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ABSTRACT
In online discussion forums, users are more motivated to take
part in discussions when observing other users’ participation
— the effect of social influence among forum users. In this
paper, we study how to utilize social influence for increasing
user participation in online forums. To do so, we propose
the use of sidebars, which display forum threads to users, as
a mechanism to maximize user influence and boost partici-
pation. We formally define the participation maximization
problem with the sidebar mechanism, based on the social
influence network. We show that it is a special instance of
the social welfare maximization problem with submodular
utility functions and it is NP-hard. However, generic ap-
proximation algorithms for social welfare maximization is
too slow to be feasible for real-world forums. Thus we de-
sign a heuristic algorithm, named Thread Allocation Based
on Influence (TABI), to tackle the problem. Through ex-
tensive experiments using a dataset from a real-world online
forum, we demonstrate that TABI consistently outperforms
all other algorithms, including a personalized recommenda-
tion algorithm, in increasing forum participation.

The results of this work could facilitate other related stud-
ies such as designs for recommendation systems. The prob-
lem of participation maximization based on influence also
opens a new direction in the study of social influence. More-
over, the proposed techniques can be applied to other social
media, e.g., to maximize overall attention for advertisement
in Facebook.

Keywords
social networks, social influence, social welfare maximiza-
tion, participation maximization, sidebar.

1. INTRODUCTION
The emergence of computer mediated communications has

dramatically changed many people’s social lives in the past
decade. Among them, online forums have been serving as
a major medium in the Internet that facilitates discussions
of any kind. In an online forum, some discussions could
be very specific (e.g., answering one particular question in
Yahoo! Answers) while others could be more general (e.g.,
discussing travel experiences in TripAdvisor). Beyond the
social value associated with the online forums, the owners
of the forums also directly benefit from the traffic of healthy
and active forums, e.g., more traffic means more advertising
revenue.

At the individual level, when a user submits a new thread1,
besides accurate answers or valuable suggestions, s/he also
hopes for a strong participation of other users in the thread.
In fact, the users’ psychological need of seeking attention
exists in most social media, e.g., clip posters care about the
number of views in YouTube, Twitter users care about their
follower/retweet counts, and MySpace users care about the
click through ratio in their“spaces”. Thus being able to build
a healthy and effective online forum platform that encour-
ages users to participate in discussions would be beneficial
to individual users as well.

To this date, albeit the much progress in system design
that enables the building of large-scale and robust online fo-
rum platforms, only moderate progress has been made in the
design of intelligent and automatic mechanisms that boost
user participations into online discussions.

However, there have been several successful Q&A services
that leverage information from social networking profiles to
improve their platforms. For example, Aardvark2 lets users

1A new thread means one user creates an initial post to start
a new discussion in a forum.
2http://vark.com/



get real time answers from friends and friends-of-friends.
Quora3 concentrates on the quality of its users, instead of
the quantity. It requires users to sign up with a Facebook or
Twitter account, and collects authoritative responses from
intelligent professional people. Facebook also rolled out its
ambitious Q&A service “Questions” [16] in July 2010, which
has been billed as Killer App considering its resource for
the world’s largest social network — 500 million users. The
success of the above services revealed one important idea:
social ties among users have a positive effect on users’ post-
ing behaviors.

Although in online discussion forums, there is typically no
explicit social ties (i.e., friendship in Facebook), we observe
that users tend to post after certain users — the effect of
social influence, which can be viewed as implicit social ties.
Inspired by this phenomenon, we propose strategies to in-
crease participation based on influence among users. More
specifically, we address this problem by delivering threads to
forum users appropriately, so that discussion participation
grows in a measurable way.

Delivering selected threads to users is similar in its form to
current recommendation systems. In recommendation sys-
tems, usually the criteria of matching a thread with a user
is whether the user’s friends also participate in the thread
or whether there is any indication that the thread falls in
the user’s interests, e.g. “Recommendation Engine” of Digg
and “Recommended for You” of YouTube. While there are
signs that the current practice of deciding recommendations
is always beneficial to users, it is quite unclear how these
isolated recommendations to individuals are impacting the
ecosystem of forum as a whole. Nor is it clear whether mak-
ing recommendations based sheerly on the users’ interests is
optimal.

Hence, we design strategies for thread allocations to in-
crease user participation based on social influence. Com-
pared to personalized recommendation methods that focus
on historical data to calculate which threads users will be
most interested in, we further look into the future to maxi-
mize the forthcoming influence diffusion.

Existing models in maximizing influence diffusion by iden-
tifying a set of influential users [13, 4] do not fit well in
the scenario of online discussion forums. For example, sup-
pose that we identified the influential users and recklessly
encouraged them to participate in every thread, the influen-
tial users would feel disturbed and find the recommendation
unhelpful. As a result, for practicability, the notion of budget
constraints (the number of threads to allocate to each user)
is necessary in real forums. This leads to a new formulation
of the optimization problem for online forums based on so-
cial influence — an optimal allocation problem to maximize
overall participation through influence propagation.

More specifically, we first propose a stochastic user posting
model for online forums, which is based on social influence
propagation among the underlying social network. We then
propose a sidebar scheme, in which each online user will
be assigned a small number of threads in his/her sidebar,
in order to increase the chance of his/her participation as
well as the subsequent influence propagation to more users.
The particiation maximization problem is the optimization
problem of allocating threads to users’ sidebars to maximize
the expected number of total participants in all threads.

3http://www.quora.com/

We then prove that for any given thread, the expected
number of total participants as a set function of users allo-
cated with the thread is monotone and submodular. This
characterizes the optimization problem as a specific instance
of the social welfare maximization problem with submodular
utility functions [5, 25], which suggests us to apply existing
approximation algorithms in our setting.

However, these algorithms treats the utility function as
an oracle, while in our case, evaluating expected number
of participants given a sidebar allocation is very slow, ren-
dering these approximation algorithms not feasible even for
small-scale forums. Therefore, following the success of [4,
3] in dealing with a similar issue in influence maximization
context, we turn to heuristic algorithms to achieve both ef-
ficiency and effectiveness for participation maximization. In
this paper, we propose a heuristic algorithm, named Thread
Allocation Based on Influence(TABI), in which we explicitly
consider both the factor of influence from the past in affect-
ing the current user to post, and the factor of influence into
the future for the current user to affect others.

We use data from a read-world online forum, TripAdvi-
sor’s World travel forum4, to evaluate our approach. We
compare TABI with other algorithms including a person-
alized recommendation algorithm [23] and a social welfare
maximization algorithm [5]. Our extensive simulation re-
sults clearly demonstrate that TABI performs consistently
as the best algorithm in maximizing user participation.

Finally, we point out that our model and algorithms are
not limited to online discussion forums. We believe that
they have wider applicability to other social media context,
and we discuss several new domains to apply our results.

To summarize, our contributions are mainly twofold:
(i) We propose the problem of participation maximization

with the sidebar mechanism to utilize social influence for
maximizing user participation in online forums, and connect
the problem with the social welfare maximization problem;
and

(ii) We propose an effective heuristic algorithm that beats
existing recommendation algorithms and social welfare max-
imization algorithms empirically in maximizing participants
in online forums.

