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ABSTRACT
The large body of research on localization has been driven by the
goal of providing users with location-based services, be it mapping
and navigation or local alerts and advertisements. However, as we
discuss in this paper, location information can over time provide
deep insight about about a user, going well beyond the location
domain itself. We argue that unlocking the wealth of informa-
tion available from location is valuable and represents a new and
promising frontier for location-related research, especially in the
indoor domain. We call this Physical Analytics, analogous to On-
line Analytics, with footsteps taking the place of a clickstream. We
describe research opportunities, challenges, and our initial investi-
gation in Physical Analytics.

1. INTRODUCTION
Localization technologies and their applications have received

much attention, both in the research community and increasingly
in the commercial world. The focus has largely been on using lo-
cation information to provide location-based services to users, e.g.,
mapping, navigation, alerts, reminders, advertisements, etc. While
such services tied to location have been very useful in the outdoor
setting (e.g., GPS navigation), the search of a similar, user-facing
killer app for location-based services indoors is a continuing quest.

We argue that analyzing user location information in the phys-
ical world — Physical Analytics, or Phytics — to gain deep in-
sight about users, is a promising new frontier for location-related
research. Just as a clickstream in the online world provides insights
about users, so does footsteps in the physical world. We focus pri-
marily, though not exclusively, on physical analytics in indoor set-
tings, motivated by the observation that people spend much of their
time indoors and have much of their interactions with each other
and with businesses indoors.

We can draw many parallels between the online and the physical
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worlds. Analogous to the online world, analytics in the physical
setting could be of value to users, advertisers, and venue owners
(who can be thought of as the analogs of “publishers” in the on-
line world). Users would benefit from personalized information,
advertisers from more effective targeting, and venue owners from
insights that enables them to deploy their (physical) real estate in
a manner that helps maximize engagement with users. In the on-
line setting, how users traverse web pages and applications, includ-
ing the links they click, the search keywords they type, where they
dwell (i.e., one which websites and apps), and where their mice
point to are indicative of the user’s profile and interests. Analo-
gously, the traversal made by a user in the physical world, includ-
ing where they go, how long they dwell, and what interactions they
have (e.g., picking up items from a store shelf) reveals a lot about
them. Similar analogies can be drawn between the online and phys-
ical worlds when considering the behavior of a population of users
instead of just individual users.

However, the physical world is also different from the online one
in significant ways that present interesting challenges and opportu-
nities in the context of Physical Analytics. In the online setting, an
HTTP transaction resulting from a click encapsulates all the infor-
mation needed to track the user, using mechanisms such as HTTP
redirection, cookies, and tracking pixels. This makes tracking con-
venient and also makes it easy to interpose third-party services for
the purposes of gleaning information about the user. In contrast,
tracking in the physical world is much more challenging because
the necessary information is incomplete and also scattered. For ex-
ample, the user’s mobile device (e.g., smartphone) might be in a
position to track the user’s every movement but might lack both ac-
curacy and semantic context with regard to locations (e.g., knowing
that the user’s location corresponds to the women’s clothing section
in a retail store). The venue owner would have the context informa-
tion but may not be in a position to track the user, especially outside
the confines of their physical space. A third party such as a cellular
network operator might have the footprint to have broad visibility
but is unlikely to have fine-grained or semantic information.

On the other hand, since everything on the web is virtually a click
away, a user’s pattern of traversal online could be quite complex, so
the relative ease of online tracking is indeed a boon for taming this
complexity. In the physical world, however, traversal is constrained
by physical location and proximity. Such constraints can be used to
fill in the holes with regard to tracking. For example, if over time
a user is never seen at the entrance of a mall that houses the only
Apple Store in town, we can safely conclude that the user has not
been visiting the Apple Store, even if we do not have any visibility
into locations inside the store.

