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Abstract: This paper presents the design and imple-
mentation of a firmware-based TPM 2.0 (fTPM) leverag-
ing ARM TrustZone. The fTPM is the reference imple-
mentation used in millions of mobile devices, and was
the first hardware or software implementation to support
the newly released TPM 2.0 specification.

This paper describes the shortcomings of ARM’s
TrustZone for implementing secure services (such as our
implementation), and presents three different approaches
to overcome them. Additionally, the paper analyzes the
fTPM’s security guarantees and demonstrates that many
of the ARM TrustZone’s shortcomings remain present in
future trusted hardware, such as Intel’s Software Guard
Extensions (SGX).

1 Introduction

The Trusted Platform Module (TPM) chip is one of
the most popular forms of trusted hardware. Industry has
started broad adoption of TPMs for enabling security fea-
tures including preventing rollback [17] (Google), pro-
tecting data at rest [30, 17] (Microsoft and Google), vir-
tualizing smart cards [31] (Microsoft), and early-launch
anti-malware [28]. At the same time, the research com-
munity has started to propose even more ambitious uses
of TPMs such as secure offline data access [24], new
trusted OS abstractions [40], trusted sensors [25], and
protecting guest VMs from the VMM or the management
VM [49, 36].

Despite their importance, many smartphones and
tablets lack TPM chips. Mobile devices are constrained
in terms of space, cost, and power dimensions that make
the use of a discrete TPM chip difficult. Recognizing
the incompatibility of TPMs with mobile device require-
ments, the Trusted Computing Group (TCG) has previ-
ously proposed a new standard called Mobile Trusted
Module (MTM) [42]. Unfortunately, the MTM speci-
fication has lacked broad industry support, and has never
been widely adopted in practice in spite of the much ef-
forts by TCG. The absence of trusted hardware prevents
mobile devices from adopting the recent security features
developed by the research community and industry.

Fortunately, smartphones and tablets use ARM, an ar-
chitecture that incorporates trusted computing support in
hardware. ARM TrustZone offers a runtime environ-

ment isolated from the rest of the software on the plat-
form including the OS, the applications, and most of the
firmware. Any exploit or malware present in this soft-
ware cannot affect the integrity and confidentiality of
code and data running in ARM TrustZone. Such a level
of support makes it possible to implement secure services
that offer security guarantees similar to those of secure
co-processors, such as TPMs.

This paper presents firmware-TPM (fTPM), an end-
to-end implementation of a TPM using ARM Trust-
Zone. Our implementation is the reference implementa-
tion used in all ARM-based Windows mobile devices in-
cluding Microsoft Surface and Windows Phones, which
comprises millions of mobile devices. fTPM provides
security guarantees similar (although not identical) to a
discrete TPM chip. fTPM was the first hardware or soft-
ware implementation to support the newly released TPM
2.0 specification.

This paper makes the following contributions:

1. It provides an analysis of the ARM TrustZone’s
security guarantees. In the course of this analysis, we
uncover a set of shortcomings of the ARM TrustZone
technology needed for building secure services, whether
the fTPM or others.

2. It presents the first design and implementation of
a TPM 2.0 specification using the ARM TrustZone se-
curity extensions. This is the reference implementation
used in millions of ARM-based Windows mobile de-
vices.

3. It describes three techniques for overcoming ARM
TrustZone’s shortcomings: (1) provisioning additional
trusted hardware, (2) making design compromises that
do not affect TPM’s security, and (3) slightly changing
the semantics of a small number of TPM 2.0 commands
to adapt them to the TrustZone’s limitations. Our tech-
niques are general and extend to building other secure
services inside based on ARM TrustZone.

4. It analyzes the security guarantees of the fTPM
and compares them with those of a discrete TPM chip
counterpart.

5. Finally, it demonstrates that many of the shortcom-
ings of ARM TrustZone technology remain present in
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future trusted hardware, such as the up and coming Intel
Software Guard Extensions (SGX) technology [20].

2 Trusted Platform Module: An Overview

Trusted Platform Modules (TPMs) are enjoying a
resurgence of interest from both industry and the re-
search community. Although over a decade old, TPMs
have had a mixed history due to a combination of fac-
tors. One of the scenarios driving TPM adoption was
digital rights management (DRM), a scenario often la-
belled as users giving up control of their own machines
to corporations. Another factor was the spotty security
record of some the early TPM specifications: TPM ver-
sion 1.1 [43] was shown to be vulnerable to an unsophis-
ticated attack, known as the PIN reset attack [41]. Over
time, however, TPMs have been able to overcome their
mixed reputation, and become a mainstream component
available in many commodity desktops and laptops.

TPMs provide a small set of primitives that can offer
a high degree of security assurance. First, TPMs offer
strong machine identities. A TPM can be equipped with
a unique RSA key pair whose private key never leaves
the physical perimeter of a TPM chip. Such a key can ef-
fectively act as a globally unique, unforgeable machine
identity. Additionally, TPMs can prevent undesired (i.e.,
malicious) software rollbacks, can offer isolated and se-
cure storage of credentials on behalf of applications or
users, and can attest the identity of the software running
on the machine. Both industry and the research commu-
nity have used these primitives as building blocks in a
variety of secure systems. The remainder of this section
presents several such systems.

2.1 TPM-based Secure Systems in Industry

Microsoft. Modern versions of the Windows OS use
TPMs to offer features, such as BitLocker, virtual smart
cards, early launch anti-malware (ELAM), and key and
device health attestations.

BitLocker [30] is a full-disk encryption system that
uses the TPM to lock the encryption keys. Because the
decryption are locked by the TPM, an attacker cannot
read the data just by removing a hard disk and installing
it in another computer. During the startup process, the
TPM releases the decryption keys only after comparing
a hash of OS configuration values with a snapshot taken
earlier. This verifies the integrity of the Windows OS
startup process. BitLocker has been offered since 2007
when it was made available in Windows Vista.

Virtual smart cards [31] use the TPM to emulate the
functionality of physical smart cards, rather than requir-
ing the use of a separate physical smart card and reader.
Virtual smart cards are created in the TPM and offer sim-
ilar properties to physical smart cards – their keys are not

exportable outside of the TPM, and the cryptography is
isolated from the rest of the system.

ELAM [28] enables Windows to load anti-malware
before all third-party boot drivers and applications.
The anti-malware software can be first-party (e.g.,
Microsoft’s Windows Defender) or third-party (e.g.,
Symantec’s Endpoint Protection). Finally, Windows also
uses the TPM to construct attestations of cryptographic
keys and device boot parameters [29]. Enterprise IT
managers use these attestations to assess the health of the
devices they manage. A common use is gating access to
high-value network resources based on the current state
of a machine.

Google. Modern versions of Chrome OS [17] use
TPMs for a variety of tasks, including software and
firmware rollback prevention, protecting user data en-
cryption keys, and attesting the mode of a device.

Automatic updates allows a remote party (e.g.,
Google) to update the firmware or the OS in Chrome de-
vices. Such updates are vulnerable to “remote rollback
attacks”, in which a remote attacker replaces newer soft-
ware, through a hard-to-exploit vulnerability, with older
software, with a well-known and easy-to-exploit vulner-
ability. Chrome devices use the TPM to prevent software
updates to versions older than the current one.

eCryptfs [11] is a disk encryption system used by
Chrome OS to protect user data. Chrome OS uses the
TPM to make parallelized attacks and password brute-
forcing on eCryptfs’s symmetric (AES) keys difficult.
Any attempt at guessing the AES keys requires the use
of a TPM, a single-threaded device that is relatively slow.
The TPM allows Chrome OS to acquire a level of brute-
force protection because it effectively throttles the rate at
which guesses can be made.

A Chrome device can be booted in four different
modes, corresponding to the settings of two switches
(physical or virtual) at power on. They are the developer
switch and the recovery switch. They may be physically
present on the device, or they may be virtual, in which
case they are triggered by certain key presses at power
on. Chrome OS uses the TPM to attest the device’s mode
to any software running on the machine, a feature used
for reporting policy compliance.

