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Abstract. In computer networks and social networks, the betweenness centrality of a node measures the amount
of information passing through the node when all pairs are conducting shortest path exchanges. In this paper, we
introduce a strategic network formation game in which nodes build connections subject to a budget constraint in
order to maximize their betweenness in the network. To reflect real world scenarios where short paths are more
important in information exchange in the network, we generalize the betweenness definition to only count shortest
paths with a length limit ` in betweenness calculation. We refer to this game as the bounded budget betweenness
centrality game and denote it as `-B3C game, where ` is path length constraint parameter.
We present both complexity and constructive existence results about Nash equilibria of the game. For the nonuni-
form version of the game where node budgets, link costs, and pairwise communication weights may vary, we show
that Nash equilibria may not exist and it is NP-hard to decide whether Nash equilibria exist in a game instance. For
the uniform version of the game where link costs and pairwise communication weights are one and each node can
build k links, we construct two families of Nash equilibria based on shift graphs, and study the properties of Nash
equilibria. Moreover, we study the complexity of computing best responses and show that the task is polynomial for
uniform 2-B3C games and NP-hard for other games (i.e. uniform `-B3C games with ` ≥ 3 and nonuniform `-B3C
games with ` ≥ 2).
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1 Introduction

Many network structures in real life are not designed by central authorities. Instead, they are formed by
autonomous agents who often have selfish motives [16]. Typical examples of such networks include the In-
ternet where autonomous systems linked together to achieve global connection, peer-to-peer networks where
peers connect to one another for online file sharing (e.g. [5, 18]), and social networks where individuals con-
nect to one another for information exchange and other social functions [17]. Since these autonomous agents
have their selfish motives and are not under any centralized control, they often act strategically in deciding
whom to connect to in order to improve their own benefits. This gives rise to the field of network formation
games, which studies the game-theoretic properties of the networks formed by these selfish agents as well
as the process in which all agents dynamically adjust their strategies [1, 7, 12–14].

A key measure of importance of a node is its betweenness centrality. The betweenness centrality (or
betweenness for short) is introduced originally from social network analysis as one of the measures on how
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central an individual is in a social network [9, 15]. If we view a network as a graph G = (V,E) (directed or
undirected), the betweenness of a node (or vertex) i in G is

btwi(G) =
∑

u6=v 6=i∈V, m(u,v)>0

w(u, v)
mi(u, v)
m(u, v)

(1)

where m(u, v) is the number of shortest paths from u to v in G, mi(u, v) is the number of shortest paths
from u to v that pass i inG, and w(u, v) is the weight on pair (u, v). Intuitively, if the amount of information
from u to v is w(u, v), and the information is passed along the shortest paths from u to v, and all shortest
paths split the traffic equally, then the betweenness of node i measures the amount of information passing
through i incurred by all pair-wise exchanges.

In this paper, we generalize the betweenness definition with a parameter ` such that only shortest paths
with length at most ` are considered in betweenness calculation. Formally, we define

btwi(G, `) =
∑

u6=v 6=i∈V, m(u,v,`)>0

w(u, v)
mi(u, v, `)
m(u, v, `)

, (2)

where m(u, v, `) is the number of shortest paths from u to v in G with length at most `, and mi(u, v, `)
is the number of shortest paths from u to v that passes i in G with length at most `. It is easy to see that
btwi(G) = btwi(G,n− 1), where n is the number of vertices in G.

Betweenness with path length constraint is reasonable in real-world scenarios. In peer-to-peer networks
such as Gnetella [18], query requests are searched only on nodes with a short graph distance away from the
query initiator. In social networks, researches (e.g. [2, 3]) show that short connections are much more im-
portant than long-range connections. In fact, results of [2, 3] motivate Kleinberg et al. to consider essentially
btwi(G, 2) as part of the objective function in their game [12]. Our definition btwi(G, `) can be viewed as a
generalization of [12] in this regard.

In a decentralized network with autonomous agents, each agent may have incentive to maximize its
betweenness in the network. For example, in computer networks and peer-to-peer networks, a node in the
network may be able to charge the traffic that it helps relaying, in which case the revenue of the node
is proportional to its betweenness in the network. So the maximization of revenue is consistent with the
maximization of the betweenness. In a social network, an individual may want to gain or control the most
amount of information travelling in the network by maximizing her betweenness.

In this paper, we introduce a network formation game in which every node in a network is a selfish
agent who decides which other nodes in the network to build connection with in order to maximize its own
betweenness. Building connections with other nodes incur costs. Each node has a budget such that the cost
of building its connections cannot exceed its budget. We call this game the bounded budget betweenness
centrality game or the B3C game. When distinction is necessary, we use `-B3C to denote the games using
generalized betweenness definition btwi(G, `).

Bounded budget assumption, first incorporated into a network formation game in [13], reflects real world
scenarios where there are physical limits to the number of connections one can make. In computer and peer-
to-peer networks, each node usually has a connection limit. In social networks, each individual only has a
limited time and energy to create and maintain relationships with other individuals. An alternative treatment
to connection costs appearing in more studies [1, 7, 12, 14] is to subtract connection costs from the main
objectives to be maximized, which means that as long as the benefit outweighs the cost, a node is allowed
to build more connections without other physical constraints. This treatment, however, restricts the variety
of Nash equilibria exhibited by the game. For example, Kleinberg et al. [12] show that all Nash equilibria
in their network formation game (with a social network background) are dense graphs, because the game
has no connection budget constraint. However, social networks are typically sparse graphs, since individuals
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have physical constraints and thus can only build connections with a relatively small number of people.
Therefore, in this paper we choose to incorporate the bounded budget assumption, even though it makes the
game model more complicated.

In this paper, we consider the directed graph variant of the game, in which links in the network are
directed and nodes can establish outgoing links to other nodes. This is suitable for computer networks and
peer-to-peer networks that relay traffics, and some type of social networks where information flows between
connected pairs are often one-directional.

We focus on the algorithmic aspect of computing Nash equilibria as well as their structures in the B3C
games. Since the game allows some trivial Nash equilibria (such as a network with no links at all), we study
a stronger form called maximal Nash equilibria, in which no node can add more outgoing links without
exceeding its budget constraint. Since adding outgoing links of a node can only help its betweenness, it is
reasonable to study maximal Nash equilibria in the B3C games.

We present both complexity results and existence results about this game. We first show that the general
nonuniform `-B3C game may not have any maximal Nash equilibria for any ` ≥ 2. A nonuniform `-B3C
game is specified by several parameters concerning the node budgets, link costs, and pairwise communica-
tion weights (see Section 2 for a formal definition). Moreover, given these parameters as input, we show
that it is NP-hard to determine whether the game has a maximal Nash equilibrium. The result indicates that
finding Nash equilibria in general `-B3C games is a difficult task.

We then address the complexity of computing best responses in `-B3C games. For uniform `-B3C games
where all pair weights are one, all link costs are one, and all node budgets are given as an integer k, we show
that with ` = 2, computing a best response takes O(n3) time. For all other cases (uniform games with ` ≥ 3
or nonuniform games with ` ≥ 2), the task is NP-hard.