2. RELATED WORK
In the context of online social media, there are many re-

search works studying various aspects of social networks and
social influence. We categorize the relevant works into sev-
eral areas and briefly summarize them below.
Effect of social ties on user behavior in social me-
dia. Hogg and Szabo [12] used a stochastic approach to
model users’ voting on Digg, and provided an explanation
to the voting patterns. Hogg and Lerman [11] proposed
an algorithm that described and predicted through iterative
refinement how the popularity and interestingness of user-
generated content evolved in time. In our context, we use
a stochastic model to characterize user posting behaviors in
online forums due to social influence among forum users.
Learning social influence among individuals in the
social network. An important task in the study of social
influence is to learn the strength of social influence among
users from interactions. Gruhl et al. [9] used a variant of
independent cascade model in blogspere and informally de-

4http://www.tripadvisor.com/ForumHome



rived an Expectation-maximization(EM)-like algorithm to
induce the influence probabilities among users. Saito et
al. [20] derived a similar E-M algorithm in a more formal
analysis to estimate influence probabilities. Goyal et al. [8]
tackled the same problem in another variant of the influence
propagation model, and applied Maximum Likelihood Esti-
mator (MLE) instead of E-M algorithm to the Flickr social
network. Influence analysis and learning supplies the soical
influence graph as the input to the participation maximiza-
tion problem, but itself is not the focus of our paper. We
adapt the E-M algorithm of [20] to extract social influence
in a real-world online forum TripAdvisor, and use it as input
to our participation maximization algorithm.
Application of social influence in social media. This
area is the most relevant one to our work. Extensive stud-
ies have been conducted to apply social influence in viral
marketing [13, 14, 15, 17, 4, 3], personalized recommenda-
tion [23, 22, 6], ranking [22, 26], etc. However, as far as we
know, there is no work studying how to increase participa-
tion through social influence in social media. Participation
maximization differs from influence maximization studied in
the context of viral marketing, because the latter focuses on
finding a small set of influential users to maximize influence
spread, while the former focuses on an appropriate alloca-
tion of the same amount of threads to every user to maximize
overall participation. It also differs from personalized rec-
ommendation because the latter only focuses on suggesting
the most relevant items to users to increase the chance of
users accepting the items, but do not consider how users
would influence other users to increase participation in the
future. In Section 4, after formally defining the participa-
tion maximization problem, we will provide a more detailed
comparison of participation maximization against influence
maximization and personalized recommendation.

3. USER POSTING MODEL BASED ON SO-
CIAL INFLUENCE

In this section, we describe our model of user posting be-
havior in online discussion forums based on social influence
among the users. Before providing the stochastic user post-
ing model, we first describe the underlying social influence
network.

A social influence network among the forum users is a
directed and weighted graph G = (U , E, w), where U is the
set of forum users, E is the set of directed edges among these
users, and w is a weight function from the set of edges to real
number in [0, 1]. The weight of an edge (u, v) ∈ E, referred
to as the influence probability from u to v and denoted as
wu,v, indicates how likely user u would influence user v to
write a post. As a convention, if (u, v) is not an edge in G,
we denote wu,v = 0.

A forum F consists of its users U , a set of threads T , and
sequences of posts generated by the users for every thread in
the forum. We now describe the dynamic process of gener-
ating posts based on the social influence effect. To do so, we
first augment the social influence graph G by adding a vir-
tual user τ , together with edges from τ to all users in U . We
denote the extended influence network as Gτ = (Uτ , Eτ , w),
where U = U ∪ {τ}, Eτ = E ∪ {(τ, u) | u ∈ U}, and w also
contains weights for edges (τ, u) with u ∈ U . Intuitively, the
virtual user τ represents the content of the threads and its
influence probabilities to users represent how the content of
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Figure 1: Diagram on the user posting model for
online discussion forums.

the threads affect users’ posting behavior. Note that here F
indicates one forum on a specific topic, U indicates users who
participate in F and threads T of F is a group of threads
with similar topics (e.g. all threads in the New York City
category of the TripAdvisor’s World travel forum). Thus we
only introduce one virtual user for one F , without adding
different virtual users per thread.

We divide time into discrete time slots denoted as slot
0, 1, 2, and so on. Slot 0 is a virtual slot, such that all threads
in T are initialized with one post by the virtual user τ and no
other users can post in this slot. At each slot t ≥ 1, users in
U may visit some threads, read the posts in the threads and
perhaps write a post in some threads. In particular, each slot
t ≥ 1 is associated with a visit probability δt, such that at slot
t each user has an independent probability of δt to visit each
thread that s/he has not posted. For simplicity, we assume
that all users are present in every slot. We could model users
not online in all time slots by adding an online probability,
but its treatment would be similar to the treatment of visit
probability, and thus we ignored it in our paper.

Suppose that at slot t ≥ 1 a user v visits a thread T ∈ T ,
and from the slot of v’s last visit in T to slot t − 1, the
sequence of existing participnats in T is u1, u2, . . . , uk (if v
never visited T before, u1 = τ). Then at slot t, v starts
to read the posts by u1, u2, . . . , uk in order. When v reads
the post by ui, v is influenced by ui to write a post in this
thread T with probability wui,v. If v has written a post in
T , v’s revisits to T are ignored, explained in more detail
presently. A thread will eventually stop growing when (a)
the visit probability becomes zero; or (b) all users have read
all the existing posts in the thread but are not influenced to
write one; or (c) all users have posted in the thread. Figure 1
shows the diagram of the user posting model.

We now provide some intuitive explanation and justifica-
tion of our model.
Social influence network. The social influence network
we defined is based on the Independent Cascade (IC) model
for influence propagation defined in [13]. However, the dy-
namic model is different: IC model is for influence propaga-
tion in social networks starting from a seed set, while our
model is for user appending posts to existing threads due to
the social influence.

For our study of participation maximization, we consider
the social influence network (with influence probabilities) as
a given network. A number of researches provide methods in
extracting the social network and influence probabilities [9,
1, 24, 19, 8]. In our experiment section (Section 6), we
will adapt one of the methods to extract the social influence
network from a real-world forum dataset, but this is not the



focus of our paper.
Visit probability. Visit probability characterizes the like-
lihood of users entering threads based on the timeline of
the threads. In the experiment section, we will see that in
real-world forums, δt is often a fast decreasing sequence as
t increases, meaning that users are more likely to visit new
threads and pay less attention to old threads, which is con-
sistent with the observation in other social media [11].
Single post vs. multiple posts. In our model, we only
record each user’s first post in each thread, so that users’s re-
visits to threads which they already participated are ignored
as mentioned above. This simplification can be justified as
follows. First, our participation maximization object is to
maximize the number of distinct participants in the forum
F , not the number of posts generated, and thus multiple
posts by a single user do not directly affect our optimization
object. Second, if we want to model that multiple posts by
a single user have an increased influence to other users, we
could allow users to re-post, and model that each post of
the user has the same and independent influence to other
users reading the post. This is a direct extension of our
model and our results still hold in this case. However, one
may argue that repeated posts of a single user may not have
the same and independent influence on other users, and this
could make the model much more complicated. We left this
extension as a future research item.
Static threads vs. dynamic thread additions. In our
model, we do not explicitly incorporate dynamically adding
threads in the forum F , because threads added into F at
different time slots are treated as different forum instances
for the optimization purpose. More specifically, threads ini-
tiated at different time slots are separated from each other.
Actually, they share the same optimization function as shown
in Equation (1), so we can take threads T of one slot as a
representative sample to elaborate our approach.

4. PARTICIPATION MAXIMIZATION WITH
THE SIDEBAR MECHANISM

We propose a novel use of the sidebar mechanism based
on social influence propagation to increase user participation
into online discussion forums. We first introduce our sidebar
mechanism and incorporate it into the user posting model
to define the participation maximization problem. We then
show that the expected number of participants of a thread
with the sidebar mechanism has the submodularity prop-
erty, making the participation maximization as an instance
of social welfare maximization with submodular functions.

