
and (i, j)th entries (for j < i) gives the number of instances on
which the ith tool times out but the jth tool does not. Analogously,
the difference between (j, j)th and (i, j)th entries (for j < i) gives
the number of instances on which the jth tool times out but the
ith tool does not. For example, between SLAM (i = 6) and AS

Table 7: Pairwise comparison of timeouts
(1) Optimal (2) AS (3) Q (4) Corral (5) Yogi (6) SLAM

(1) Optimal 16
(2) AS 16 37
(3) Q 16 27 51
(4) Corral 16 23 27 62
(5) Yogi 16 31 35 17 75
(6) SLAM 16 28 45 50 42 194

Table 8: Comparison of the total runtime
Tool Instances Time AS

Optimal 2883 2d 09h 3d 03h (131%)
Q 2859 3d 05h 2d 12h (78%)

Corral 2844 2d 19h 2d 15h (94%)
Yogi 2839 4d 04h 2d 18h (68%)

SLAM 2717 3d 06h 1d 19h (55%)

(j = 2), SLAM times out on 166 instances on which the tools
selected by AS do not timeout, whereas the tools selected by AS
timeout on 9 instances on which SLAM does not timeout. Thus,
with respect to SLAM, AS avoids timeouts on a larger set of in-
stances while newly inducing timeouts only on a much smaller set
of instances. This holds true for the other two model checkers as
well as the algorithm selector Q. For instance, there are 10 instances
on which AS results in timeout but Q does not and 24 instances
where Q results in timeout but AS does not. Overall, AS success-
fully eliminates a significant number of timeouts originating from
each of the model checkers and the choices of Q.
(RQ5) Productivity gain

We want to now compare the total time taken by the tools selected
byAS and each of the model checkers to model check the instances
from the test data, excluding the instances on which either of them
times out. Table 8 shows the number of instances on which the tool
andAS’s choices both finish within the timeout. As can be seen, the
time taken by AS’s choices is far lower than the time taken by Yogi
or SLAM. It is only 68% and 55% respectively. Since the drivers
considered in these experiments are fairly large, the time required for
model checking a single program-property pair is usually high – of
the order of several minutes or more. The model checkers required
several days to complete model checking for all program-properties
in the test data. For example, Yogi took over 4 days. A 32% saving
on such a large CPU time is therefore quite significant. In particular,
AS saves at least one full day as compared to Yogi. The same is true
in the case of SLAM as well.

The time taken by Corral is reasonably close to that of AS’s
choices. We highlight that AS does not degenerate into selecting
Corral by default. AS selects Corral only on 44% instances in the
test data. Further, as discusssed earlier, the number of timeouts that
Corral results in is much higher compared to that of AS. Q reduces
the number of timeouts compared to any individual model checker
(though still higher than AS). Unfortunately, it does not show any
improvement with respect to the total runtime. As seen from Ta-
ble 8, AS’s choices take only 78% time compared to Q’s choices.
At this point, the performance of AS is somewhat farther from the
optimal time. It is 31% slower than the algorithm selector which
always selects the optimal tool.
(RQ6) Performance and scalability

The features are extracted by performing a single pass over the
program and the description of the property being model checked.
Therefore, unsurprisingly, the runtime overhead ofAS in the online
phase is very small. On the test data, AS typically takes a few sec-

onds to extract features and predict the best tool. Even on the largest
driver (50KLOC), the overhead was less than 10s.

4.4 Evaluation with Incorrect Instances
We now evaluate MUX by adding to the baseline setup the in-

stances on which some tool produced an incorrect result. Out of the
11 such instances, 7 fell into the training set and 4 in the test set.
As before, MUX selected a binary classifier between Yogi and Cor-
ral as the algorithm selector AS. AS chose the tool that gave an
incorrect result in 1 instance in the online phase. In comparison, Q
chose incorrect tools in 2 cases. The choices of the algorithm selec-
tor AS caused 44 timeouts, better than individual tools and Q. For
the non-timeout cases, AS continued to outperform the other tools
and Q, with the percentage gain in total runtime about the same as
Table 8. As discussed in Section 3.2, the runtime in the case of incor-
rect instances is set to twice the timeout value. Since the repository
available to us at present does not have enough incorrect instances
for further experimentation, we leave it to future work to evaluate
whether varying this encoding can reduce the timeouts without in-
creasing the incorrect choices or vice versa.

