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Abstract. Compact routing addresses the tradeoff between table sizes and stretch, which is the
worst-case ratio between the length of the path a packet is routed through by the scheme and the
length of a shortest path from source to destination. We adapt the compact routing scheme by
Thorup and Zwick to optimize it for power-law graphs. We analyze our adapted routing scheme
based on the theory of unweighted random power-law graphs with fixed expected degree sequence
by Aiello, Chung, and Lu. Our result is the first theoretical bound coupled to the parameter of the
power-law graph model for a compact routing scheme. In particular, we prove that, for stretch 3,
instead of routing tables with Õ(n1/2) bits as in the general scheme by Thorup and Zwick, expected
sizes of O(nγ logn) bits are sufficient, and that all the routing tables can be constructed at once in
expected time O(n1+γ logn), with γ = τ−2

2τ−3
+ ε, where τ ∈ (2, 3) is the power-law exponent and

ε > 0 (which implies ε < γ < 1/3 + ε). Both bounds also hold with probability at least 1 − 1/n
(independent of ε). The routing scheme is a labeled scheme, requiring a stretch-5 handshaking
step and using addresses and message headers with O(logn log logn) bits, with probability at least
1 − o(1). We further demonstrate the effectiveness of our scheme by simulations on real-world
graphs as well as synthetic power-law graphs. With the same techniques as for the compact routing
scheme, we also adapt the approximate distance oracle by Thorup and Zwick for stretch 3 and
obtain a new upper bound of expected Õ(n1+γ) for space and preprocessing for random power-law
graphs.

1 Introduction

Message routing is a fundamental service in communication networks. When routing a message
from a source to a destination in the network, to decide where to forward the message to, a
node may only use its local information, which includes its local routing table, the destination
address, and a message header. A routing scheme is expected to route messages between all
source-destination pairs along shortest or approximate shortest paths. A key measure of the
quality of a routing scheme is its worst-case multiplicative stretch, which is defined as the
maximum ratio of the length of the message route between a pair of nodes s and t by the
scheme and the actual shortest path length between s and t, among all s-t pairs in the network.

Routing schemes address the tradeoff between stretch and routing table size. A trivial
stretch-1 routing scheme is one in which every node stores for every destination in the net-
work where to forward the message to. However, for a network with n nodes, this approach
requires unscalable Ω(n log n)-bit routing tables for every node [21]. A compact routing scheme
is only allowed to have routing tables with sizes sublinear in n and message header sizes polylog-
arithmic in n. There are two classes of compact routing schemes: Labeled schemes are allowed to
add labels to node addresses to encode useful information for routing purposes, where each label



has length at most polylogarithmic in n. Name-independent schemes do not allow the renaming
of node addresses, instead they must function with all possible addresses.

Both labeled and name-independent compact routing schemes have been studied extensively.
Universal schemes work for all network topologies [3–5, 14, 35, 36]. It has been shown that with
Õ(n1/k)-bit routing tables (as usual, we abbreviate O(f(n) · logt n) for some constant t by
Õ(f(n))) one can achieve a stretch of O(k), and that this tradeoff is essentially tight due to a
girth conjecture by Erdős.

Due to these impeding lower bounds for general graphs, specialized schemes were designed
for various families of network topologies, including trees [19, 24, 36], planar graphs [20, 27],
fixed-minor-free graphs [2], or graphs with low doubling dimension [1, 22, 23]. These topology-
specific schemes achieve significant improvements on the stretch-space tradeoff over universal
routing schemes.

Power-law graphs [31] constitute an important family of networks appearing in various real-
world scenarios such as the Internet, the World Wide Web, collaboration networks, and social
networks [12, 18]. In a power-law graph, the number of nodes with degree x is proportional to
x−τ , for some constant τ . The power-law exponent τ for many real-world networks is in the range
between 2 and 3. Power-law graphs do not seem to belong to any of the well-studied network
families such as trees, planar graphs or low doubling dimension graphs mentioned above.

Despite their high relevance in practice, the family of power-law graphs has not received
much attention from the compact routing community. There are experimental studies of com-
pact routing in power-law graphs and Internet-like graphs. Krioukov et al. [25] evaluate the
universal routing scheme of Thorup and Zwick (TZ) [36] on random power-law graphs [6] and
provide experimental evidence of much better performance (both in terms of stretch and table
sizes) than the theoretical worst-case bound. However, they do not provide a theoretical bound
of the TZ scheme on power-law graphs for neither stretch nor table size. Enahescu et al. [16]
propose a landmark selection scheme that adapts the TZ scheme and they show empirically
that their adaptation achieves good stretch and table sizes for power-law graphs and Internet
Autonomous System (AS) graphs. Unfortunately, their theoretical analysis is for Erdős-Rényi
random graphs [17] instead of power-law graphs. Brady and Cowen [8] give a compact rout-
ing scheme tailored for power-law graphs with additive stretch d and header and table sizes
O(e log2 n), where both d and e depend on the graph, and they show experimentally that these
values are reasonably small for certain random power-law graphs [6]. However, there is no rig-
orous analysis connecting d and e to the parameter τ of power-law graphs.

1.1 Our Contribution

In this paper, we bridge the gap in the study of compact routing schemes for power-law graphs.
We provide the first theoretical analysis that directly links the power-law exponent τ of a random
power-law graph to the bound on the routing table sizes.

More specifically, we adapt the labeled universal compact routing scheme of Thorup and
Zwick [36] to optimize it for unweighted, undirected power-law graphs. Our adaptations include
(a) selecting nodes with the largest degrees as the landmarks instead of random sampling, and
(b) directly encoding shortest paths in node labels and message headers instead of relying on a
tree routing scheme (a detailed comparison with [36] is deferred to Section 1.2).

Our complexity analysis of the routing scheme is based on the random power-law graph
model with expected degree sequence proposed by Aiello, Chung and Lu [6, 10, 11, 28] with
some minor simplifications. We assume the power-law exponent τ to lie in the range of (2, 3),
which is the so called “finite mean infinite variance” region of the power-law degree distribution,
where most practical power-law networks are assumed to be in.
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We prove that for a stretch upper bound of 3, instead of tables of size Õ(n1/2) shown to be op-
timal up to a polylogarithmic factor for general graphs [36], expected sizes of O(nγ log n) bits are
sufficient, and that the routing tables can be constructed at once in expected time O(n1+γ log n),
with γ = τ−2

2τ−3 + ε and ε > 0 (which implies ε < γ < 1/3 + ε). Both bounds also hold with
probability at least 1 − 1/n (independent of ε). This means that for all τ ∈ (2, 3), we have an
upper bound of Õ(n1/3+ε) on the routing table sizes, which is better than the optimal bound
of Õ(n1/2) for general graphs. For values of τ close to 2, for example for τ = 2.1, which is
the exponent that fits the power-law distribution well to the degree distribution of the ac-
tual Internet inter-domain graph [18, 25], our bound is O(n1/12+ε), which indicates that the
adapted TZ routing scheme would be very effective on Internet-like graphs. The routing scheme
requires a stretch-5 handshaking (similar to [36, Sec. 4]), and uses addresses and message head-
ers of size O(log n log log n), with probability at least 1 − o(1). The efficient encoding using
O(log n log logn) bits in addresses and headers relies on specific distance properties of power-
law graphs. Our scheme is a fixed-port scheme, meaning that it works for any permutation of
port number assignments on any node.