Next, we turn our attention to the construction of Nash equilibria in uniform `-B3C games and their
properties. We introduce a type of multi-partite graphs that we call shift graphs, which are variants of better
known De Bruijn graphs and Kautz graphs. Based on these shift graphs, we construct two different families
of Nash equilibria for uniform `-B3C games. One family gives a stronger form of Nash equilibria call strict
Nash equilibria, while the other family belongs to what we call `-path-unique graphs (`-PUGs), which we
show are always Nash equilibria for uniform `-B3C games.

Finally, we use `-PUGs to study several properties of Nash equilibria. In particular, we show that (a)
for any `, k and large enough n (n ≥ (k + `)!/k!), a maximal Nash equilibrium exists; (b) Nash equilibria
may exhibit rich structures, e.g. they may be disconnected or unbalanced (some nodes have zero in-degree
and zero betweenness while other nodes have very large in-degree and betweenness); and (c) for 2-B3C
games, when the in-degree are relatively balanced all maximal Nash equilibria must be 2-PUGs, a direct
consequence of which is that Abelian Cayley graphs with sufficiently large n (n ≥ k3 + k2 + 2k) cannot be
Nash equilibria for 2-B3C games.

Whenever applicable, we also state the results for B3C games without the path length constraint.

To summarize, our contributions include: (a) we define the bounded budget betweenness centrality game
to study the strategic network formation with maximizing betweenness as the goal, and we are the first to
incorporate reasonable assumptions of both bounded budget and general path length constraint into be-
tweenness related games; (b) we show that in the general version of the game where budgets, link costs
and pairwise betweenness contribution may vary, Nash equilibria may not exist and it is NP-hard to decide
if a game instance has a Nash equilibrium; (c) we show that computing best responses is polynomial-time
solvable for uniform 2-B3C games and is NP-hard for other variants; (d) for the uniform `-B3C games, we
explicitly construct families of Nash equilibria and provide several features about Nash equilibria in these
games. We hope that this research will motivate further studies on betweenness related network formation
games.
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Related work. There are a number of studies on network formation games with Nash equilibrium as
the solution concept [1, 7, 12–14]. Most of the above work belong to a class of games in which nodes
try to minimize their average shortest distances to other nodes in the network [1, 7, 13, 14], which is called
closeness centrality in social network analysis [9]. The game in [7] considers undirected edges and the cost
of links in the network are part of the objective function to minimize. It focuses on the study of price of
anarchy of the game and also presents results on the structure of Nash equilibria. In [1], Albers et al. extend
the research of [7] by disproving a conjecture made in [7] that all Nash equilibria have a tree structure, and
studying other variants of the game including the cost of an edge being shared by two end nodes. The game
in [14] instead considers minimizing the average stretch of each node, where stretch is defined as the ratio
between the shortest path distance of two nodes in the graph versus the geometric distance in the underlying
space.

Our research is partly motivated by the work of [12], in which Kleinberg et al. study a different type of
network formation games related to the concept of structural holes in organizational social network research.
In this game, each node tries to bridge other pairs of nodes that are not directly connected. In a sense, this is a
restricted type of betweenness where only length-two shortest paths are considered. Besides some difference
in the game setup, such as they use undirected edges, there are two important differences between our work
and theirs. First, we consider betweenness with a general path length constraint of ` as well as no path
length constraints, while they only consider the bridging effect between two immediate neighbors of a node.
Second, we incorporate budget constraints to restrict the number of links one node can build, while their
work has not such constraint. As already discussed, without link budget constraints, they show that all Nash
equilibria are dense graphs with Ω(n2) edges where n is the number of vertices. This is what we want to
avoid in our study. A couple of other studies [4, 10] also address strategic network formations with structural
holes, but they do not address the computation issue, and their game formats have their own limitations (e.g.
star networks as the only type of equilibria [10] or limited to length-2 paths [4]).

Our game is also inspired by the BBC game of Laoutaris et al [13]. This game considers directed links
and bounded budgets on nodes, using minimization of average shortest distances to others as the objective
for each node. It shows hardness results in determining the existence of Nash equilibria in general games,
and provides tree-like structures as Nash equilibria for the uniform version of the game. It also shows that
Abelian Cayley graphs cannot be Nash equilibria in large networks.

Solution concepts other than Nash equilibrium are also used in the study of network formation games.
Authors in [6, 11] consider games in which two end points of a link have to jointly agree on adding the link,
and they use pairwise stability as an alternative to Nash equilibrium.

Paper organization. Section 2 provides the detailed definition of the `-B3C game and the related concepts.
Section 3 provides the complexity result on determining the existence of Nash equilibria in nonuniform
games, while Section 4 presents the results on the complexity of computing best responses. Section 5
presents the construction of Nash equilibria in uniform games via shift graphs and studies the properties of
Nash equilibria. We conclude the paper and discuss future directions in Section 6.

2 Problem definition

We first define the bounded-budget betweenness centrality game (B3C game) without path length constraint,
and then extend it to the version with path constraint (`-B3C game). A bounded-budget betweenness cen-
trality game with parameters (n, b, c, w) is a network formation game defined as follows. We consider a set
of n players V = {1, 2, . . . , n}, which are also nodes in a network. Function b : V → N specifies the budget
b(i) for each node i ∈ V (N is the set of natural numbers). Function c : V ×V → N specifies the cost c(i, j)
for the node i to establish a link to node j, for i, j ∈ V . Function w : V × V → N specifies the weight
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w(i, j) from node i to node j for i, j ∈ V , which can be interpreted as the amount of traffic i sends to j, or
the importance of the communication from i to j.5

The strategy space of player i in B3C game is Si = {si ⊆ V \ {i} |
∑

j∈si
c(i, j) ≤ b(i)}, i.e., all

possible subsets of outgoing links of node i within i’s budget. A strategy profile s = (s1, s2, . . . , sn) ∈
S1 × S2 × . . . × Sn is referred to as a configuration in this paper. The graph induced by configuration s is
denoted as Gs = (V,E), where E = {(i, j) | i ∈ V, j ∈ si}. For convenience, we will also refer Gs as a
configuration.

The utility of a node i in configuration s is defined by the betweenness centrality of i in the graph Gs as
follows:

btwi(s) = btwi(Gs) =
∑

u6=v 6=i∈V, m(u,v)>0

w(u, v)
mi(u, v)
m(u, v)

, (3)

where m(u, v) is the number of shortest paths from u to v in Gs and mi(u, v) is the number of shortest
paths from u to v that passes i in Gs.

We now generalize the definition of betweenness, such that a shortest path from u to v contributes to the
betweenness of a node i on the path only when the path length is at most `, for some parameter `. Formally,
given a graph Gs (corresponding to a configuration s) and a parameter ` ∈ N, we define

btwi(Gs, `) =
∑

u6=v 6=i∈V, m(u,v,`)>0

w(u, v)
mi(u, v, `)
m(u, v, `)

, (4)

where m(u, v, `) is the number of shortest paths from u to v in Gs with length at most `, and mi(u, v, `) is
the number of shortest paths from u to v that passes i in Gs with length at most `. Since the longest shortest
path in Gs is at most n− 1, we know that btwi(Gs) = btwi(Gs, n− 1). We use `-B3C game to denote the
version of B3C game with parameter ` and btwi(Gs, `) as the utility of node i.

In a configuration s, if no node can increase its own utility by changing its own strategy unilaterally,
we say that s is a (pure) Nash equilibrium, and we also say that s is stable. Moreover, if in configuration
s any strategy change of any node strictly decreases the utility of the node, we say that s is a strict Nash
equilibrium.