The idea of tracking users in the physical world might set alarm
bells with regard to user privacy, or the lack thereof. While privacy



is no doubt important, the experience in the online world shows
that users are often willing to give up some privacy in return for
free content and services, and even subsidized hardware and soft-
ware (e.g., the Android OS). For example, when a user sends email
regarding a disease, they might start seeing ads for treatments of
that disease. So long as this information does not make its way to
a party (e.g., a health insurance provider) who can have a mate-
rial impact on the user, users seem willing to tolerate it. We argue
that tracking in the physical world does not fundamentally alter this
balance of privacy and economics. To mitigate user concerns, how-
ever, we advocate that tracking and analytics be performed only in
public spaces, where users have to anyway contend with reduced
privacy, because of the presence of other users, security cameras,
etc. Users can opt out whenever they choose to.

Finally, the traversal of the physical world by a user, which points
to the user’s profile, clearly goes beyond the user’s location. The
user’s history, gaze (e.g., what they are looking at), actions (e.g.,
picking up an item from a store shelf), physical context (e.g., light
or sound level), social context (e.g., who else they are with), and
even mood (e.g., whether they are happy or unhappy) all have a
bearing on the true profile of a user. While we touch on some of
these briefly, we focus on location, which we believe is the single
most important dimension of a user’s context, one that even sheds
light on the some of the other dimensions listed above.

Our goal in this paper is to argue that Physical Analytics repre-
sents a new and exciting frontier for research on localization and
other aspects of user context, providing a different and compelling
context for such research and also broadening the goal of localiza-
tion beyond just determining the user’s coordinates. We present
scenarios where Physical Analytics could provide value, and also
discuss some specific research problems that we are pursuing.

2. OPPORTUNITIES
We now discuss various opportunities for Physical Analytics from

the viewpoint of providing value to users and businesses. This is
not intended to be an exhaustive list. Rather our goal here is to
present some scenarios that support our position that physical an-
alytics can be valuable, both on its own and in conjunction with
online analytics.

In-store browsing: Retailing is big business, accounting for $15
trillion per year worldwide [14] Fundamentally, retailing is about
connecting end consumers with the products and services in a way
that serves the needs of both consumers (e.g., good value for money)
and businesses (e.g., good sales). Clearly, therefore, deep knowl-
edge of the consumer (or user) — what they are looking for, what
competing offerings they have considered, their price sensitivity,
etc. — is invaluable.

Analytics plays a significant role in online retailing, with click-
streams being mined, for instance, to make product recommenda-
tions. Such analytics draws on both purchases made by users and
their browsing behavior, even if it ends short of an actual purchase.
The situation is quite different in the case of physical, or brick-and-
mortar, retailing, which still accounts for an overwhelming 96%
of the global retailing market [14]. Physical retailers have little
visibility customer behavior, even within the confines of their own
stores. While customer loyalty programs provide some informa-
tion, this is confined to the purchasing behavior of users; the con-
siderable amount of time that users might spend browsing is lost
in the blind spot. Retailers do not even have information on the
average length of a store visit by a customer, and have to resort to
low-tech and expensive means such as deputing sales representa-
tives to tail customers as they browse through the store [24].

Therefore tracking and analyzing customer behavior in a physi-
cal store can be valuable. Indeed, this has become an active space
for startups [16, 22] that are looking to leverage existing tech-
nologies for indoor localization (e.g., based on WiFi, video, LED
light). The interesting research challenge, however, is in combining
complementary sensing modalities, whether infrastructure-based or
mobile-based, and performing meaningful analytics despite noisy
data. For instance, can we perform accurate analytics in the aggre-
gate despite errors in the underlying measurements (e.g., localiza-
tion error)?

Dynamic pricing: Dynamic pricing is considered as the future of
retail [15]. Based on a customer’s behavior in a physical store
(e.g.,whether and how long she browses clearance sections), the
price can potentially be adjusted on the fly.