We provide simulation results for both random power-law graphs and actual router-level
networks, which demonstrate the effectiveness of our adapted compact routing scheme (Sec-
tion 5).

Using the same techniques, we also adapt the approximate distance oracle by Thorup and
Zwick [37] for unweighted, undirected power-law graphs. We prove that, for stretch 3, instead
of an oracle of size O(n3/2), expected space O(n1+γ) is sufficient and that the oracle can be
constructed in expected time O(n1+γ log n). Again, both bounds also hold with probability at
least 1− 1/n.

1.2 Additional Details on Related Work

We provide additional details on the comparison with Thorup and Zwick’s routing schemes, and
on other random power-law graph models.

Thorup and Zwick [36] contribute two different routing schemes. Their first scheme is a
stretch-3 scheme with an O(n1/2 log3/2 n)-bit routing table per node and O(log n)-bit labels and
headers. This scheme is based on Cowen’s earlier scheme [14], which uses a small subset A of
nodes, called landmarks, to route messages. In a graph G = (V,E), for every node u, define
its cluster C(u) = {v ∈ V : d(v, u) < d(v,A)}, where d(v, u) and d(v,A) denote the graph
distance from v to u and A, respectively. Let `(u) denote the landmark in A that is the closest
to node u (ties are resolved arbitrarily). The routing table of node u stores the port identifiers
to route messages to all nodes in A and C(u). If a destination v is not in A ∪ C(u), u routes
through `(v), which guarantees a stretch bound of 3 due to the definition of the cluster C(u).
Thorup and Zwick use a resampling method to achieve |A ∪ C(u)| = O(n1/2 log1/2 n) for every
node u.

The second scheme of Thorup and Zwick [36] is based on their approximate distance or-
acle [37]. For any k ≥ 2, they design a compact routing scheme with Õ(n1/k)-bit tables,
O(k log2 n/ log log n)-bit addresses, andO(log2 n/ log logn)-bit headers (the bounds on addresses
and headers are for fixed-port schemes). The scheme achieves stretch 2k−1 with a stretch 4k−5
handshake. For the case of k = 2 (comparable to our scheme), their scheme essentially considers
the landmark set A together with the ball of a node u, B(u) = {v : d(v, u) < d(u,A)}. Note
that balls and clusters are dual concepts: v ∈ C(u) if and only if u ∈ B(v). The routing table of
u stores the ports to route messages to all nodes in A∪B(u). Similar to the first scheme, when
v 6∈ A ∪B(u), u routes through `(v) to reach v, but in this case it only guarantees a stretch of
5 instead of 3 when v 6∈ B(u) but u ∈ B(v). A handshake is needed to reduce the stretch to 3.
Moreover, a node w on the path from `(v) to v may not know the port to route to v from its
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routing table, since v may not be in B(w) (though v ∈ C(w)). To resolve this issue, Thorup and
Zwick further use a tree routing scheme, which requires additional, rather complicated labels.
They use random sampling to guarantee that |A ∪B(u)| = Õ(n1/2).

Our scheme is similar to their second scheme. We also use balls and landmarks to route
messages. There are two major differences: First, we use high-degree nodes instead of randomly
selected nodes as landmarks. The major contribution of the paper is to prove that, with this
selection strategy, in random power-law graphs, we achieve |A ∪B(u)| = O(nγ) with γ =
τ−2
2τ−3 + ε and ε > 0, which holds both in expectation and with high probability. Second, instead
of using a tree routing scheme, we directly encode the shortest path from `(v) to v in v’s address,
which is short (with probability 1 − o(1)) due to the distance properties in random power-law
graphs. As a result, our routing table sizes are smaller than the tables in both TZ schemes, and
our address and header size of O(log n log log n) is better than the second scheme and close to
the first scheme. Our scheme is also simpler than the second scheme and is comparable with the
first scheme. This improvement is possible only by tailoring the scheme to unweighted power-law
graphs.

Besides the random power-law graph model of Aiello, Chung, and Lu [6, 10, 11, 28], other
mathematical models for power-law graphs include the configuration model [33], the Poissonian
process [34], and the preferential attachment model [7, 26]. Among these, the random power-law
graph model is studied very well, providing a rich body of mathematical results. Furthermore,
recent empirical studies on compact routing also use this model [8, 25].

2 Preliminaries

We adapt the random graph model for fixed expected degree sequence as defined by Aiello,
Chung, and Lu [6, 10, 11, 28] using the definition from [10, Section 2]. We refer to the original
random graph distribution using the expression Fixed Degree Random Graph (FDRG).

Definition 1. For a constant τ ∈ (2, 3), the random power-law graph distribution RPLG(n, τ)
is defined as follows. Let the sequence of generating parameters w = {w1, w2, . . . , wn} obey a
power law, that is wk =

(
n
k

)1/(τ−1) for k ∈ {1, 2, . . . n}. The edge between vi and vj is inserted
into the random graph with probability min{wiwjρ, 1}, where ρ = 1∑

k wk
.

Note that we adapt the original model by deterministically inserting edges if wiwj >
∑

k wk,
since in the FDRG model it is required that ∀i, j : wiwj <

∑
k wk, which, without modification,

rules out the values for τ we consider in this paper. In the FDRG model, the value wi corre-
sponds to the expected degree of vertex vi, and they refer to w as the expected degree sequence.
In our adaptation, the graph is sampled due to the generating parameter values wi. Let Di be
the random variable denoting the degree of node vi. In our model, the expected degree E[Di]
of node vi is smaller than or equal to the generating parameter wi.

We require that n = |V (G)| is sufficiently large, specifically, that

n
ε(2τ−3)
τ−1 ≥ 2(τ − 1)

τ − 2
lnn. (1)

Our results do not have any other implicit dependencies on ε.
The core of a graph consists of nodes having large degrees. Let γ = τ−2

2τ−3 + ε for some ε > 0
and γ′ = 1−γ

τ−1 .

Definition 2. For a power-law degree sequence w and a graph G with n nodes, the core with
degree threshold nγ

′
, γ′ ∈ (0, 1), is defined as follows.

coreγ′(w) := {vi : wi > nγ
′},

coreγ′(G) := {vi : degG(vi) > nγ
′
/4},

4



where degG(vi) is the degree of vi in G (the subscript G is omitted when the graph is clear from
the context).

Our coreγ′(w) is the nγ
′
-Core in [28, Chapter 4, Definition 2].

For each vertex u of a graph G, we define its ball relative to the core as

BG(u) := {v ∈ V (G) : d(u, v) < min
v′∈coreγ′ (G)

d(u, v′)}.