4.5 Threats to Validity
The threats to internal validity include selection bias where the

training data and test data may have an overlap, leading to falsely
pronounced results in the machine learning accuracy on the test data.
We mitigated this threat by partitioning the data not by program-
property pairs but by programs (see Sections 3.2 and 4.1). Thus,
no program-property pair occurs in the two sets, and even more
strongly, no program occurs in the two sets. We note that only 11
instances were identified as exposing implementation bugs in the
tools. This was based on the explicit tagging by the developers who
wrote the device drivers. The tool designers have confirmed them.
However, it is difficult for us to ascertain that there are no additional
instances with incorrect results. Another threat to internal validity
may arise due to software bugs. We tested our implementation ex-
tensively and believe that there are no bugs in it.

Threats to external validatity arise because our results may not
generalize to other classes of programs or properties and software
model checkers. The device drivers considered in this work come
from an industrial framework consisting of both production and test
drivers, developed by different teams. These can therefore be con-
sidered as representative of device drivers in general. This however
mitigates the threat only to an extent. It is not clear whether MUX
can produce similar results on programs other than device drivers. A
large number of properties were part of the data used in this work.
From our experience in software model checking, we believe that
these are representative of usual temporal specifications used in soft-
ware model checking. The software model checkers considered in
this work all employ different algorithmic techniques. Further, the
features used by MUX are only statistics about structure of programs
and properties, and are completely independent of the internal de-
tails of the model checkers. These observations give us hope that
MUX can be applied successfully to other software model checkers
as well. Towards this, we plan to experiment with other software
model checkers in future.

The runtimes in this work are all obtained on a single machine.
On a different architecture the actual runtimes may vary and the ex-
act gains obtained in this paper too may change. However, the model
checking algorithms remain the same and hence similar, if not iden-
tical, results are likely to be seen. It is worth noting that MUX being
a fully automated technique, it can be easily trained on data obtained
from the architecture of interest to the developer.

5. RELATED WORK
Techniques for algorithm selection. SATzilla [47] uses re-
gression to learn an empirical hardness model to predict a SAT solver’s
performance. It also employs a portfolio-based design [25]. Classi-
fication has been used in many works, e.g., [18, 21]. Unlike our
work, these approaches use only unweighted classification prob-
lems. Thus, instances where there is a significant difference in run-
time of two tools are not distinguished from instances where the
tools run in almost the same time. Bischi et al. [12] present a generic
solution to the algorithm selection problem where they use exploratory
landscape analysis to come up with features. Their approach is sim-
ilar to our approach in that they assign a cost vector to each instance
but they use a one-sided support vector regression algorithm. Ka-
dioglu et al. [28] present a SAT solver scheduling approach to boost
the performance of the algorithm selection. They propose a nearest
neighbour based algorithm to solve the optimization problem arising
from the scheduling constraints.

Most of the techniques for algorithm selection, including ours,
extract static features from the input instances. Dynamic algorithm
selection techniques observe the state of the algorithm at runtime
and help it decide which of the possible branches to execute next.
Reinforcement learning [31] and classification [40] techniques have
been used in dynamic algorithm selection.

Algorithm selection in software engineering. Algorithm
selection has seen success in many domains including satisfiability
checking [47], quantified-boolean formula solving [40], constraint
optimization [41, 12], hardware model checking [14], sorting algo-
rithms [22], compiler optimizations [30, 44], composition [46] and
selection [33] of fault localization tools, estimating effectiveness of
automated testing tools [16], and selection of domain specific li-
braries [27] and parallel algorithms [42].