Space and event planning: Related to tracking in-store browsing
is the question of how people flow through a space such as an air-
port, mall, or tradeshow floor. The owners of such spaces would
be interested in answering this question so that they can optimize
the layout for the future. For instance, the owners might wish to
plan emergency evacuation plans based on where people tend to
congregate, charge rent based on footfall concentrations, or locate
facilities where more visitors are likely to benefit. In Section 4, we
show an example of such analytics in the context of a demo event
at Microsoft Research India.

Physical conversion: In advertising, conversion refers to the tran-
sition of a user who is shown an ad to a customer who makes a
purchase or takes some other action indicative of an enhanced in-
terest in the offering being advertised. Conversion tracking is the
key to measuring the effectiveness of advertising campaigns. In the
online world, conversion is tracked using HTTP cookies and track-
ing pixels to determine that a user went from being shown an ad to
the checkout page on an e-commerce site. However, in many cases,
conversion involves a physical action by the user, e.g., a visit to a
car showroom or a doctor’s office, or even more fine-grained level,
a visit to the section of the Microsoft Store displaying the latest
Surface tablet. So physical conversion tracking would be impor-
tant. Indeed, businesses try to do such tracking today using survey
forms, asking customers questions such as “please tell us how you
heard about us.” Obviating the need for such manual input holds
the promise of making physical conversion tracking more accurate
and complete. A mobile device that goes where the user goes could
be the vehicle for tracking physical conversions. A key challenge,
however, is linking online interactions made using one device (e.g.,
the user’s home PC) with physical conversions tracked using a dif-
ferent device (e.g., the user’s smartphone).

Better training data: Related to physical conversion tracking is
the opportunity to augment training data with physical ground truth.
Say we are looking to predict the commute habits users or whether
they are interested in clothes, based on their online interactions. So,
for instance, the presence of certain keywords in online searches
by a user could be used as signals for such a prediction. However,
we need labeled training data to fine-tune the prediction algorithm
based on these signals. The labels, however, would have to come
from the physical world, whether it is by tracking a user’s commute
or a visit to the clothing section of a store. Note that the labels thus
obtained from a set of users would be used to fine-tune the algo-
rithm to make better predictions in the future.

Personal assistant: Personal Assistant services such as Apple Siri
and Google Now try to answer user queries and anticipate user
needs in a manner that is natural and low-effort for users. For the
same reason that Physical Analytics can benefit a business — by
shedding light on user activity that is not visible online — it can



also enable a personal assistant serve the user better. Physical infor-
mation is already tapped by some personal assistants, for instance,
to determine the locations of a user’s home and workplace. How-
ever, there is the potential to gain deeper insight using fine-grained
indoor location information. For example, if the user is found to
have browsed through the lighting sections in multiple stores, they
could be offered additional information or tips. They could also
be connected (anonymously) with others users who share the same
“physical trail”, i.e., had spent time visiting the same sections in
the recent past, and who thus may be in the position to answer any
specific queries that the user might have.

