
Scalable Influence Maximization for Prevalent Viral Marketing in
Large-Scale Social Networks∗

Microsoft Research Technical Report
MSR-TR-2010-2

January 2010

Wei Chen
Microsoft Research Asia

Beijing, China
weic@microsoft.com

Chi Wang
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA
chiwang1@illinois.edu

Yajun Wang
Microsoft Research Asia

Beijing, China
yajunw@microsoft.com

Abstract

Influence maximization, defined by Kempe, Kleinberg, and
Tardos (2003), is the problem of finding a small set of seed
nodes in a social network that maximizes the spread of influ-
ence under certain influence cascade models. The scalability
of influence maximization is a key factor for enabling preva-
lent viral marketing in large-scale online social networks. Prior
solutions, such as the greedy algorithm of Kempe et al. (2003)
and its improvements are slow and not scalable, while other
heuristic algorithms do not provide consistently good perfor-
mance on influence spreads. In this paper, we design a new
heuristic algorithm that is easily scalable to millions of nodes
and edges in our experiments. Our algorithm has a simple tun-
able parameter for users to control the balance between the run-
ning time and the influence spread of the algorithm. Our results
from extensive simulations on several real-world and synthetic
networks demonstrate that our algorithm is currently the best
scalable solution to the influence maximization problem: (a)
our algorithm scales beyond million-sized graphs where the
greedy algorithm becomes infeasible, and (b) in all size ranges,
our algorithm performs consistently well in influence spread —
it is always among the best algorithms, and in most cases it sig-
nificantly outperforms all other scalable heuristics to as much
as 100%–260% increase in influence spread.

Keywords: influence maximization, social networks, viral
marketing

∗This is the second revision of the paper, done in Feb. 2010. The main
change in this revision is to focus on the scalability of our new algorithm.
We conduct new tests with real-world data up to millions of nodes and edges
to show the strong scalability of our algorithm. Presentations are changed in
various places to reflect this focus and to improve the overall readability.

1 Introduction

Word-of-mouth or viral marketing differentiates itself from
other marketing strategies because it is based on trust among
individuals’ close social circle of families, friends, and co-
workers. Research shows that people trust the information ob-
tained from their close social circle far more than the informa-
tion obtained from general advertisement channels such as TV,
newspaper and online advertisements [15]. Thus many peo-
ple believe that word-of-mouth marketing is the most effective
marketing strategy (e.g. [14]).

The increasing popularity of many online social network
sites, such as Facebook, Myspace, and Twitter, presents new
opportunities for enabling large-scale and prevalent viral mar-
keting online. Consider the following hypothetical scenario as
a motivating example. A small company develops a cool on-
line application and wants to market it through an online social
network. It has a limited budget such that it can only select a
small number of initial users in the network to use it (by giving
them gifts or payments). The company wishes that these ini-
tial users would love the application and start influencing their
friends on the social network to use it, and their friends would
influence their friends’ friends and so on, and thus through the
word-of-mouth effect a large population in the social network
would adopt the application. The problem is whom to select
as the initial users so that they eventually influence the largest
number of people in the network.

The above problem, called influence maximization, is first
formulated as a discrete optimization problem by Kempe,
Kleinberg, and Tardos as follows [9]: A social network is mod-
eled as a graph with nodes representing individuals and edges
representing connections or relationship between two individ-

uals. Influence are propagated in the network according to a
stochastic cascade model, such as the following independent
cascade (IC) model1: Each edge (u, v) in the graph is asso-
ciated with a propagation probability pp(u, v), which is the
probability that node u independently activates (a.k.a. influ-
ences) node v at step t + 1 if u is activated at step t. Given
a social network graph, the IC model, and a small number k,
the influence maximization problem is to find k nodes in the
graph (referred to as seeds) such that under the influence cas-
cade model, the expected number of nodes activated by the k
seeds (referred to as the influence spread) is the largest pos-
sible. Kempe et al. prove that the optimization problem is
NP-hard, and present a greedy approximation algorithm guar-
anteeing that the influence spread is within (1 − 1/e − ε) of
the optimal influence spread, where e is the base of natural
logrithm, and ε depends on the accuracy of their Monte-Carlo
estimate of the influence spread given a seed set.

However, their algorithm has a serious drawback — it is not
scalable to large networks. A key element of their greedy algo-
rithm is to compute the influence spread given a seed set, which
turns out to be a difficult task (in fact, as we point out in Sec-
tion 2 the computation is #P-hard). Instead of finding an exact
algorithm, Monte-Carlo simulations of the influence cascade
model are run for a large number of times in order to obtain an
accurate estimate of the influence spread. Consequently, even
with the recent optimizations [13, 3] that could achieves hun-
dreds of times speedup, it still takes hours on a modern server
to select 50 seeds in a moderate sized graph (15K nodes and
31K edges) while it becomes completely infeasible for larger
graphs (e.g. more than 500K edges). Given that online social
networks are typically of large-scale, we believe that the scala-
bility issue of the greedy algorithm will be a fatal obstacle pre-
venting it from supporting prevalent viral marketing activities
in large-scale online social networks.

1.1 Our contribution
In this paper, we first show that computing influence spread
in the independent cascade model is #P-hard, which closes an
open question posed by Kempe et al. in [9]. It indicates that
the greedy algorithm of [9] may have intrinsic difficulties to be
made scalable for large graphs.

We then address the scalability issue by proposing a new
heuristic algorithm that is several orders of magnitude faster
than all existing greedy algorithms while matching the influ-
ence spread of the greedy algorithms. Our heuristic gains ef-
ficiency by restricting computations on the local influence re-
gions of nodes. Moreover, by tuning the size of local influence
regions, our heuristic is able to achieve tunable tradeoff be-
tween efficiency (in terms of running time) and effectiveness
(in term of influence spread). Our heuristic can easily scale up
to handle networks with millions of nodes and edges, and at

1Other models are also introduced in [9], but in this paper we focus on the
independent cascade model.

this scale it beats all other existing heuristics of similar scala-
bility in terms of the influence spread.

The main idea of our heuristic scheme is to use local ar-
borescence2 structures of each node to approximate the influ-
ence propagation. We first compute maximum influence paths
(MIP) between every pair of nodes in the network via a Di-
jkstra shortest-path algorithm, and ignore MIPs with probabil-
ity smaller than an influence threshold θ, effectively restrict-
ing influence to a local region. We then union the MIPs start-
ing or ending at each node into the arborescence structures,
which represent the local influence regions of each node. We
only consider influence propagated through these local arbores-
cences, and we refer to this model as the maximum influence
arborescence (MIA) model.

We show that the influence spread in the MIA model is sub-
modular (i.e. having a diminishing marginal return property),
and thus the simple greedy algorithm that selects one node in
each round with the maximum marginal influence spread can
guarantee an influence spread within (1 − 1/e) of the optimal
solution in the MIA model, while any higher ratio approxima-
tion is NP-hard. The greedy algorithm on the MIA model is
very efficient because (a) computation of the marginal influ-
ence spread on the arborescence structures can be done by effi-
cient recursion; and (b) after selecting one seed with the largest
influence spread, we only need to update local arborescence
structures related to this seed for the selection of the next seed,
and we further design a batch update scheme to speed up the
update process.

We conduct extensive experiments on several real-world and
synthetic networks of different scale and features, and under
different types of the IC model. We compare our heuristic with
both the greedy algorithm [9, 13, 3] and several existing heuris-
tics including the degree discount heuristics of [3], the shortest-
path based heuristics of [10], and the popular PageRank algo-
rithm [2] for ranking web pages. Our simulation results show
that: (a) the greedy algorithm of [9, 13, 3] and the shortest-path
based heuristic [10] have poor scalability: they take hours or
days to select 50 seeds when the graph size reaches a few hun-
dred thousands and become infeasible for larger sized graphs,
while in the same range MIA heuristic can finish in seconds
(more than three orders of magnitude speedup), and it contin-
ues to scale up beyonds graphs with millions of edges, (b) com-
paring with the greedy algorithm and the shortest-path based
heuristic in real graphs in which they are feasible to run, MIA
heuristic has influence spread matches or is very close to those
of the two other algorithms, (c) comparing with the rest heuris-
tics, MIA algorithm is always among the best in influence
spread, and in most cases it significantly outperforms the rest
heuristics, with a margin as much as 100%–260% increase in
influence spread. Moreover, we show that by tuning the thresh-
old θ, we can adjust the tradeoff between efficiency and effec-

2An arborescence is a tree in a directed graph where all edges are either
pointing toward the root (in-arborescence) or pointing away form the root (out-
arborescence).