4.1 Problem formulation
A sidebar is a vertical bar on the side of a web page typi-

cally suggesting users with additional information. Sidebars
are frequently used in many social media, such as the “Peo-
ple You May Know”sidebars in Linkedin and Facebook, and
the “Top Answerers” sidebars in Yahoo! Answers.

In this paper, we propse to use sidebars in online discus-
sion forums to suggest users with a small number of threads.
The sidebar of a user increases the chance that the user vis-
its his/her suggested threads. Then, by boosting the visit
probability of these threads, we aim at increasing the chance
that the user will post in these threads and in turn influence
other users to post in them.

More formally, we define the participation maximization

problem as follows. Each user has a budget constraint side-
bar, which has space for display B threads, where B is a
small constant (e.g. 5 or 10). At a certain time slot s, the
system allocates B threads from T to each user, so that the
user would visit threads in his/her sidebar with a higher
probability δ∗. We use only one time slot for the allocations
to sidebars for all threads in T . Recall that in our model,
all threads in T are modeled as initiated at the same vir-
tual slot, and threads initiated at other time slots can be
allocated at other time slots in the identical mechanism.

According to our user posting model, because visit prob-
abilities to the threads shown in the sidebars are boosted to
δ∗, the mechanism can increase the probability that users
posts in threads in their sidebars in succession, and in turn
these posts may further influence subsequent users and in-
crease the probability that others write posts in the thread.
Thus, the overall number of participants in the forum F(those
who write posts) is increased.

Formally, let Sj ⊆ U be the set of users whose sidebars
display thread Tj , and InfUserj(Sj) be the expected number
of participants of Tj after we display Tj on the sidebars of
a set of users Sj , calculated by our stochastic user posting
model. Let m = |T | be the number of threads. Let MU be
a multiset version of U such that each user u ∈ U appears B
times in MU . Given as inputs (a) the social influence graph
Gτ , (b) a sequence of visit probabilities δj ’s, (c) thread set T ,
(d) time slot s ≥ 1 for sidebar allocation, (e) prefix of posts
sequences up to slot s−1, (f) sidebar size B, (e) boosted visit
probability δ∗, the problem of participation maximization is
to find a partition {S1, S2, . . . Sm} of MU which maximizes

m∑
j=1

InfUserj(Sj),
5 (1)

which is the total (expected) number of participants in all
threads.

The participation maximization problem defined above
bear some resemblance to several related problems, but it
also has its uniqueness. To further understand the problem,
we compare it with several problems below.
Comparison with recommendation systems. Recom-
mendation systems provide users with a small number of
recommended items based on historical records of user ac-
tions and the assumption that users with similar activities
in the past would be interested in similar items [23, 21].
In the context of online discussion forums, techniques in
recommendation systems can certainly be used to assign
threads to sidebars of interested users and potentially in-
crease their participation. However, the key difference be-
tween recommendation systems and our participation max-
imization problem is that our problem is based on social
influence among the users. More specifically, recommenda-
tion systems focus on predicting users’ interests (e.g. who
would be interested in which books or movies) to increase
the chance that users accept the recommended items (e.g.
the purchase of books or movie DVDs). In contrast, in our
participation maximization problem, a good solution needs
to recommend threads not only to the users who are likely to
post in these threads, but also to the users who are likely to

5Since InfUser(·) is not defined on multisets, we simply ig-
nore additional copies of the same user in Sj . Also some Sj ’s
could be empty, meaning that these threads are not assigned
to any sidebars.



influence others to post. This is because our optimization
object is to maximize the total participation, not just the
number of posts immediately caused by sidebar recommen-
dations. Considering the future influence generated by the
sidebar recommendations is the novelty differentiating our
work from other recommendation systems.

In Section 6, we empirically compare a solution we pro-
posed with a personalized recommendation method [23], which
models information diffusion, and thus bearing some resem-
blance to our influence propagation model. Our results show
that our solution outperforms the recommendation system
because we look into the future influence propagation.
Comparison with influence maximization for viral
marketing. Influence maximization in the context of viral
marketing have been extensively studied recently [13, 14, 15,
17, 4, 3]. The problem is to find a small seed set in a social
network to maximize their eventual influence spread. In the
context of online discussion forum, if our goal is only to max-
imize the number of participants for a specific thread, and
we have a constraint on the number of users to be selected
for promoting the thread, then it falls into the domain of
influence maximization problem. However, we aim at max-
imizing the overall number of participants among all the
threads, and the constraint is not on the number of users
each thread can be recommended to, but on the number of
threads each user can be recommended. Hence, the problem
formulation becomes markedly unlike influence maximiza-
tion, and thus requires different solutions.
Comparison with social welfare maximization. The
participation maximization problem can be viewed as an in-
stance of the social welfare optimization problem [5, 25], in
which resources are allocated to consumers, who have certain
utility for every combination of the resources, and the goal
is to maximize the total utility of all consumers. In the con-
text of online discussion forums with sidebars, panels in side-
bars can be viewed as resources and threads as consumers,
and the utility function of thread Tj is exactly InfUserj(Sj).
With the submodularity property on InfUserj(·) as proved
in Section 4.2, participation maximization is a specific in-
stance of social welfare maximization with submodular util-
ity functions, for which a number of theoretical studies have
provided approximation algorithms [5, 25]. However, these
algorithms treat utility functions as an instant oracle, while
for real forums, the calculation of InfUserj(·) is too compli-
cated and time-consuming to be feasible in practice, as to
be shown in our experiment section (Section 6). Therefore,
we need to design specific algorithms for our participation
maximization problem.

4.2 Submodularity of InfUserj(·)
Function InfUserj(·) satisfies an important property called

submodularity. A set function f on U is submodular if for
any set S, T ⊆ U , we have

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

Moreover, a set function f on U is monotone if for all S ⊆
T ⊆ U , f(S) ≤ f(T ). For set function InfUserj(·), we have

Theorem 1. The function InfUserj(·) is monotone and
submodular, for all j ∈ [m].

Proof. (Outline). It is similar to the proof of submodu-
larity of the original influence function in [13]. However, we
have to address the challenge in our model: encoding more

random events, in particular, the visiting events and the
influence propagation events. Therefore, we build a graph
consisting of multiple levels. Each level represents the influ-
ence social network at a particular time slot. The visiting
event of each node are encoded by a random coloring pro-
cess. Then the influence function is simply counting the
number of reachable nodes with a particular color from a
seed set, which is clearly submodular.

The detailed proof is included in Appendix A.

5. THREAD ALLOCATION ALGORITHMS
In this section, we discuss thread allocation algorithms for

our sidebar mechanism, and propose our heuristic algorithm
TABI as an effective and efficient solution to the participa-
tion maximization problem.

Due to the combinatorial nature of the problem, one can-
not enumerate all possible allocations to find the optimal
solution. In fact, we show that it is NP-hard to find the
optimal allocation.

Theorem 2. Finding the optimal solution to the partic-
ipation maximization problem is NP-hard, even if there are
only two threads in the forum and computing InfUserj(S)
for any S ⊆ U is a polynomial-time task.

Proof. (Outline). The proof is by a reduction from the
MaxCut problem. The complete proof is included in Ap-
pendix B.

Now we discuss several approaches to overcome the NP-
hardness result.