The following Lemma shows the monotonicity of betweenness centrality when adding new edges to a
node, which motivates our definition of maximal Nash equilibrium. It is stated for btwi(G) and B3C games,
but is also applicable to btwi(G, `) and `-B3C games. Its proof is straightforward and omitted.

Lemma 1. Adding an outgoing edge to a node i does not decrease i’s betweenness. That is, for any graph
G = (V,E) with i ∈ V and (i, j) 6∈ E for some j ∈ V . Let G′ = (V,E ∪ {(i, j)}). Then btwi(G) ≤
btwi(G′).

Given a nonuniform B3C game with parameters (n, b, c, w), a maximal strategy of a node v is a strategy
with which v cannot add any outgoing edges without exceeding its budget. We say that a graph (config-
uration) is maximal if all nodes use maximal strategies in the configuration. By the monotonicity of be-
tweenness centrality, it makes sense to study maximal graphs where no node can add more edges within its
budget limit. Moreover, some trivial non-maximal graphs are trivial Nash equilibria, e.g. empty graphs with
no edges. However, when nodes add more edges into the graph allowed by their budgets, other nodes may
have chance of improving their utilities by changing their strategies. Therefore, for the rest of the paper, we
focus on Nash equilibria in maximal graphs. In particular, we say that a configuration is a maximal Nash
equilibrium if it is a maximal graph and it is a Nash equilibrium.

The following lemma states the relationship between maximal Nash equilibria and strict Nash equilibria,
a direct consequence of the monotonicity of betweenness centrality.

5 We may also define a distance function specifying distances between every pair of nodes, but it is not needed throughout our
paper.
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Fig. 1. Main structure of the gadget that has no maximal Nash Equilibrium.

Lemma 2. Given a B3C game with parameters (n, b, c, w), any strict Nash equilibrium in the game is a
maximal Nash equilibrium.

Based on the above lemma, for positive existence of Nash equilibria, we sometimes study the existence
of strict Nash equilibria to make our results stronger.

A special case of B3C(or `-B3C) game is uniform games. A B3C(or `-B3C) game with parameters
n, k ∈ N is uniform if b(i) = k for all i ∈ V , and c(i, j) = w(i, j) = 1 for all i, j ∈ V . As a contrast, the
general form is called nonuniform games.

3 Complexity of determining Nash equilibria in nonuniform games

Given the rich parameters, a nonuniform B3C game may have complex behavior. In particular, it may not
have any maximal (or strict) Nash equilibrium, and determining whether a game has a maximal (or strict)
Nash equilibrium is NP-hard.

For simplicity, the main part of this section addresses the B3C game without path length constraint. We
address the `-B3C game after each main result for the B3C game.

3.1 Nonexistence of maximal Nash equilibria

In this section, we show that maximal Nash equilibria may not exist in some version of B3C games where
edge costs are not uniform. By Lemma 2, it implies that strict Nash equilibria do not exist either in the same
game.

We now construct a family of graphs, which we refer to as the gadget, and show that B3C games based
on the gadget do not have any maximal Nash equilibrium. The gadget is shown in Figure 1. There are
5 + 3t + r nodes in the gadget, where t ∈ N and r = 1, 2, 3. The values of t and r allow us to construct a
graph of any size great than 5. There are r nodes, denoted as A,A′, A′′ in the figure, which establish edges
to B and C. Both B and C can establish at most one edge to a node in {D,E, F} respectively. Each node
in {D,E, F} connects to a cluster of size t each (not shown in the figure). The only requirement for these
three clusters is that they are identical to each other and are all strongly connected so D,E, F can reach all
nodes in their corresponding clusters. Nodes in the three clusters do not establish edges to the other clusters
or to A,A′, A′′, B,C,D,E, F .

We classify nodes and edges as follows. Nodes B and C are flexible nodes since they can choose to
connect one node in {D,E, F}. Nodes D,E, F are triangle nodes, nodes in the clusters are cluster nodes,
and nodes A,A′, A′′, are additional nodes. Edges (i, j) with i ∈ {B,C} and j ∈ {D,E, F} are flexible
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edges. Other edges shown in the figure plus the edges in the clusters are fixed edges. The remaining pairs
with no edge connected (e.g. (A,D), (A,E), etc.) are referred to as forbidden edges.

We use the parameters (n, b, c, w) of a B3C game to realize the gadget. In particular, (a) n = 5 + 3t+ r;
(b) b(i) = 1 for all i ∈ V ; (c) c(i, j) = 0 if (i, j) is a fixed edge, c(i, j) = 1 if (i, j) is a flexible edge,
c(i, j) = M > 1 if (i, j) is a forbidden edge; and (d) w(i, j) = 1 for all i, j ∈ V . Note that in the game
only the edge costs are nonuniform.

With the above construction, we can show the following theorem.

Theorem 1. The B3C game based on the gadget of Figure 1 does not have any maximal Nash equilibrium.
This implies that for any n ≥ 6, there is an instance of B3C game with n players that does not have any
maximal Nash equilibrium.

Proof. Note that in a maximal graph all fixed edges are included, and nodes B and C each selects one edge
to connect to one node in {D,E, F}. Consider one maximal graph G in which B connects to D and C
connects to E (as in Figure 1). Node B is on all shortest paths from nodes in {A,A′, A′′} to D and the
cluster D points to, but it is not on any shortest paths from nodes in {A,A′, A′′} to E and F and the two
clusters they point to (these shortest paths all pass through C). Thus btwB(G) = r(t+1). In this case,B can
change its strategy to connect to F instead of D, so that it will be on all shortest paths from those additional
nodes to F and D and their clusters, and thus its betweenness is increased to 2r(t+ 1). Therefore, maximal
graph G is not stable.

The second case to consider is that both B and C connect to the same node, say E. In this case, they
split equally among all shortest paths from the additional nodes to the triangle nodes and the clusters nodes,
giving each of them a betweenness 3r(t+ 1)/2. In this case, each of them could improve their betweenness
to 2r(t+ 1) by connecting to F instead of E. Hence, this maximal graph is not stable either.

All other maximal graphs are rotationally equivalent to one of the above two graphs. Therefore, we know
that none of the maximal graphs is stable, and the theorem holds. �

For the `-B3C game with ` ≥ 3, the proof is similar to the B3C game.

Lemma 3. The `-B3C game with ` ≥ 3 based on the gadget of Figure 1 does not have any maximal Nash
equilibrium. This implies that for any n ≥ 6, there is an instance of `-B3C game with n players that does
not have any maximal Nash equilibrium.

Proof. Consider the cluster connected to node D, we define tk to be the number of nodes in the cluster
with length at most k far away from D. Since three clusters are identical, tk is the same in all clusters.
Obliviously, we have tk ≥ tk−1.

Consider one maximal graph G in which B connects to D and C connects to E (as in Figure 1). The
betweenness of node B is that btwB(G) = r(t`−2 + 1). In this case, B can change its strategy to connect to
F instead of D, so that its betweenness is increased to r(t`−2 + 1) + r(t`−3 + 1). Therefore, maximal graph
G is not stable.