3 The Adapted Compact Routing Scheme

Let the unweighted graph G = (V,E) model the network. Each node v in the network has a
unique dlog2 ne-bit static name. Whenever we write v in a routing table, a message header, or
a node address, we mean its dlog2 ne-bit static name representation. Each node v has deg(v)
ports connecting it with its neighbors. These ports are numbered by 0, 1, . . . ,deg(v) − 1, and
thus each port number of v requires dlog2 deg(v)e bits. For every packet, the routing scheme
needs to decide which port the packet is to be forwarded to. Our scheme is a fixed-port scheme,
that is, it works with arbitrary permutations of port number assignments.

3.1 Routing Scheme

The routing algorithm is inspired by and based on [14, 36]. We also use a set of landmarks A ⊆ V ,
but different from [14, 36], we use coreγ′(G) as landmarks instead of nodes sampled at random.
For each node u in G, let `(u) denote u’s closest landmark, that is, `(u) := arg min

v∈coreγ′ (G)
d(u, v).

The local targets of node u are defined as the elements of its ball BG(u). Similar to the second
scheme in [36], each node u stores the ports to route messages along the shortest paths to all
landmarks and to its local targets. If the target v is neither a landmark nor a local target of u,
the message is routed to v’s closest landmark `(v) and from there to the target v.

The scheme is a labeled scheme. For a node u to know `(v) of any target v, the address of
node v contains an encoding of `(v). Moreover, for a node w on the shortest path from `(v) to
v (w 6= `(v) and w 6= v), v may not be in BG(w) and thus w may not know the port to route
messages to v. To resolve this issue, we further extend the address of v by encoding the shortest
path from the landmark `(v) to v.

Let (s = u0, u1, . . . , um = t) denote the sequence of nodes on a shortest path from s to t. Let
SP (s, t) be the encoding of this shortest path as an array with m entries, wherein SP (s, t)[i]
denotes the port to route from ui to ui+1 for all i = 0, 1, . . . ,m − 1. Thus SP (s, t) can be
encoded with

∑m−1
i=0 log2ddeg(ui)e bits. We now provide the precise definitions of addresses,

message headers, and local routing tables.

Definition 3.

– The address of node u ∈ V is addr(u) := (u, `(u), SP (`(u), u)).
– The header of a message from node s to node t is in one of the following formats:

1. header = (route, s, t), where route = local,
2. header = (route, s, addr), where route = toLandmark and addr = addr(t),
3. header = (route, s, t, pos, SP ), where route ∈ {fromLandmark, direct}, pos is a non-

negative integer that may be modified along the route, and SP = SP (s, t) if route =
direct or SP = SP (`(t), t) if route = fromLandmark,

4. header = (route, s, t, SP ), where route = handshake and SP is a reversed shortest path
from t to s to be encoded along the path from s to t.
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– The local routing table for each node u consists of the information about routes to the core
and the information about local routes:

tbl(u) := {(v, portu(v)) : v ∈ coreγ′(G)} ∪ {(v, portu(v)) : v ∈ BG(u)},

where portu(v) is the local port of u to route messages towards node v along some shortest
path from u to v.

The routing procedure is described in Algorithm 1. It includes pseudocode for the source
node s to determine the method of sending a message to target t (Lines 1–10), based on whether t
is local or not and whether a shortest path to t is known due to an earlier handshake or not. It also
includes pseudocode for an intermediate node u to determine whether to forward the message
using its local routing table (Lines 20 and 26), or to forward the message using the shortest
path encoded in the header (Lines 22–24), or to switch the routing direction from towards the
landmark `(t) to towards the target t (Lines 16–18). The correctness of the algorithm is based
on the simple observation that if t ∈ BG(s)∪ coreγ′(G) (and thus t is in the routing table of s),
then, for all nodes w on the shortest path from s to t, we also have t ∈ BG(w) ∪ coreγ′(G).

Algorithm 1 LandmarkBallRouting on node u, with source s, target t 6= s, and header
header.
1: if u = s then
2: if t ∈ BG(s) then
3: send packet with header = (local, s, t) using ports(t) stored in tbl(s)
4: else if u knows SP (s, t) /* due to handshake */ then
5: send packet with header = (direct, s, t, 0, SP (s, t)) using port SP (s, t)[0]
6: else
7: send packet with header = (toLandmark, s, addr(t)) using ports(`(t)) stored in tbl(s)
8: end if
9: exit

10: end if
11: /* u 6= s */
12: if u = header.t then
13: exit as the packet arrived.
14: end if
15: if header.route = toLandmark then
16: if u = header.addr.`(t) then
17: header.route← fromLandmark; header.pos← 0; header.SP ← header.addr.SP (`(t), t);
18: forward packet with the new header using port header.SP [0]
19: else
20: forward the packet to portu(header.addr.`(t)) stored in tbl(u)
21: end if
22: else if header.route ∈ {fromLandmark, direct} then
23: header.pos← header.pos+ 1
24: forward the packet using port header.SP [header.pos]
25: else if header.route = local then
26: forward the packet using portu(header.t) stored in tbl(u)
27: end if

An additional handshake protocol (Algorithm 2) handles the special case when t 6∈ BG(s)
but s ∈ BG(t). In this case, the basic LandmarkBallRouting scheme only achieves worst-
case stretch 5 instead of 3. However, t knows the reverse path from t to s. Since the graph is
undirected, t can send a special handshake message back to s (Line 2), and each node along the
path encodes the reverse port number such that, in the end, s knows the shortest path from s
to t (Lines 3–10). For simplicity of exposition we use the reasonable assumption [3] that node
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u knows the port q on which the message is received. If this assumption does not hold, our
handshake protocol can be adapted accordingly as follows. In the routing table of a node u, for
all v ∈ BG(u) ∪ coreγ′(G), we also store a rev-portu(v) = portw(u), where w is the first node
on the path from u to v. Then, when forwarding the handshake message from t to s, every node
u on the path (including t) prepends rev-portu(s) to the SP in the header. This increases the
routing table size by at most dlog2 ne bits per entry. Note that, in Algorithm 2, we also include
the case of s ∈ coreγ′(G) (see Line 1), in which case the stretch is improved from 3 to 1.

Algorithm 2 Handshake protocol on node u upon the receipt of a packet from a port q with
header header.
1: if header.route = fromLandmark and u = header.t and header.s ∈ BG(u) ∪ coreγ′(G) then
2: send packet with header = (handshake, u, header.s,Nil) using portu(header.s) stored in tbl(u).
3: else if header.route = handshake then
4: header.SP = q · header.SP /* prepend the port q as part of the reverse path */
5: if header.t = u /* reach handshake destination */ then
6: store SP (u, header.s) = header.SP locally for later use (see Line 4 of LandmarkBallRouting.)
7: else
8: forward packet with the new header to portu(header.t) stored in tbl(u).
9: end if

10: end if

The performance of Algorithms 1 and 2 is evaluated in the following theorem, which is
proven in the next section.