Random allocation. The most straightforward approach
is to allocate threads to sidebars uniformly at random. In
general, random allocations would not perform well, but in a
special case to allocate threads as soon as they are generated
(s = 1 in our model, since s = 0 is a virtual slot), it is indeed
an approximation algorithm. More specifically, when s = 1,
all threads in T only have the same initial post by the virtual
user τ , and thus the utility functions InfUserj(·) are the
same for all threads, in which case Vondrák [25] proved that
random allocation is a (1 − 1/e)-approximation algorithm.
Moreover, Vondrák pointed out that this approximation is
tight when utility function evaluation is given as an oracle.
Even though in our case the utility function InfUserj(·) is
not an oracle, it still indicates that it is not likely to beat
the simple random allocation for the special case of s = 1.

However, when s ≥ 2, most threads already have some
posts (written by users at slot 1) and they are likely to be
different. This causes the utility function InfUserj(·) to be
different among the threads, and random allocation is no
longer a good choice. Our simulation results will show that
it is indeed the case.

Approximation algorithms, in particular Random-
ized Proportional Allocation (RPA) algorithm of [5].
As proved in Theorem 1, the utility function InfUserj(·) is
monotone and submodular, thus approximation algorithms
for the general social welfare maximization problem with
submodular functions [5, 25] can be applied to solve the par-
ticipation maximization problem. Algorithm 1 presents our
adaptation of a (2− 1

m
)-approximation algorithm [5], where

m is the number of threads in our model. Essentially, the
algorithm computes the incremental effect Rj of assigning



Algorithm 1 Approximation Algorithm

1: /* n users, m threads, Pv is the constraint panel number
for each v*/

2: initialize Pv = B for all v ∈ U , Sj = ∅ for all j ∈ T
3: for each v ∈ U with Pv > 0 do
4: for each j ∈ T do
5: Rj = InfUserj({v} ∪ Sj)− InfUserj(Sj)
6: end for
7: select exactly one thread j randomly as follows: each

thread j is chosen with probability
Rm−1

j∑
Tk∈T Rm−1

k

8: update Sj = Sj ∪ {v} and Pv = Pv − 1.
9: end for

thread Tj to user v, given that Tj has already been assigned
to a set of users Sj (line 5), and then pick a thread Tj at
random with a probability proportional to Rm−1

j (line 7).
We select this algorithm because of its simplicity and it sup-
ports online computation — the computation of assigning
threads to a user’s sidebar could be done for the user when
s/he is online, independent of assignments of users who logs
in later.

However, RPA as well as other approximation algorithms
has a serious drawback. It assumes that te computation of
utility function is done by an oracle, but in real forums, it is
difficult to compute InfUserj(S). Similar to the case of cal-
culating influence spread in influence maximization [13, 4],
sufficient amount of simulations are required to obtain a rela-
tively accurate estimate of InfUserj(S). In our case the algo-
rithm would be even slower because we have m (=number of
threads) different submodular utility functions for each user
to evaluate, and it is difficult to apply optimization tech-
niques [4] under the setting. Our experimental results in
the next section show that the RPA algorithm is very slow
and preforms poor under insufficient number of simulations.
This leads us to consider fast heuristic algorithms to tackle
the problem.

Our heuristic algorithm: Thread Allocation Based
on Influence (TABI). We propose TABI, a heuristic algo-
rithm to solve the participation maximization problem. The
idea of TABI is to estimate the incremental effect of allocat-
ing thread Tj to a user v by a fast neighborhood calculation.

Let EPj denote the set of Existing Participants in thread
Tj before the allocation time slot s. Let Iv and Ov de-
note the set of v’s in-neighbors and out-neighbors in the
influence graph Gτ , respectively. The probability that v
is influenced by at least one of its in-neighbors in EPj is
(1 −∏

u∈EPj∩Iv
(1− wu,v)). Provided that v is influenced,

the expected number of additional users would include
(i) v itself, with probability 1.
(ii) each of v’s inactive out-neighbor x, x ∈ Ov \EPj , who

would be influenced by v rather than any users in EPj , with
probability wv,x(

∏
u∈EPj∩Ix

(1− wu,x)).

Thus, the additional users ∆Infj
v that brought by display-

ing thread Tj to v is estimated as:

(1−
∏

u∈EPj∩Iv

(1− wu,v))(1+
∑

x∈Ov\EPj

wv,x

∏
u∈EPj∩Ix

(1− wu,x))

(2)
Once the estimates are obtained on all threads, we rank
these estimates and select the top B threads to allocate to

Algorithm 2 TABI

1: for each v ∈ U do
2: for each j ∈ T do
3: calculate ∆Infj

v as Equation 2
4: end for
5: Rank threads by ∆Infj

v in descending order
6: Select top B threads to display in v’s sidebar
7: end for

user v (Algorithm 2). Notice that δ∗ is the same value for
all v ∈ U if we display Tj to v, so we don’t have to multiply
the ∆Infj

v by δ∗ for ranking and selection.
The above estimate contains two parts: (i) the first paren-

thesis, which captures how likely the user v is influenced by
existing participants; and (ii) the second parenthesis, which
captures how likely v will influence other users in the fu-
ture. Conceptually, the first part is similar to a recommen-
dation system, while the second part focuses on incorporat-
ing future influence into thread selection, which we believe
is our unique consideration differing from recommendation
systems. The estimation in TABI is simplified, without con-
sidering further influence cascades and visit probabilities in
the future slots. Nevertheless, the simulation results will
show that the performance of TABI already beats other al-
gorithms.

6. EXPERIMENTS
In this section, we use data from a real-world online dis-

cussion forum to evaluate the effectiveness of our TABI al-
gorithm and compare it against several other algorithms.
We first extract the parameters, such as the social influence
graph and visit probabilities from the forum data, and then
simulate different algorithms in our user posting model with
these parameters to compare the expected number of par-
ticipants they achieve.

6.1 Datasets
Our datasets are crawled from TripAdvisor’s World travel

forum. With more than 20 million monthly visitors and
6 million registered members, TripAdvisor represents the
largest travel community in the world. TripAdvisor forum
is discussion oriented, where users share candid opinions, ho-
tel reviews, traveling experience or raise questions and dis-
cuss possible solutions. It consists of a number of discussion
categories (one F for one category in our model) typically
separated by locations. To conduct the experiments, we se-
lect three most active categories in TripAdvisor, which are
Orlando, London and New York City (NYC).

Even though we have crawled data for several years, most
users will only have a short active period on social media [10,
18]. The influence among users are also likely to change
over time. Thus we use data from a relatively short period
to guarantee active users and their stable influence relation-
ship. However, if the period is too short, many social inter-
actions and influence relationship will be missing. Hence,
an appropriate time period should be carefully selected.

In our experiment, we calculated a user’s forum life span
as the time period between her first and last post on a fo-
rum. We then choose a window size t win such that around
80% of users have their forum life spans within t win. In Tri-
pAdvisor, t win is about 60 days. Thus, we choose a 60 day
period in the beginning of year 2009 for our experiments.



Table 1: Statistics of the dataset from TripAdvisor
Category Orlando London NYC

Time Period 2009.1.1 - 2009.3.1 (60 days)
threads number 4,062 1,800 2,455
users number 2,085 1,467 1,694
Avg postsNum/thread 5.16 5.34 4.91
Max postsNum/thread 63 67 79
Avg postsNum/user 10.06 6.56 7.11
Max postsNum/user 1,142 539 1,239
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Figure 2: CDF of influence probabilities

The basic statistics of this dataset are given in Table 1. Re-
call that if a user posts more than once on a same thread,
we only record her first post.