The second case to consider is that bothB and C connect to the same node, sayE. In this case, they split
equally among all shortest paths from the additional nodes to the triangle nodes and the clusters nodes, giving
each of them a betweenness (r(t`−2 +1)+r(t`−3 +1)+r(t`−4 +1))/2 for ` ≥ 4 or (r(t`−2 +1)+r(t`−3 +
1))/2 for ` = 3. In this case, each of them could improve their betweenness to r(t`−2 + 1) + r(t`−3 + 1) by
connecting to F instead of E. Hence, this maximal graph is not stable either.

All other maximal graphs are rotationally equivalent to one of the above two graphs. Therefore, we know
that none of the maximal graphs is stable, and the theorem holds. �

However, the gadget in Figure 1 does not work for the case of ` = 2. We now construct a separate gadget
for ` = 2 in Figure 2. The outgoing edges for nodes A,B,C,D and the two edges from X and Y point to
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Fig. 2. Main structure of the gadget that has no maximal Nash equilibrium for 2-B3C games, while dotted arrows and dashed arrows
represent conflicting choices of flexible edges from a node.

each other are fixed as shown in the gadget. Node X can establish at most one edge to a node in {A,D},
while node Y can establish at most one edge to a node in {B,C}.

We classify nodes and edges as follows. Nodes X and Y are flexible nodes since they can choose
to connect one node in {A,D} and {B,C} respectively. Nodes A,B,C,D are rectangle nodes. Edges
(X,A), (X,D), (Y,B), (Y,C) are flexible edges (in the figure dotted arrows and dashed arrows represent
conflicting choices of flexible edges, e.g. (X,A) and (X,D) cannot be selected at the same time). Other
edges shown in the figure are fixed edges. The remaining pairs with no edge connected (e.g. (X,B), (X,C),
etc.) are referred to as forbidden edges.

We use the parameters (n, b, c, w) of a 2-B3C game to realize the gadget. In particular, (a) n = 6; (b)
b(i) = 1 for all i ∈ V ; (c) c(i, j) = 0 if (i, j) is a fixed edge, c(i, j) = 1 if (i, j) is a flexible edge,
c(i, j) = M > 1 if (i, j) is a forbidden edge; and (d) w(i, j) = 1 for all i, j ∈ V .

With the above construction, we can show the following theorem.

Lemma 4. The 2-B3C game based on the gadget in Figure 2 does not have any maximal Nash equilibrium.
This implies that for any n ≥ 6, there is an instance of `-B3C game with n players that does not have any
maximal Nash equilibrium, and in the game only the edge costs are nonuniform.

Proof. Note that in a maximal graph all fixed edges are included, and nodes X and Y each selects one edge
to connect to one node in {A,D} and {B,C} respectively. We now show that this maximal graph is not
stable, by discussing the following cases separately.

(1) Node X connects to A and node Y connects to B. In this case, the only path that can contribute be-
tweenness to node Y is X → Y → B. But there is another shortest path X → A → B. So we have
btwY (G, 2) = 1/2. However, if Y changes its strategy to connect to node C, it can gain betweenness 1
from the unique shortest path X → Y → C. So Y is not at its best response position.

(2) Node X connects to D and node Y connects to B. Here the only path that can contribute betweenness
to node X is Y → X → D. But there is another shortest path Y → B → D from Y to D. Thus
btwX(G, 2) = 1/2. Now if X changes its strategy to connect to node A, it can gain betweenness 1 from
the unique shortest path Y → X → A. So X is not at its best response position.

(3) Node X connects to A and node Y connects to C. This case is equivalent to case (2), thus is not stable.
(4) Node X connects to D and node Y connects to C. This case is equivalent to case (1), which is also not

stable.

In summary, each of X and Y uses the strategy such that its outgoing neighbor points to the outgoing
neighbor of the other node, making an endless dynamic in the game.



Bounded Budget Betweenness Centrality Game for Strategic Network Formations 9

Therefore, we know that none of the maximal graphs is stable, so the gadget of Figure 2 does not have
any maximal Nash equilibrium.

For n > 6, we can use 6 nodes of them to build the above gadget and make all other nodes’ outgoing
edges forbidden edges. It is easy to see that there is still no maximal Nash equilibrium in this graph, thus the
theorem holds. �

Therefore, the following theorem is obtained by Lemma 3 and Lemma 4.

Theorem 2. For any ` ≥ 2 and n ≥ 6, there is an instance of `-B3C game with n players that does not have
any maximal Nash equilibrium.

3.2 Hardness of determining the existence of maximal Nash equilibria

In this section we use the gadget given in Figure 1 as a building block to show that determining the existence
of maximal Nash equilibria given a nonuniform B3C game is NP-hard. In fact, we use strict Nash equilibria
to obtain a stronger result.

We define a problem TWOEXTREME as follows. The input of the problem is (n, b, c, w) as the param-
eter of a B3C game. The output of the problem is Yes or No, such that (a) if the game has a strict Nash
equilibrium, the output is Yes; (b) if the game has no maximal Nash equilibrium, the output is No; and
(c) for other cases, the output could be either Yes or No. It is easy to see that both deciding the existence
of maximal Nash equilibria and deciding the existence of strict Nash equilibria is a stronger problem than
TWOEXTREME, because their outputs are valid outputs for the TWOEXTREME problem by Lemma 2. The
following theorem shows that even the weaker problem TWOEXTREME is NP-hard.

Theorem 3. The problem of TWOEXTREME is NP-hard.

Proof. We reduce the 3-SAT problem to TWOEXTREME. In particular, we provide a polynomial-time trans-
formation from any 3-SAT instance to a B3C game instance as the input of TWOEXTREME. We then show
that (a) any satisfiable 3-SAT instance is transformed into a game that must have a strict Nash equilibrium,
and (b) any non-satisfiable 3-SAT instance is transformed into a game that has no maximal Nash equilib-
rium. The above two properties insure that we can use the Yes/No answer of the TWOEXTREME as the
answer to the 3-SAT instance.

The transformation is as follows. Each 3-SAT instance has t variables {x1, x2, . . . , xt} and m clauses
{C1, C2, . . . , Cm}. Each variable x has two literals x and x̄. Each clause has three literals from three dif-
ferent variables. We use the following construction to obtain an instance of a B3C game with parameters
(n, b, c, w) from the 3-SAT instance, which is illustrated by Figure 3.

Each clause Cj is mapped to the core of gadget of Figure 1, which is the substructure of the gadget
excluding the additional nodes and the cluster nodes. We use Bj and Cj to represent the flexible nodes in
the gadget and Dj , Ej and Fj to represent the triangle nodes in the gadget, all corresponding to the clause
Cj . This leads to 5m nodes in the graph. There is a special node A called the assignment node, with fixed
edges pointing to all flexible nodes Bj and Cj in all gadgets corresponding to all clauses.

Each variable xi is mapped to a structure with four nodes Pi, Qi, Li, and L̄i. Node Pi has two fixed
edges pointing to Li and L̄i. Node Li and L̄i, called literal nodes, each may have one flexible edge pointing
to either Qi or the assignment node A. For each clause Cj with three variables xi1 , xi2 and xi3 , we add one
fixed edge from Dj to each of Pi1 , Pi2 and Pi3 respectively.