2

tiveness at difference balance points on a spectrum.
To summarize, our main contribution is the design and eval-

uation of a scalable and tunable heuristic that handles the in-
fluence maximization problem for large-scale social networks.
We demonstrate that our heuristic is currently the best one that
could handle large-scale networks with more than a million
edges, while even for moderate sized networks it is a very com-
petitive alternative to much slower algorithms. The balanced
efficiency and effectiveness of our heuristic make it suitable as
a generic solution to influence maximization for many large-
scale online social networks encountered in practice.

1.2 Related work

Domingos and Richardson [5, 17] are the first to study influ-
ence maximization as an algorithmic problem. Their methods
are probabilistic, however. Kempe, Kleinberg, and Tardos [9]
are the first to formulate the problem as a discrete optimiza-
tion problem. Besides what we mentioned above already, they
also study a number of other topics such as generalizations of
influence cascade models and mixed marketing strategies in in-
fluence maximization. As pointed out, the main drawback of
their work is the scalability of their greedy algorithms.

Several recent studies aimed at addressing this issue. In [13],
Leskovec et al. present a “lazy-forward” optimization in select-
ing new seeds, which greatly reduces the number of evalua-
tions on the influence spread of nodes and results in as much as
700 times speedup demonstrated by their experimental results.
However, even though the “lazy-forward” optimization is sig-
nificant, it still takes hours to find 50 most influential nodes in a
network with a few tens of thousands of nodes, as shown in [3].

In [10], Kimura and Saito propose shortest-path based influ-
ence cascade models and provide efficient algorithms to com-
pute influence spread under these models. The key differences
between their work and ours are (a) instead of using maximum
influence paths, they use simple shortest paths on the graph,
which are not related to propagation probabilities, and (b) they
do not utilize local structures such as our arborescences and
thus in every round they need global computations to select the
next seed. Therefore, their algorithms are not as efficient as
ours.

This paper is the continuation of [3] in the pursuit of effi-
cient and scalable influence maximization algorithms. In [3],
we explore two directions in improving the efficiency: one is
to further improve the greedy algorithm of [9], and the other is
to design new heuristic algorithms. The first direction shows
improvement but is not significant enough, indicating that this
direction could be difficult to continue. The second direction
leads to new degree discount heuristics that are very efficient
and generate reasonably good influence spread. The major is-
sue is that the degree discount heuristics are derived from the
uniform IC model where propagation probabilities on all edges
are the same, which is rarely the case in reality. Our current
work is a major step in overcoming this limitation — our new

heuristic algorithm works for the general IC model while still
maintain good balance between efficiency and effectiveness.
We conduct much more experiments than in [3] on more and
larger scale graphs, and our results show that the MIA heuristic
performs consistently better than the degree discount heuristic
in all graphs.

Paper organization. Section 2 provides preliminaries on the
IC model and the greedy algorithm, and also points out that
computing the exact influence spread given a seed set is #P-
hard. Section 3 presents our MIA model and the algorithm for
this model as well as its extension, the PMIA model. Section 4
shows our experimental results. We discuss future directions in
Section 5. Additional experimental results are presented in the
appendix.

2 IC model and greedy algorithm

We consider a directed graphG = (V,E) with edge labels pp :
E → [0, 1]. For every edge (u, v) ∈ E, pp(u, v) denotes the
propagation probability of the edge, which is the probability
that v is activated by u through the edge in the next step after u
is activated.

Given a seed set S ⊆ V , the independent cascade (IC) model
works as follows. Let St ⊆ V be the set of nodes that are ac-
tivated at step t ≥ 0, with S0 = S. At step t + 1, every node
u ∈ St may activate its out-neighbors v ∈ V \ ∪0≤i≤tSi with
an independent probability of pp(u, v). The process ends at a
step t with St = ∅. Note that each activated node only has
one chance to activate its out-neighbors at the step right af-
ter itself is activated, and each node stays as an activated node
after it is activated. The influence spread of S, which is the ex-
pected number of activated nodes given seed set S, is denoted
as σI(S).

Given an input k, the influence maximization problem in the
IC model is to find a subset S∗ ⊆ V such that |S∗| = k and
σI(S∗) = max{σI(S) | |S| = k, S ⊆ V }. It is shown in [9]
that this problem is NP-hard, but a constant-ratio approxima-
tion algorithm is available.

We say that a non-negative real valued function f on subsets
of V is submodular if f(S∪{v})−f(S) ≥ f(T∪{v})−f(T),
for all v ∈ V and all pairs of subsets S and T with S ⊆ T ⊆ V .
Intuitively, this means that f has diminishing marginal return.
Moreover, we say that f is monotone if f(S) ≤ f(T) for
all S ⊆ T . For any submodular and monotone function f
with f(∅) = 0, the problem of finding a set S of size k that
maximizes f(S) can be approximated by a simple greedy al-
gorithm shown as Algorithm 1. The algorithm iteratively se-
lects new seed u that maximizes the incremental change of
f into the seed set S until k seeds are selected. It is shown
in [16] that the algorithm guarantees the approximation ratio
f(S)/f(S∗) ≥ 1 − 1/e, where S is the output of the greedy
algorithm and S∗ is the optimal solution.

3

Algorithm 1 Greedy(k, f)
1: initialize S = ∅
2: for i = 1 to k do
3: select u = arg maxw∈V \S(f(S ∪ {w})− f(S))
4: S = S ∪ {u}
5: end for
6: output S

In [9], it is shown that function σI(·) is submodular and
monotone with σI(∅) = 0. Therefore, algorithm Greedy(k, σI)
solves the influence maximization problem with an approxima-
tion ratio of 1− 1/e.

One important issue, however, is that there is no efficient
way to compute σI(S) given a set S. Although Kempe et al.
claim that finding an efficient algorithm for computing σI(S)
is open [9], we point out that the computation is actually #P-
hard, by showing a reduction from the counting problem of s-t
connectness in a graph.

Theorem 1 Computing the influence spread σI(S) given a
seed set S is #P-hard.

Proof. We prove the theorem by a reduction from the count-
ing problem of s-t connectness in a directed graph [20]. An
instance of s-t connectness is a directed graph G = (V,E)
and two vertices s and t in the graph. The problem is to count
the number of subgraphs of G in which s is connected to t.
It is straightforward to see that this problem is equivalent to
computing the probability that s is connected to t when each
edge in G has an independent probability of 1/2 to be con-
nected, and another 1/2 to be disconnected. We reduce this
problem to the influence spread computation problem as fol-
lows. Let σI(S,G) denote the influence spread in G given a
seed set S. First, let S = {s}, and let pp(e) = 1/2 for all
e ∈ E, and compute I1 = σI(S,G). Next, we add a new
node t′ and a directed edge from t to t′ to G, obtaining a new
graph G′, and let pp(t, t′) = 1. Then we compute influence
spread I2 = σI(S,G′). Let p(S, v,G) denote the probability
that v is influenced by seed set S in G. It is easy to see that
I2 = σI(S,G) + p(S, t,G) · pp(t, t′). Therefore, I2 − I1 is
the probability that s is connected to t, and thus we solve the
s-t connectness counting problem. It is shown in [20] that
s-t connectness is #P-complete, and thus the influence spread
computation problem is #P-hard. 2

The above theorem shows that computing exact influence
spread is hard. Moreover, finding an efficient approximation
algorithm for computing the probability of s-t connectivity is
a long-standing open problem [21]. Together with the fact that
several improvements ([13, 3]) of the original greedy algorithm
of [9] are still not efficient, we believe that we need to look for
alternative ways, such as heuristic algorithms, to tackle the ef-
ficiency problem in influence maximization.

3 MIA model and its algorithm

3.1 Basic MIA model and greedy algorithm
For a path P = 〈u = p1, p2, . . . , pm = v〉, we define the
propagation probability of the path, pp(P), as

pp(P) = Πm−1
i=1 pp(pi, pi+1).