6.2 Extracting the social influence network
In the formulation of the participation maximization prob-

lem given in Section 3, the social influence network is treated
as an input of the problem. In the case of TripAdvisor, no
explicit social network is maintained, and we need to ex-
tract an implicit influence network as well as learning the
influence probabilities on the network.6

For constructing the network, intuitively, if the posts of
one user influence another user and lead to his/her post-
ing on the same thread, there will be a link from the first
user to the second user. Thus in the influence graph Gτ =
(Uτ , Eτ , w), we keep edge (u, v) iff v follows u to post in at
least N threads (N = 2 in our experiment).

There are several studies on learning the influence prob-
abilities in a network [9, 20, 8, 19]. Based on our forum
context, we adapt the E-M algorithms in [9, 20] to fit into
our user posting model as described in Section 3. Roughly
speaking, to calculate wu,v’s, the algorithm iterates between
two conditional probabilities: i) in threads that v posts after
u, compute the conditional probability that v posts because
of u’s influence given v posts in Tj . ii) update wu,v by es-
timating the probability that v is influenced by u given v
reads u’s post. The algorithm converges after a number of
iterations, at which we obtain wu,v on each directed edge
(u, v). To avoid cluttering the main flow of our paper, our
detailed social influence graph learning algorithm is given
Appendix C. The Cumulative Distribution Function (CDF)
distributions are given as Figure 2 (CDF of category London
with similar distribution is omitted here).

6.3 Estimating visit probabilities
6TripAdvisor recently introduced “Trip Friends” feature [2]
in partnership with Facebook, but Facebook network does
not necessarily coincide with the influence network among
TripAdvisor users. Our approach of extracting social influ-
ence network from social interaction is also more general.
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Figure 3: Post distribution v.s. thread rank

Since our TABI algorithm does not depends on visit prob-
abilities, we would like to test the algorithm against different
visit probability sequences. Meanwhile, we also want to ob-
tain a visit probability sequence that is similar at least in
trend to the real data. However, since we cannot get access
to the login and browsing data of TripAdvisor users, accu-
rate estimation of visit probabilities is not feasible. There-
fore, we make use of users’ posting data that we crawled to
approximate visit probabilities.

Following Hogg and Lerman’s definition of recency [12],
we estimate visit probability from posting data based on
thread rank r. Thread rank r of Tj ∈ T at a time t is defined
as: its rank in chronological order of all threads at t. For
example, at t, among all m threads, the latest (submitted
most recently) thread has r = 1, while the oldest has r = m.
We want to estimate the visit probability δr for threads with
rank value r. Every time there is a post in Tj , the post
can be assigned with Tj ’s thread rank value r. Then δr is
proportional to the ratio between the number of posts with
r and the total number of posts among all threads.

Figure 3, marked with power-law trend line, shows how
the proportion of posts varies with thread rank in Orlando
and NYC of TripAdvisor. Both curves fit very well into
power-law curves, with power-law exponents α being −0.974
and −1.044 respectively. Results in other categories show
similar power-law distributions. We anticipate that the visit
probabilities would have a similar power-law trend, which
coincides with our intuition that people pays a lot more at-
tention to recent threads than earlier threads but there is
always some people visiting old threads.

In our simulation, we use δr to approximate the visit prob-
ability δt, and we further try different visit probability se-
quences, one from a different power law curve and the other
a constant sequence.

6.4 Simulation tests and results
Since we cannot deploy our proposed sidebar mechanism

in a real online forum environment, we demonstrate the ef-
fectiveness of the mechanism via simulations based on the
user posting model and the parameters we have analyzed.
In our simulation, for simplicity, we assume that every user
is online for a period of time in every time slot so that they
have a chance to visit each thread. In each category, there
are n users (n = |V | in Gτ ), m threads (m = |T |) and
sidebar budget B (B = 5 in all the following experiments).

We simulate five participation maximization algorithms:
i) NoSidebar, as the baseline;
ii) Random, allocation with the uniform probability dis-

tribution;
iii) Randomized Proportional Allocation (RPA) [5]. The

adapted version as described in Algorithm 1;
iv) TEABIF, a personalized recommendation algorithm,



called topic-sensitive early adoption based information flow
(TEABIF) [23], which recommends items to users by esti-
mating whom the information will propagate to with high
probabilities. We select TEABIF as a representation of rec-
ommendation systems because it considers information dif-
fusion in their model, which has some similarity with our
influence propagation model. TEABIF (as well as other rec-
ommendation systems), however, does not exactly fit into
our participation maximization formulation, since it does
not take a social influence graph as the input. Instead, we
directly feed TEABIF with the post sequence data used in
our test to derive its recommendations.

v) TABI, as described in Algorithm 2.

Comparing the effectiveness of different algorithms.
In our first test, we compare the effectiveness among the
above five algorithms with the following simulation setup.
We run tests for different thread number m = 30, 40, and
50 respectively. We use δr described in Section 6.3 directly
as the visit probabilities, and set the boosted visit probabil-
ity δ∗ = 0.8. Notice that the value of δ∗ would not affect
thread allocation of Random, TEABIF and TABI, and thus
total participation has a linear relationship with δ∗. For
RPA, its thread allocation depends on δ∗ when calculat-
ing InfUserj(S), but our simulation results show that total
participation is still close to a linear relationship with δ∗.
Therefore, results for other δ∗ values only have a constant
factor difference and can be derived, so we do not report the
exact numbers here.

In the simulations, we pre-populated existing participants
EPj of each Tj in slot 1 based on the user posting model
as Figure 1, and each such pre-population is called a group,
a.k.a,

⋃
Tj∈T EPj . In slot 2, we use different algorithms to

perform thread allocation (i.e., s = 2 for this test). For
each simulation, we run it from slot 2 to slot 15 based on
the posting model, and collect the additional participants
(or newParticipants, who post after slot 1). For each group,
we run 1000 simulations to obtain the average number of
newParticipants. For each category, we generate 500 inde-
pendent groups and take the average as the final number
reported in our result.

The RPA algorithm would be extremely slow if we also
run 1000 simulations to obtain one InfUserj(S) value in Al-
gorithm 1. To finish RPA in a reasonable amount of time,
we run 10 simulations to estimate InfUserj(S). Even in this
case, RPA still takes hours to finish one group, while all
other algorithms only take seconds. Thus for RPA, we have
to compromise and collect average value from 50 groups, in-
stead of 500 groups. It demonstrates that the RPA (and
other social welfare maximization algorithms based on util-
ity oracles) cannot be used in practice, where we need effi-
cient and online computations for thread allocations.

The results of this test for category NYC, London and
Orlando are given in Figure 4. In all nine tests covering
three categories and three different numbers of threads m,
our TABI algorithm performs consistently as the best algo-
rithm. Comparing to TEABIF, take m = 40 as the example,
the improvement of TABI over TEABIF in NYC, London
and Orlando are 19.87 ± 6.32,20.13 ± 6.51,27.52 ± 9.01, re-
spectively, corresponding to percentage increases of 6.2%,
5.7%, 5.5% respectively, and all improvements are statisti-
cally significant. RPA algorithm performs worse than TABI
and TEABIF, which can be partly attributed to insufficient

number of iterations trading accuracy for efficiency. Com-
paring to NoSidebar and Random, TABI significantly out-
performs both of them, with a large margin of 50-60% and
30-40%, respectively. It indicates that sidebar mechanism
with our TABI algorithm could significantly increases par-
ticipation, comparing with the case of no sidebars or ran-
domly targeted sidebars.