3. RESEARCH CHALLENGES
Physical analytics could be enabled in two different ways, i)

through assistance from infrastructure of interest (e.g., a retailer in-
stalling specialized equipment within the store such as video cam-
eras) and ii) through assistance from the users’ mobile devices (e.g.
a mobile phone using its WiFi or inertial sensors). Having infras-
tructure support allows sophisticated instrumentation and mecha-
nisms for potentially obtaining very accurate and fine grained ana-
lytics regarding users. For example, one could instrument shelves
in a retail store to determine which items are being touched by the
user. Having control or access to the users’ device, on the other
hand, allows for potentially obtaining information relevant to the
user and even influencing user behavior. With increasing interest
in wearable computing devices, such as Google glasses, the diverse
ecosystem and capabilities of user owned mobile devices is bound
to increase. Each of these kinds of assistance comes with its own
research challenges.
Challenges in Infrastructure-Based Physical Analytics. There
are two key research challenges to be addressed in infrastructure-
based physical analytics – Smart Infrastructure with Multi-modal
Sensing and Privacy.
Smart Infrastructure with Multi-Modal Sensing: The ability to di-
rectly control infrastructure gives a unique opportunity to innovate
in terms of using multiple sensing modalities e.g.,WiFi and Video
and creating innovative forms of smart infrastructure e.g.,smart shelves
to improve the quality of information.
Privacy: Since Physical Analytics involves tracking user move-
ment, it would likely raise privacy concerns. As in the online world,
we believe that given an adequate incentive, users would be will-
ing to put up with some loss of privacy. For instance, just as users
swipe a loyalty card at the checkout counter today — gives up some
privacy in return for a price discount — they could be incentivized
to run a store app on their smartphone, say while in a store, so that
their movements can be tracked more finely than would otherwise
be possible.
Challenges in User-Based Physical Analytics. There are two key
challenges to user-only based physical analytics – Crowd Sourcing
and Battery Power.
Crowd Sourcing. Indoor location information is often of little use in
the absence of context. For example, even knowing the lat-long of
a user precisely will not reveal that the user was in fact in the shoes
section. So there is the need to label indoor spaces in a semanti-
cally meaningful manner. Crowdsourcing can play a key role here,
just as with outdoor maps (e.g., OpenStreetMap [5]). To limit the
crowdsourcing effort, we would want to recognize places and de-
tect movement automatically as users move about, and only prompt
(some) users occasionally to obtain semantically meaningful labels
for places. Such crowdsourcing throws up new challenges, e.g.,
the diversity in labels assigned by users for the same place (e.g.,
“shoes”, “footwear”, “sneakers”), and would require algorithms to
clean and aggregate user-entered labels appropriately.

Battery Power To the extent that we are leaning on mobile devices
to provide data for physical analytics, we need to be cognizant of
battery life concerns. To a first degree of approximation, battery
drain would be caused by both the use of sensors and by the pro-
cessing of the sensor data. The latter can be streamlined by lever-
aging recent advances in heterogeneous multicore processing [1]
and dedicated sensor processors [4, 3]. However, the energy cost of
sensing require careful attention going beyond previous approaches
towards triggered sensing (i.e., using a less expensive sensor to se-
lectively trigger a more expensive one). We could, for instance,
leverage the statistics of the patterns we are trying to mine them-
selves to reduce energy cost. For example, we might learn that
users tends to dwell for an hour or two after entering a particu-
lar location (e.g., a movie hall), so the quality of physical analytics
may not suffer even if we were to employ a high degree of temporal
subsampling.

4. PHYSICAL ANALYTICS IN THE IDEAL
CASE

In the ideal case, physical analytics would rely on both infras-
tructure support and user support in the form of a presence on the
user’s mobile device(s). Consider the problem of tracking customer
movement through a retail store. The store has WiFi coverage, as is
increasingly the case. A customer carries a smartphone running an
app that is in a position to perform WiFi scans and tap other phone
sensors. Such an app running on the customers’ smartphones, cou-
pled with information in the possession of the infrastructure owner
(e.g., floor map, WiFi signal strength database or model), would en-
able localization of the customers’ phones, thereby enabling track-
ing of the customers’ movements through the store.

We show an example of analytics based in such tracking in Fig-
ure 1 in a demo event held at Microsoft Research India in Jan. 2013
with various demos spread across various locations on the floor,
which measures 70m by 50m. From the perspective of physical an-
alytics, there are a number of questions of interest, such as where
people tend to congregate, how they tend to move between demos,
etc. To answer these questions, we handed out phones loaded with
a tracking app to 20 visitors and requested them carry the phones
with them as they walked the demo floor. The app performed WiFi
scans and then invoked the EZ service [13] in the backend to per-
form localization on a continual basis. The set of location estimates
thus obtained across devices and time is then used to generate the
heat maps are shown in Figure 1.