Intuitively the probability that u activates v through path P
is pp(P), because it needs to activate all nodes along the path.
To approximate the actual expected influence within the so-
cial network, we propose to use the maximum influence path
(MIP) to estimate the influence from one node to another. Let
P(G, u, v) denote the set of all paths from u to v in a graph G.

Definition 1 (Maximum Influence Path) For a graph G, we
define the maximum influence path MIPG(u, v) from u to v in
G as

MIPG(u, v) = arg max
P
{pp(P) |P ∈ P(G, u, v)}.

Ties are broken in a predetermined and consistent way,
such that MIPG(u, v) is always unique, and any subpath
in MIPG(u, v) from x to y is also the MIPG(x, y). If
P(G, u, v) = ∅, we denote MIPG(u, v) = ∅.

Note that for each edge (u, v) in the graph, if we trans-
late the propagation probability pp(u, v) to a distance weight
− log pp(u, v) on the edge, then MIPG(u, v) is simply the
shortest path from u to v in the weighted graph G. There-
fore, the maximum influence paths and the later maximum in-
fluence arborescences directly correspond to shortest paths and
shortest-path arborescences, and thus they permit efficient al-
gorithms such as Dijkstra algorithm to compute them.

For a given node v in the graph, we propose to use the max-
imum influence in-arborescence (MIIA), which is the union of
the maximum influence paths to v,3 to estimate the influence
to v from other nodes in the network. We use an influence
threshold θ to eliminate MIPs that have too small propagation
probabilities. Symmetrically, we also define maximum influ-
ence out-arborescence (MIOA) to estimate the influence of v to
other nodes.

Definition 2 (MAXIMUM INFLUENCE IN(OUT)-ARBORE-
SCENCE) For an influence threshold θ, the maximum influence
in-arborescence of a node v ∈ V , MIIA(v, θ), is

MIIA(v, θ) = ∪u∈V,pp(MIPG(u,v))≥θMIPG(u, v).

The maximum influence out-arborescence MIOA(v, θ) is:

MIOA(v, θ) = ∪u∈V,pp(MIPG(v,u))≥θMIPG(v, u).

3Since we break ties in maximum influence paths consistently, the union of
maximum influence paths to a node do not have undirected cycles, and thus it
is indeed an arborescence.

4

Algorithm 2 ap(u, S,MIIA(v, θ))
1: if u ∈ S then
2: ap(u) = 1
3: else if N in(u) = ∅ then
4: ap(u) = 0
5: else
6: ap(u) = 1−Πw∈N in(u)(1− ap(w) · pp(w, u))
7: end if

Intuitively, MIIA(v, θ) and MIOA(v, θ) give the local influ-
ence regions of v, and different values of θ controls the size of
these local influence regions.

Given a set of seeds S in G and the in-arborescence
MIIA(v, θ) for some v 6∈ S, we approximate the IC model
by assuming that the influence from S to v is only propa-
gated through edges in MIIA(v, θ). With this approxima-
tion, we can calculate the probability that v is activated given
S exactly. Let the activation probability of any node u in
MIIA(v, θ), denoted as ap(u, S,MIIA(v, θ)), be the probabil-
ity that u is activated when the seed set is S and influence is
propagated in MIIA(v, θ). Let N in(u,MIIA(v, θ)) be the set
of in-neighbors of u in MIIA(v, θ). In the above notations,
MIIA(v, θ) and S may be dropped when it is clear from the
context. Then ap(u, S,MIIA(v, θ)) can be computed recur-
sively as given in Algorithm 2.

Note that because MIIA(v, θ) is an in-arborescence, there
are no multiple paths between any pair of nodes in MIIA(v, θ),
and thus there is no dependency issue in the calculation of the
activation probability and the calculation in Algorithm 2 ex-
actly matches the IC model restricted onto MIIA(v, θ).

In our MIA model we assume that seeds in S influence every
individual node v in G through its MIIA(v, θ). Let σM (S)
denote the influence spread of S in our MIA model, then we
have

σM (S) =
∑
v∈V

ap(v, S,MIIA(v, θ)). (3.1)

Even though activating multiple nodes from the same set of
seeds in the MIA model are correlated events, Equation (3.1) is
still correct due to the linearity of the expectation over the sum
of random variables.

We are interested in finding a set of seeds S of size k such
that σM (S) is maximized. It is not surprising that this opti-
mization problem is NP-hard. In fact, the same reduction from
set cover problem in [9] together with Theorem 5.3 of [6] is
sufficient to show the following.

Theorem 2 It is NP-hard to compute a set of nodes S of size k
such that σM (S) is maximized. Furthermore, it is NP-hard to
approximate within a factor of 1− 1/e+ ε for any ε > 0.

It is straight forward to verify the following result, which
means we have an approximation algorithm.

Theorem 3 Function σM is submodular and monotone and
σM (∅) = 0. Therefore, Greedy(k, σM) of Algorithm 1
achieves 1 − 1/e approximation ratio for the influence max-
imization problem in the basic MIA model.

Note that the recursive computation of ap(u) in Algorithm 2
can be transformed into an iterative form such that all ap(u)’s
with u in MIIA(v, θ) can be computed by one traverse of
the arborescence MIIA(v, θ) from leaves to the root. Thus,
computing σM (S) using Equation (3.1) and Algorithm 2 is
polynomial-time. Together with Algorithm 1, we already have
a polynomial-time approximation algorithm. However, we
could further improve the efficiency of the algorithm, as we
shown in the next section.

3.2 More efficient greedy algorithm
The only important step in the greedy algorithm is to se-
lect the next seed that gives the largest incremental influ-
ence spread. Consider the maximum influence in-arborescence
MIIA(v, θ) of size t and a given seed set S. To select the
next seed u, we need to compute the activation probabil-
ity ap(v, S ∪ {w},MIIA(v, θ)) for every w ∈ MIIA(v, θ),
which takes O(t2) time if we simply use Algorithm 2 to com-
pute every ap(v, S ∪ {w},MIIA(v, θ)). We now show a
batch update scheme such that we could compute ap(v, S ∪
{w},MIIA(v, θ))’s for all w ∈ MIIA(v, θ) in O(t) time.

To do so, we utilize the linear relationship between ap(u)
and ap(v) in MIIA(v, θ), as shown by the following lemma,
which is not difficult to derive from line 6 of Algorithm 2.

Lemma 1 (Influence Linearity) Consider MIIA(v, θ) and a
node u in it. If we treat the activation probabilities ap(u) and
ap(v) as variables and other ap(w)’s as constants, where w
is any node in MIIA(v, θ) other than u and v, then ap(v) =
α(v, u) · ap(u) +β(v, u), where α(v, u), β(v, u) are constants
independent of ap(u).

Based on the recursive computation of ap(u, S,MIIA(v, θ))
as shown in line 6 of Algorithm 2, it is straightforward to de-
rive a recursive computation of α(v, u), as shown in Algo-
rithm 3. Note that Algorithm 3 can be transformed into an
iterative form such that all α(v, u)’s can be computed by one
traverse of MIIA(v, θ) from the root to the leaves.

Computing the linear coefficients α(v, u) as defined in
Lemma 1 is crucial in computing the incremental influence
spread of a node u. Let us consider again the maximum in-
fluence in-arborescence MIIA(v, θ) of size t and a given seed
set S. For any w ∈ MIIA(v, θ), if we select w as the next
seed, its ap(w) increases from the current value to 1. Since
ap(w) and ap(v) has a linear relationship with the linear co-
efficient α(v, w), the incremental influence of w on v is given
by α(v, w) · (1 − ap(w)). Therefore, we only need one pass
of MIIA(v, θ) to compute ap(w)’s for all w ∈ MIIA(v, θ),
and a second pass of MIIA(v, θ) to compute α(v, w)’s and

5

Algorithm 3 Compute α(v, u) with MIIA(v, θ) and S, after
ap(u, S,MIIA(v, θ)) for all u in MIIA(v, θ) are known.

1: /* the following is computed recursively */
2: if u = v then
3: α(v, u) = 1
4: else
5: set w to be the out-neighbor of u
6: if w ∈ S then
7: α(v, u) = 0 /* u’s influence to v is blocked by seed

w */
8: else
9: α(v, u) = α(v, w) · pp(u,w) · Πu′∈N in(w)\{u}(1 −

ap(u′) · pp(u′, w))
10: end if
11: end if

α(v, w) · (1 − ap(w))’s for all w ∈ MIIA(v, θ). This reduces
the running time of computing incremental influence spread of
all nodes in MIIA(v, θ) from O(t2) to O(t).