MUX treats the model checkers as black-boxes and derives a many-
to-one selector. In order to obtain the best performance from avail-
able tools and strategies, white-box approaches aim at fine-tuning
software verification tools [11, 4] and some techniques try to derive
tool chains of complementary tools [10, 3]. Beyer et al. [11] vary
the precision of “merge” and other abstract operations to improve
both scalability and precision of model checkers. Apel et al. [4] se-
lect abstract domains separately for each variable based on its usage
in the program. Conditional model checking [10] proposes sequen-
tial composition of model checkers where partial information com-
puted by one checker (which failed to prove/disprove an assertion)
is passed to the next. Several tools, including [3], use parallel exe-
cution of multiple model checkers.

From a large set of structural features, MUX identified a few fea-
tures that are statistically correlated with the performance of the
model checkers. The usefulness of static code attributes and the
relative importance of attributes and data mining algorithms is an
active area of research in static defect prediction [35].

6. CONCLUSIONS AND FUTURE WORK
In this work, we presented an algorithmic approach to improve

effective use of software model checkers. Our approach synthesizes
an algorithm selector by learning from a repository of software ver-
ification instances and the performance of the tools on them. We
performed a large scale evaluation of our technique on Windows de-
vice drivers and showed that the algorithm selector not only reduces
the number of timeouts but also reduces the time taken to model
check large code bases by a large margin.

Encouraged by the results obtained by MUX for software model
checkers for sequential C programs, we want to investigate simi-
lar approaches for other software engineering and analysis domains.

We would also like to extend MUX for symbolic and explicit con-
currency model checkers.

7. REFERENCES
[1] http://www.cprover.org/boolean-programs.
[2] http://www.nec-labs.com/research/system/systems_SAV-

website/benchmarks.php.
[3] A. Albarghouthi, A. Gurfinkel, Y. Li, S. Chaki, and

M. Chechik. UFO: Verification with interpolants and abstract
interpretation. In TACAS, pages 637–640, 2013.

[4] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. Rhein.
Domain types: Abstract-domain selection based on variable
usage. In HVC, pages 262–278, 2013.

[5] T. Ball, E. Bounimova, R. Kumar, and V. Levin. Slam2: static
driver verification with under 4% false alarms. In FMCAD,
pages 35–42, 2010.

[6] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and
Static Driver Verifier: Technology Transfer of Formal Methods
inside Microsoft. In IFM, pages 1–20, 2004.

[7] T. Ball, V. Levin, and S.K. Rajamani. A decade of software
model checking with SLAM. CACM, pages 68–76, 2011.

[8] T. Ball and S. K. Rajamani. SLIC: A specification language for
interface checking (of C). Technical report, MSR-TR-2001-21,
Microsoft Research, 2001.

[9] D. Beyer. Second competition on software verification. In
TACAS, pages 594–609, 2013.

[10] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler.
Conditional model checking: a technique to pass information
between verifiers. In FSE, page 57, 2012.

[11] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable
software verification: Concretizing the convergence of model
checking and program analysis. In CAV, pages 504–518, 2007.

[12] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuss. Al-
gorithm selection based on exploratory landscape analysis and
cost-sensitive learning. In GECCO, pages 313–320, 2012.

[13] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and
machine learning. 2006.

[14] G. Cabodi, S. Nocco, and S. Quer. Thread-based multi-engine
model checking for multicore platforms. ACM Trans. Des. Au-
tom. Electron. Syst., 18(3):36:1–36:28, 2013.

[15] C. Chang and C. Lin. LIBSVM: a library for support vector
machines. TIST, page 27, 2011.

[16] B. Daniel and M. Boshernitsan. Predicting effectiveness of
automatic testing tools. In ASE, pages 363–366, 2008.

[17] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLIN-
EAR: A library for large linear classification. J. of ML Re-
search, pages 1871–1874, 2008.

[18] C. Gebruers, A. Guerri, B. Hnich, and M. Milano. Making
choices using structure at the instance level within a case based
reasoning framework. In Int. AI and OR Techn., pages 380–
386, 2004.