Figure 1a shows the raw heat map, and represents the density
of user presence at each location over the entire duration, with the
color going from light yellow (low density) to deep red (high den-
sity). Figure 1b shows the result of performing k-means cluster-
ing, with the cluster radius limited to 3m and clusters with too few
points removed, thereby eliminating the outlier points. We were
then able to label the clusters to indicate semantic information, i.e.,
the name of the demo or other activity associated with each cluster;
the figure shows labels for the clusters corresponding to the Phytics
demo and the food stand. We see that the foot stand cluster had
the highest density of location reports, which raises the question of
whether the food was a greater attraction than any of the demos!
The number of location updates corresponding to each cluster de-
pends both on the number of users that visited the cluster and the
length of time they spent there. Figure 1c shows the heat map based
on the average duration spent by a user within each cluster, which
we treat as a proxy for the degree of user engagement. We see
that the food stand cluster is no longer at the top — in fact, it is
lighter than most other clusters — which indicates that the aver-



(a) Raw heat map (b) Heat map with clusters colored by lo-
cation update count

(c) Heat map with clusters colored by
average time spent

Figure 1: Heat Map

age time spent there is low. Physical analytics reveals that the food
stand cluster standing out in the overall heat map (Figure 1b) was
because a large number of users visited that location; on the other
hand, many users came to the food stand but they did not linger
there for long, spending time at the demo locations instead.

As we can see, interesting physical analytics can be performed
in an indoor setting based on information from both the user side
(e.g., WiFi, accelerometer, and other sensor information from their
mobile device) and infrastructure side (e.g., a WiFi infrastructure,
WiFi signal strength model or database, floor map, semantically-
meaningful location labels). Such a situation of cooperation be-
tween users and the business owning a space would be ideal and
could be realized, for instance, by having a store provide incentives
for customers to run a “loyalty card” app on their smartphones as
they browse through the store, akin to the incentive for swiping a
loyalty card at checkout time.

5. INFRASTRUCTURE-ONLY PHYSICAL AN-
ALYTICS

Infrastructure-only Physical Analytics refers to physical analyt-
ics performed by the entity that controls the infrastructure in the
physical space of interest, e.g., a retailer, a mall operator, or trade-
show organizer but with no direct cooperation from the the user’s
device. The lack of user cooperation eliminates a key source of in-
formation (e.g., the WiFi scans and accelerometer data in Section 4.
So the key challenge is to find infrastructure-based substitutes for
these and design algorithms to fill in for the missing information.
In the rest of the section we provide two examples – WiFi-Vision
fusion and Smart Objects to illustrate the challenges and opportu-
nities unique to infrastructure-only physical analytics.
WiFi-Vision fusion: Given that user mobile phone’s do not coop-
erate, the infrastructure could rely on sniffing passive background
transmissions (e.g., 802.11 probe requests) from users’ mobile phones.
These sniffers could be arbitrarily sophisticated, for example they
leverage recent advances such as using OFDM sub-channel level
information [30] and antenna arrays [35] to obtain the best possible
location estimates. However, relying only on background trans-
missions presents a significant challenge – sporadic nature of these
background transmissions. For example, based on measurements
made in a couple of malls in the Seattle area, we found that the
median inter-arrival time between probe requests is 20-40 seconds,
and the 85th percentile is over 3 minutes. In other words, the op-
portunity for the infrastructure to obtain a WiFi-based location fix
on a mobile device will likely still be much less frequent than if the
mobile device itself were scanning for beacons.

Vision-based tracking using cameras is a possibility, especially
considering the prevalence of security cameras in indoor spaces. In
principle, vision-based analysis can provide accurate tracks. How-

Figure 2: Combining vision tracking with WiFi tracking for 2 users,
one who walks from S1 to E1 and the other from S2 to E2.

ever, our trials with several state-of-the-art commercial as well as
open-source vision-based trackers revealed several challenges. The
visual tracks tend to be fragmented, because of limited camera cov-
erage, occlusion and even parts of a person’s body being detected
as distinct objects. Furthermore, there tend to be a large number
of spurious objects detected, e.g., reflections off of glass surfaces
and changing content on an electronic displays such as TV screens
within view of the camera.