Our complete greedy algorithm for the basic MIA model is
presented in Algorithm 4. Lines (2–11) evaluate the incremen-
tal influence spread IncInf (u) for any node u when the current
seed set is empty. The evaluation is exactly as we described
above using the linear coefficients α(v, u).

Lines (15–30) update the incremental influences whenever a
new seed is selected in line 14. Suppose u is selected as the new
seed in an iteration. The influence of u in the MIA model only
reaches nodes in MIOA(u, θ). Thus the incremental influence
spread IncInf (w) for somew needs to be updated if and only if
w is in MIIA(v, θ) for some v ∈ MIOA(u, θ). This means that
the update process is relatively local to u. The update is done
by first subtracting α(v, w) ·(1−ap(w, S,MIIA(v, θ))) before
adding u into the seed set (line 19), and then adding u into
the seed set (line 22), recomputing the ap(w, S,MIIA(v, θ))
and α(v, w) under the new seed set (lines 24–25), and adding
α(v, w) · (1−ap(w, S,MIIA(v, θ))) into IncInf (w) (line 28).
Time and space complexity. Let niθ =
maxv∈V {|MIIA(v, θ)|} and noθ = maxv∈V {|MIOA(v, θ)|}.
Computing MIIA(v, θ) can be done using efficient imple-
mentations of Dijkstra’s shortest-path algorithm. Assume the
maximum running time to compute MIIA(v, θ) for any v ∈ V
is tiθ. When MIIA(v, θ)’s for all node v ∈ V are available,
MIOA(v, θ)’s can be derived from MIIA(v, θ)’s, therefore no
extra running time for MIOA(v, θ)’s is needed. Notice that
niθ = O(tiθ).

For every node v ∈ V , our algorithm stores
MIIA(v, θ), MIOA(v, θ), and for every u ∈ MIIA(v, θ),
ap(u, S,MIIA(v, θ)) and α(v, u) are stored (note that
ap(u, S,MIIA(v, θ)) can reuse the same entry for different
seed set S). We also use a max-heap to store and update
IncInf (v) for all v ∈ V . Therefore, the space complexity of
the algorithm is O(n(niθ + noθ)).

During the initialization of Algorithm 4, it takes O(ntiθ)

Algorithm 4 MIA(G, k, θ)
1: /* initialization */
2: set S = ∅
3: set IncInf (v) = 0 for each node v ∈ V
4: for each node v ∈ V do
5: compute MIIA(v, θ) and MIOA(v, θ)
6: set ap(u, S,MIIA(v, θ)) = 0,∀u ∈ MIIA(v, θ) /*

since S = ∅ */
7: compute α(v, u), ∀u ∈ MIIA(v, θ) (Algorithm 3)
8: for each node u ∈ MIIA(v, θ) do
9: IncInf (u) +=α(v, u) · (1− ap(u, S,MIIA(v, θ)))

10: end for
11: end for
12: /* main loop */
13: for i = 1 to k do
14: pick u = arg maxv∈V \S{IncInf (v)}
15: /* update incremental influence spreads*/
16: for v ∈ MIOA(u, θ) \ S do
17: /* subtract previous incremental influence */
18: for w ∈ MIIA(v, θ) \ S do
19: IncInf (w)−= α(v, w) · (1 −

ap(w, S,MIIA(v, θ)))
20: end for
21: end for
22: S = S ∪ {u}
23: for v ∈ MIOA(u, θ) \ S do
24: compute ap(w, S,MIIA(v, θ)),∀w ∈ MIIA(v, θ)

(Algo. 2)
25: compute α(v, w),∀w ∈ MIIA(v, θ) (Algo. 3)
26: /* add new incremental influence */
27: for w ∈ MIIA(v, θ) \ S do
28: IncInf (w) += α(v, w) · (1 −

ap(w, S,MIIA(v, θ)))
29: end for
30: end for
31: end for
32: return S

time to compute MIIA(v, θ) for all v ∈ V , O(nniθ) time
to compute all α(v, u)’s and IncInf (u)’s, and O(n) time to
initialize the max-heap for storing IncInf (u)’s. Therefore,
the total running time for initialization is O(ntiθ). During
one iteration of the main loop, it takes constant time to se-
lect the new seed from the max-heap, O(noθniθ log n) time to
update IncInf (w)’s on the max-heap, and O(noθniθ) time to
compute ap(w, S,MIIA(v, θ, S))’s and α(v, w)’s after select-
ing the new seed. Thus, one iteration of the main loop takes
O(noθniθ log n) time. Together, the total running time of the
algorithm is O(ntiθ + knoθniθ log n)). Note that without ap-
plying the improvement of utilizing the linear relationship, the
time complexity would be O(ntiθ + knoθniθ(niθ + log n)).

Therefore, the algorithm performs the best when niθ, noθ,
and tiθ are significantly smaller than n, that is, when the ar-

6

borescences are small. This typically occurs for a reasonable
range of θ values, when the graph is sparse and the propagation
probabilities on edges are usually small, which is the case for
social networks. Our experiments in the Section 4 will demon-
strate the efficiency of our algorithm.

3.3 Prefix excluding MIA model

In the basic MIA model, we only consider the maximum in-
fluence path from u to v for influence propagation. Consider
the scenario of two seeds s1 and s2 such that MIPG(s2, v) ⊂
MIPG(s1, v). The probability that v is activated in the basic
MIA model is only determined by s2 and is not affected by s1,
or we can say that the influence of s1 to v is blocked by s2 in
the middle.

To achieve a better approximation to the IC model, we prefer
a MIA model in which the influence of a seed is not blocked
by other seeds. A natural way to extend the basic MIA model
is considering maximum influence paths avoiding other seeds.
Let S = {s1, s2, . . . , sm} and Si = S \{si}. We defineG(Si)
be the subgraph of G induced by V \ Si. Then, for each seed
si and node v ∈ V \ S, we use the maximum influence path
MIPG(Si)(si, v) to estimate the influence from si to v. In other
words, we consider maximum influence paths avoiding other
seeds in calculating the influence spread.

The generic Algorithm 1 also works in this model. However,
it is not clear how to implement it efficiently similar to the ap-
proach in Algorithm 4. In this section, we consider a variant of
the above extension that allows an efficient greedy algorithm.
We call this extension the prefix excluding MIA (PMIA) model.

Intuitively, in the PMIA model, the seeds have an order (as
the order by which they are selected by the greedy algorithm).
For any given seed s, its maximum influence paths to other
nodes should avoid all seeds in the prefix before s. The ma-
jor technical difference is the definition of the maximum influ-
ence in(out)-arborescence for the PMIA model, especially if
we want to design an efficient greedy algorithm in the frame-
work of Algorithm 4.

Let S = 〈s1, s2, . . . , sm〉 be a sequence of seeds. Define
Si = 〈s1, s2, . . . , si−1〉 and S1 = ∅. Let G(S′) be the sub-
graph of G induced by V \ S′ for any sequence S′. We first
define ineffective seeds with respect to a node v, which are
those seeds whose influence to v are blocked by some other
subsequent seeds in sequence S.

Definition 3 (Ineffective seeds) For a given node v ∈ V \ S,
we define the set of ineffective seeds for v as:

IS(v, S) = {si ∈ S | ∃j > i, s.t., sj ∈ MIPG(Si)(si, v)}.

Now consider the maximum influence in-arborescence
(MIIA) of a node v in the PMIA model. First, for the maxi-
mum influence path from a seed si to v, it should be defined
as MIPG(Si)(si, v) to avoid seeds in its prefix. Second, for the

case where the MIP from seed si to v is blocked by a subse-
quent seed sj , we need to give a special treatment in order to
use the influence linearity of Lemma 1 for an efficient compu-
tation of incremental influence spread. Consider a node u 6∈ S
located on the MIP from si to sj . If u is selected as a seed
later, then its MIP to v should avoid all seeds in S, and thus
to compute its incremental influence spread correctly using the
linearity property, we need to compute the MIP from u to v in
the graph G(S). Moreover, we need to remove the ineffective
seed si and its MIP to v because otherwise si would have two
different paths to v, violating the arborescence definition.