Theorem 1. LandmarkBallRouting together with the handshake protocol is a routing scheme
with the following properties: (1) the worst-case stretch is 5 without handshaking, (2) the worst-
case stretch is 3 after handshaking, and (3) every routing decision takes constant time. In
addition, for random graphs sampled from RPLG(n, τ), the following properties hold: (4) the
expected maximum table size is O(nγ log n) bits; this bound also holds with probability at least
1 − 1/n, (5) address length and message header size are O(log n log log n) bits with probabil-
ity 1 − o(1), and (6) addresses and routing tables can be generated efficiently in expected time
O(n1+γ log n) and this bound also holds with probability at least 1− 1/n.

4 Analysis

In this section, we analyze the performance of LandmarkBallRouting for random power-law
graphs.

4.1 Stretch

The proofs use the triangle inequality as in [14, 36].

Lemma 1. LandmarkBallRouting has worst-case stretch 5. After handshaking with stretch 5,
LandmarkBallRouting has worst-case stretch 3.

Proof. By the triangle inequality [14], it is easy to verify the worst-case stretch 3 after handshak-
ing. Before handshaking, the worse-case stretch happens when t /∈ BG(s) and s ∈ BG(t). It holds
that d(s, t) ≥ d(s, `(s)). The radius of t’s ball is at most d(t, `(t)) ≤ d(t, `(s)) ≤ d(`(s), s)+d(s, t).
Also, the distance from s to t’s landmark is at most d(s, `(t)) ≤ d(s, t) + d(t, `(t)). This results
in a total path length of at most

d(s, `(t)) + d(`(t), t) ≤ d(s, t) + 2d(t, `(t)) ≤ d(s, t) + 2(d(`(s), s) + d(s, t)) ≤ 5d(s, t).

ut
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4.2 Random Power-Law Graphs and their Cores and Balls

We first prove some properties of the adapted random power-law graph model. Let G be a
random graph sampled from RPLG(n, τ). For a set of nodes S, define its volume Vol(S) as
the sum of all its nodes’ wi, that is, Vol(S) :=

∑
vi∈S wi. We abbreviate Vol(G) = Vol(V (G)).

Note that Vol(G) = 1/ρ. Let vol(S) denote the sum of the nodes’ degrees in the actual graph
G, vol(S) :=

∑
vi∈S degG(vi). The following lemma proves that Vol(G) is linear in n.

Lemma 2. Let G be a random graph sampled from RPLG(n, τ). The volume Vol(G) satisfies

n < Vol(G) ≤ τ − 1
τ − 2

n.

Proof. Lower bound: it holds that
∑

k wk > n, as ∀k < n : wk > 1 and wn = 1.
Upper bound: it holds that

Vol(G) =
n∑
k=1

wk < w1 +

n∫
1

(n
x

)1/(τ−1)
dx ≤ τ − 1

τ − 2
n.

ut

In the following, we show concentration results for the actual degree of a vertex and for the
volume of a set of vertices in the adapted RPLG(n, τ) model. We also restate the corresponding
results in the original FDRG model.

Lemma 3 ([11, Lemma 5.6], generalized from [29, Theorem 2.7]). For a random graph
sampled from FDRG(w), the random variable Di measuring the degree of vertex vi is concen-
trated around its expectation wi as follows:

Pr[Di > wi − c
√
wi] ≥ 1− e−c2/2 (2)

Pr[Di < wi + c
√
wi] ≥ 1− e−

c2

2(1+c/(3
√
wi)) (3)

Lemma 4 ([11, Lemma 5.9]). For a random graph sampled from FDRG(w), for a subset
of vertices S and for all 0 < c ≤

√
Vol(S),

Pr[|vol(S)−Vol(S)| < c
√

Vol(S)] ≥ 1− 2e−c
2/6.

Lemma 5. Let n ≥ 4
τ−1

(τ−2)2 . For a random graph sampled from RPLG(n, τ), if wi ≥ 32 lnn,
for vertex vi, the degree Di satisfies the following: Pr[wi/4 ≤ Di ≤ 3wi] > 1− 2/n4.

Proof. Recall that ρ = 1/Vol(G) < 1/n (by Lemma 2). For 1 ≤ i ≤ n, let h(i) ∈ [1, n] denote
the smallest integer such that ρwh(i)wi ≤ 1. Consider h(1). Since ρw1( n

n3−τ )1/(τ−1) ≤ 1, we have
that h(1) ≤ dn3−τe. Therefore, for all 1 ≤ i ≤ n, h(i) ≤ h(1) ≤ dn3−τe.

We split the degree Di into two parts: the contribution by edges to nodes vj with j < h(i)
and the contribution stemming from edges to nodes vj with j ≥ h(i). When h(i) ≥ 1, there are
at least h(i)− 1 edges to nodes vj with j ≤ h(i). Now consider the edges between vi and vj for
j ≥ h(i). Since the sequence w is monotonically decreasing,

n∑
i=h(i)

wi ≥
n∫

n3−τ+1

(n/x)1/(τ−1)dx

≥ τ − 1
τ − 2

(n− n1/(τ−1)2
τ−2
τ−1n

τ−2
τ−1

(3−τ)) /* use condition: (n3−τ ≥ 1) */

≥ τ − 1
2(τ − 2)

n. /* use condition: n ≥ 4
τ−1

(τ−2)2 */
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Recall that ρ = 1/
∑n

i=1wi ≥
τ−2

n(τ−1) by Lemma 2. Let D′i be the random variable denoting
the number of edges from vi to vj with j ≥ h(i) in a random graph. Thus, E[D′i] = µ =
ρwi

∑n
j=h(i)wi ≥ wi/2 ≥ 16 lnn. Also µ ≤ wi. Since there are no deterministic edges in this

case, the random variable D′i can be bounded using Lemma 3:

Pr[D′i > µ/2] ≥ 1− e−µ/4 ≥ 1− 1/n4,

Pr[D′i < 2µ] ≥ 1− e−3µ/8 ≥ 1− 1/n4.

If h(i) = 1, the lemma follows directly. If h(i) > 1, we have Di ≤ D′i + h(i)− 1. Notice that
ρwi(n/wi)1/(τ−1) ≤ 1, which implies that h(i) ≤ dwie ≤ wi + 1. Therefore,

Pr[wi/4 ≤ µ/2 ≤ Di ≤ 3wi] ≤ 1− 2/n4.

ut

Lemma 6. Let G be a random graph sampled from RPLG(n, τ). For a subset of vertices S
satisfying Vol(S) ≥ 192 lnn, it holds with probability at least 1−2/n3 that Vol(S)/8 ≤ vol(S) ≤
4Vol(S).

Proof. We split S into two parts. Nodes vi with small wi, S1 := {vi ∈ S : wi < 32 lnn}, and
nodes vi with large wi, S2 = S \ S1. By Lemma 5, Pr[Vol(S2)/4 ≤ vol(S2) ≤ 3Vol(S2)] ≥
1− 2 |S2| /n4.