More details on the additional ways in which Chrome
devices make use of TPMs are described in [17].

2.2 TPM-based Secure Systems In Research

The use of TPMs in novel secure systems has ex-
ploded in the research community in recent years.

Secure VMs for the cloud. Software stacks in typi-
cal multi-tenant clouds are large and complex, and thus
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prone to compromise or abuse from adversaries includ-
ing the cloud operators, which may lead to leakage of
security-sensitive data. CloudVisor [49] and Credo [36]
are virtualization-approaches that protect the privacy and
integrity of customer’s VMs on commodity cloud infras-
tructure, even when facing a total compromise of the vir-
tual machine monitor (VMM) and the management VM.
These systems require TPMs to attest to cloud customers
the secure configuration of the physical nodes running
their VMs.

Secure applications, OSs and hypervisors.
Flicker [27], TrustVisor [26], Memoir [34] lever-
age the TPM to provide various (but limited) forms
of runtimes with strong code and data integrity and
confidentiality. Code running in these runtimes is
protected from the rest of the OS. These systems’ TCB
is small because they exclude the bulk of the OS.

Novel secure functionality. Pasture [24] is a secure
messaging and logging library that provides secure of-
fline data access. Pasture leverages the TPM to pro-
vide two safety properties: access-undeniability (a user
cannot deny any offline data access obtained by his de-
vice without failing an audit) and verifiable-revocation
(a user who generates a verifiable proof of revocation
of unaccessed data can never access that data in the fu-
ture). These two properties are essential to an offline
video rental service or to an offline logging and revo-
cation service.

Policy-sealed data [38] is a new abstraction for cloud
services that lets data be sealed (i.e., encrypted to a
customer-defined policy) and then unsealed (i.e., de-
crypted) only by nodes whose configurations match the
policy. The abstraction relies on TPMs to identify a
cloud node’s configuration.

cTPM [8] extends the TPM functionality across sev-
eral devices as long as they are owned by the same user.
cTPM thus offers strong user identities (across all of her
devices), and cross-device isolated secure storage.

Finally, mobile devices can leverage a TPM to offer
trusted sensors [14, 25] whose readings have a high de-
gree of authenticity and integrity. Trusted sensors enable
new mobile apps relevant to scenarios in which sensor
readings are very valuable, such as finance (e.g., cash
transfers and deposits) and health (e.g., gather health
data) [39, 47].

2.3 TPM 2.0: A New TPM Specification

The Trusted Computing Group (TCG) has defined the
specification for TPM version 2.0 [45], which is the suc-
cessor to TPM version 1.2 [46]. A newer TPM has been

needed for two primary reasons. First, the crypto require-
ments of TPM 1.2 have become inadequate. For exam-
ple, TPM 1.2 offers SHA-1 only, but not SHA-2; SHA-1
is now considered weak and cryptographers are reluctant
to use it any longer. Another example is the introduction
of ECC to TPM 2.0.

The second reason for TPM 2.0 is the lack of an
universally-accepted reference implementation of the
TPM 1.2 specification. As a result different implemen-
tations of TPM 1.2 exist with, arguably, slightly differ-
ent behaviors. Another problem is that the lack of a ref-
erence implementation has made TPM 1.2 specification
ambiguous. It is difficult to specify the exact behavior of
cryptographic protocols in English. Instead, TPM 2.0
specification itself is the same as the reference imple-
mentation. TPM 2.0 comes with several documents that
describe the behavior of the codebase, but these docu-
ments are in fact derived from TPM 2.0 codebase itself.
This removes the need for creating alternative implemen-
tations of TPM 2.0, a step towards behavior uniformiza-
tion.

Recently, TPM manufacturers have started to release
discrete chips implementing TPM 2.0. Also, at least
one manufacturer has released a firmware upgrade that
can update a TPM 1.2 chip into one that implements
both TPM 2.0 and TPM 1.2 functionalities. Note that
although TPM 2.0 subsumes the functionality of TPM
1.2, it is not backwards compatible. A BIOS built to
use a TPM 1.2 could break (brick the PC) if the TPM
chip would be turned into a TPM 2.0-only chip. A list of
differences between the two versions is provided by the
TCG [44].

3 Modern Trusted Computing Hardware

Recognizing the increasing demand for security, mod-
ern hardware has started to incorporate features specif-
ically designed for trusted computing, such as ARM
TrustZone [1] and Intel Software Guard Extensions
(SGX) [20]. This section presents the background on
ARM TrustZone (including its shortcomings); this back-
ground is important to the design of fTPM. Later in the
paper, Section 13 will describe the soon-to-be-available
Intel’s SGX and its shortcomings.

3.1 ARM TrustZone

ARM TrustZone is ARM’s hardware support for
trusted computing. It is a set of security extensions found
in many recent ARM processors (including Cortex A8,
Cortex A9, and Cortex A15). ARM TrustZone provides
two virtual processors backed by hardware access con-
trol. The software stack can switch between the two
states, referred to as “worlds”. One world is called se-
cure world (SW), and the other normal world (NW).
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Each world acts as a runtime environment with its own
resources (e.g., memory, processor, cache, controllers,
interrupts). Depending on the specifics of an individual
ARM SoC, a single resource can be strongly partitioned
between the two worlds, can be shared across worlds,
or assigned to a single world only. For example, most
ARM SoCs offer memory curtaining, where a region of
memory can be partitioned and dedicated to the secure
world. Similarly, processor, caches, and controllers are
often shared across worlds. Finally, I/O controllers and
devices can be mapped to a one world only.

Secure monitor. The secure monitor is an ARM pro-
cessor mode designed to switch between the secure and
normal worlds. The ARM processor has many addi-
tional operating modes (their number varies for differ-
ent ARM Cortex processors) that can be either secure
or non-secure. A specially designed register determines
whether the processor runs code in the secure or non-
secure worlds. When the core runs in secure monitor
mode the state is considered secure regardless of the state
of this register.

ARM has separate banked copies of registers for each
of the two worlds. Each of the worlds can only access
their separate register files; cross-world register access is
blocked (e.g., an access violation error is raised). How-
ever, the secure monitor can access nonsecure banked
copies of registers. The monitor can thus implement con-
text switches between the two worlds.

Secure world entry/exit. By design, an ARM platform
always boots into the secure world first. Here, the sys-
tem firmware can provision the runtime environment of
the secure world before any untrusted code (e.g., the OS)
has had a chance to run. For example, the firmware al-
locates memory for the TrustZone, programs the DMA
controllers to be TrustZone-aware, and initializes any se-
cure code. The secure code eventually yields to the Nor-
mal World where untrusted code can start executing.

The normal world must use a special ARM instruc-
tion called smc (secure monitor call), to call back into
the secure world. When the CPU executes the smc in-
struction, the hardware switches into a secure monitor,
which performs a secure context switch into the secure
world. Hardware interrupts can trap directly into the
secure monitor code, which enables flexible routing of
those interrupts to either world. This allows I/O devices
to map their interrupts to the secure world if desired.

Curtained memory. At boot time, the software run-
ning in the secure monitor can allocate a range of phys-
ical addresses to the secure world only, creating the ab-
straction of curtained memory – memory inaccessible to

the rest of the system. For this, ARM adds an extra con-
trol signal for each of the read and write channels on the
main system bus. This signal corresponds to an extra
bit (a 33rd-bit on a 32-bit architecture) called the non-
secure bit (NS-bit). These bits are interpreted whenever
a memory access occurs. If the NS-bit is set, an access
to memory allocated to the secure world fails.

3.2 Shortcomings of ARM TrustZone

Although the ARM TrustZone specification describes
how the processor and memory subsystem are protected
in the secure world, the specification is silent on how
most other resources should be protected. This has led
to fragmentation – SoCs offer various forms of protect-
ing different hardware resources for the TrustZone, or no
protection at all.

Storage. Surprisingly, the ARM TrustZone specifica-
tion offers no guidelines on how to implement secure
storage for the TrustZone. The lack of secure stor-
age drastically reduces the effectiveness of TrustZone as
trusted computing hardware.