For out-arborescence from v 6∈ S, we need to consider all
MIPs from v that avoid all seeds in S. This is because we only
need to compute the out-arborescence of a node v when v is
just selected as the next seed. In this case, the paths in the
above computed out-arborescence of v match the paths in the
corresponding in-arborescences used to compute the incremen-
tal influence of v (since those paths avoid all seeds already in
S). Therefore, we have the following formal definitions.

Definition 4 (MIIA(MIOA) for the PMIA Model) The max-
imum influence in-arborescence of v in the PMIA model for
v 6∈ S is:

PMIIA(v, θ, S) =
(∪{MIPG(Si)(si, v) | si ∈ S \ IS(v, S),

pp(MIPG(Si)(si, v)) ≥ θ})
∪(∪{MIPG(S)(u, v) | u ∈ V \ S,

pp(MIPG(S)(u, v)) ≥ θ}).

The maximum influence out-arborescence of v in the PMIA
model for v 6∈ S is:

PMIOA(v, θ, S) = ∪{MIPG(S)(v, u) | u ∈ V \ S,
pp(MIPG(S)(v, u)) ≥ θ}.

Given the above definition, we can have activation proba-
bilities ap(u, S,PMIIA(v, θ, S)) computed by Algorithm 2.
Then, similar to Equation (3.1), we can define σP (S) as the
influence spread given a seed sequence S, which is computed
using the following equation:

σP (S) =
∑
v∈V

ap(v, S,PMIIA(v, θ, S)). (3.2)

Notice that different sequences S of the same set of seeds
may generate different values of σP (S). Therefore, the sub-
modularity defined on set functions previous does not apply to
σP . Fortunately, we can define sequence submodularity in a
similar way, which also leads to the greedy algorithm with an
approximation ratio of 1− 1/e.
Sequence submodularity. We now define sequence submodu-
larity, which is implicitly used by Streeter and Golovin in [18].
Let S be the set of all sequences of V , including the empty se-
quence ∅. Let ⊕ be the binary operator that concatenates two

7

sequences into one. We say that a non-negative function f de-
fined on S is sequence submodular if f(S1⊕S2⊕{t})−f(S1⊕
S2) ≤ f(S1 ⊕ {t}) − f(S1) for all sequences S1, S2 ∈ S.
Moreover, f is prefix monotone if f(S1) ≤ f(S2 ⊕ S1) for all
S1, S2 ∈ S . An important result that matches the one for set
submodular functions is that if f is sequence submodular and
prefix monotone and f(∅) = 0, then the greedy algorithm of
Algorithm 1 (with set union ∪ replaced by sequence concate-
nation ⊕) finds a sequence S within 1 − 1/e of the optimal
S∗. Since the original proof in [18] is presented in a different
context, we rephrase the proof below.

Theorem 4 (Theorem 3 in [18]) Let f be a sequence sub-
modular, prefix monotone function with f(∅) = 0. Define S0 =
∅ and for 1 ≤ i ≤ k, let si = arg maxs∈V {f(Si−1 ⊕ {s}}
and Si = Si−1 ⊕ {si}. Let S∗ = arg maxS′{f(S′) |S′ ∈
S and |S′| = k}. We have

f(Sk) ≥ (1− 1/e) · f(S∗).

Proof. Let ∆i = f(S∗) − f(Si). By prefix monotonicity,
we have f(S∗) ≤ f(Si ⊕ S∗). Let S∗ = 〈s∗1, . . . , s∗k〉, and
S∗i = 〈s∗1, . . . , s∗i 〉. By submodularity, for 1 ≤ i ≤ k, we have

f(Si ⊕ S∗) = f(Si ⊕ S∗k−1 ⊕ 〈s∗k〉)
≤ f(Si ⊕ S∗k−1) + f(Si ⊕ 〈s∗k〉)− f(Si)
≤ f(Si ⊕ S∗k−1) + f(Si+1)− f(Si),

where the last inequality is due to the definition of Si+1. Re-
peating the above derivation for k times, we have

f(S∗) ≤ f(Si ⊕ S∗) ≤ f(Si) + k · (f(Si+1)− f(Si))
= f(Si) + k · (∆i −∆i+1).

Therefore, ∆i ≤ k · (∆i − ∆i+1) and ∆i+1 ≤ (1 − 1
k)∆i.

Hence

f(S∗)− f(Sk) = ∆k ≤ (1− 1
k

)k∆0 ≤ f(S∗)/e.

2

It is not difficult to verify the following result on σP , which
means that the greedy algorithm works as an approximation
algorithm.

Theorem 5 Function σP is sequence submodular and prefix
monotone and σP (∅) = 0. Therefore, Greedy(k, σP) of Algo-
rithm 1 (with set union ∪ replaced by sequence concatenation
⊕) achieves 1−1/e approximation ratio for the influence max-
imization problem in the PMIA model.

Algorithm in the PMIA model. We now present the neces-
sary changes needed to adapt Algorithm 4 to the PMIA model.
The major issue is the computation of PMIIA(v, θ, S) and
PMIOA(v, θ, S). The computation of PMIOA(v, θ, S) is rel-
atively simple, since we only need to remove S from the graph.

Therefore, we can use the Dijkstra algorithm on graph G(S) to
compute PMIOA(v, θ, S).

To efficiently compute PMIIA(v, θ, S), we maintain the
set of ineffective seeds IS(v, S) for each node v ∈ V \ S.
Given IS(v, S), PMIIA(v, θ, S) can be calculated as follows.
We start a Dijkstra algorithm from v traversing inward edges.
Whenever the Dijkstra algorithm hits a seed node s, it stops
this branch and does not go further on the in-neighbors of s.
After the Dijkstra algorithm completes, we remove all nodes
IS(v, S) from the computed in-arborescence.

When a new seed u is selected, we have to update IS(v, S)
for all nodes v in PMIOA(u, θ, S). This can be done by
checking the set of effective seeds (those in S \ IS(v, S)) that
are blocked by u in PMIIA(v, θ, S). For completeness, we
present Algorithm 5 for the efficient greedy algorithm in the
PMIA model. Algorithm 5 essentially follows Algorithm 4,
with all MIIA’s and MIOA’s being replaced by PMIIA’s and
PMIOA’s, and these PMIIA’s and PMIOA’s being recom-
puted whenever the seed set changes (lines 16 and 26).

4 Experiment
We conduct experiments on our algorithm as well as a num-
ber of other algorithms on several real-world and synthetic net-
works. Our experiments aim at illustrating the performance
of our algorithm from the following aspects: (a) its scalability
comparing to other algorithms; (b) its influence spread com-
paring to other algorithms; and (c) the tuning of its control pa-
rameter θ.

4.1 Experiment setup
Datasets. We use four real-world networks and a synthetic
dataset. The first one, denoted NetHEPT, is the same as
used in [3]. It is an academic collaboration network ex-
tracted from ”High Energy Physics - Theory” section of the
e-print arXiv (http://www.arXiv.org), with nodes representing
authors and edges representing coauthorship relations. The
second is a much larger collaboration network, the DBLP Com-
puter Science Bibliography Database maintained by Michael
Ley. The other two datasets are published network data by
Jure Leskovec. One is a Who-trust-whom network of Epin-
ions.com [12], where nodes are members of the site and a di-
rected edge from u to v means v trust u (and thus u has in-
fluence to v). Another is the Amazon product co-purchasing
network [11] dated on March 2, 2003, where nodes are prod-
ucts and a directed edge from u to v means product v is often
purchased with product u (and thus u has influence to v).4 We
refer to these two datasets as Epinions and Amazon. We choose
these networks since it covers a variety of networks with sizes

4Although the Amazon dataset is for products, we still include it in our
experiments to test a variant of a network. Moreover, it also makes sense to
find top seed products that lead to the most co-purchasing behaviors.