A combination of WiFi and Vision could provide best of both
worlds. The continuous tracking capability using video can help
fill up the sporadic nature of infrastructure based WiFi. Infras-
tructure based WiFi on the other hand can help fuse fragmented
vision-tracks by establishing a consistent ID for each user (i.e., the
wireless MAC address).

Figure 2 shows the results from a simple experiment, wherein
two users, each carrying a phone, walked across a 30-meter long
section of the floor, in a straight line from from left to right, one user
from S1 to E1 and the other from S2 to E2. A camera at the right
edge recorded the scene. The figure shows the result of processing
both the WiFi and visual data. The purple and red squares show the
WiFi tracks for the user 1 and user 2, respectively, each showing
an error of meters. (In this experiment, we had frequent WiFi com-
munication, so the WiFi localization was performed much more
frequently than it would have otherwise been.) The streaks in grey
correspond to visual tracks. We see that the tracks of each user
get broken up into multiple “tracklets”, shown in different shades
of grey, because the same person is detected as a different object
at various times. Furthermore, some of these tracklets extend into
offices because of reflections off glass surfaces. Thus, we see that
even this simple setting with just 2 users presents formidable chal-
lenges to leveraging vision-based tracking and the potential advan-
tages of multi-modal techniques such as WiFi-Vision.

Smart Shelf and Smart Objects: The infrastructure could be in-
strumented to track more than just the locations of users, i.e., a
richer set of interactions than just “footsteps”. We briefly discuss
two specific examples: smart shelf and smart objects.

The idea of a smart shelf is to track interactions of a user with



objects on a store shelf. Inspired by our prior work on estimating
road traffic density using cameras [28], we accomplish this using
a pair (or, in general, an array) of inexpensive webcams mounted
directly above the shelf, looking down on a virtual strip of floor-
ing adjacent to the shelf. Whenever a user reaches out to touch or
pickup an item, the user’s arm would partially obstruct the cam-
eras’ views of the virtual strip. The location of the obstruction can
then be used to calculate the location of the interaction on the shelf,
which can then be coupled with information on the layout of items
on the shelves. Our initial evaluation shows the promise of this ap-
proach, with both the location of an interaction on a shelf and the
nature of the interaction (touching an item vs. picking it up) being
detected accurately.

While a smart shelf helps detect basic interactions with “dumb”
objects, smart objects can themselves be instrumented. Examples
include powered computing objects, such as smartphones and tablets
on display at an electronics retail store. An instrumented device can
track a range of interactions with customers, e.g., how often the ob-
ject was picked up, how long it was interacted with before being put
back on the shelf, and even what functionality was involved while
the customer was “kicking the tires”.

With both dumb and smart objects, it is valuable to be able to tie
interactions together, e.g., know that the user who just picked up a
game title from a shelf is the same person who was checking out a
gaming console a few minutes ago. User movement tracking would
serve as the glue that binds together such disparate interactions.

6. USER-ONLY PHYSICAL ANALYTICS
For several indoor environments assistance or cooperation from

the store may not be available. For example, the store may not al-
low placement of equipment such as cameras or provide access to
feeds from them even if they are present. It may not provide any
details of the product layout information or the floor plan. Fur-
ther, most WiFi-based localization techniques depend on a training
phase that require prior profiling of the area (e.g.,war driving or
model building). In practice it is not practical to profile every store.
In this section we ask the question Can we perform physical an-
alytics without the benefit of being able to locate the user at all
and relying only on information from end users’ mobile devices?
We answer the question in affirmative starting with one example –
Label-Space localization.