Naively, one might think that code in the TrustZone
could encrypt its persistent state and store it on untrusted
storage. However, encryption alone is not sufficient be-
cause (1) we would need a way to store the encryption
keys securely, and (2) encryption cannot prevent rollback
attacks.

Crypto needs. Most trusted systems make use of cryp-
tography. However, the specification is silent on offering
a secure entropy source or a monotonically increasing
counter. As a result, most SoCs lack an entropy pool that
can be read from the secure world, or a counter that can
persist across reboots and cannot be incremented by the
normal world.

Lack of virtualization. Sharing the processor across
two different worlds in a stable manner should be done
using virtualization techniques. Although ARM offers
virtualization extensions [2], the ARM TrustZone speci-
fication does not mandate them. As a result, most ARM-
based SoCs used in mobile devices today lack virtualiza-
tion support. Virtualizing commodity operating systems
(e.g., Windows) on an ARM platform lacking hardware-
assistance for virtualization is very difficult.

Lack of secure clock (and other peripherals). Secure
systems often require a secure clock. While TrustZone
access to protected memory and interrupts is a step for-
ward to offering secure peripherals, it is often insuffi-
cient without protecting the bus controllers that can talk
to these peripherals. It is hard to reason about the security
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ARM TrustZone Shortcomings

No trusted storage

No secure entropy source

Lack of virtualization

No secure clock

No secure peripherals

Lack of firmware access

Figure 1. The shortcomings of ARM TrustZone.

guarantees of a peripheral whose controller can be pro-
grammed by the normal world, even when its interrupts
and memory region are mapped to the secure world only.
Malicious code could program the peripheral in a way
that could make it insecure. For example, some periph-
erals could be put in “debug mode” to generate arbitrary
readings that do not correspond to the ground truth.

Lack of access. Most SoC hardware vendors do not
provide access to their firmware. As a result, many devel-
opers and researchers are unable to find ways to deploy
their systems or prototypes to the TrustZone. In our ex-
perience, this has seriously impeded the adoption of the
TrustZone as a trusted computing mechanism.

SoC vendors are reluctant to give access to their
firmware. They argue that their platforms should be
“locked down” to reduce the likelihood of “hard-to-
remove” rootkits. Informally, SoC vendors also per-
ceive firmware access as a threat to their competitiveness.
They often incorporate proprietary algorithms and code
into their firmware that takes advantage of the vendor-
specific features offered by the SoC. Opening firmware
to third parties could expose more details about these fea-
tures to their competitors.

Figure 1 summarizes the list of shortcomings of the
ARM TrustZone architecture when building secure sys-
tems.

4 High-Level Architecture

Leveraging ARM TrustZone, we implemented a
trusted execution environment (TEE) that acts as a ba-
sic operating system for the secure world and runs the
fTPM.

4.1 Trusted Execution Environment (TEE)

At a high-level, the TEE consists of a monitor, a dis-
patcher, and a runtime where one or more trusted ser-
vices (such as the fTPM) can run one at a time. The
TEE exposes a single trusted service interface to the nor-
mal world using shared memory. Figure 2 illustrates this
architecture. The shaded boxes represent system’s TCB

ARM SoC Hardware

Windows OS

fTPM

TEE Monitor

Normal World Secure World

TEE Dispatcher

Other secure services

TEE Runtime

Figure 2. The architecture of the fTPM. This
schematic is not to scale.

that comprises the ARM SoC hardware, the TEE layers,
and the fTPM.

By leveraging the isolation properties of ARM Trust-
Zone, the TEE provides shielded execution, a term
coined by previous work [5]. With shielded execution,
the TEE offers two security guarantees:

• Confidentiality: The whole execution of the fTPM
(including its secrets and execution state) is hidden from
the rest of the system. Only the fTPM’s inputs and out-
puts, but no intermediate states, are observable.

• Integrity: The system cannot affect the behavior of
the fTPM, except by choosing to refuse execution or to
prevent access to system’s resources (DoS attacks). The
fTPM’s commands are always executed correctly accord-
ing to the TPM 2.0 specification.

4.2 Threat Model and Assumptions

A primary assumption is that the commodity OS run-
ning in the ARM’s Normal World is untrusted and po-
tentially compromised. This OS could mount various at-
tacks to code running in the TrustZone, such as making
invalid calls to the TrustZone (or setting invalid parame-
ters), not responding to requests coming from the Trust-
Zone, or responding incorrectly. In handling these at-
tacks, it is important to distinguish between two cases:
(1) not handling or answering TrustZone’s requests, or
(2) acting maliciously.

The first class of attacks corresponds to refusing ser-
vice, a form of Denial-of-Service attacks. DoS attacks
are out of scope according to the TPM 2.0 specifica-
tion. These attacks cannot be prevented as long as an un-
trusted commodity OS has access to platform resources,
such as storage or network. For example, a compromised
OS could mount various DoS attacks, such as erasing all
storage, resetting the network card, or refusing to call the
smc instruction. Although our fTPM will remain secure
(e.g., preserves confidentiality and integrity of its data) in
the face of these attacks, the malicious OS could starve
the fTPM leaving it inaccessible.

However, the fTPM must behave correctly when the
untrusted OS returns makes incorrect requests, returns
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unusual values (or fails to return at all), corrupts data
stored on stable storage, injects spurious exceptions, or
sets the platform clock to an arbitrary value.

At the hardware level, we assume that the ARM SoC
(including ARM TrustZone) itself is implemented cor-
rectly, and is not compromised. An attacker cannot in-
spect the contents of the ARM SoC, nor the contents of
RAM memory on the platform. However, the adversary
has full control beyond the physical boundaries of the
processor and memory. They may read the flash storage
and arbitrarily alter I/O including network traffic or any
sensors found on the mobile device.

We defend against side-channel attacks that can be
mounted by malicious software. Cache collision attacks
are prevented because all caches are flushed when the
processor context switches to and from the Secure World.
Our fTPM implementation’s cryptography library uses
constant time cryptography and several other timing at-
tack preventions, such as RSA blinding [22]. However,
we do not defend against power analysis or any other
type of side-channel attacks that require access to hard-
ware or hardware modifications.

We turn our focus on the approaches taken to over-
come TrustZone’s shortcomings in the fTPM. We leave
the details of the TEE implementation to Section 9.

5 Overcoming TrustZone Shortcomings
We used three approaches to overcome the shortcom-

ings of ARM TrustZone’s technology.

Approach #1: Hardware Requirements. Providing
secure storage to TEE was a serious concern. One op-
tion was to store the TEE’s secure state in the cloud. We
dismissed this alternative because of its drastic impact
on device usability. TPMs are used to measure the soft-
ware (including the firmware) booting on a device. A
mobile device would then require cloud connectivity to
boot up in order to download the fTPM’s state and start
measuring the booting software. The requirement of hav-
ing cloud connectivity in order to boot up a smartphone
was not a viable option.

We discovered instead that many mobile devices
come equipped with an eMMC storage controller that has
a replay-protected memory block (RPMB). The RPMB’s
presence (combined with encryption) ensures that TEE
can offer storage that meets all the fTPM’s security prop-
erty, and formed our first hardware requirement for TEE.

Second, we required the presence of a hardware fuse
available to the secure world only. A hardware fuse is
a write-once storage location. At provisioning time (be-
fore being release to a store), our mobile devices provi-
sion this secure hardware fuse with a secure key unique
per device. Finally, we also required an entropy source

that can be read from the secure world. The TEE uses
the combination of the secure key and entropy source to
generate cryptographic keys at boot time.

Section 6 will provide in-depth details of these three
hardware requirements.

Approach #2: Design Compromises. Another big
concern was long-running TEE commands. Running in-
side the TrustZone for a long time could jeopardize the
stability of the commodity OS. Generally, sharing the
processor across two different worlds in a stable manner
should be done using virtualization techniques. Unfor-
tunately, many of the targeted ARM platforms lack vir-
tualization support from the hardware. Speaking to the
hardware vendors, we learned that it is unlikely virtual-
ization will be added to their platforms any time soon.