8

Algorithm 5 PMIA(G, k, θ)
1: /* initialization */
2: set S = ∅
3: set IncInf (v) = 0 for each node v ∈ V
4: for each node v ∈ V do
5: compute PMIIA(v, θ, S)
6: set ap(u, S,PMIIA(v, θ, S)) = 0,∀u ∈

PMIIA(v, θ, S) /* since S = ∅ */
7: compute α(v, u), ∀u ∈ PMIIA(v, θ, S) (Algorithm 3)
8: for each node u ∈ PMIIA(v, θ, S) do
9: IncInf (u) +=α(v, u) · (1 −

ap(u, S,PMIIA(v, θ, S)))
10: end for
11: end for
12: /* main loop */
13: for i = 1 to k do
14: pick u = arg maxv∈V \S{IncInf (v)}
15: /* update incremental influence spreads*/
16: compute PMIOA(u, θ, S)
17: for v ∈ PMIOA(u, θ, S) do
18: /* subtract previous incremental influence */
19: for w ∈ PMIIA(v, θ, S) \ S do
20: IncInf (w)−= α(v, w) · (1 −

ap(w, S,PMIIA(v, θ, S)))
21: end for
22: end for
23: S = S ∪ {u}
24: /* the following PMIOA(u, θ, S \ {u}) is the same as

computed in line 16 */
25: for v ∈ PMIOA(u, θ, S \ {u}) \ {u} do
26: compute PMIIA(v, θ, S)
27: compute ap(w, S,PMIIA(v, θ, S)),∀w ∈

PMIIA(v, θ, S) (Algo. 2)
28: compute α(v, w),∀w ∈ PMIIA(v, θ, S) (Algo. 3)
29: /* add new incremental influence */
30: for w ∈ PMIIA(v, θ, S) \ S do
31: IncInf (w) += α(v, w) · (1 −

ap(w, S,PMIIA(v, θ, S)))
32: end for
33: end for
34: end for
35: return S

ranging from 30K edges to 2M edges. Some basic statistics
about these networks are given in Table 1 (Epinions and Ama-
zon networks are treated as undirected graphs in the statistics).
Finally, in the scalability test, we use the DIGG package avail-
able on the web [4] to randomly generate power-law graphs of
difference sizes based on the model of [1].
Generating propagation probabilities. Since our algorithm
is targeted at the general IC model with nonuniform propaga-
tion probabilities, we use the following two models to generate
these nonuniform probabilities.

Table 1: Statistics of four tested real-world networks.
Dataset NetHEPT DBLP Epinions Amazon
#Node 15K 655K 76K 262K
#Edge 31K 2.0M 509K 1.2M
Average Degree 4.12 6.1 13.4 9.4
Maximal Degree 64 588 3079 425
#Connected
Component 1781 73K 11 1

Largest Compo-
nent Size 6794 517K 76K 262K

Average Compo-
nent Size 8.6 9.0 6.9K 262K

• WC model: This is the weighted cascade model proposed
in [9]. In this model, pp(u, v) for an edge (u, v) is 1/d(v),
where d(v) is the in-degree of v. Thus even if the original
graph is undirected, the model will generate asymmetric
and nonuniform propagation probabilities.
• TRIVALENCY model: On every edge (u, v), we uni-

formly at random select a probability from the set
{0.1, 0.01, 0.001}, which corresponds to high, midium,
and low influences.

Algorithms. We compare our MIA heuristic with both the
greedy algorithm and several heuristics that appear in the lit-
erature. The following is a list of algorithms we evaluate in our
experiments.

• PMIA(θ): Our Algorithm 4 for the PMIA model with in-
fluence threshold θ. The value of θ for a particular dataset
is selected using the heuristic discussed in the “tuning of
parameter θ” part of Section 4.2.
• Greedy: The original greedy algorithm on the IC model

[9] with the lazy-forward optimization of [13]. For each
candidate seed set S, 20000 simulations is run to obtain
an accurate estimate of σI(S).
• DegreeDiscountIC: The degree discount heuristic of [3]

developed for the uniform IC model with a propagation
probability of p = 0.01, same as used in [3].
• SP1M: The shortest-path based heuristic algorithm

of [10], also enhanced with the lazy-forward optimization
of [13].
• PageRank: The popular algorithm used for ranking web

pages [2]. Here the transition probability along edge
(u, v) is pp(v, u)/ρu, where ρu is the sum of propagation
probabilities on all incoming edges of u. Note that in the
PageRank algorithm the transition probability of (u, v) in-
dicates u’s “vote” to v’s ranking, and thus if pp(v, u) is
higher, v is more influential to u and thus u should vote v
higher. We use 0.15 as the restart probability for PageR-
ank, and we use the power method to compute the PageR-
ank values. The stopping criteria is when two consecutive
iterations differ for at most 10−4 in L1 norm.

9

(a) normal scale (b) log-log scale

Figure 1: Scalability of different algorithms in synthetic
datasets. Each data point is an average of ten runs.

• Random: As a baseline comparison, simply select k ran-
dom vertices in the graph.

We ignore other centrality measures, such as distance cen-
trality and betweenness centrality [7] as heuristics, since we
have shown in [3] that distance centrality is very slow and has
very poor influence spread, while betweenness centrality would
be much slower than distance centrality.

To obtain the influence spread of the heuristic algorithms,
for each seed set, we run the simulation on the networks 20000
times and take the average of the influence spread, which
matches the accuracy of the greedy algorithms. The experi-
ments are run on a server with 2.33GHz Quad-Core Intel Xeon
E5410 and 32G memory.

We conduct further experiments using more datasets, more
variants of the IC model, and more heuristic algorithms. The
results are similar and are included in the appendix.

4.2 Experiment results
Scalability on the synthetic dataset. To test scalability, we
generate a family of graphs of increasing sizes using the DIGG
package [4], which applies the random power-law graph model
of [1] to generate random graphs. We use graphs of doubling
sizes — 2K, 4K, 8K, . . ., up to 256K in the number of nodes,
and a power-law exponent of 2.16. The average degree of these
graphs is between 2 and 3 for these graphs, which is lower than
the real networks in Table 1. We use the WC model for the
graphs, and run PMIA algorithm with a fixed θ = 1/320, as
well as other algorithms, to find 50 seeds in every graph. The
result is shown in Figure 1, with normal scale shown in (a) and
log-log scale of the same figure shown in (b) to differentiate
different algorithms better.

The result in Figure 1 (a) clearly separate all algorithms into
two groups. Algorithms Greedy and SP1M are not scalable:
their running times are in the hour range with around 400K
edge graphs and it becomes infeasible to run them in larger
graphs since we want to take average of 10 runs of every algo-
rithm. Note that we already choose low average degree graphs
so that they could run faster. Later reports on real graphs will
show that they run even slower on those graphs. Our PMIA

along with the rest heuristics can all scale up quite well. Fig-
ure 1 (b) differentiates the algorithms further. SP1M has the
worst slope and is certainly not feasible for large-scale graphs.
Greedy has the similar slope as other algorithms but its in-
tercept is too large, because its Monte-Carlo simulation-based
estimation of incremental influence spread for every node is too
slow. Our PMIA has both good slope and intercept, making it
easily scalable to large graphs with millions of edges.

Influence spread and running time for the real-world
datasets We run tests on the four datasets and the two IC mod-
els to obtain influence spread results. The seed set size k ranges
from 1 to 50. For ease of reading, in all influence spread fig-
ures (best viewed in color), the legend ranks the algorithms
top-down in the same order as the influence spreads of the al-
gorithms when k = 50. Moreover, if two curves are two close
to each other, we group them together and show properly in the
legend. All percentage difference reported below on influence
spreads are the average of percentage differences from select-
ing one seed to selecting 50 seeds. Taking average is reason-
able, since some algorithms may behave better when selecting
the first few seeds while other algorithms behave better when
selecting more seeds. The running time results are the time for
selecting 50 seeds.

Figures 2–5 show the results on influence spreads for the
four datasets on two IC models, while Figure 6 shows the run-
ning time results of the four datasets on the WC model (results
on the TRIVALENCY model are similar and omitted).

For the moderate sized graph NetHEPT where Greedy is
still feasible to run, the influence results in Figure 2 shows
that Greedy produces the best influence spread, but PMIA is
very close to Greedy: its influence spread essentially matches
that of Greedy for the WC model and is only 3.8% less than
Greedy for the TRIVALENCY model. Comparing with other
heuristics, PMIA performs quite well: it matches the influ-
ence spread of SP1M while outforms the rest heuristics in both
models — in the WC model, PMIA is 3.9% and 11.4% better,
while in the TRIVALENCY model, PMIA is 6.5% and 15.4%
better, comparing to DegreeDiscountIC and PageRank re-
spectively. Random has a much worse influence spread, indi-
cating that a careful seed selection is indeed important to effec-
tive viral marketing results. When looking at the running time
in Figure 6 for NetHEPT on WC, we clearly see that Greedy
is already quite slow (1.3 hours), while PMIA only takes 1 sec-
ond, more than three orders of magnitude better. PMIA is also
more than one order of magnitude faster than SP1M, and is
comparable with PageRank. DegreeDiscountIC is the best
in running time, because it is simple and specially tuned for the
uniform IC model.