As for each vertex vi ∈ S1, wi < 32 lnn, we can apply Lemma 4 to S1, since no deterministic
edges are attached to S1. Therefore, if Vol(S1) ≥ 96 lnn, by Lemma 4, Pr[Vol(S1)/2 ≤ vol(S1) ≤
2Vol(S1)/3] ≥ 1 − 2/n4. Therefore, the statement holds with probability at least 1 − 2(|S2| +
1)/n4 ≥ 1− 2/n3.

If Vol(S1) < 96 lnn, we have Vol(S2) ≥ Vol(S)/2 ≥ 96 lnn. Nevertheless, we can still apply
Lemma 4 to bound vol(S1) from above as Pr[vol(S1) < 3

2 · 96 lnn ≤ 3
4Vol(S)] ≥ 1 − 2/n4. In

this case, since Pr[Vol(S)/8 ≤ Vol(S2)/4 ≤ vol(S2) ≤ 3Vol(S2)] ≥ 1− 2 |S2| /n4, the statement
also holds with probability at least 1− 2/n3.

ut

Corollary 1. The number of edges of a random graph sampled from RPLG(n, τ) is at most
vol(G)/2 ≤ 4(τ−1)

τ−2 n with probability at least 1− 1/n2.

There is an edge between two nodes vi, vj with probability proportional to wi and wj . This
is generalized for sets of nodes S, T ⊆ V (G) in the following and holds for both FDRG(w) and
RPLG(n, τ).

Lemma 7 ([10, Lemma 3.3], proof in [28, Lemma 9]). For any two disjoint subsets S
and T with Vol(S) ·Vol(T ) > c ·Vol(G), we have

Pr[d(S, T ) > 1] =
∏

vi∈S,vj∈T
max{0, (1− wiwj/Vol(G))} ≤ e−c.

4.3 Core size.

To compute the size of coreγ′(w), we solve the inequality wk > nγ
′

and obtain k.

wk =
(n
k

) 1
τ−1

> nγ
′ ⇔ k−

1
τ−1 > nγ

′− 1
τ−1

⇔ k < n(1−τ)(γ′− 1
τ−1

) = nγ
′(1−τ)+1
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As γ′ = 1−γ
τ−1 , we have

∣∣coreγ′(w)
∣∣ = dnγ′(1−τ)+1e − 1 = dnγe − 1.

Even if the same degree threshold nγ
′

is used for coreγ′(w) and coreγ′(G), the two sets of
nodes may differ. For a slightly smaller degree threshold nγ

′
/4 (as in Definition 2), the core of

the actual graph contains coreγ′(w) with high probability (apply Lemma 5).

Lemma 8. Let G be a random graph sampled from RPLG(n, τ). With probability at least
1− 1/n2 it holds that coreγ′(w) = {vi : wi > nγ

′} ⊆ {vi : deg(vi) > nγ
′
/4} = coreγ′(G).

Proof. Let vi be a vertex in coreγ′(w). By Lemma 5, Di ≥ nγ
′
/4 with probability at least

1− 2/n4. This holds for all j ≤ i. Therefore, by union bound, the probability that coreγ′(w) ⊆
{vi : deg(vi) > nγ

′
/4} is at least 1− 1/n2. ut

Lemma 9. Let G be a random graph sampled from RPLG(n, τ). With probability at least
1− 1/n2,

∣∣coreγ′(G)
∣∣ = Θ(nγ).

Proof. Since coreγ′(G) contains coreγ′(w) with high probability (1 − 1/n2), its size is at least
nγ with high probability.

Let i = 144nγ . By Lemma 5, Di ≤ 3wi < nγ
′
/4 with probability at least 1 − 2/n4. This

holds for all j ∈ (i, n]. By union bound, coreγ′(G) does not contain any vertex vj for i ≤ j ≤ n,
with probability at least 1− 1/n2, which implies

∣∣coreγ′(G)
∣∣ ≤ 144nγ with probability at least

1− 1/n2. ut

4.4 Ball sizes.

Let G be a random graph sampled from random power-law graph. Recall that a ball is defined
by

BG(u) = {v ∈ V (G) : d(u, v) < min
v′∈coreγ′ (G)

d(u, v′)}.

Lemma 10. Let β = γ′(τ − 2) + (2τ−3)ε
τ−1 be a constant. Assume Equation (1) is satisfied. For a

random graph G sampled from RPLG(n, τ), with probability at least 1− 3/n2, it holds that for
all u ∈ V (G),

|BG(u)| =
∣∣{u′ ∈ V (G) : d(u, u′) < d(u, coreγ′(w))}

∣∣ = O(nβ),

|E(BG(u))| = O(nβ log n),

where E(BG(u)) is the set of internal edges among vertices in BG(u).

Since for RPLG(n, τ) the edges are independent, in our analysis, the existence of every
edge in random graph G is only determined when it is needed, and before that it is treated as
a probability distribution as defined in our random graph model. We call the determination of
the existence of an edge according to its probability distribution revealing the edge.

For a given vertex u ∈ V (G), we define a sequence of balls (B0 = {u}, B1, B2, . . .) as follows:
Let V ′ = V \ coreγ′(w). Now define Bi = {v : dG(u, v) ≤ i}. We also define the circles
Ci = Bi \Bi−1 for i ≥ 0 with B−1 = ∅. Let Ei be the number of edges between Ci and Ci∪Ci+1.
We first give a concentration result on Ei.

Lemma 11. For circle Ci, the following holds with probability at least 1− 2/n3:

If Vol(Ci) < 192 lnn, then Ei ≤ 4 · 192 lnn, and
if Vol(Ci) ≥ 192 lnn, then Ei ≤ 4Vol(Ci).
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Proof. For our analysis, we assume that the edges of the random graph are revealed in consec-
utive steps as follows: in step i with i ≥ 0, edges from Ci to V ′ \ Bi−1 are revealed and circle
Ci+1 is formed. In other words, when discovering Ci, the edges between Ci and V ′′ = V ′ \Bi−1

have not been revealed yet.
In particular, Ei measures the number of edges between Ci and V ′′ under the condition that

we know all edges adjacent to Bi−1. We can define another random graph G′ on the vertex set
V ′′, such that the edge between two vertices in V ′′ is sampled with the same probability as in
RPLG(n, τ). Clearly, Ei and volG′(Ci) have the same distribution, where volG′(Ci) denotes
the number of edges adjacent to Ci in G′.

Let vol(Ci) denote the random variable measuring the number of edges adjacent to Ci in
the original model FDRG. volG′(Ci) is stochastically dominated by vol(Ci). Hence, the lemma
directly follows since it applies to vol(Ci) by Lemma 6. ut

Since there are at most n circles, Lemma 11 holds for all circles with probability at least
1− 2/n2. We are now ready to prove Lemma 10.