Instead, we compromised on the TEE design and re-
quired that no TEE code path can execute for a long pe-
riod of time. This translated into a requirement for the
fTPM – no TPM 2.0 command can be long running. Our
measurements of TPM commands revealed that no TPM
2.0 commands are long running except one: generating
RSA keys. Section 7 will present the compromise made
to the fTPM design when issued an RSA key generation
command.

Approach #3: Reducing the TPM 2.0 Semantics.
Lastly, we required the presence of a secure clock from
the hardware vendors. Instead, the platform only has a
secure timer that ticks at a pre-determined rate. We thus
determined that the fTPM cannot offer any TPM com-
mands that require a clock for their security. Fortunately,
we discovered that some (but not all) TPM commands
can still be offered by relying on a secure timer albeit
with slightly altered semantics. Section 8 will describe
all these changes in more depth.

6 Approach #1: Hardware Requirements
6.1 eMMC with RPMB

The term eMMC is short for ”embedded Multi-Media
Controller” and refers to a package consisting of both
flash memory and a flash memory controller integrated
on the same silicon die [10]. eMMC consists of the
MMC (multimedia card) interface, the flash memory, and
the flash memory controller. eMMC offers a replay-
protected memory block (RPMB) partition. Like its
name suggests, RPMB is a mechanism for storing data
in an authenticated and replay-protected manner.

The RPMB offers two storage primitives: authenti-
cated writes and authenticated reads.

Authenticated Writes: An authenticated write re-
quest comprises of multiple dataframes carrying data fol-
lowed by a result-read-request dataframe. An authenti-
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cated write request has an HMAC computed over all the
data (i.e., all the blocks); the HMAC is added to the last
dataframe carrying data. Each dataframe also includes
the address where the data should be written on the par-
tition as well as a nonce.

Once all dataframes carrying data have been issued,
the caller must issue a result-read-request to determine
whether the write has been successful or not. There are
many reasons why the write could have failed, includ-
ing an integrity check failure (i.e., the HMAC did not
compute properly), a write counter reaching its maxi-
mum value, receiving a high-priority interrupt during the
write, or a general hardware failure. Thus, an authenti-
cated write is made of one or more dataframes carrying
data followed by a result read request dataframe which
will return an authenticated write response.

Authenticated Reads: An authenticated read request
is made of just one dataframe that can issue a read call
of many 256-byte blocks. Once this dataframe is issued,
a number of dataframes carrying data can be read. The
numbers of dataframes to be read is equal to the number
of blocks specified in the read call.

6.1.1 RPMB Mechanism

RPMB’s replay protection comprises of a set of three
mechanisms: an authentication key, a write counter, and
a nonce.

RPMB Authentication Key: A 32-byte one-time
programmable authentication key register. Once written,
this register cannot be over-written, erased, or read. The
eMMC controller uses this authentication key to compute
HMACs (SHA-256) to protect data integrity.

Programming the RPMB authentication key is done
by issuing a specially formatted dataframe. Once is-
sued, a result read request dataframe must be also is-
sued to check that the programming step has been suc-
cessful. Access to the RPMB is not possible until the
authentication key has been programmed. Any authenti-
cated write/read requests will return a special error code
indicating that the authentication key has yet to be pro-
grammed.

RPMB Write Counter: The RPMB partition also
maintains a counter value for the number of authenti-
cated write requests made to RPMB. This is a 32-bit
counter and is initially set to 0. Once, it reaches its
maximum value, the counter will not be incremented fur-
ther and a special bit will be turned on in all dataframes
to indicate that the write counter has expired perma-
nently. The correct counter value must be included in
each dataframe written to the controller.

Nonce: RPMB allows a caller to label its read re-
quests with nonces that are reflected in the read re-
sponses. These nonces ensure that reads are fresh.

6.1.2 Protection against replay attacks

A dataframe includes a 16-byte nonce field. The
nonce is used only in two operations: authenticated read
and read counter value. The nonce is not used during
authenticated write, nor during programming the RPMB
key.

The role of the nonce in the two read operations pro-
tects them against replay attacks. The secure world and
the eMMC controller share a secret (the RPMB authenti-
cation key). Whenever a read operation is issued, a nonce
is included to ensure the freshness of its result.

Authenticated writes make no use of nonces. In-
stead, they include a write counter value whose integrity
is protected by the authentication key. The read re-
quest dataframe that ends an authenticated write returns
a dataframe the incremented counter value, whose in-
tegrity is protected by the shared secret (the RPMB au-
thentication key). This ensures that the write request has
been successfully written to storage.

6.2 Requirement #2: Secure World Hardware
Fuse

We required a hardware fuse that can be read from
the secure world only. The fuse is provisioned with a
hard-to-guess, unique-per-device number. This number
is used as a seed in deriving additional secret keys used
by the fTPM. Section 10 will describe in-depth how the
seed is used in deriving secret fTPM keys, such as the
secure storage key (SSK).

6.3 Requirement #3: Secure Entropy Source

The TPM specification requires a true random number
generator (RNG). A true RNG is constructed by having
an entropy pool whose entropy is supplied by a hardware
oscillator. The secure world must manage this pool be-
cause the TEE must read from it periodically.

Generating entropy is often done via some physical
process (e.g., a noise generator). Furthermore, an en-
tropy generator has a rate of entropy that specifies how
many bits of entropy are generated per second. When
the platform is first started, it could take some time until
it has gathered “enough” bits of entropy for a seed.

We required the platform manufacturer to provision
an entropy source that has two properties: (1) it can
be managed by the secure world, and (2) its specifica-
tion lists a conservative bound of its rate of entropy;
this bound is provided as a configuration variable to the
fTPM. Upon a platform start, the fTPM waits to initialize
until sufficient bits of entropy are generated. For exam-
ple, the fTPM would need to wait at least 25 seconds to
initialize if it requires 500 bits of true entropy bits from
a source whose a rate is 20 bits/second.
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Alerted to this issue, the TPM 2.0 specification has
added the ability to save and restore any accumulated but
unused entropy across reboots. This can help the fTPM
reduce the wait time for accumulating entropy.

7 Design Compromises

7.1 Background on Creating RSA Keys

Creating an RSA key is a resource-intensive opera-
tion due to two reasons. First, it requires searching for
two large prime numbers, and such a search can theoreti-
cally take an unbounded amount of time. Although many
optimizations on how to search RSA keys efficiently ex-
ist [33], searching for keys is still a lengthy operation.
Second, the search must be seeded with a random num-
ber, otherwise an attacker could attempt to guess the
primes the search produced. Thus the TPM cannot create
an RSA key unless the entropy source has produced the
entropy required for seeding the search.

The TPM can be initialized with a primary storage
root key (SRK). The SRK’s private portion never leaves
the TPM and is used in many TPM commands (such as
TPM seal and unseal). Upon TPM initialization, our
fTPM waits to accumulate the level of entropy required
for seeding the search for large prime numbers. The
fTPM also creates RSA keys upon receiving a create RSA
keys command1.

TPM 2.0 checks whether a number is prime using
a test called the Miller-Rabin probabilistic primality
test [33]. If the test fails, the candidate number is not
a prime. However, upon passing, the test offers a prob-
abilistic guarantee – the candidate is likely a prime with
high probability. The TPM repeats this test a couple of
times to increase the likelihood the candidate is prime.
Choosing a composite number during RSA key creation
has catastrophic security consequences because it allows
an attacker to recover secrets protected by that key. TPM
2.0 repeats the primality test five times for RSA-1024
keys and four times for all RSA versions with longer
keys. This reduces the likelihood of choosing a false
prime to a probability lower than 2−100.

7.2 Cooperative Checkpointing

Our fTPM targeted several different ARM platforms
(from smartphones to tablets), most of which lacked vir-
tualization support. The lack of virtual support required
the transitions to TEE and back to be very short to ensure
that the commodity OS would remain stable. We were
faced with a new fTPM requirement: no long-running
TEE commands. Unfortunately, creating an RSA key is
a very long process, often taking in excess of 10 seconds
on our early hardware tablets.