[19] P. Godefroid. Software model checking: The verisoft ap-
proach. FMSD, pages 77–101, 2005.

[20] Object Management Group. Unified Modeling Language
Specification (Version 2.41). 2011.

[21] A. Guerri and M. Milano. Learning techniques for automatic
algorithm portfolio selection. In ECAI, page 475, 2004.

[22] H. Guo. Algorithm selection for sorting and probabilistic infer-
ence: a machine learning-based approach. PhD thesis, Kansas
State University, 2003.

[23] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, pages 10–18, 2009.

[24] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-
ware verification with BLAST. In Model Checking Software,
pages 235–239. 2003.

[25] B. Huberman, R. Lukose, and T. Hogg. An economics ap-
proach to hard computational problems. Science, pages 51–54,
1997.

[26] ITU-T. Specification and Description Language (SDL). 2010.
[27] T. Johnson and R. Eigenmann. Context-sensitive domain-

independent algorithm composition and selection. In PLDI,
pages 181–192, 2006.

[28] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and
M. Sellmann. Algorithm selection and scheduling. In CP,
pages 454–469, 2011.

[29] M. G. Kendall and J. D. Gibbons. Rank correlation methods.
Oxford University Press, 1990.

[30] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase se-
quences. In PLDI, pages 171–182, 2004.

[31] M.G. Lagoudakis and M.L. Littman. Algorithm selection using
reinforcement learning. In ICML, pages 511–518, 2000.

[32] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability
modulo theories. In CAV, pages 427–443, 2012.

[33] T. B. Le and D. Lo. Will fault localization work for these fail-
ures? An automated approach to predict effectiveness of fault
localization tools. In ICSM, pages 310–319, 2013.

[34] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: a behavioral interface specification language for Java.
ACM SIGSOFT Soft. Engg Notes, pages 1–38, 2006.

[35] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Trans. Software
Eng., 33(1):2–13, 2007.

[36] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: a pragmatic approach to model checking real code.
In OSDI, pages 75–88, 2002.

[37] A. V. Nori and S. K. Rajamani. An empirical study of opti-
mizations in YOGI. In ICSE, pages 355–364, 2010.

[38] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The
yogi project: Software property checking via static analysis
and testing. In TACAS, pages 178–181. 2009.

[39] J. R. Rice. The algorithm selection problem. Advances in Com-
puters, 15:65–118, 1976.

[40] H. Samulowitz and R. Memisevic. Learning to solve QBF. In
AAAI, volume 7, pages 255–260, 2007.

[41] K.A. Smith-Miles. Towards insightful algorithm selection for
optimisation using meta-learning concepts. In IJCNN, pages
4118–4124, 2008.

[42] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Am-
ato, and L. Rauchwerger. A framework for adaptive algorithm
selection in STAPL. In PPoPP, pages 277–288, 2005.

[43] A. M. Turing. On computable numbers, with an application
to the entscheidungsproblem. Proc. of the London Math. Soc.,
pages 230–265, 1936.

[44] K. Vaswani, M.J. Thazhuthaveetil, Y.N. Srikant, and P.J.
Joseph. Microarchitecture sensitive empirical models for com-
piler optimizations. In CGO, pages 131–143, 2007.

[45] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. Autom. Softw. Eng., pages 203–
232, 2003.

[46] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau. Search-based
fault localization. In ASE, pages 556–559, 2011.

[47] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla:
portfolio-based algorithm selection for SAT. Journal of AI Re-
search, pages 565–606, 2008.

	INTRODUCTION
	MOTIVATING EXAMPLE
	SYNTHESIS OF ALGORITHM SELECTOR
	Design Steps
	Feature Identification
	Formulation as Machine Learning Problems
	Definitions of Objective Functions

	Algorithm

	EVALUATION
	Experimental Setup
	Evaluation of the Offline Phase
	Evaluation of the Online Phase
	Evaluation with Incorrect Instances
	Threats to Validity

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