In order to realize the above structure, we set the parameters (n, b, c, w) of the B3C game as follows.
First, n = 1 + 4t + 5m and b(i) = 1 for all i ∈ V . Next, same as in Figure 1, each fixed edge has cost 0,
each flexible edge has cost 1 (so that the corresponding starting node can choose at most one flexible edge),
and each forbidden edge has cost M > 1. Finally, the weight function has to be carefully set as follows
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Fig. 3. The structure of the instance of a B3C game corresponding to an instance of a 3-SAT problem.

to make the reduction work. For all j ∈ {1, . . . ,m}, w(A,Dj) = w(A,Ej) = w(A,Fj) = w(Dj , Fj) =
w(Ej , Dj) = w(Fj , Ej) = 1; for all i ∈ {1, . . . , t}, w(Pi, A) = w(Pi, Qi) = a for some constant a > 2m;
for all i ∈ {1, . . . , t} and all j ∈ {1, . . . ,m}, (a) if clause Cj contains variable xi, then w(Pi, Bj) =
w(Pi, Cj) = w(Fj , Li) = w(Fj , L̄i) = 1; and (b) if literal xi (or x̄i) is in clause Cj , then w(Li, Dj) = d
(or w(L̄i, Dj) = d), for some constant d > 1. For all other pairs (u, v) not included above, w(u, v) = 0.

We consider maximal graphs of the game in which all fixed edges are present and exactly one flexible
edge from each node in {Li, L̄i | i = 1, 2, . . . , t} ∪ {Bj , Cj | j = 1, 2, . . . ,m} is present. We say that a
maximal graph G of the game is an assignment graph if for all i ∈ {1, . . . , t}, there is exactly one edge
from {Li, L̄i} to A in G. The following is a sequence of Lemmas that leads to the proof of the theorem.

Lemma 5. If a maximal graph G of the game is stable, G must be an assignment graph.

Proof. Suppose, for a contradiction, that G is not an assignment graph. Then for some i ∈ {1, . . . , `},
both Li and L̄i connect to Qi or to A. Suppose they both connect to Qi. The only shortest paths that pass
through Li and L̄i and have nonzero weights are 〈Pi, Li, Qi〉 and 〈Pi, L̄i, Qi〉. Since w(Pi, Qi) = a, we
have btwLi(G) = btwL̄i

(G) = a/2. In this case, Li can change its strategy to connect to A instead of Qi

to obtain G′. In G′, Li is on the only shortest path from Pi to A, and thus btwLi(G
′) = a > btwLi(G).

Therefore, G is not stable, contradicting to the assumption of the lemma.
Now suppose that both Li and L̄i connect to A. They split the shortest paths from Pi to A, which

contributes a/2 to the betweenness of Li and L̄i each. Among other possible shortest paths that pass through
Li or L̄i, the only nonzero weight ones are from Pi to Bj and Cj for all j ∈ {1, . . . ,m}. Since Li and L̄i

equally split these shortest paths, we have btwLi(G) ≤ a/2+
∑m

j=1(w(Pi, Bj)+w(Pi, Cj))/2 = a/2+m.
In this case, Li can change its strategy to connect to Qi instead of A to obtain G′. In G′, Li is on the only
shortest path from Pi to Qi, so btwLi(G

′) = a > a/2 +m since a > 2m. Therefore, G is not stable, again
contradicting to the assumption of the lemma. Hence, G must be an assignment graph. �

Lemma 6. If the 3-SAT instance does not have a satisfying assignment, then for any maximal assignment
graph G, there always exists a j ∈ {1, . . . ,m} such that for all i ∈ {1, . . . , t} and all literals v ∈ {Li, L̄i},
edge (v,A) being in G implies w(v,Dj) = 0.

Proof. Suppose that the 3-SAT instance does not have a satisfying assignment and G is a maximal as-
signment graph. The edges pointing to A in G correspond to a truth assignment to variables in the 3-SAT
instance: If edge (Li, A) is inG, assign variable xi to true; if edge (L̄i, A) is inG, assign variable xi to false.
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Since the 3-SAT instance is not satisfiable, for the above assignment, there exists a clause Cj that is evaluated
to false. For any variable xi not in Cj we have w(Li, Dj) = w(L̄i, Dj) = 0 by our definition of the weight
function. So we only consider a variable xi appearing in Cj . If edge (Li, A) is in G, we assign xi to true,
and since Cj is evaluated to false, we know that literal x̄i is in Cj . Then by our definition, w(L̄i, Dj) = b but
w(Li, Dj) = 0. The case when (L̄i, A) is in G has a symmetric argument. Therefore, the lemma holds. �

Lemma 7. For a maximal assignment graph G, if there exists a j ∈ {1, . . . ,m} such that for all i ∈
{1, . . . , t} and all literals v ∈ {Li, L̄i}, edge (v,A) being in G implies w(v,Dj) = 0, then G is not a Nash
equilibrium.

Proof. Consider such a graph G with j ∈ {1, . . . ,m} satisfying the condition given in the lemma. Consider
the shortest paths that pass through Bj and Cj . Since all literal nodes that connect to A have zero weights
to Dj (and thus also to Ej and Fj), the only shortest paths passing through Bj and Cj that have nonzero
weights are paths from A to Dj , Ej and Fj . This essentially reduces the gadget corresponding to Cj to the
gadget in Figure 1 with one additional node A and no cluster nodes. By an argument similar to the one in
the proof of Theorem 1, no matter how Bj and Cj currently connect to nodes in {Dj , Ej , Fj}, one of them
will always want to change its strategy to connect to one node in {Dj , Ej , Fj} that is next to what the other
current connects to (according to the direction of the triangle) to increase its utility. Therefore, G is not a
Nash equilibrium. �

Lemma 8. If the 3-SAT instance does not have a satisfying assignment, then the constructed B3C game
instance has no maximal Nash equilibrium.

Proof. Suppose, for a contradiction, that the B3C game instance has a maximal Nash equilibrium G. By
Lemma 5 G must be an assignment graph. Since the 3-SAT instance does not have a satisfying assignment,
by Lemmata 6 and 7 G is not stable, a contradiction. �

Lemma 9. If the 3-SAT instance has a satisfying assignment, then there exists a maximal assignment graph
G of the game in which for all j ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , t} and literal v ∈ {Li, L̄i} such that
the edge (v,A) is in G and w(v,Dj) = d.

Proof. Suppose that the 3-SAT instance has a satisfying assignment f . construct a maximal assignment
graph G such that for all i ∈ {1, . . . , `}, if variable xi is assigned to true in the assignment f , then Li

connects to A; otherwise, L̄i connects to A. For all j ∈ {1, . . . ,m}, since clause Cj is evaluated to true
under assignment f , there exists variable xi whose corresponding literal in Cj is evaluated to true. If literal
xi is in Cj , xi is assigned to true. By the above construction ofG, (Li, A) is inG, and by the definition of the
weight function, w(Li, Dj) = b. The same argument applies to the case when literal x̄i is in Cj . Therefore,
the lemma holds. �

Lemma 10. Given a maximal assignment graph G in which for all j ∈ {1, . . . ,m}, there exists i ∈
{1, . . . , t} and literal v ∈ {Li, L̄i} such that the edge (v,A) is in G and w(v,Dj) = d, we construct a
graph G′ such that G′ is the same as G except that for all j ∈ {1, . . . ,m}, both Bj and Cj are connected
to Dj in G′. The maximal graph G′ must be a strict Nash equilibrium.