Proof (of Lemma 10).
Let k be the smallest integer such that Vol(Bk) ≥ nβ. We have the conditions Vol(Bk) ≥ nβ,

Vol(coreγ′(w)) ≥
∣∣coreγ′(w)

∣∣nγ′ = nγ+γ
′
, and Vol(G) ≤ τ−1

τ−2n (Lemma 2). From Equation (1),
nβ−γ

′(τ−2) > 2 τ−1
τ−2 lnn. Since the edges between Bk and coreγ′(w) have not been revealed,

Lemma 7 can be applied. Due to Lemma 7, there is an edge between Bk and coreγ′(w) with
probability at least 1−1/n2. Recall that coreγ′(w) ⊆ coreγ′(G) with probability at least 1−1/n2

by Lemma 8. Hence BG(u) ⊆ Bk with probability at least 1− 2/n2.
In the following, we bound the size of Bk. Lemma 11 holds for all circles with high probability.

In our case, Vol(Ck−1) ≤ Vol(Bk−1) < nβ. By Lemma 11, |Ck| ≤ Ek−1 ≤ 4nβ with probability
at least 1− 1/n2. Then, |Bk| = |Bk−1|+ |Ck| ≤ Vol(Bk−1) + |Ck| ≤ 5nβ.

SinceBG(u) ⊆ Bk with probability at least 1−2/n2, we have |E(BG(u))| = O(vol(Bk−1(u))) =
O
(∑k−1

i=0 Ei

)
, with probability at least 1− 2/n2.

By Lemma 11, with probability at least 1− 1/n2, Ei ≤ 4 · 192 lnn+ 4Vol(Ci) for all i. Since
k ≤ nβ, with probability at least 1− 3/n2,

|E(BG(u)| = O

(
k−1∑
i=0

Ei

)
= O(4 · 192nβ lnn+ 4Vol(Bk−1)) = O(nβ log n).

ut

4.5 Table Sizes and Computations

The core coreγ′(G) has size Θ(nγ) with probability at least 1 − 1/n2 (Lemma 9) and all balls
BG(u) have size O(nγ) with probability at least 1− 3/n2 (Lemma 10). Therefore, we have the
following result.

Lemma 12. For a random graph G sampled from RPLG(n, τ), for all u ∈ V (G), the expected
table size is at most

|tbl(u)| = O(nγ)

and all tables can be generated in expected time at most O(n1+γ log n). These bounds also hold
with probability at least 1− 1/n.

Proof. Note that each entry of tbl(u) has O(log n) bits. Thus the total table size per node is
O(nγ log n) bits.
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Our algorithm is deterministic. The expected time (space) complexity is the average running
time (space) of our algorithm over all graphs from the random graph distribution RPLG(n, τ).

Given a graph G with n nodes and m edges, our algorithm computes the core coreγ′(G) of
G with time complexity O(m + n log n). It runs a complete breadth-first search for each node
of the core in time O(m). Let BG(u) be the ball computed in our algorithm for vertex u. Let
T (BG(u)) denote the time to compute BG(u). Therefore, the time complexity TC and space
complexity SC of our algorithm are at most

TC(G) = O

m · ∣∣coreγ′(G)
∣∣+

∑
v∈V (G)

T (BG(u))

 , (4)

SC(G) = O

n · ∣∣coreγ′(G)
∣∣+

∑
v∈V (G)

|BG(u)|

 . (5)

We now know that with probability at least 1−5/n2, all of the following conditions are true:
(1) m = Θ(n) (Corollary 1); (2) |coreγ′(G)| = Θ(nγ) (Lemma 9); (3) |BG(u)| = O(nβ) for all
vertices u (Lemma 10); (4) T (BG(u)) = O(nβ log n) for all vertices u (Lemma 10). Therefore,
from Equations (4) and (5), we know that with probability at least 1−5/n2, the space complexity
of our algorithm is O(n1+γ + n1+β) and the time complexity is O(n1+γ + n1+β log n).

Finally, we fix the parameters to obtain a balanced scheme. In a balanced scheme, the core
size and the expected ball sizes are asymptotically equivalent, that is, β = γ. Together with
β = γ′(τ−2)+ (2τ−3)ε

τ−1 and γ′ = 1−γ
τ−1 , we have γ = τ−2

2τ−3+ε. Therefore, assuming that Equation (1)
is satisfied, the space requirement per node is O(nγ log n) bits and the preprocessing time is
bounded by O(n1+γ log n), which holds with probability at least 1− 1/n. ut

4.6 Address Lengths

We now bound the number of bits for the address of each vertex. For one vertex u, its address
contains the encoding of the shortest path SP (u, `(u)) from u to its landmark `(u). We need
to bound the diameter of a random power-law graph and the diameter of its core. The proofs
in [10] on diameters can be carried over to our adapted model.

Lemma 13 (Chung and Lu [10, Claim 4.4]). For a random graph sampled from RPLG(n, τ),
with probability at least 1− o(1), the diameter of its largest connected component is Θ(log n).

By Lemma 13, the length of SP (u, `(u)) is at most O(log n) asymptotically almost surely.
Therefore, SP (s, t) can be encoded with O(log2 n) bits. This bound can be improved to O(log n·
log logn), as proven in the following lemma.

Lemma 14. For a random graph G sampled from RPLG(n, τ), with probability at least 1−o(1),
it holds that for all s, t ∈ V (G), SP (s, t) can be encoded with O(log n log log n) bits.

The proof is split into several claims from [10]. We first extend the core.

Definition 4. The extended core of a random graph from RPLG(n, τ) contains all nodes vi
with wi at least n1/ log logn, that is, core+(w) = {vi ∈ V : wi ≥ n1/ log logn}.

Note that, as τ is a constant, 1/ log log n ≤ γ′ for large enough n, and thus core+(w) ⊇
coreγ′(w). The following lemma constitutes a bound for the diameter of the core. This is from
the fact that the extended core “contains” a dense Erdős-Rényi [17] random graph.
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Lemma 15 (Chung and Lu [10, Claim 4.1]). Let G be a random graph sampled from
RPLG(n, τ). The diameter of the subgraph induced by core+(w) in G is O(log log n) with
probability at least 1− 1/n.

The next lemma proves that a vertex vi with large enough wi is close to the extended core.

Lemma 16 (Chung and Lu [10, Claim 4.2]). Let G be a random graph sampled from
RPLG(n, τ). There exists a constant C, such that each vertex vi with wi ≥ logC n is at distance
O(log log n) from the extended core, with probability at least 1− 1/n2.

Corollary 2 (Corollary of Lemma 16). Let G be a random graph sampled from RPLG(n, τ).
Let C be the constant in Lemma 16. With probability at least 1− 1/n, the distance between any
two vertices vi, vj with wi ≥ logC n and wj ≥ logC n is O(log log n).

Proof (of Lemma 14). Let vi and vj be the first and the last vertex in SP (s, t) from s to t
such that wi and wj both are greater than logC n, where C is the constant from Lemma 16. By
Corollary 2, with probability 1− 1/n, the portion of the shortest path SP (s, t) between vi and
vj has length at most O(log log n). Therefore, this portion of the shortest path can be encoded
with O(log n log log n) bits, with probability 1− 1/n.