Figure 3 shows the result on the Epinions dataset, a large net-
work with half a million edges. The graph is already too large
for Greedy to run, so Greedy is out of the picture. For the
WC model, PMIA still matches the influence spread of SPIM
while it has a large winning margin over DegreeDiscountIC

10

(a) WC model (b) TRIVALENCY model

Figure 2: Influence spread results on the NetHEPT dataset.

(a) WC model (b) TRIVALENCY model

Figure 3: Influence spread results on the Epinions dataset.

(a) WC model (b) TRIVALENCY model

Figure 4: Influence spread results on the Amazon dataset.

(a) WC model (b) TRIVALENCY model

Figure 5: Influence spread results on the DBLP dataset.

and PageRank — PMIA is 96% and 115% better than De-
greeDiscountIC and PageRank, respectively. This demon-
strates that DegreeDiscountIC and PageRank are rather un-
stable heuristics while PMIA is very consistent in influence
performance. For the TRIVALENCY model, we see that all
heuristics, even Random reach a high level of influence spread
after only a few seeds, while afterwards the increase in influ-
ence spread is slow. This behavior is quite different from the
behavior of other test results we have seen so far, but it is very
similar to a result presented in [9] for a graph when every edge
has a propagation probability of 0.1. Therefore, we believe that
the explanation is also similar: in this test, after deleting the
edges based on their propagation probabilities and only keep
the edges that will propagate influence, the resulting graph is
likely to have a relatively large strongly connected component,
and thus even random node selection would likely to hit this
component after a few attempts, drastically increasing the in-
fluence spread. However, afterwards, additional seeds could
only reach a small portion of still unaffected nodes, so further
improvement in influence spread is small. But even in this
case PMIA is still the best, outperforming the rest heuristics.
For running time, we see that PMIA only takes 10 seconds but
SP1M now takes 2.1 hours, more than 700 times slower than
PMIA.

Next, for the one million-edge graph Amazon, Figure 4
shows that in the WC model PMIA again outperforms PageR-
ank and DegreeDiscountIC with a large margin (99% and
266%, respectively), and in the TRIVALENCY model, it even
outperforms SP1M significantly (14.1%, 23.9%, and 41.7%
better than SP1M, PageRank, DegreeDiscountIC, respec-

Figure 6: Running time of different algorithms in for datasets

tively). Two unique features for this dataset are: (a) the influ-
ence spread is rather small, e.g. in TRIVALENCY, 50 seeds
only generate a spread of around 80 nodes, and (b) the increase
in influence spread is almost linear. The two features have
the same reason — influence is very local and cannot propa-
gate very far. It is probably because Amazon is a product co-
purchasing network, not a social network. For running time,
we now see that SP1M takes 30 hours, reaching its feasibil-
ity limit, while PMIA still only takes 10 seconds, showing its
superb scalability over SP1M.

Finally, for the two million edge DBLP dataset, Figure 5
shows that this time PageRank and DegreeDiscountIC
matches PMIA and are slightly better than PMIA for the WC
model. Looking at all test cases (including additional ones
in the appendix), only a couple of cases where other scal-

11

Figure 7: Running time and average arborescence size of
PMIA vs. the threshold 1/θ in the WC model, for NetHEPT
dataset.

Figure 8: maximal influence spread by 50 seeds w.r.t. running
time, for the NetHEPT dataset in the WC model.

able heuristics have matching influence spread as PMIA. This
means that PMIA performs consistently well among the best
scalable heuristics while others such as PageRank and De-
greeDiscountIC are not stable — there exist a few cases that
they perform well but in most other cases they performs not as
well and sometimes they performs poorly comparing to PMIA.
For running time, even at two million edge range, PMIA only
takes 3 minutes to run. Therefore, PMIA has very good scala-
bility and can handle million-sized or even larger graphs well.

Overall, we see that PMIA can scale beyond millions of
edges, while Greedy and SP1M become too slow for half
million edges or above. In all size ranges, PMIA consistently
performs among the best algorithms (including Greedy and
SP1M), while in most cases it significantly outperforms the
rest scalable heuristics to as much as 100%–260% increase in
influence spread.
Tuning of parameter θ. We investigate the effect of the tun-
ing parameter θ on the running time and the influence spread of
our algorithm. Figure 7 shows that the running time increases

when the θ value decreases, as expected. More interestingly,
the running time is almost linear to 1/θ. This can be roughly
explained as follows. First, by the running time analysis of
Section 3.2, we can see that when n and k are fixed and θ
varies, the dominant term is a quadratic term noθniθ, which
means the running time is proportional to the square of the av-
erage arborescence size. Figure 7 further shows that the aver-
age arborescence size is about O(

√
1/θ). Therefore together

the running time is close to a linear relationship with 1/θ.
Figure 8 shows the change of influence spread with respect

to the running time of our algorithm for the NetHEPT set in
the WC model. Since the relationship between running time
and 1/θ is linear, it does not matter much if we use run-
ning time or 1/θ as x-axis. The result indicates that as run-
ning time increases (θ decreases), the influence spread also in-
creases, meaning that we obtain better quality results. Com-
paring other algorithms also shown in the figure, we see that
on one side, we can tune 1/θ to a larger value so that our influ-
ence spread can match the one provided by SP1M with at least
10 times speedup, while on the other side we can tune 1/θ to
a small value to get close to the running time of PageRank
with matching influence spread. Therefore, we can use one
algorithm to achieve different efficiency-effectiveness tradeoff
needs by properly tuning the parameters.

One noticeable result is the knee in the curve of our algo-
rithm. It means that the increase in influence spread is no
longer significant after we lower θ to a certain level. This is
because as shown in Figure 7, arborescence size increases in
square root of 1/θ (and thus in square root of running time),
while influence spread may change much slower after the ar-
borescence grows beyond a certain size. The knee point sug-
gests a good tuning point for the algorithm. If we select θ such
that the influence-time tradeoff is close to the knee point, we
could obtain the best gain from both influence spread and run-
ning time. Correlating with Figure 7, we found that the corre-
sponding knee point to be close to the point where the change
of arborescence size slows down (the dot with 1/θ = 320). We
observe similar situations in other dataset that we did not report
here. Thus, this suggests the following way of tuning parame-
ter θ. Given a new graph, randomly sample a small portion of
nodes in the graph to compute the average arborescence sizes
with varying 1/θ, and find a point where the change of arbores-
cence size slows down, and use the θ value at that point for the
PMIA algorithm. The θ values selected in our experiments are
based on this method.

5 Future Work
One possible future research is to further explore the advan-
tages of our MIA heuristic. For example, we believe that
MIA heuristic fits into the parallel computation framework bet-
ter than the greedy algorithm and shortest-path based SP1M
heuristic. This is because our computation are restricted on lo-
cal arborescences around nodes, and thus the graph can be eas-

12

ily partitioned for parallel computation, with sharing data only
needed for arborescences at the boundary. On the contrary, the
greedy algorithm and the SP1M heuristic need simulations and
computations among the whole graph, so graph partition is dif-
ficult, and parallel computation is only possible for different
computation tasks that require sharing of the entire graph. An-
other future direction is to look for hybrid approaches that com-
bine the advantages of different algorithms to further improve
the efficiency and effectiveness of influence maximization.

Beyond influence maximization, one interesting direction
that requires further research is the data mining of social influ-
ence from real online social network data sets. A few studies
have started to address this issue for blogspace [8] and aca-
demic collaboration network [19]. In fact, we used a dataset
from [19] with propagation probabilities computed by their al-
gorithm, but the graph size is small and thus we only include
the result in Appendix A. We plan to study social influence
mining in other social media and design appropriate algorithms
for these social media. Social influence mining and influence
maximization together will form the key components that en-
able prevalent viral marketing in online social networks.

References
[1] W. Aiello, F. R. K. Chung, and L. Lu. A random graph

model for massive graphs. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing, pages
171–180, 2000.