Proof. We prove that in G′ any strategy change strictly decreases the changers betweenness, and thus G′

must be a nontransient Nash equilibrium.
We go through all nodes and check all possible strategy changes in the following list.

– For each node Qi, i ∈ {1, . . . , `}, it has only the empty strategy so there is no strategy change for Qi.
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– For each node Pi, i ∈ {1, . . . , `}, the only change of the strategy is to remove one or both of the edges
(Pi, Li) and (Pi, L̄i). Suppose variable xi appears in clause Cj . Then we know that Dj connects to Pj

(since G′ is maximal). By the definition of the weight function w(Fj , Li) = w(Fj , L̄i) = 1. Thus paths
from Fj to Li and L̄i through Pi contribute positive values to the betweenness of Pi. If Pi were to
remove edge (Pi, Li) or (Pi, L̄i) or both, Pi’s betweenness would strictly decrease.

– For each node Li, i ∈ {1, . . . , `}, its strategy change is either removing its flexible edge or changing
its flexible edge. If it removes its flexible edge, it loses the shortest path from Pi to Qi or A, and since
w(Pi, Qi) = w(Pi, A) = a, its betweenness strictly decreases. If it changes its flexible edge, then both
Li and L̄i connects to Qi or A. By the same argument as in the proof of Lemma 5, its betweenness
strictly decreases.

– For each node L̄i, i ∈ {1, . . . , `}, the argument is the same as the argument for Li.
– For node A, it can remove any of edges (A,Bj) or (A,Cj), for j ∈ {1, . . . ,m}. Suppose it removes

edge (A,Bj) in G′. Let xi be a variable in Cj . Since G′ is an assignment graph, Pi has a shortest path
connecting to Bj through Li or L̄i and A. Since w(Pi, Bj) = 1, this shortest path contributes 1 to the
betweenness of A in G′. If A removes edge (A,Bj) in G′, there will be no path from Pi to Bj and A’s
betweenness will decrease by 1. Therefore, any strategy change of A strictly decrease its betweenness.

– For each node Bj , j ∈ {1, . . . ,m}, it can either remove its flexible edge or change its flexible edge. By
the assumption of the Lemma, there exists i ∈ {1, . . . , `} and literal node v ∈ {Li, L̄i} such that the
edge (v,A) is in G and w(v,Dj) = b. Suppose that there are t such literal nodes v. By the definition
of w, we know that t ≤ 3. Since Bj at least splits the shortest paths from v and A to Dj , btwBj (G′) =
(tb+ 3)/2 ≥ (b+ 3)/2. If Bj removes its flexible edge (Bj , Dj), it will not connect to any node and its
betweenness will decrease to zero. If Bj changes its flexible edge to (Bj , Ej) to obtain a graph G′′, it
loses the share on the shortest paths from v andA toDj but gain the full share on the shortest paths from
A to Ej and Fj . Then btwBj (G′′) = 2 < (b + 3)/2 ≤ btwBj (G′) since b > 1. So Bj’s betweenness
strictly decreases. IfBj changes its flexible edge to (Bj , Fj), it loses the share on the shortest paths from
v and A to Dj and Ej and only gains the full share on the shortest paths from A to Fj , so it is worse
than the above case. Therefore, all strategy changes on Bj strictly decreases Bj’s betweenness.

– For each node Cj , j ∈ {1, . . . ,m}, the argument is the same as the argument for Bj .
– For each node Dj , j ∈ {1, . . . ,m}, it can change its strategy by removing its fixed edge to Ej and/or

removing some of its fixed edges to some Pi’s. If it removes its edge toEj , it loses the shortest path from
Fj to Ej with weight 1, so its betweenness strictly decreases. If it removes any edge to some node Pi, it
loses shortest paths from Fj to Li and L̄i with weight 1, so its betweenness strictly decreases. Therefore,
Di cannot change its strategy.

– For each node Ej , j ∈ {1, . . . ,m}, it can change its strategy by removing its fixed edge to Fj . This
however will cause Ej losing the shortest path from Dj to Fj with weight 1, so its betweenness strictly
decreases.

– For each node Fj , j ∈ {1, . . . ,m}, it can change its strategy by removing its fixed edge to Dj . This
however will cause Fj losing the shortest path from Ej to Dj with weight 1, so its betweenness strictly
decreases.

By the above argument exhausting all possible cases, we show that graph G′ is indeed a nontransient Nash
equilibrium. �

Lemma 11. If the 3-SAT instance has a satisfying assignment, then the constructed B3C game instance has
a strict Nash equilibrium.

Proof. This is immediate from Lemmata 9 and 10. �

The entire proof for Theorem 3 is now complete with Lemmata 8 and 11. �



Bounded Budget Betweenness Centrality Game for Strategic Network Formations 13

Fig. 4. The structure of the instance of a 2-B3C game corresponding to an instance of a 3-SAT problem. Solid arrows represent
fixed edges, while dotted arrows and dashed arrows represent conflicting choices of flexible edges from a node.

The immediate consequence of the above theorem is:

Corollary 1. Both deciding the existence of maximal Nash equilibria and deciding the existence of strict
Nash equilibria of a B3C game are NP-hard.6

We now address the NP-hardness for the `-B3C game. By a close inspection of the proof above, we see
that all critical paths that matter are of length at most 3. Therefore, we know that for ` ≥ 3, both deciding
the existence of maximal Nash equilibria and deciding the existence of strict Nash equilibria for an `-B3C
game are also NP-hard.

For the case of ` = 2, we rely on the gadget we developed for ` = 2 that we mentioned in Section 3.1 to
show that the decision problem is still NP-hard

Theorem 4. For ` = 2, both deciding the existence of maximal Nash equilibria and deciding the existence
of strict Nash equilibria in an `-B3C game are NP-hard.

Proof. We reduce the problem from the 3-SAT problem. Each 3-SAT instance has k variables
{x1, x2, . . . , xk} and m clauses {C1, C2, . . . , Cm}. Each variable x has two literals x and x̄. Each clause
has three literals from three different variables. We use the following construction to obtain an instance of a
2-B3C game with parameters (n, b, c, w) from the 3-SAT instance, which is illustrated by Figure 4.

The overall idea of the reduction is as follows. First, each clause Cj is mapped to the gadget similar to the
gadget in Figure 1 while each literal xi and x̄i are mapped to the gadget containing nodes Li, L̄i, Pi, Qi. We
call nodes Li’s and L̄i’s literal nodes. Nodes Li and L̄i can either point to nodeQi or all of the nodesXj . We
make sure that those literal nodes pointing to nodes Xj’s correspond to an assignment. Next, if the 3-SAT
instance has a satisfying assignment, we show that for each clause Cj , there exist shortest paths from some
literal nodes to Aj with significant weights. We show that these paths make the gadget for clause Cj stable.

6 In fact, the decision problem for any intermediate concept between maximal Nash equilibrium and strict Nash equilibrium is
also NP-hard. For example, deciding the existence of nontransient Nash equilibria [7] is also NP-hard because any strict Nash
equilibrium is a nontransient Nash equilibrium while the existence of a nontransient Nash equilibrium implies the existence of a
maximal Nash equilibrium in B3C games.
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Thus all gadgets are stable and the configuration is a maximal Nash equilibrium. We further argue that it
is a strict Nash equilibrium by examining all other alternatives of all nodes and showing that they strictly
decrease nodes’ betweenness. Finally, if the 3-SAT instance has no satisfying assignment, there must exist
at least one clause Cj such that there is no path from the literal nodes to Aj with nonzero weights. When this
is the case, the gadget corresponding to Cj will not be stable and thus the game has no Nash equilibrium.