1This corresponds to the TPM 2.0 TPM2 Create command.

Faced with this challenge, we added cooperative
checkpointing to the fTPM. Whenever a TPM command
takes too long, the TPM checkpoints its state in mem-
ory, and returns a special error code to the commodity
OS running in the Normal World.

Once the OS resumes running in the Normal World,
the OS is free to call back the TPM command and in-
struct the fTPM to resume its execution. These “resume”
commands continue processing until the command com-
pletes or the next checkpoint occurs. Additionally, the
fTPM also allows all commands to be cancelled. The OS
can cancel any TPM command even when in the com-
mand is in a checkpointed state.

Cooperative checkpointing enabled us to bypass the
lack of virtualization support in ARM, yet continue to
offer long-running TPM commands, such creating RSA
keys.

8 Reducing TPM 2.0 Semantics
8.1 Secure Clock

TPMs use secure clocks for two reasons. First use is
to measure lockout durations. Lockouts are time peri-
ods during which the TPM refuses service. Lockout are
very important to authorizations (e.g., checking a pass-
word). If a password is incorrectly entered more than
k times (for a small k), the TPM enters lockout and re-
fuses service for a pre-determined period of time. This
thwarts dictionary attacks – guessing a password incor-
rectly more than k times puts the TPM in lockout mode.

The second use of a secure clock in TPMs is for time-
bound authorizations, such as the issuing an authoriza-
tion valid for a pre-specified period of time. For exam-
ple, the TPM can create a key valid for an hour only. At
the end of an hour, the key becomes unusable.

8.1.1 The Requirement of the TPM 2.0 Specification

A TPM 2.0 requirement is the presence of a clock with
millisecond granularity. The TPM uses this clock only to
measure intervals of time for time-bound authorizations
and lockouts. The volatile clock value must be persisted
periodically to a specially-designated non-volatile entry
called NVClock. The periodicity of the persistence is a
TPM configuration variable and cannot be longer than
than 222 milliseconds (˜70 minutes).

The combination of these properties ensures that the
TPM clock offers the following two guarantees: 1. the
clock advances while the TPM is powered, 2. the clock
never rolls backwards more than NVClock update peri-
odicity. The only time when the clock can roll backward
is when the TPM loses power right before persisting the
NVClock value. Upon restoring power, the clock will be
restored from NVClock and thus rolled back. The TPM
also provides a flag that indicates the clock may have
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been rolled back. This flag is cleared when the TPM can
guarantee the current clock value could not have been
rolled back.

Given these guarantees, the TPM can measure time
only while the platform is powered up. For example, the
TPM can measure one hour of time as long as the plat-
form does not reboot or shutdown. However, the clock
can advance slower than wall clock but only due to a re-
boot. Even in this case time-bound authorizations are se-
cure because they do not survive reboots by construction
(in TPM 2.0, a platform reboot/shutdown/bootup auto-
matically expires all time-bound authorizations).

8.1.2 Reducing the Semantics of Secure Clock

We reduced the semantics of the clock functionality of
the TPM 2.0 specification. While the fTPM’s clock can
measure lockout durations securely (e.g., the fTPM re-
fuses service for the next k seconds), it cannot be used for
time-bound authorizations (e.g., the fTPM allows service
for the next k seconds). This distinction stems from the
TEE’s inability to guarantee that the secure clock moves
forward. A compromised OS could stop the clock al-
lowing time-bound authorization to continue to be valid
indefinitely.

Fortunately, Windows only requires a secure imple-
mentation of lockout from the fTPM, and does not make
use of time-bound authorizations. Based on our under-
standing, Chrome devices also do not appear to use time-
bound authorizations. The fTPM clock implementation
can guarantee a secure implementation of lockout meet-
ing Chromium and Windows’s needs.

8.2 Dark Periods
The diversity of mobile device manufacturers raised

an additional challenge to the fTPM. A mobile device
boot cycle starts by running firmware developed by one
(of the many) hardware manufacturers, and then boots
a commodity OS. The fTPM must provide functional-
ity throughout the entire boot cycle. In particular, both
Chrome and Windows devices issue TPM Unseal com-
mands after the firmware finished running, but before
the OS started booting. These commands attempt to un-
seal the decryption keys required for decrypting the OS
loader. At this point, the fTPM cannot rely on exter-
nal secure storage because the firmware has unloaded its
storage drivers while the OS has yet to load its own. We
refer to this point as a “dark period”.

TPM Unseal uses storage to record a failed unsealed
attempt. After a small number of failed attempts, the
TPM enters lockout and refuses service for a period of
time. This mechanism rate-limits the number of attempts
to guessing the unseal authorization (e.g., Windows lets
users to enter a PIN number to properly unseal the OS
loader using BitLocker). The TPM maintains a counter

Guess PIN
1st time

Failed 
Attempts++

Guess PIN
2nd time

Failed 
Attempts++

Guess PIN
3rd time

Failed 
Attempts++

Lockout
Period

TPM
w/ storage

Figure 3. TPM with storage. TPM enters lockout if ad-
versary makes too many guess attempts. This sequence
of steps is secure

Guess PIN
1st time

Failed 
Attempts++

Guess PIN
2nd time

Failed 
Attempts++

Guess PIN
3rd time

Failed 
Attempts++

TPM
without
storage

Guess PIN
4th timeReboot

Figure 4. TPM without stable storage is insecure.
Without storing the failed attempts counter, the adver-
sary can simply reboot and avoid TPM lockout. This
sequence of steps is insecure.

Guess PIN
1st time

Failed 
Attempts++

Guess PIN
2nd time

Failed 
Attempts++

Guess PIN
3rd time

Failed 
Attempts++

fTPM

Reboot

Lockout
Period

Set Dirty
Bit

Figure 5. fTPM. fTPM sets the dirty bit before enter-
ing a dark period. If reboot occurs during the dark pe-
riod, fTPM enters lockout automatically. This sequence
of steps is secure.

of failed attempts and requires persisting it each time the
counter increments. This eliminates the possibility of
an attacker brute-forcing the unseal authorization and re-
booting the platform without persisting the counter. Fig-
ures 3, 4, and 5 illustrate three timelines: a TPM storing
its failed attempts counter to stable storage, a TPM with-
out stable storage being attacked with by a simple reboot,
and the fTPM solution to dark periods based on the dirty
bit, respectively.

8.2.1 Reducing the Semantics of the Failed Tries
Counter

We addressed the lack of storage during a dark period
by making a slight change in how the TPM 2.0 interprets
the failed tries counter. Before entering a dark period,
the fTPM persists a dirty bit. If the dark period is entered
and the unseal succeeds, the OS would start booting suc-
cessfully and load its storage drivers. Once storage be-
comes available again, the dirty bit is cleared. However,
the dirty bit remains uncleared should the mobile device
reboot during a dark period. In this case, when the fTPM
initalizes and sees that the bit is dirty, the fTPM cannot
distinguish between a legitimate device reboot (during
a dark period) and an attack attempting to rollback the
failed tries counter. Conservatively, the fTPM assumes it
is under attack, the counter is immediately incremented
to the maximum number of failed attempts, and the TPM
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enters lockout.
This change in semantics guarantees that an attack

against the counter remains ineffective. The trade-off is
that a legit device reboot during a dark period puts the
TPM in lockout. The TPM cannot unseal until the lock-
out duration expires (typically set to several minutes).

Alerted to this problem, the TPM 2.0 designers have
added a form of the dirty bit to their specification, called
non-orderly or unorderly bit (both terms appear in the
specification). Unfortunately, they did not adopt the idea
of having a small number of tries before the TPM enters
lockout mode. Instead, the specification dictates that the
TPM enters lockout as soon as a failed unsealed attempt
cannot be recorded to storage. Such a solution impacts
usability because it locks the TPM as soon as the user
has entered an incorrect PIN or password.

9 TEE Implementation

TEE Monitor. The monitor layer consists of the lowest
level, most privileged code that runs on the platform. Its
role is to implement context switching between the nor-
mal and secure worlds. Context switching occurs when
an interrupt arrives or when the normal world issues an
smc instruction to switch to the secure world. The mon-
itor implements two types of context switches: full and
lightweight.