Effectiveness on different visit probabilities. In this
test, we intend to see if our TABI algorithm could perform
consistently better than other algorithms under different
visit probability sequences. To do so, we repeat the above
test with the following two visit probability sequences:

i) Power law: δt = kt−α, with k = 0.3 and α = 0.6, to
simulate the decreasing trend with a larger visit probability
values compared to δr.

ii) Constant value: δt = 0.1 for all t.
Figure 5 shows the result with threads number m = 40 in

all the three categories. In the first test, RPA approximation
algorithm has already been shown to be exceedingly time
consuming and ineffective , so RPA is excluded here. We
can see that under both visit probability sequences, TABI’s
improvement over TEABIF and other methods are consis-
tent.

Effectiveness on different allocation time slots. In
this test, we aim at checking whether TABI could perform
consistently better than other algorithms under different al-
location time slot s. To this end, we vary s from 2 to 10, set
m = 40 and δ∗ = 0.5. δr’s is used as the visit probabilities.

We would also like to compare the total participation
(from slot 1 to slot 15) between different allocation time
slots, not the additional number of participants (newPar-
ticipant) after the sidebar allocation slot s. Since different
allocation time slots have different set of pre-existing partic-
ipants, we set up the test in the following steps to put the
results of different allocation slots under the same scale.

i) Pre-populated one group of existing participants in the
same way as described in the first test.

ii) For each group, if sidebar allocation is at slot 2 (s = 2),
we simply run simulations 1000 times until slot 15, and take
the average of the number of participants. If sidebar alloca-
tion is at slot s > 2, we first prepopulate users in slots 2 to
s−1 based on user posting model, then run simulations 1000
times with allocation at slot s. We use 500 prepopulation
sets (slots 2 to s−1) to take the average of results for s > 2,
in order to make a fair comparison with the case of s = 2.

The above two steps is for one group of existing partici-
pants at slot 1. And we run 100 independent groups to take
the average as the final result, which is reported in Figure 6.

Our results show that TABI always outperforms TEABIF
and Random in all the allocation time slot s, which means
that TABI works well with different existing participants
and different future visit probability sequences. We also
notice the increasing trend of participation as s increases.
From this, one may be tempted to conclude that we need
to use sidebars for “older” threads. However, we need to
take such conclusion cautiously. The reason of the increas-
ing trend is mainly due to the fact that the visit probability
sequence is a decreasing sequence, and thus in later slots
threads receive a larger boost in visit probabilities when
shown in the sidebars. However, recommending“older”threads
may result in bad user experiences. Therefore, we believe a
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Figure 4: Results of Five Approaches
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better conclusion is that larger boost in visit probabilities
may provide more participation, but the selection of time
slot s to use sidebars should consider other factors such as
overall user experiences. This is why we use s as a parame-
ter of the problem rather than a variable to be tuned in the
optimization process.

To summarize, our simulation results clearly demonstrate
that sidebar mechanism based on social influence can signif-
icantly improve participation, and in all situations our al-
gorithm TABI performs the best over all other algorithms,
including an approximation algorithm and a personalized
recommendation algorithm.

7. DISCUSSION AND CONCLUSION

7.1 Discussion
The proposed sidebar mechanism with TABI algorithm

can also be applied to other social media, with the purpose
to maximize overall participation, activity or attention. The
target medium should satisfy the following characteristics:
i) users own unique user IDs; ii) users are able to observe
other users’ behaviors on one specific event; iii) users can
interact with each other. Here, we give several examples as
below.
Advertisement in Facebook. Display B promotions in
each user’s sidebar to maximize the overall number of au-
dience in Facebook. Each advertiser has its own Facebook
page and writes updates to gain attention, e.g., companies
as Starbucks to distribute coupons, or TV shows as Amer-
ican Idol to announce official news for high ratings. If the
targeted users visit the page and click on the “Like” button
or comment on the advertiser’s updates, a link to the ad-
vertiser gets added to their Facebook stream. Then, their
friends have a chance to notice the link, if they also click
“Like” or comment, friends of friends can see the link. Note
that the users are able to browse “People who like this” or
view all comments in Facebook, which is similar to browsing
people who already posted to one thread in online discussion
forums. In this way, the promotion spreads and reaches a
wide audience. Our mechanism can allocate the right pro-
motions to the right users to maximize the overall audience.
Posts in Google Buzz. Display B buzzes in each user’s
sidebar to maximize the overall attention. In Google Buzz,
users can also follow others, and reshare, like, or comment
on followees’ shared posts. And they can also view who
reshare, like, or comment on the which specific posts. Thus
it is similar to the case of online discussion forums. And the
overall attention of Buzz gets maximized trough our sidebar
mechanism.
Video Comments in YouTube. Display B video links
in each user’s sidebar to maximize the overall comments.
In YouTube, users can comment on one video, and others
who are also interested in the clip can read all the previous
comment and discuss with them. Thus, comments on video
is similar to posts on one threads, and the uploaders always
expect lively discussions. By calculating influence among
users and adding the sidebar mechanism, our approach can
help to bring up the level of discussion on the site.

7.2 Conclusion
To summarize, in this paper, we propose the sidebar mech-

anism to maximize participation based on social influence
in online discussion forums. We formulate the problem as

participation maximization problem, a special case of social
welfare maximization problem. We prove that it is NP-hard,
and it has the property of monotonicity and submodularity.
In real applications, in order to overcome the inefficiency of
previous approximation algorithms, we propose a heuristic
algorithm TABI for thread allocation. Through extensive
simulations, we validate the robustness and effectiveness of
TABI. The whole approach can also be applied to other so-
cial media to increase total participation.

For future work, we will investigate heuristics that con-
sider further influence cascades and find out the best timing
for thread allocation. Besides, we will study the application
of similar approaches to other social media, which may have
rich interaction and social network data.
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APPENDIX
A. PROOF OF THEOREM 1

Proof. It is sufficient to prove the property for a fixed
number of time slots at [K] = {1, 2, . . . , K}.

We use coupling technique to prove InfUserj(Sj) is mono-
tone and submodular. Recall Sj is the seed set for thread
j, i.e., the set of users whose sidebars display thread j. We
first provide the proof in the case that no user has been
participating the thread at time slot 0. We show how to
remove this assumption in the end of the proof. We build a
directed graph H, which will encode all possible outcomes
of the random events in our model. Figure 7 illustrates
an example of the graph we will be constructing. In the
graph H, there are K + 2 levels of nodes (recall that the
discrete time slots that we are interested in in the process
is [K]). In the first level, there is a virtual node τ and
the users node set U = {u1, . . . , un}. In total, there are
n + 1 nodes in this level. In the second level, the node set
is {u1

1,0, u
2
1,0, u

1
2,0, u

2
2,0, . . . , u

1
n,0, u

2
n,0}. In other words, each

user ui has two correspondences in the second level. The
node set is {u1,i−2, u2,i−2, . . . , un,i−2} for level 3 ≤ i ≤ K+2.

Next, let us describe the edges of the graph H. Edges are
all pointing from upper(smaller) levels to lower(larger levels.
And there is no edge in the same level. From the first level to
the second level, the edge set is as follows: there is an edge
from τ to every node u1

i,0 (for i ∈ [n]) in the second level.

Each node ui (for i ∈ [n]) connects to the the node u2
i,0. In

other words, the edge set between the first and second level
is {(τ, u1

i,0), (ui, u
2
i,0) : i ∈ [n]}. Between the second and the

third level, there are edges between u1
i,0 and ui,1 and between

u2
i,0 and ui,1, i.e., the edge set between the second and third

level is {(u1
i,0, ui,1), (u

2
i,0, ui,1) : i ∈ [n]}. The set of edges

starting from level 3 or below 7 is {(uj,t, ui,t′) : (i 6= j)∧ t <
t′ ∈ [K]}. Finally, there is an edge from τ to every node on
level 3 or below. i.e., the edges {(τ, ui,t) : i ∈ [n], t ∈ [K]}
are in E(H).