For the rest of the shortest path, each node has wi at most logC n. By Lemma 5, all such
nodes have degree at most 3 logC n with probability at least 1 − 2/n3. To encode the next
neighbor in the shortest path, at most O(log log n) bits are necessary. Since SP (s, t) contains
O(log n) nodes with probability 1− o(1) (Lemma 13), the rest of the shortest path can also be
encoded with O(log n log log n) bits, with probability 1− o(1). ut

Corollary 3. For a random graph G sampled from RPLG(n, τ), with probability at least 1 −
o(1), it holds that for all u ∈ V (G), the address addr(u) can be encoded with O(log n log logn)
bits.

5 Experiments

In this section, we experimentally demonstrate the efficiency of our scheme. We use the following
datasets in our experiments.

Real-world graphs. The most important application scenario for a compact routing scheme is
arguably a communication network. The router-level topology of a portion of the Internet,
measured by CAIDA [13], is an undirected, unweighted graph with 190, 914 nodes and 607, 610
edges. The estimated power-law exponent (maximum likelihood method [32]) is τ̂ = 2.82.

Random Power-Law Graphs. We extracted the largest connected component from the random
power-law graphs generated by Brady and Cowen [8] (pre-generated graphs, N = 10, 000 and
τ ∈ (2, 3), downloaded from http://digg.cs.tufts.edu/).

In addition, we generated graphs of 10,000 nodes with the tool BRITE [30] using the con-
figurations for the Barabási [7] and Waxman [38] models for an Autonomous System Topology
(AS) and a Router Topology (RT) — the precise configurations are listed in Section 5.1. The
edge weights were ignored and the links interpreted as undirected.

Note that for all the random graphs considered, the generation process does not exactly
match the RPLG(n, τ).
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Graph CAIDA [13] ASBarabasi RTBarabasi ASWaxman RTWaxman

random, p = n−1/2 929.84±95.40 204.03±25.57 208.32±22.21 221.95± 24.73 217.75± 28.00

highdeg, dnγe 173.68±55.80 32.16±41.30 44.95±58.21 139.45±142.94 130.65±131.78

Graphs [8] τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4 τ = 2.5

random, p = n−1/2 74.90±37.96 74.94±44.78 77.49±50.56 79.74± 55.50 82.54± 60.17

highdeg, dnγe 55.20±67.48 48.50±54.57 42.20±42.94 43.28± 40.10 43.55± 38.37

Graphs [8] τ = 2.6 τ = 2.7 τ = 2.8 τ = 2.9

random, p = n−1/2 86.88±69.69 85.56±71.35 84.69±73.87 76.65± 71.71

highdeg, dnγe 45.59±39.59 50.24±46.08 56.48±56.26 46.85± 46.65

Table 1. Table sizes: mean and standard deviation

Graph CAIDA [13] ASBarabasi RTBarabasi ASWaxman RTWaxman

random 1.28±0.16 1.38±0.28 1.38±0.25 1.37±0.25 1.38±0.16

highdeg, dnγe 1.12±0.14 1.15±0.21 1.20±0.22 1.36±0.26 1.35±0.24

Graphs [8] τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4 τ = 2.5

random, p = n−1/2 1.34±0.24 1.35±0.24 1.35±0.25 1.34±0.26 1.34±0.26

highdeg, dnγe 1.30±0.24 1.26±0.23 1.23±0.23 1.21±0.23 1.18±0.22

Graphs [8] τ = 2.6 τ = 2.7 τ = 2.8 τ = 2.9

random, p = n−1/2 1.33±0.28 1.31±0.28 1.29±0.29 1.25±0.28

highdeg, dnγe 1.16±0.22 1.15±0.22 1.15±0.24 1.11±0.22

Table 2. Stretch: mean and standard deviation

Routing schemes. In the specification of our routing scheme LandmarkBallRouting, we use
nγ
′
/4 as a degree threshold (Definition 2) and obtain a core of size Θ(nγ). The largest connected

components of the graphs generated by Brady and Cowen [8] and the graphs generated using
BRITE [30] do not contain nodes with such a high degree. Therefore, for the experiments with
our routing scheme, the algorithm selects the dnγe nodes with the highest degrees as landmarks.
In practice, this might indeed be a better strategy.

We compare our high-degree selection strategy with the random selection with probability
n−1/2, which is similar to Thorup and Zwick [36] for k = 2. Recall that their scheme is not
optimized for power-law graphs but works for general, weighted graphs as well. We also compare
our scheme with the values obtained by Brady and Cowen [8].

Settings and results. For the graphs generated by Brady and Cowen [8], the high-degree selection
and the random sampling process were executed five times for each of the ten graphs per value
of τ , which gives a total of 5 · 10 · 9 · 2 = 900 routing scheme constructions. For each of the
remaining graphs (Barabási, Waxman, CAIDA), both schemes were constructed at least 10
times. We report the table sizes (mean and standard deviation) in Table 1. For each instance,
200 random (s, t) pairs were generated and packets routed. The stretch (the length of the route
divided by the length of a shortest path) is reported in Table 2.

In our experiments, the strategy of selecting few high-degree nodes as landmarks always
produces significantly smaller routing tables compared to a large number of landmarks selected
at random. The best results are achieved for the graphs stemming from the Barabási model,
for which the high-degree-based tables are roughly 5 times smaller than their random-based
counterpart. The average table size for the randomly selected landmarks is close to

√
n, which

means that most balls are actually (almost) empty. As predicted by our analysis, this indicates
that, for power-law graphs, the optimal balance for randomly selected landmarks may be smaller
than O(

√
n).
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The average stretch is surprisingly consistent among different datasets. Even though there
are fewer landmarks, the average stretch is better if high-degree nodes are selected as landmarks.
Brady and Cowen [8] claim average stretch 1.18–1.25 for the scheme by Thorup and Zwick [36].
Our experiments do not confirm this claim: randomly selected nodes (similar to TZ) did not
achieve this stretch. Brady and Cowen also claim average stretch 1.11–1.22 for their scheme and
small values for τ ∈ {2.1, 2.2, 2.3}. Our scheme, except for the graphs of the Waxman model and
for small values of τ ≤ 2.2, also achieves these average stretch values. The worst-case stretch
is difficult to compare as our scheme has a (non-experimental) worst-case multiplicative stretch
and the scheme by Brady and Cowen has an experimental worst-case additive stretch. Brady
and Cowen conclude from their topology experiments that, for graphs up to 40, 000 nodes, their
scheme has a worst-case additive stretch of 10 while maintaining O(log2 n)-bit tables per node.
For nodes ‘close’ to each other (distance less than 5), the multiplicative stretch of 3 yields better
stretch guarantees. For nodes ‘far’ from each other (distance at least 5), the additive stretch of
10 yields better stretch guarantees. In power-law graphs, most distances are short, the typical
distance being O(log log n) [10].