All of the solid arrows in the graph are called fixed edges. They are
{(Pi, Li), (Pi, L̄i), (Xj , Yj), (Yj , Xj), (Aj , Bj), (Bj , Dj), (Dj , Cj), (Cj , Aj), (Xj , Pi), (Dj , Yj) | ∀1 ≤
i ≤ k, 1 ≤ j ≤ m}. All of the dashed arrows and dotted arrows represent conflicting choices of flexible
edges starting from one node (e.g. edge (L1, Q1) cannot be selected together with any edge (L1, Xj)). They
are {(Li, Qi), (L̄i, Qi), (Li, Xj), (L̄i, Xj), (Xj , Aj), (Xj , Dj), (Yj , Bj), (Yj , Cj) | ∀1 ≤ i ≤ k, 1 ≤ j ≤
m}.

We set the parameters (n, b, c, w) of the `-B3C game as follows. First, n = 4k+ 6m. The budgets of all
nodes are 0 except b(Li) = b(L̄i) = m and b(Xj) = b(Yj) = 1. The costs of all fixed edges are 0. The costs
of all flexible edges are 1 except c(Li, Qi) = c(L̄i, Qi) = m. The costs of all other edges (which is forbidden
edges) are larger thanm. Finally, the weight function has to be carefully set as follows to make the reduction
work. For all 1 ≤ i ≤ k, 1 ≤ j ≤ m,w(Xj , Li) = w(Xj , L̄i) = w(Yj , Pi) = w(Li, Yj) = w(L̄i, Yj) = 1,;
for all 1 ≤ i ≤ k, 1 ≤ j ≤ m,w(Pi, Qi) = ma,w(Pi, Xj) = w(Pi, Yj) = a for some constant a;
for all 1 ≤ j ≤ m,w(Xj , Bj) = w(Xj , Cj) = w(Yj , Aj) = w(Yj , Dj) = w(Cj , Bj) = w(Bj , Cj) =
w(Aj , Dj) = w(Dj , Aj) = w(Bj , Yj) = w(Dj , Xj) = 1; for all i ∈ {1, . . . , k} and all j ∈ {1, . . . ,m}, if
literal xi (or x̄i) is in clause Cj , then w(Li, Aj) = b (or w(L̄i, Aj) = b), for some constant b > 1. For all
other pairs (u, v) not included above, w(u, v) = 0.

We consider maximal graphs of the game in which all nodes exhaust their budget. Then, for all nodes
Li and L̄i, they point to Qi or the nodes Xj for all 1 ≤ j ≤ m in G. We call the second case pointing to the
clause nodes. We say that a maximal graph G of the game is an assignment graph if for all 1 ≤ i ≤ k, there
is exactly one node from {Li, L̄i} pointing to Qi in G. Thus, the other node points to the clause nodes.

Lemma 12. If a maximal graph G of the game is stable, G must be an assignment graph.

Proof. Suppose, for a contradiction, that G is not an assignment graph. Then for some i ∈ {1, . . . , k},
both Li and L̄i connect to Qi or to Xj . Suppose they both connect to Qi. The only shortest paths that pass
through Li and L̄i and have nonzero weights are 〈Pi, Li, Qi〉 and 〈Pi, L̄i, Qi〉. Since w(Pi, Qi) = ma, we
have btwLi(G) = btwL̄i

(G) = ma/2. In this case, Li can change its strategy to connect to the clause nodes
instead of Qi to obtain G′. In G′, Li is on the only shortest path from Pi to Xj , and thus btwLi(G

′) =
m× a > btwLi(G). Therefore, G is not stable, contradicting to the assumption of the lemma.

Now suppose that both Li and L̄i connect to the clause nodes. They split the shortest paths from Pi to
Xj , which contributes ma/2 to the betweenness of Li and L̄i each. By the same reason, Li can change its
strategy to connect to Qi instead of Xj to obtain betweenness value ma. Therefore, G is not stable, again
contradicting to the assumption of the lemma. Hence, G must be an assignment graph. �

Lemma 13. If the 3-SAT instance does not have a satisfying assignment, then for any maximal assignment
graph G, there always exists a j ∈ {1, . . . ,m} such that for all i ∈ {1, . . . , k} and all literals v ∈ {Li, L̄i},
edge (v,Xj) being in G implies w(v,Aj) = 0.

Proof. Suppose that the 3-SAT instance does not have a satisfying assignment and G is a maximal assign-
ment graph. The edges pointing to the clause nodes in G correspond to a truth assignment to variables in
the 3-SAT instance: If the node Li points to the clause nodes in G, assign variable xi to be true; otherwise,
assign variable xi to be false. Since the 3-SAT instance is not satisfiable, for the above assignment, there ex-
ists a clause Cj that is evaluated to false. For any variable xi not in Cj we have w(Li, Aj) = w(L̄i, Aj) = 0
by our definition of the weight function. So we only consider a variable xi appearing in Cj . If the node Li
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points to the clause nodes in G, we assign xi to true, and since Cj is evaluated to false, we know that literal
x̄i is in Cj . Then by our definition, w(L̄i, Aj) = b but w(Li, Aj) = 0. The case when L̄i points to the clause
nodes in G has a symmetric argument. Therefore, the lemma holds. �

Lemma 14. For a maximal assignment graph G, if there exists a j ∈ {1, . . . ,m} such that for all i ∈
{1, . . . , k} and all literals v ∈ {Li, L̄i}, node v pointing to the clause nodes in G implies w(v,Aj) = 0,
then G is not a Nash equilibrium.

Proof. Consider such a graph G with j ∈ {1, . . . ,m} satisfying the condition given in the lemma. Consider
the shortest paths that pass through Xj and Yj . Since all literal nodes that connect to the clause nodes have
zero weights to Aj , the only shortest paths passing through Xj and Yj that have nonzero weights are paths
from Xj to Bj , Cj , from Yj to Aj , Dj , from Li, L̄i to Yj and from Dj to Xj . The betweenness of pairs from
Li, L̄i to Yj and from Dj to Xj are only affected by whether Xj points to Yj and vice verse. Since these
two edges are cost 0, they are always connected in a stable graph. For other pairs, it essentially reduces the
gadget corresponding to Cj to the gadget in Figure 1. The only difference is that here we have an additional
edge (Dj , Yj) compare to Figure 1. But the addtional edge does not have any infection to the betweenness
value of node Xj and node Yj . It only helps to make the graph a strict Nash equilibrium when needed. We
will explain this later in Lemma 17. Therefore, by an argument similar to the one in the proof of Theorem 1,
no matter how Xj and Yj currently connect to nodes in {Aj , Bj , Cj , Dj}, one of them will always want to
change its strategy to increase its utility. Therefore, G is not a Nash equilibrium. �

Lemma 15. If the 3-SAT instance does not have a satisfying assignment, then the constructed 2-B3C game
instance does not have maximal Nash equilibrium.