All nodes are colored either black or white in the graph
H. In our setting, colors are used to represent the outcomes
of the event related to visiting and edges are used to repre-
sent event related to writing. Specifically, if the node ui,t is
colored black, the user i visits the thread on time slot t for
t > 1. The edges shall be interpreted as the possibilities that
a user (the destination) in a later time slot will write a post
because she is influenced by another user (the source) who
wrote a post earlier (or influenced by the thread τ). Details
of defining the semantic of the graph H is as follows.

Coloring. The nodes in the first level {τ, u1, . . . , un} in
H are colored black by default. The colors of the nodes
below the third level represent the outcomes of the visiting
events. In particular, for each node ui,t with t > 1 (the case
for t = 1 will be discussed separately shortly), if user ui

visits the thread at time t, we color it black, which is with
probability rt; otherwise, we color it white. Notice that for
t > 1, whether a node is colored as black is independent of
Sj , the set of seed users whose sidebars display the thread.

The set of nodes u1
i,0 and u2

i,0 in the second level and
edges associated with them are designed to incorporate the
increased visiting probability at time 1 by selecting the seeds
Sj . Two Bernoulli random variables with parameters δ1 and

7To be clear, the ith level is below the 3rd level if i > 3.
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Figure 7: The full graph H

δ0−δ1
1−δ1

are used to simulate the visiting event with probability
δ0 when the user ui is chosen as a seed and with probability
δ1 otherwise. Specifically, the node u1

i,0 is colored as black

with probability δ1 and the node u2
i,0 is colored as black

with probability δ0−δ1
1−δ1

. Also, the nodes ui,1 (i ∈ [n]) on the
third level are dummy nodes which are always colored in
black. This level’s nodes do not provide information regard-
ing whether users will visit the thread on t = 1. Instead, a
user ui will visit the thread on t = 0 if and only if: at least
one of u1

i,0 and u2
i,0 is black when ui ∈ Sj ; and u1

i,0 is black
when ui /∈ Sj .

Finally, let us call the outcomes of all visiting events as-
sociated with all nodes RR.

Subgraphs. Next we define the writing events on edges.
By removing a subset of edges in H (and therefore retaining
a subgraph of H), we encode the events a user decides to
not write a post when she is being influenced by a second
user.

Recall that in our model each user will visit existing posts
only once, which implies an existing post has only one chance
to influence a second user. As one user writes at most one
post in the thread, each user only has one chance to influ-
ence another user. Hence, we can first fix all the outcomes
of the influence probabilities, namely RW . There needs in

total n(n+3)
2

random variables, including all pairwise events
between users ui and uj for i 6= j and n writing events from
the virtual user τ .

We obtain a subgraph of H based on RW as follows. For
ui 6= uj ∈ U , if the outcome of the write event from ui to uj

is false, we remove all edges from ui,t to uj,t′ for all t′ > t.
For ui ∈ U , if the outcome of the write event from virtual
user τ to ui is false, we remove all edges from τ to ui,t for
t ∈ [K] and u1

i,0 and the edge from ui to u2
i,0.

Let H(RW, RR) be the subgraph and the coloring of the
nodes obtained. ui posts in the thread, if and only if at least
one of the black nodes in {ui,t} for t ∈ [K] will be reachable
from {τ} ∪ Sj in H(RW, RR) by a path of black nodes. Let
Ii
RW,RR(Sj) be the indicator variable on whether ui posts

with the outcome RW and RR. We can write InfUserj(Sj)
as:

InfUserj(Sj) =
∑

RW,RR

Pr[RW ]Pr[RR]
∑

i∈[n]

Ii
RW,RR(Sj),

where Pr[RW ] and Pr[RR] are the probabilities to have the
outcomes RW and RR respectively.

Therefore, it is sufficient to prove that Ii
RW,RR(Sj) is mono-

tone and submodular. To show that, we merge all black
nodes {ui,t} for t ∈ [K] to a super node ūi by redirecting
all edges originally to these black nodes to the new node ūi.
Then we remove all white nodes from the graph. Afterwards,
Ii
RW,RR(Sj) is simply the indicator variable on whether ūi

is reachable from set {τ} ∪ Sj in the new graph, which is
clearly monotone and submodular.

Now consider the case that some nodes have been ap-
peared in the thread before time slot 0. We simply remove
those nodes in the counting of reachable node, which will
not affect the submodularity property.

B. PROOF OF THEOREM 2
Proof. We first show that the following maximum over-

lapping set problem is equivalent to a special case of the
participation maximization problem. An instance of the
maximum overlapping set problem is a special class of di-
rected graphs, in which vertices are divided into two sets
U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn}, and all di-
rected edges are from nodes in U to nodes in V , and every
v ∈ V is incident to some edges. For some S ⊆ U , Let C(S)
be the subset of V that is covered by S, that is, the set
of vertices in V having neighbors in U . The problem is to
find a partition of U into two sets U1 and U2, such that the
overlap of their coverage in V ,C(U1)∩C(U2), is the largest.

To see that it is equivalent to a special case of our partic-
ipation maximization problem, we take any above graph G
as our social network, where all edges in G have weights 1.
For the virtual user τ , all edges from τ into U have weight 1
while all edges from τ to V have weight 0. We only need two
threads, with sidebar size B = 1. The normal visit proba-
bilities δi are all 0 except for the second time slot δ2 = 0.5.
The boosted visit probability δ∗ = 1. We want to allocate
threads to sidebars in the first time slot (s = 1).

Under the above setting, sidebar allocations partition all
users in U into U1 and U2, corresponding to the two threads
(it also partitions V , but it does not matter for our purpose).
Consider the first thread, which is shown in the sidebars of
users in U1 in the first time slot. For every user in U1, in slot
1 she visits the thread (since δ∗ = 1), influenced by τ and
writes a post. All other users do not visit the thread since
δ1 = 0). In the second time slot, every user in C(U1) has
a probability δ2 = 0.5 to visit the thread, and once in she
will be influenced by some users in U1 who already posted
and write a post. For every user in U2, she also has a prob-
ability 0.5 to visit the thread and then influenced by τ to
write a post. For every user in V \ C(U1), she may visit
the thread, but even if so, she will not be influenced by τ
nor by any user in U1, and thus she will not write a post
in the thread. No user will visit any thread after slot 2.
Therefore, summing up all, the expected number of users
who post in thread 1 is |U1|+0.5|U2|+0.5|C(U1)|. Symmet-
rically, the expected number of users who post in thread 2
is |U2|+0.5|U1|+0.5|C(U2)|. Therefore, the expected num-
ber of total participants is 1.5(|U1| + |U2|) + 0.5(|C(U1)| +
|C(U2)|) = 1.5|U | + 0.5|V | + 0.5|C(U1) ∩ C(U2)|. As the
result, maximizing this value is equivalent to maximize the
intersaction C(U1) ∩ C(U2).

We now show that the maximum overlapping set problem
is NP-hard, by a simple reduction from the MaxCut prob-
lem [7]. Given an undirected graph G = (V, E), MaxCut
problem is to find a cut of maximum size. We convert G



into G′ = (V ∪ E, E′) where E′ = {(v, e) | v ∈ V, e ∈ E}.
Then the overlap between C(U1) and C(U2) for a partition
U1, U2 of U is exactly a cut of G into U1 and U2. Thus a
solution to the maximum overlapping set problem of this
instance provides a solution to MaxCut.