Full context switches save the all normal world’s pro-
cessor register state for all processor modes and restores
the state of secure world. On each entry or exit from the
secure world, 768 bytes are saved or restored. All com-
mands issued to the fTPM use full context switches.

Normal world uses lightweight context switches when
it needs to issue a command to a resource managed by
the secure world. For example, the untrusted OS must
invoke TEE for L2 cache maintenance operations (the
secure world manages the L2 cache). These operations
do not need to invoke any of the secure services in the
TEE. Lightweight context switches do not perform any
memory save or restore operations and are therefore very
fast.

Implementation Details: ARM registers r0-r3 are
volatile and used for parameter passing. In compliance
with ARM calling convention, the caller is responsible
for saving these registers if needed. Currently, we do not
support parameter passing via stack. Instead, the mon-
itor maintains a context switch area in which registers
are saved and from which are restored. Our current im-
plementation uses r0 as a service ID (SID) to multiplex
between services. This allows us to multiplex on which
path to take in monitor based on the SID, whether to in-
voke a lightweight context switch or a full one.

In the future, the monitor can implement strong iso-
lation between TEE services. For example, the monitor

can schedule and serve two mutually distrusting services
that both run inside the secure world but within address
spaces that are strongly isolated.

TEE Dispatcher. On a full context switch to the secure
world, the dispatcher further de-multiplexes requests to
the appropriate service using r0 as the secure process ID
(SID). The dispatcher passes registers r1-r3 to the service
specific callback routine. The dispatcher returns back the
normal world using the smc instruction, with r0 set to the
return code. Contents of r1-r3 are undefined.

TEE Runtime. TEE has a minimal UEFI-based run-
time environment that provides functionality and inter-
faces to secure services. It implements a heap for run-
time, and dynamic memory allocation for all secure ser-
vices including the fTPM. It also provides runtime li-
braries that implement each of the design requirements
listed above, in the previous section.

UEFI Initialization. On device power-on, the
BootROM loads the UEFI Firmware Device (FD) image
and verifies its integrity using a public key stored on the
read-only flash-backed partition. If the image is corrupt
(for example, an attacker replaced the image on stable
storage), an error is returned and the device refuses
booting. Otherwise, the FD is loaded in the the first
32MB of main memory of the secure world and begins
executing.

The FD code sets up the interrupt controller to mark
interrupts secure and insecure, and the memory con-
troller to protect the first 32MB of RAM (denoted as Se-
cure RAM). It then sets up page tables to use the secure
mode for Secure RAM and non-secure mode for the rest
of RAM. Next, it then initializes all services that would
execute in the secure world using Secure RAM, such as
the fTPM.

Once the dispatcher is loaded, the UEFI switches to
the normal world. From now on, all returns back to
the dispatcher are treated as explicit state switches from
the normal world in response to the smc instruction.
The normal world performs the rest of the UEFI startup
that initializes the platform’s I/O devices and boots their
firmware.

On multi-core systems, every core other than core 0
is kept parked until CPU0 finishes secure world’s initial-
ization. For the remaining cores, an exception table in
the monitor is set with a minimal SMC handler. This
minimal handler implements the functionality required
for lightweight context switches (which must be served
by these cores), and returns an error for all full context
switches.
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Secure Clock. The TEE uses a read-only microsec-
ond counter. Once the platform is up and running, this
counter cannot be modified. However, this time source
suffers from four limitations: (1) it is a 32-bit counter,
and thus rolls over every 72 minutes; (2) this timer can-
not be programmed to generate interrupts; (3) the counter
does not increment when the platform is powered off;
and (4) the counter is reset when the platform enters
“deep sleep” (corresponding to LP0) because the SoC
loses power. Figure 6 illustrates how the TEE updates
its clock.

The TEE clock can fall behind the wall clock because
it cannot detect when the counter has wrapped. Clock
increments are persisted only when the TEE is scheduled
to run. The normal world can (maliciously) starve the
secure world preventing the clock from advancing.

Another challenge is handling the timer counter resets
when the platform transitions to the LP0 sleep state. If
left unhandled, this might artificially inflate the elapsed
time because the TEE cannot distinguish between a
counter reset due to LP0 and a counter wrap-around. For-
tunately, the ARM architecture transitions to the secure
world as the last step before entering LP0, and starts in
the secure world on resume. When entering LP0 sleep,
the TEE saves the counter value to RAM to ensure that
it can restore the correct clock value on resume. This
works because RAM is refreshed during LP0 sleep.

10 Providing Storage to Secure Services

The combination of encryption, the RPMB, and the
hardware fuse is sufficient to build trusted storage for
the TEE. Upon booting the first time, TEE generates a
symmetric RPMB key and programs it into the RPMB
controller. The RPMB key is derived from existing keys
available on the platform. In particular, we construct a
secure storage key (SSK) that is unique to the device and
derived as following:

SSK := KDF (HF,DK,UUID) (1)

where KDF is a one-way derivation function, HF is
the value read from the hardware fuse, DK is a device key
available to both secure and normal worlds, and UUID is
the device’s unique identifier.

The SSK is used for authenticated reads and writes of
all TEE’s persistent state (including the fTPM’s state) to
the device’s flash memory. Before being persisted, the
state is encrypted with a key available to the TrustZone
only. Encryption ensures that all fTPM’s state remains
confidential and integrity protected. The RPMB’s au-
thenticated reads and writes ensure that fTPM’s state is
also resilient against replay attacks.

TEE increments
volatile clock
+
If (volatile_clock-persisted_clock) > 4ms

persist volatile_clock

Secure WorldNormal World

Figure 6. fTPM clock update.

0 1 0 0 … … …

Bit Vector 1st copy of blocks 2nd copy of blocks

Figure 7. RMPB blocks. Bit vector mechanism used
for atomic updates.

10.1 Atomic Updates

TEE implements atomic updates to the RPMB parti-
tion. Atomic updates are necessary for fTPM commands
that require multiple separate write operations. If these
writes are not executed atomically, TEE’s persistent state
could become inconsistent upon a failure that leaves the
secure world unable to read its state.

The persisted state of the fTPM consists a sequence of
blocks. TEE stores two copies of each block: one repre-
senting the committed version of the state block and one
its shadow (or non-committed) version. Each block id
X has a corresponding block whose id is X +N , where
N is the size of fTPM’s state. The TEE also stores a bit
vector in its first RPMB block. Each bit in this vector in-
dicates which block is committed: if the i bit is 0 then the
ith block committed id is X , otherwise is X+N . In this
way, all pending writes to shadow blocks are committed
using a single write operation of the bit vector.

Allocating the first RPMB entry to the bit vector lim-
its the size of the RPMB partition to 256KB (the cur-
rent eMMC specification limits the size of a block to 256
bytes). If insufficient, an extra layer of indirection can
extend the bit vector mechanism to support up to 512MB
(256 ∗ 8 ∗ 256 ∗ 8 = 1, 048, 576 blocks).

Figure 7 illustrates the bit vector mechanism for
atomic updates. On the left, the bit vector shows which
block is committed (bit value 0) and which block is
shadow (bit value 1). The committed blocks are shown
in solid color.

In the future, we are planning to improve the fTPM’s
performance by offering transactions to fTPM com-
mands. All writes in a transaction are cached in memory
and persisted only upon commit. The commit operation
first updates the shadow version of changed blocks, and
then updates the metadata in a single atomic operation
to make shadow version for updated blocks the commit-
ted version. A command that updates secure state must
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fTPM Device Processor Type
Device # fTPM1 1.2 GHz Cortex-A7
Device # fTPM2 1.3 GHz Cortex-A9
Device # fTPM3 2 GHz Cortex-A57
Device # fTPM4 2.2 GHz Cortex-A57

Table 1. Description of fTPM-equipped devices used
the evaluation.

either call commit or abort before returning. Abort is
called implicitly if commit fails, where shadow copy is
rolled back to the last committed version, and an error
code is returned. In this scenario, the command must
implement rollback of any in-memory data structure by
itself.