Example : Locating in Label-Space: Consider a crowd-sourcing
application where participating users are somehow incentivised (ex-
ample: discounts) to enter labels relevant to their location. For
example, suppose that a user enters a departmental store and oc-
casionally stops and enters as labels such as “electronics section”,
“cameras”, “perfumes”, etc. Further, their phones are instrumented
to collect WiFi scans from the phone in the background as they tra-
verse the shop. The application is thus able to associate these labels
with WiFi signal strength measurements. Further, if inertial sensor
data were also collected in the background, it could be leveraged to
provide a rough spatial distance estimate between two areas such
as electronics section and perfumes section for example, by count-
ing the steps taken by the user. Once there is enough data has been
crowd-sourced from a certain store users can be located in this la-
bel-space by comparing their WiFi-fingerprint and steps taken. For
example, by comparing WiFi-scans in the crowd-sourced database
once can infer that the person is in the electronics section or the
perfume section in a manner similar to location inference.

This manner of localization in the label space can provide very
rich information for Physical analytics. For example, the user could
be profiled based on the sections the he/she spends most of the

time. The user could then be provided relevant discounts as soon
as he/she approaches their labels of interest. Thus, in this manner
physical analytics can be obtained without any support from the
indoor space or localization capability.

A unique aspect of localization in label spaces is the inherent
category hierarchy in label space. For example, the labels “cam-
era”, “T.V”, “tablet” etc. all are encompassed within the category
of “electronics”. Similarly, the categories “SLR camera” “Macro
Lenses” etc. are all encompassed within the “camera” category.
Thus, when a user is localized in label space, he/she could belong
to multiple categories along the category hierarchy tree. In fact, an
ideal label space localization scheme would return the probabili-
ties that the person belongs to each of the categories. Typically, the
more general a category the larger the physical spatial extent of the
category in the store and the higher the accuracy.

A label space localization experiment: As a first step towards en-
abling label-space localization we conducted experiments in three
different indoor shopping areas – Departmental store, Grocery store
and Mall. In each of these location was asked users to walk about
carrying their mobile phones while briefly stopping at various loca-
tions to jot down relevant labels using an android app. The phone
also continuously scanned WiFi signal strengths in the background.
Labels could be associated with WiFi signals using time stamps.
Data was collected at each of these locations on two different days,
3 days apart. Data collected on the first day was used as training
data set while that on the second day was used to test.
Departmental Store. The store comprised two levels – with an area
of about 30m × 20m on level 1 and 30m × 30m on level 2. The
various categories explored in the store and the labels are shown in
Figure 3 (a).
Grocery store. The store has only one level comprising an area of
about 30m-by-40m. The various categories explored in the store
and the labels are shown in Figure 3 (b).
Mall. For these experiments we focused on small stalls, each situ-
ated around 7 − 8m apart from each other as depicted in Figure 4
(the layout was available in an online map). In these experiments
we varied device type and carrying positions in order to evaluate the
effects of such variations on performance. We experimented with
two different mobile phones – Nexus 4 and Pantech Crossover and
two different carrying positions – inside pant pocket and in hand.

Label Determination. In our testing, we tried to predict the label
given the WiFi scans by user. In general this can be achieved by
computing a distance metric between the WiFi scans in the train-
ing set corresponding to each label and the given WiFi-scans from
the user. The label with the least distance is deemed the relevant
label corresponding to the user in question. In our implementation
we used Euclidean distance between the Received Signal Strengths
(RSS) received from various APs as the distance metric1.
Performance in Departmental Store. All 10 labels matched cor-
rectly in this store matched correctly thus matching at category as
well as sub-category level showed 100% accuracy. The high accu-
racy was because there were two floors in the departmental store
and the average distance between any two label areas in the same
floor was about 15m. In addition to this large spread between cat-
egories, the average number of APs observed per WiFi-scan was
quite large – about 14.
Performance in Grocery Store. There were 13 different labels
collected from the grocery store and the overall accuracy in pre-
dicting the right label was about 76.9%. The accuracy in predict-