The high-degree nodes in the power-law graphs of the Waxman model have only very few
edges: the highest degree is only 20. Furthermore, as dnγe = 3, the core is really small and so
is the cumulative degree. Compared to the other power-law graphs, the high-degree selection
strategy does not produce huge benefits but it still outperforms random selection. In practice,
one might add high-degree nodes to the set of landmarks until a certain cumulative degree
threshold (for example

√
n or also a threshold value dependent on τ) is reached.

5.1 Details for the BRITE graphs used in the experiments

We provide the detailed parameters used to generate the graphs using BRITE [30], based on
the Barabási [7] and Waxman [38] models. We use the prefix of AS to denote the Autonomous
System topology and RT to denote the Router Topology.
Model (1 - RTWaxman): 10000 1000 100 1 2 0.15 0.2 1 1 10.0 1024.0
Model (2 - RTBarabasi): 10000 1000 100 1 2 1 10.0 1024.0
Model (3 - ASWaxman): 10000 1000 100 1 2 0.15 0.2 1 1 10.0 1024.0
Model (4 - ASBarabasi): 10000 1000 100 1 2 1 10.0 1024.0

The resulting graphs have the following numbers of nodes and edges, and the corresponding
power-law exponent τ̂ , estimated using [32].

Graph Nodes Edges τ̂
ASWaxman 10,000 20,000 2.806
RTWaxman 10,000 20,000 2.806
ASBarabasi 10,000 19,997 2.893
RTBarabasi 10,000 19,997 2.892

6 Approximate Distance Oracle

Dijkstra’s algorithm [15] finds a shortest path in any graph with non-negative edge weights in
time O(n log n + m), where n and m denote the number of nodes and edges respectively. For
applications such as navigation software exploring huge maps or for social networking sites,
this query time is not practical. Instead, the graph is preprocessed and a special data structure
allows for efficient queries. One way to prepare for queries is to precompute all shortest paths
using an All-Pairs Shortest Path algorithm [9] and to read a shortest path from a distance table.
Time and memory constraints, however, render this approach impractical. Instead of running
a cubic-time algorithm and using quadratic storage, we want to efficiently preprocess a graph
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to allow for fast distance queries. However, for general (directed) graphs with n vertices, Ω(n2)
space is necessary to return the shortest distance. This calls for an approximation method.
Approximate distance oracles address the trade-off between approximation ratio, space, and
preprocessing and query time, and can thus be interpreted as a generalization of the All-Pairs
(Approximate) Shortest Path problem.

Thorup and Zwick [37] provide a stretch-2k − 1 oracle of size Õ(kn1+1/k), which can be
constructed in time O(kmn1/k). Assuming a girth conjecture by Erdős, stretch and size are
basically tight.

To the best of our knowledge, there is no distance oracle for power-law graphs so far. We
prove the following:

Theorem 2. Let γ = τ−2
2τ−3 + ε be a constant. Assume Equation (1) is satisfied. For random

power-law graphs from RPLG(n, τ) (Definition 1), there exists a preprocessing algorithm that
runs in expected time O(n1+γ log n) and creates a distance oracle of expected size O(n1+γ). These
bounds also hold with probability at least 1 − 1/n. After preprocessing, approximate distance
queries can be answered in O(1) time with stretch at most 3.

We propose a modification of the distance oracle by Thorup and Zwick [37, Fig. 5] for k = 2,
which guarantees stretch 3. The main idea of the scheme by Thorup and Zwick for k = 2 is the
following: in the preprocessing step, given a graph G = (V,E), (1) each node v ∈ V is chosen as a
landmark independently at random with probability n−1/2. The expected number of landmarks
is
√
n. (2) For each node u ∈ V , find its nearest landmark `(u) and compute the distances from

u to all landmarks. To guarantee optimal stretch for short distance queries, (3) for every node
u ∈ V a local ball BG(u) = {u′ ∈ V (G) : d(u, u′) < d(u, `(u))} is computed, including all nodes
with distance strictly less than the distance to the landmarks. The result of the distance query
d(s, t) is exact if s ∈ B(t) or t ∈ B(s) and otherwise stretch 3 is guaranteed [14]. Since the set
of landmarks consists of a random sample, the expected ball size is O(

√
n), which is equal to

the number of landmarks. This is the optimal balance for general graphs.
For power-law graphs a better balance is possible. Using high-degree nodes as landmarks is a

natural heuristic. We can select fewer landmarks and obtain smaller sized balls than [37, Fig. 5]
at the same time. Details for the preprocessing step are listed in Algorithm 3.

Algorithm 3 Preprocess(G = (V,E), γ′)
compute core← {v ∈ V : deg(v) > nγ

′
/4}

for each v ∈ core do
run breadth-first search from v in G
for each node u 6= v, store d(u, v) and set portu(v) to be the penultimum node on the shortest path.

end for
for each u ∈ V do

compute and store BG(u) (including distances)
for each v ∈ BG(u) set portu(v) to be the first node on the shortest path to v.

end for

Lemma 17. Let γ = τ−2
2τ−3 + ε be a constant. Assume Equation (1) is satisfied. For random

power-law graphs RPLG(n, τ), Algorithm 3 runs in expected time O(n1+γ log n) and creates a
distance oracle of expected size O(n1+γ). These bounds also hold with probability at least 1−1/n.

Proof. The analysis of the compact routing scheme can be applied directly (Lemma 10 and
proof of Lemma 12). ut
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Algorithm 4 distance(s, t)
if s ∈ B(t) or t ∈ B(s) then

return local distance d(s, t) from tbl(s) or tbl(t).
else

return d(s, `(t)) + d(`(t), t)
end if

The query algorithm is the same as in [37] for k = 2, see Algorithm 4.

Lemma 18. Algorithm 4 runs in time O(1) and achieves stretch 3.

Proof. Stretch and time bounds from [37] apply. ut

Theorem 2 is immediate from Lemmas 17 and 18.

7 Conclusion

Our analysis provides theoretical justification that high-degree nodes in power-law graphs are
indeed very important for finding shortest paths in such networks, and thus are effective in
improving the performance of shortest-path-related computations. With the ubiquity of power-
law networks, our result suggests that, when designing network algorithms, optimizing for power-
law graphs rather than dealing with general graphs, may lead to significantly better algorithm
performance in real-world networks.

Perhaps the most intriguing question is whether even polylogarithmic tables would suffice
to route with small stretch in power-law graphs. It also remains open whether the scheme by
Thorup and Zwick for general k can be optimized for power-law graphs and whether similar
techniques can be applied to the name-independent scheme by Abraham et al. [5]. An average-
case analysis of the actual scheme by Thorup and Zwick would be interesting as well as a
rigorous analysis of the scheme by Brady and Cowen [8]. Furthermore, the analysis for other
models of random power-law graphs is an interesting open problem.

Acknowledgments. The second author thanks Mikkel Thorup for helpful comments and
interesting discussions.
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17. P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tudományos Akadémia Matematikai
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