C. ALGORITHM TO LEARN INFLUENCE
PROBABILITIES

C.1 Variables
Let P (Tj) be the post sequence of Tj ∈ T , where P (Tj) =

(〈τ, t0〉, 〈u1, t1〉, 〈u2, t2〉, . . . , 〈u`, t`〉), indicating ui posts to
Tj at time ti, and superscript j is omitted for convenience.
The corresponding thread rank at time ti is ri and the visit
probability is δri . We define the following variables for no-
tational convenience of our iterative algorithm:

• σj
i,v: the probability that user v visits Tj within [ti, ti+1).

If i = l, i.e., the post is the last one, since there is no
subsequent post, the time window is [tl, tl + ∆t).

• Vj
v(k, i): the probability that user v visits Tj within

[tk, tk+1) and [ti, ti+1) respectively, and v does not visit
Tj during time [tk+1, ti).

• Ij
v(k, i): the probability that user v is influenced by

at least one of the preceding users and becomes the
(i + 1)th post writer in Tj , besides, the previous visit
is within [tk, tk+1).

• N j
v (i): the probability that user v visits Tj within [ti, ti+1),

does not post and never revisits afterwards.

For online users, in every time period [ti, ti+1), we calcu-
late the average value of all visit probabilities varying with
thread ranks, as approximation for σj

i,v. For example, sup-
pose user v is online, and the first post of Tj has thread rank
r1 = 1, while the second post has rank r2 = 3. Then, during
time period [t1, t2), we assume that v equally likely comes to
the forum when the rank of the thread is 1, 2, or 3. Recall
δr denotes the visit probability when thread rank value is
r. Thus, all the possible visit probabilities are δ1, δ2 and δ3,
and σj

1,v is (δ1 + δ2 + δ3)/3. Formally, let Online(v) be the
union of time intervals in which v is online.

σj
i,v =





∑
ri≤r≤ri+1

δr

ri+1 − ri + 1
, [ti, ti+1) ∩Online(v) 6= ∅

0, otherwise

(3)

Note that all the σj
i,v are independent but not mutual,

because revisiting is allowed in our model. By Equation 3,
σj

i,v is 0 if v is not online during [ti, ti+1). For notational

convenience, we define δj
−1,v = 1.

Vj
v(k, i) is the probability that v visits Tj within [tk, tk+1),

does not visit during [tk+1, ti), and re-visits in time period
[ti, ti+1). Vj

v(−1, i) denotes that the visit in [ti, ti+1) is the
first time v visits Tj . Hence,

Vj
v(k, i) = σj

k,vσj
i,v

∏

k<x<i

(1− δj
x,v), k ∈ [−1, i) (4)

Ij
v(k, i) denotes the following probability: user v visit Tj in

[tk, tk+1) and all the post writers {ux | 0 ≤ x ≤ k} preceding
uk fail to influence v. And user v visit Tj again in [ti, ti+1)
without visiting Tj during [tk+1, ti). Furtheremore, at least

one of the post writer ux between uk and ui, {ux|k < x ≤ i},
successfully influences v to post. Hence,

Ij
v(k, i) = Vj

v(k, i)(
∏

0≤x≤k

(1− wux,v))(1−
∏

k<x≤i

(1− wux,v))

N j
v (i) is the probability that v visits Tj in [ti, ti+1) (with

probability σj
i,v), not influenced by any preceding users (with

probability
∏

0≤x≤i(1 − wux,v)), and never revisits (with

probability
∏

i<k≤l(1− δj
k,v)). Thus,

N j
v (i) = σj

i,v

∏

0≤x≤i

(1− wux,v)
∏

i<k≤l

(1− σj
k,v) (5)

C.2 Learning wu,v

With the above variables, following the user posting model
in Figure 1, we design an iterative method to estimate the
influence probabilities in Gτ .

Incorporated with visit probability, we adapt the algo-
rithm of [9, 20] for our forum user posting model. The al-
gorithm iterates between two conditional probabilities: In
threads that v posts after u, step 1 computes the condi-
tional probability that v posts because of u’s influence given
v posts in Tj . While step 2 updates influence probabilities
wu,v by estimating the probability that v is influenced by
u given v visits u’s post. In particular, we estimate wu,v

with the number of times v is influenced by u divided by the
number of times v reads u’s post.
Step 1:

pj
u,v =

wu,v(
∏

k<λ
j
u

(1− wuk,v))
∑

−1≤k<λ
j
u

Vj
v(k, λj

v − 1)

∑

−1≤k<λ
j
v−1

Ij
v(k, λj

v − 1)

In step 1, let pj
u,v be the conditional probability that u

influences v to post in Tj given v posts in Tj in the particular
time stamp. For brevity of equations, suppose in Tj , u writes
the λj

u-th post and v writes the λj
v-th post, λj

v > λj
u. For

other threads, we set pj
u,v = 0.

In the numerator
”

Pr(u influences v) is: u successfully
influences v (with probability wu,v), and all the users pre-
ceding u in Tj failed (with probability (

∏
k<λ

j
u
(1− wuk,v)).

Besides, v visits within [t
λ

j
v−1

, t
λ

j
v
) and the last visit oc-

curs before λj
u, with probability

∑
−1≤k<λ

j
u
Vj

v(k, λj
v − 1).

Because if the last visit occur after u, it implies u fails to in-
fluence v. Recall we only record the first post, and revisiting
posted threads is ignored in the user model.

In the denominator, recall that Ij
v(k, i) denotes the prob-

ability that user v becomes the (i + 1)th post writer in Tj ,
besides, the previous visit is within [tk, tk+1) for −1 ≤ k.
And Pr(v posts in Tj) is the probability that ui posts in Tj

at position i, pj(ui), which is
∑
−1≤k<λ

j
v−1

Ij
v(k, λj

v − 1).

Step 2:

wu,v =

∑
j∈S

pj
u,v

∑
j∈S

∑

λ
j
u≤k<λ

j
v

pj
uk,v +

∑

j∈S′

∑
λ

j
u≤k≤l

N j
v (k)

∑
−1≤k≤lN j

v (k)

In step 2, let S denote the set of threads that v posts after
u’s post and let S′ denote the set of threads that u posts
but v does not.



The influence probability wu,v is estimated as: the number
of times v actually writes due to the influence from u divided
by the number of times v might read u’s post. The latter
should be further divided into two parts: the first part is the
set of threads S, i.e., v posts after u; the second is the set of
threads S′, i.e., u posts but v does not. For one thread in S,
v reads u’s post if and only if u or posts after u triggers v.
That is because, in our user posting model, if v is triggered
by posts before u, she will write and leave without reading
u’s post. Hence, the probability that v reads u in thread
Tj ∈ S is:

∑
λ

j
u≤k<λ

j
v

pj
uk,v.

For the second part of threads S′, it is the conditional
probability that v reads u, given v does not post in Tj . Re-
call that N j

v (i) denotes the probability that the last time
that v visits Tj is after ui in [ti, ti+1), does not post and
never revisits. Only when the last visit is after u, v has a
chance to read u. Thus, Pr(v reads u without posting in Tj)
=

∑
λ

j
u≤k≤l

N j
v (k). Pr(v does not post in Tj) is the proba-

bility that v does not post in Tj , which is
∑
−1≤k≤lN j

v (k).
Therefore, the probability that v actually reads u in Tj is∑

λ
j
u≤k≤l

N j
v (k)

∑
−1≤k≤l N j

v (k)
.

We can assign a set of initial values of wu,v. Then we
directly obtain an iterative algorithm by applying the two
steps above until the solution of wu,v converges. This algo-
rithm is very simple and always converge to a unique solution
regardless of initial values of wu,v in our study.