1Whenever measurements from certain APs were missing we used
-100dBm as the RSS



(a) Departmental store (b) Grocery store

Figure 3: Categories
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Figure 4: Spatial layout of dwell points

Experiment Correct Match Within Three Closest Stalls
Same device & placement 88% 100%
Same device, different placement 77% 94%
Different device & placement 64.8% 82%

Table 1: Fingerprint matching across walks

ing the right category, however was about 92.3% indicating that
most items of the same category are usually adjacent to each other.
The reduction in performance compared to the departmental store
is because there is much more variety within the same space in a
grocery store leading to different labels being spatially very close
(an average of 8m). Further the average number of APs per scan
was also significantly less compared to the departmental store at an
average of 7.
Performance in Mall. We considered each small stall as a single
label in this experiment. The performance results are depicted in
Table 1. As seen from Table 1, when trained and tested for the same
device and placement the accuracy of exact label is high however it
deteriorates significantly when trained and tested over different de-
vices and placements. Nevertheless, the label is matched correctly
up to within two nearest stalls with very high accuracy despite de-
vice and placement variation. Such error is tolerable for several
applications such as giving location specific discounts since, the
correct stall is still probably very close if not the correct one.

7. RELATED WORK
Past work related to physical analytics can broadly be classified

into two categories: startups, and research. A number of start-
ups are building end-to-end physical analytics systems that focus
on extremely niche business models. Past research, on the other
hand, has focused on the individual components to physical ana-
lytics (e.g., localization, sensing, energy efficiency) rather than the
complete end-to-end system.

Start-ups: Nearbuy Systems [22] requires retail stores to deploy
their customized WiFi localization infrastructure for analytics on
in-store customers (dwell times, visit frequency, window conver-
sions, etc.) Euclid Analytics [16] leverages existing in-store WiFi
infrastructure to provide similar analytics to retail stores. Mon-
delez [31] requires retail stores to deploy cameras in shelves that
use facial-recognition to provide insights into demographics of cus-
tomers that browse a given product. Because retail stores stand to
benefit directly from these analytics, it is natural for these start-ups
to assume extensive infrastructure support (densely deployed ac-
cess points, detailed shelf maps, etc.) Their technologies do not
generalize beyond the consumer-retail niche.

Localization and Sensing Research: There has been extensive
work in indoor-localization and sensing [33, 34, 25, 17, 19, 7] that
cover spaces both big (e.g., buildings) [32, 27] and small (e.g., retail
stores) [12, 10, 30], both using infrastructure (e.g., WiFi, RFID) [9,

20, 23, 35] and not (e.g., purely-phone based, crowdsourcing) [8,
21, 13], sensing both the environment [26, 36] and users [29, 11].
There has also been recent work on combining video tracking with
WiFi tracking [37], although the practical difficulties such as frag-
mented tracks and passive sniffing are not considered. With re-
gard to analytics, there has been work on inferring traffic [2] and
home/work locations [18] by using cellular information for wide-
area tracking. Finally, there is ongoing work [6] building an urban
livestyle innovation platform by collaborating with malls and re-
cruiting university students as participants.

Physical analytics leverages past work in localization and sens-
ing (when applicable) as components of the bigger system. Fur-
thermore, because localization and sensing for physical analytics
is not restricted to co-ordinate spaces and has lower accuracy con-
straints, physical analytics can leverage future localization systems
(e.g., based on label-spaces) that target novel design points.

8. CONCLUSION
We believe Physical Analytics is a promising new direction for

research on localization and other aspects of user context deter-
mination. Tracking user movement, particularly in indoor spaces,
such as malls and stores, can reveal deep insights into a user’s pro-
file, just as clickstreams yield valuable information in an online
setting. By articulating the opportunities for impact, the research
challenges, and our initial work in this space, we hope to kindle
broader interest in the research community in Physical Analytics.
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