11 Performance Evaluation

Our performance evaluation seeks two important
questions:

1. What is the overhead of long-running fTPM com-
mands such as create RSA keys? This question’s goal
is to shed light on performance behavior of the fTPM’s
implementation when seeking prime numbers for RSA
keys?

2. What is the performance overhead of typical fTPM
commands, and how do they compare to a discrete TPM
chip implementation? TPM chips have notoriously slow
microcontrollers [27]. In contrast, fTPM commands ex-
ecute on fully-fledged ARM Cortex cores.

11.1 Methodology

To answer these questions, we instrumented four
off-the-shelf commodity mobile devices equipped with
fTPMs and three machines equipped with discrete TPMs.
We keep these devices’ identities confidential, and refer
to them as fTPM1 through fTPM4, and dTPM1 through
dTPM3. All mobile devices are commercially available
both in USA and the rest of the world and can be found in
the shops of most cellular carriers. Similarly, the discrete
TPM 2.0 chips are commercially available. Table 1 de-
scribes the characteristics of the mobile ARM SoC pro-
cessors present in the fTPM-equipped devices. The only
modifications made to these devices’ software is a form
of device unlock that lets us load our own test harness
and gather the measurement results. These modifications
do not interfere with the performance of the fTPM run-
ning on the tablet.

Details of TPM 2.0 Commands Used To answer the
questions raised by our performance evaluation, we cre-
ated a benchmark suite in which we perform various
TPM commands and measure their duration. We were
able to use timers with sub-millisecond granularity for

all our measurements, except for device fTPM2. Unfor-
tunately, device fTPM2 only exposes a timer with a 15-
ms granularity to our benchmark suite, and we were not
able to unlock its firmware to bypass this limitation.

Each benchmark test was run ten times in a row. Al-
though this section presents a series of graphs that an-
swer our performance evaluation questions, a more in-
terested reader can found all data gathered in our bench-
marks in the Appendix.

• Create RSA keys: This TPM command creates an
RSA key pair. When this command is issued, a
TPM searches for prime numbers, creates the pri-
vate and public key portions, encrypts the private
portion with a root key, and returns both portions to
the caller. We used 2048-bit RSA keys in all our ex-
periments. We chose 2048-bit keys because they are
the smallest key size still considered secure (1024-
bit keys are considered insecure and their use has
been deprecated in most systems).

• Seal and unseal: The Seal TPM command takes
in a byte array, attaches a policy (such as a set of
Platform Configuration Register (PCR) values), en-
crypts with its own storage key, and returns it to
the caller. The Unseal TPM command takes in an
encrypted blob, checks the policy, and decrypts the
blob if the policy is satisfied by the TPM state (e.g.,
the PCR values are the same as at seal time). We
used a ten-byte input array to Seal, and we set an
empty policy.

• Sign and verify: These TPM commands corre-
spond to RSA sign and verify. We used a 2048-bit
RSA key for RSA operations and SHA-256 for in-
tegrity protection.

• Encryption and decryption: These TPM com-
mands correspond to RSA encryption and decryp-
tion. We used a 2048-bit RSA key for RSA opera-
tions, OAEP for padding, and SHA-256 for integrity
protection.

• Load: This TPM command loads a previously-
created RSA key into the TPM. This allows subse-
quent command, such as signing and encryption, to
use the preloaded key. We used a 2048-bit RSA key
in our TPM Load experiments.

11.2 Overhead of RSA Keys Creation
Figure 8 shows the latency of a TPM create RSA-

2048 keys command across all our seven devices. First,
as expected, creating RSA keys is a lengthy command
taking several seconds on all platforms. These long la-
tencies justify our choice of using cooperative check-
pointing (see Section 7) in the design of the fTPM. With-
out it, creating RSA keys would have likely left the OS
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Figure 8. Latency of create RSA-2048 keys on various
fTPM and dTPM platforms.

unstable due to remaining suspended for several seconds
at a time.

Second, the performance of creating keys can be quite
different across these devices. As we can see, fTPM2

takes a much longer time than all other mobile devices
equipped with an fTPM. This is primarily due to the
variations in the firmware performance across these de-
vices – some manufacturers spend more time optimiz-
ing the firmware running on their platforms than others.
Even more surprisingly, the discrete TPM 2.0 chips also
have very different performance characteristics: dTPM3

is much faster than dTPM1 and dTPM2. Looking at
the raw data (shown in the Appendix), we believe that
dTPM3 likely searches for prime numbers in the back-
ground, even when no TPM command is issued, and
maintains a cache of prime numbers.

Figure 8 also shows that the latency of creating keys
is highly variable across all fTPMs and dTPMs. This
large variability is due to how quickly prime numbers
are found.
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Figure 9. Performance of searching for primes.

To shed more light into the variability of finding prime
numbers, we instrumented the fTPM codebase to count
the number of prime candidates considered when creat-
ing an RSA 2048 key pair. For each test, all candidates
are composite numbers (and thus discarded) except for
the last number. We repeated this test 1,000 times. We
plot the cumulative distribution function of the number
of candidates for each of the two primes (p and q) in Fig-
ure 9. These results demonstrate the large variability in
the number of candidate primes considered. While, on
average, it takes about 200 candidates until a prime is
found (the median was 232 and 247 candidates for p and
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Figure 10. Performance of TPM seal command.
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Figure 11. Performance of TPM unseal command.
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Figure 12. Performance of TPM sign command.
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Figure 13. Performance of TPM verify command.

q, respectively), sometimes a single prime search consid-
ers and discards thousands of candidates (the worst case
was 3,145 and 2,471 for p and q, respectively).

11.3 Comparing fTPMs to dTPMs
Figures 10– 16 show the latencies of several common

TPM 2.0 commands. The main result is that fTPMs are
much faster than their discrete counterparts. On average,
the slowest fTPM is anywhere between 2.4X (for decryp-
tion) and 15.12X (for seal) faster than the fastest dTPM.
This is not surprising because fTPMs run their code on
ARM Cortex processors, whereas discrete chips are rel-
egated to using much slower microprocessors. The Ap-
pendix illustrates these vast performance improvements
in even greater detail.
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Figure 14. Performance of TPM encrypt command.
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Figure 15. Performance of TPM decrypt command.
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Figure 16. Performance of TPM load command.

These performance results are encouraging. Tradi-
tionally, TPMs have not been used for bulk data crypto-
graphic operations due to their performance limitations.
With firmware TPMs however, these operations’ perfor-
mance are limited only by processor speeds and memory
bandwidths. Furthermore, fTPMs coulbe become even
faster by taking advantage of crypto accelerators. Over
time, we anticipate that crypto operations would increas-
ingly abandon the OS crypto libraries in favor of the
fTPM. This provides increased security as private keys
never have to leave the TrustZone’s secure perimeter.

11.4 Evaluation Summary
In summary, our evaluation shows that (1) the

firmware TPM has better performance than discrete TPM
chips, and (2) creating RSA keys is a lengthy operation
with high performance variability.

12 Security Analysis
The fTPM’s security guarantees are not identical to

those of a discrete TPM chip. This section examines
these differences in greater depth.

On- versus off-chip. Discrete TPM chips connect to
the CPU via a serial bus; this bus represents a new attack

surface because it is externally exposed to an attacker
with physical access to the main board. Early TPM chips
were attached to the I2C bus, one of the slower CPU
buses, that made it possible for an attacker to intercept
and issue TPM commands [41]. Modern TPM specifica-
tions have instructed the hardware manufacturers to at-
tach the TPM chip to a fast CPU bus and to provide a
secure platform reboot signal. This signal must guaran-
tee that the TPM reboots (e.g., resets its volatile registers)
if and only if the platform reboots.

In contrast, by running in the device’s firmware, the
fTPM sidesteps this attack surface. The fTPM has no
separate bus to the CPU. The fTPM reads its state from
secure storage upon initialization, and stores all its state
in the CPU and the hardware-protected DRAM.