[2] S. Brin and L. Page. The anatomy of a large-scale hy-
pertextual web search engine. Computer Networks, 30(1-
7):107–117, 1998.

[3] W. Chen, Y. Wang, and S. Yang. Efficient influence max-
imization in social networks. In Proceedings of the 15th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2009.

[4] L. Cowen, A. Brady, and P. Schmid. DIGG: DynamIc
Graph Generator. http://digg.cs.tufts.edu.

[5] P. Domingos and M. Richardson. Mining the network
value of customers. In Proceedings of the 7th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 57–66, 2001.

[6] U. Feige. A threshold of lnn for approximating set cover.
Journal of the ACM, 45(4):634–652, 1998.

[7] L. Freeman. Centrality in social networks: conceptual
clarification. Social Networks, 1:215–239, 1979.

[8] D. Gruhl, R. V. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace. In Proceedings
of the 13th international conference on World Wide Web,
pages 491–501, 2004.

[9] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing
the spread of influence through a social network. In Pro-
ceedings of the 9th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 137–146, 2003.

[10] M. Kimura and K. Saito. Tractable models for informa-
tion diffusion in social networks. In Proceedings of the
10th European Conference on Principles and Practice
of Knowledge Discovery in Databases, pages 259–271,
2006.

[11] J. Leskovec. Amazon product co-
purchasing network, march 02 2003.
http://snap.stanford.edu/data/amazon0302.html.

[12] J. Leskovec. Epinions social network.
http://snap.stanford.edu/data/soc-Epinions1.html.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-
Briesen, and N. S. Glance. Cost-effective outbreak de-
tection in networks. In Proceedings of the 13th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 420–429, 2007.

[14] I. R. Misner. The World’s best known marketing secret:
Building your business with word-of-mouth marketing.
Bard Press, 2nd edition, 1999.

[15] J. Nail. The consumer advertising backlash, May 2004.
Forrester Research and Intelliseek Market Research Re-
port.

[16] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of
the approximations for maximizing submodular set func-
tions. Mathematical Programming, 14:265–294, 1978.

[17] M. Richardson and P. Domingos. Mining knowledge-
sharing sites for viral marketing. In Proceedings of the
8th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 61–70, 2002.

[18] M. Streeter and D. Golovin. An online algorithm for max-
imizing submodular functions. Technical Report Tech-
nical Report CMU-CS-07-171, Carnegie Mellon Univer-
sity, 2007.

[19] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence
analysis in large-scale networks. In Proceedings of the
15th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2009.

[20] L. G. Valiant. The complexity of enumeration and relia-
bility problems. SIAM Journal on Computing, 8(3):410–
421, 1979.

[21] V. V. Vazirani. Approximation Algorithms. Springer,
2004.

13

Table 2: Statistics of NetPHY and DM.
Dataset NetPHY DM
#Node 37K 679
#Edge 174K 1687
Average Degree 12.5 4.97
Maximal Degree 286 63
#Connected Compo-
nent 3883 1

Largest Component
Size 19873 679

Average Component
Size 9.57 679

Appendix

A Additional experiment results
In this section, we report additional results of our experiments
on additional datasets, new propagation propability type for the
IC model, and additional heuristic algorithms.
Additional datasets. Two additional datasets are tests. The
first one from the full paper list of the ”Physics” section of e-
print arXive, doted as NetPHY, which contains 37, 154 nodes
and 231, 584 edges, the same one used in [3]. The second
dataset is obtained from the authors of [19], which is another
collaboration network extracted from the data mining research
area in the ArnetMiner archive (http://www.arnetminer.org)
with 679 nodes and 1687 edges, and is denoted as DM. Some
basic statistics about these networks are given in Table 2. Fi-
nally, in the scalability test, we use synthetic data to obtain
networks of different sizes.
Generating propagation probabilities. We use one more
model to generate propagation probabilities, as described be-
low. We also use a different set of values for the TRIVA-
LENCY model.

• TAP model: This is a model developed recently in [19],
in which the authors develop a topical affinity propaga-
tion (TAP) algorithm to compute propagation probabili-
ties of every edge based on structural and topical infor-
mation available to the graph. The resulting propagation
probabilities are also nonuniform. For the DM dataset, we
use the propagation probabilities computed from the topi-
cal information available to the dataset. For the NetHEPT
dataset, we use uniform topic distribution among nodes
for TAP to compute propagation probabilities, since spe-
cific topical information is not available. The NetPHY
dataset is too large for the TAP algorithm, so we do not
use it for this data.

• TRIVALENCY model: use probability values 0.2, 0.04,
0.008 instead of 0.1, 0.01 and 0.001 in the main text.

Algorithms. We include the following additional algorithms

Figure 9: Influence spread for different algorithms in the WC
model, for the NetHEPT dataset.

Figure 10: Influence spread for different algorithms in the WC
model, for the NetPHY dataset.

for comparison.

• Degree: The simple heuristic that selects the k nodes
with the largest out-degrees in the graph.

• WeightedDegree: The weighted degree of a node is
the sum of propagation probabilities on all its outgoing
edges. This heuristic selects the k nodes with the largest
weighted degrees.

• SPM: The shortest-path based algorithm of [10], also en-
hanced with the lazy-forward optimization of [13]. In this
version, only the shortest paths from S to a node v are
counted for influence. Note that SP1M is an enhanced
version of SPM, in which both the shortest paths and
paths one hop longer than the shortest paths from S to
a node v are counted for influence.

14

Figure 11: Influence spread for different algorithms in the TAP
model, for the NetHEPT dataset.

Figure 12: Influence spread for different algorithms in the
TRIVANLENCY model with three probabilities 0.2, 0.04,
0.008, for the NetHEPT dataset.

Results on influence spread. Figures 9–13 shows the results
on influence spreads, where we also include results for algo-
rithms we tested in the main text. The results are mainly self-
explanatory, and consistent with the finding we concluded in
the main text. Overall PMIA performs consistently well over
all datasets and all propagation models, matching or very close
to the performance of Greedy and SPM/SP1M while outper-
form the rest heuristics, including the new ones we tested here.
A special attention is on Figure 12, which shows that Greedy
performs visibly worse than PMIA. The reason is Greedy is
too slow and we have to reduce the number of simulations for
influence spread estimation from 20000 to 200, causing it to
lose accuracy on estimation (see the running time section for a
reason why it is slow). This is also an indication that we can-

Figure 13: Influence spread for different algorithms in the TAP
model, for the DM dataset.

Figure 14: Running time of different algorithms in 3 datasets

not easily speed up Greedy by reducing the number of sim-
ulations. Another point worth explanation is that Weighted-
Degree performs quite well, closing to PMIA, in the two TAP
model related tests (Figures 11 and 13). The reason is because
WeightedDegree only considers influence propagated within
one-step neighbors while the TAP model is likely to generate
influence model in which most influences are indeed only prop-
agate within one step. However, WeightedDegree performs
not as well in other tests, showing that it is not consistent as
PMIA.
Running time. Figure 14 shows the running time of different
algorithms when selecting 50 seeds for 3 different tests: Net-
PHY using the WC model, NetHEPT using the TAP model,
and NetHEPT using the TRIVANLENCY model (with prob-
abilities 0.2, 0.04, and 0.008). The result is again consistent
with what we have seen in the main text. Two specific points
we would like to explain are as follows. First, Greedy is much
slower in the TRIVALENCY model. This is because in this

15

model after selecting a seed, the marginal influence spread for
the next seed candidate decreases dramatically, causing a lot
of re-evaluations of marginal influence spread for selecting the
next seed and making the lazy forward optimization of [13]
much less effective than in other cases. Second, the running
time of PMIA in the third test (NetHEPT on TRIVALENCY)
is very fast (67ms). The reason that it is much faster than the
other cases is because it uses a larger θ value of 1/20, which
generate smaller arborescences with depth at most 1. In this
case, its running time is always close to that of the Weighted-
Degree, with the overhead only in the maintenance of the ar-
boresence data structures and repeated updates due to seed se-
lection. Thus we see that tuning θ could achieve much bet-
ter running time. On the other hand, our PMIA is still bet-
ter than WeightedDegree in influence spread (see Figure 12),
because it considers overlapping influences among seeds while
WeightedDegree does not.

16