Memory attacks. By storing its secrets in DRAM,
the fTPM is vulnerable to a new class of physical at-
tacks – memory attacks that attempt to read secrets from
DRAM. There are different avenues to mount memory
attacks, such as cold boot attacks [18, 32], attaching a
bus monitor to monitor data transfers between the CPU
and system RAM [16, 12, 13], or mounting DMA at-
tacks [6, 7, 35].

In contrast, discrete TPM chips do not make use of the
system’s DRAM and are thus resilient to such attacks.
However, there is a corresponding attack that attempts
to remove the chip’s physical encasing, expose its inter-
nal dies, and thus read its secrets. Previous research has
already demonstrated the viability of such attacks (typi-
cally referred to as decapping the TPM), although they
remain quite expensive to mount in practice [21].

The fTPM’s susceptibility to memory attacks has led
us to investigate inexpensive counter-measures. Sentry
is a prototype that demonstrates how the fTPM can be-
come resilient to memory attacks. Sentry retrofits ARM-
specific mechanisms designed for embedded systems but
still present in today’s mobile devices, such as L2 cache
locking or internal RAM [9].

Side-channel attacks. Given that certain resources
are shared between the secure and normal worlds, great
care must be given to side-channel attacks. In contrast, a
discrete TPM chip are immune to side-channel attacks
that use caching, memory, or CPU because these re-
sources are not shared with the untrusted OS.

a. Caches, memory, and CPU: Side-channel attacks
that exploit caches are unlikely because caches are al-
ways invalidated by hardware during each transition to
and from the secure world. Memory is statically parti-
tioned between the two worlds at platform initialization
time; such a static partitioning reduces the likelihood of
side-channel attacks. Finally, the CPU also invalidates
all its registers upon each crossing to and from the se-
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cure world.
In general, the ARM TrustZone specification takes

great care to reduce the likelihood of cache-based side-
channel attacks for shared resources [1].

b. Time-based attacks: The TPM 2.0 specification
takes certain precautions against time-based attacks. For
example, the entire cryptography subsystem of TPM 2.0
uses constant time functions – the amount of computa-
tion needed by a cryptographic function does not depend
on the function’s inputs. This makes the fTPM imple-
mentation as resilient to time-based side-channel attacks
as its discrete chip counterpart.

13 Looking Ahead
13.1 Intel SGX and Its Shortcomings

Intel SGX [20] is a set of extensions to the Intel pro-
cessor designed to build a sandboxing mechanism for
running application-level code separate from the rest of
the systems. Similar to ARM TrustZone’s secure world,
with Intel SGX applications can create enclaves pro-
tected from the OS and the rest of the software running
on the platform. All memory allocated to an enclave is
hardware encrypted (unlike the secure world in ARM).
Unlike ARM however, SGX does not offer I/O support;
all interrupts are handled by the untrusted code.

SGX has numerous shortcomings for trusted systems
such as the fTPM:

1. Lack of trusted storage. While code executing
inside an enclave can encrypt its state, encryption cannot
protect against rollback attacks. Currently, the Intel SGX
specification lacks any provision to rollback protection
against persisted state.

2. Lack of a secure counter. A secure counter is
often an important stepping stone to building secure sys-
tems. For example, a rollback-resilient storage system
could be built using encryption and a secure counter. Un-
fortunately, it is difficult for a CPU to offer a secure
counter without hardware assistance beyond the SGX
extensions (e.g., an eMMC storage controller with an
RPMB partition).

3. Lack of secure clock. SGX leaves out any specifi-
cation of a secure clock. Again, it is challenging for the
CPU to offer a secure clock without extra hardware.

4. Side-channel dangers. SGX enclaves protect code
running in ring 3 only. This means that the untrusted OS
is left with servicing resource management tasks. This
opens up a large surface for side-channel attacks. Indeed,
recent work has demonstrated a number of such attacks
against Intel SGX [48].

14 Related Work
The related work closest to ours is Nokia OnBoard

credentials (ObC), Mobile Trusted Module (MTM), and

previous implementations of earlier TPMs in software.
ObC [23] is a trusted execution runtime environment
leveraging Nokia’s implementation of ARM TrustZone.
ObC can execute programs written in a modified variant
of the LUA scripting language or written in the underly-
ing runtime bytecode. Different scripts running in ObC
are protected from each other by the underlying LUA
interpreter. A more recent, similar research effort also
sought to port the .NET framework to the TrustZone [37]
using techniques similar to ObC.

While the fTPM serves as the reference implementa-
tion of a firmware TPMs for ARM TrustZone, ObC is
a technology proprietary to Nokia. Third-parties need
to have their code signed by Nokia to take advantage of
running it inside the TrustZone. In contrast, the fTPM of-
fers TPM 2.0 primitives to any application. While TPM’s
primitives are less general than a full scripting language,
both researchers and industry have already used TPMs
in many secure systems and prototypes demonstrating its
usefulness.

The Mobile Trusted Module (MTM) [42] is a specifi-
cation similar to that of a TPM but aimed solely at mobile
devices. Unfortunately, MTMs have never gone passed
the specification stage in the Trusted Computing Group.
As a result, we are unaware of any systems that made use
of MTMs. If MTM were to become a reality, many of our
techniques would remain relevant in building a firmware
MTM.

For many years, IBM has maintained a software im-
plementation of TPM 1.2 [19]. We are unaware of efforts
to integrate this earlier implementation into commodity
mobile devices.

Finally, a recent survey describes additional efforts in
building trusted runtime execution environments for mo-
bile devices based on various forms of hardware, includ-
ing physically uncloneable functions, smartcards, and
embedded devices [4]. A recent industrial consortium
called GlobalPlatform [15] has also started to put to-
gether a standard for trusted runtime execution environ-
ments on various platforms, including ARM [3].

15 Conclusions
This paper presented the design and implementation

of a firmware-based TPM 2.0 leveraging ARM Trust-
Zone. The paper described the shortcomings of ARM’s
hardware when building practical trusted systems. Three
different approaches are presented to overcome these
challenges: requiring additional hardware support, mak-
ing design compromises without affecting TPM’s secu-
rity, and slightly changing the semantics of a small num-
ber of TPM 2.0 commands. Our implementation is the
reference implementation used in all ARM-based Win-
dows mobile devices including Microsoft Surface and
Windows Phones.
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Appendix
This appendix presents figures containing all perfor-

mance results for each device tested. The figures are
placed on the following page due to formatting reasons.
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Figure 17. TPM create RSA 2048-bit key.
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Figure 18. TPM seal and unseal.
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Figure 19. TPM sign and verify.
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Figure 20. TPM encryption and decryption.
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Figure 21. TPM load.
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Figure 22. TPM create RSA 2048-bit key.
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Figure 23. TPM seal and unseal.
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Figure 24. TPM sign and verify.
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Figure 25. TPM encryption and decryption.
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Figure 26. TPM load.
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Figure 27. TPM create RSA 2048-bit key.
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Figure 28. TPM seal and unseal.
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Figure 29. TPM sign and verify.
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Figure 30. TPM encryption and decryption.
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Figure 31. TPM load.
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Figure 32. TPM create RSA 2048-bit key.
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Figure 33. TPM seal and unseal.
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Figure 34. TPM sign and verify.
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Figure 35. TPM encryption and decryption.
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Figure 36. TPM load.
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Figure 37. TPM create RSA 2048-bit key.
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Figure 38. TPM seal and unseal.
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Figure 39. TPM sign and verify.
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Figure 40. TPM encryption and decryption.
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Figure 41. TPM load.
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Figure 42. TPM create RSA 2048-bit key.

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10

C
o

m
m

an
d

 D
u

ra
ti

o
n

 
(m

ill
is

e
co

n
d

s)

Iteration #

Seal Unseal

Figure 43. TPM seal and unseal.
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Figure 44. TPM sign and verify.
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Figure 45. TPM encryption and decryption.
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Figure 46. TPM load.
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Figure 47. TPM create RSA 2048-bit key.
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Figure 48. TPM seal and unseal.
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Figure 49. TPM sign and verify.
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Figure 50. TPM encryption and decryption.
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Figure 51. TPM load.
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