Proof. Suppose, for a contradiction, that the 2-B3C game instance has a maximal Nash equilibrium. Then
there exists a maximal graph G that is stable. By Lemma 12, G must be an assignment graph. Since the 3-
SAT instance does not have a satisfying assignment, by Lemmata 13 and 14,G is not stable, a contradiction.
�

Lemma 16. If the 3-SAT instance has a satisfying assignment, then there exists a maximal assignment graph
G of the game in which for all j ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , k} and literal v ∈ {Li, L̄i} such
that the node v points to the clause nodes in G and w(v,Aj) = b.

Proof. Suppose that the 3-SAT instance has a satisfying assignment f . construct a maximal assignment
graph G such that for all i ∈ {1, . . . , k}, if variable xi is assigned to true in the assignment f , then Li

connects to the clause nodes; otherwise, L̄i connects to the clause nodes. For all j ∈ {1, . . . ,m}, since
clause Cj is evaluated to true under assignment f , there exists variable xi whose corresponding literal in Cj
is evaluated to true. If literal xi is in Cj , xi is assigned to true. By the above construction of G, Li points
to the clause nodes in G, and by the definition of the weight function, w(Li, Aj) = b. The same argument
applies to the case when literal x̄i is in Cj . Therefore, the lemma holds. �

Lemma 17. Given a maximal assignment graph G in which for all j ∈ {1, . . . ,m}, there exists i ∈
{1, . . . , k} and literal v ∈ {Li, L̄i} such that the node v points to the clause nodes in G and w(v,Aj) = b,
we construct a graph G′ such that G′ is the same as G except that for all j ∈ {1, . . . ,m}, Xj connects to
Aj and Yj are connected to Cj in G′. The maximal graph G′ must be a strict Nash equilibrium.

Proof. We prove that in G′ any strategy change strictly decreases the changers betweenness, and thus G′

must be a strict Nash equilibrium.
We go through all nodes and check all possible strategy changes in the following list.

– For each node Qi, i ∈ {1, . . . , k}, it has only the empty strategy so there is no strategy change for Qi.



16 Xiaohui Bei, Wei Chen, Shang-Hua Teng, Jialin Zhang, and Jiajie Zhu

– For nodes other than Li, L̄i, Xj , Yj(1 ≤ i ≤ k, 1 ≤ j ≤ m), they only have fixed edge to choose, so we
only need to prove that for each fixed edge, there exists a pair with nonzero weight such that if the node
removes this fixed edge, the betweenness value will decrease. We call this pair pushes such fixed edge.
For node Pi, pair (Xj , Li) pushes edge (Pi, Li) while pair (Xj , L̄i) pushes edge (Pi, L̄i).
For nodeAj , pair (Cj , Bj) pushes edge (Aj , Bj). For nodeBj , pair (Aj , Dj) pushes edge (Bj , Dj). For
node Cj , pair (Dj , Aj) pushes edge (Cj , Aj). For node Dj , pair (Bj , Cj) pushes edge (Dj , Cj) while
pair (Bj , Yj) pushes edge (Dj , Yj).

– For each node Li, i ∈ {1, . . . , k}, its strategy change is either removing its flexible edge or changing
its flexible edge. If it removes its flexible edge, it loses the shortest path from Pi to Qi or Xj , and
since w(Pi, Qi) = a and w(Pi, Xj) = a/m, its betweenness strictly decreases. If it changes its flexible
edge, then both Li and L̄i connects to Qi or Xj . By the same argument as in the proof of Lemma 12,
its betweenness strictly decreases. For each node L̄i, i ∈ {1, . . . , k}, the argument is the same as the
argument for Li.

– For each node Xj , j ∈ {1, . . . ,m}, it can remove its fixed edge or remove its flexible edge or change
its flexible edge. For the fixed edge, pair (Yj , Pi) pushes edge (Xj , Pi) and pair (Li, Yj) or (L̄i, Yj))
pushes edge (Xj , Yj). Then, we only consider the betweenness value caused by the flexible edge. By
the assumption of the Lemma, there exists i ∈ {1, . . . , k} and literal node v ∈ {Li, L̄i} such that the
node v points to the clause nodes G and w(v,Aj) = b. Suppose that there are t such literal nodes v. By
the definition of w, we know that t ≤ 3. Since Xj splits the shortest paths from v to Aj and Yj to Aj

btwXj (G′, 2) = tb + 1/2 ≥ b + 1/2. If Xj removes its flexible edge (Xj , Aj), it will not connect to
any node and its betweenness will decrease to zero. If Xj changes its flexible edge to (Xj , Dj) to obtain
a graph G′′, it does not connect nodes v and Aj but gain the full share on the shortest paths from Yj

to Dj . Then btwXj (G′′, 2) = 1 < b + 1/2 ≤ btwXj (G′, 2) since b > 1. So Xj’s betweenness strictly
decreases. Therefore, all strategy changes on Xj strictly decreases Xj’s betweenness.

– For each node Yj , j ∈ {1, . . . ,m}, it can remove its fixed edge or remove its flexible edge or change its
flexible edge. For the fixed edge, pair (Dj , Xj) pushes edge (Yj , Xj). For the flexible edge, by the same
argument in Theorem 1, all strategy changes on Yj strictly decreases Yj’s betweenness.

By the above argument exhausting all possible cases, we show that graph G′ is indeed a strict Nash equilib-
rium. �

Lemma 18. If the 3-SAT instance has a satisfying assignment, then the constructed 2-B3C game instance
has a strict Nash equilibrium.

Proof. This is immediate from Lemmata 16 and 10. �

The entire proof of Theorem 4 is now complete with Lemmata 15 and 18. �

Note that in the above proof, edge costs and weights are nonuniform while node budgets are uniform.
And the following theorem summarizes the hardness for the `-B3C game.

Theorem 5. For any ` ≥ 2, both deciding the existence of maximal Nash equilibria and deciding the
existence of strict Nash equilibria in an `-B3C game are NP-hard.

4 Complexity of computing best responses

The best response of a node in a configuration of the uniform game is the strategy of the node that gives
the node the best utility (i.e. best betweenness). In this section, we show the complexity of computing best
responses first for uniform games and then extend it for nonuniform games.
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In a uniform game with parameters (n, k), one can exhaustively search all
(
n−1

k

)
strategies and find the

one with the largest betweenness. Computing the betweenness of nodes given a fixed graph can be done by
all-pair shortest paths algorithms in polynomial time (e.g. [8]). Therefore, the entire brute-force computation
takes polynomial time if k is a constant. However, if k is not a constant, the result depends on `, the parameter
bounding the shortest path length in the `-B3C game.

For ` = 2, we shows that there exists a polynomial-time algorithm to compute a best response in a
uniform `-B3C game. To reach this result, we first need the following lemma.

Lemma 19. Let G = (V,E) be a directed graph. For a node v in G, let Gv,S be the graph where v has
outgoing edges to nodes in S ⊆ V \ {v} and all other nodes have the same outgoing edges as in G. Then
we have for all S ⊆ V \ {v}, btwv(Gv,S , 2) =

∑
u∈S btwv(Gv,{u}, 2).

Proof. Let S = {v1, · · · , vk}. Consider any shortest path of length 2 from a node u to a node u′ that passes
through node v . The path must be u→ v → u′, which means u′ = vi for some i. So btwv(Gv,S , 2) can be
written as

btwv(Gv,S , 2) =
∑
vi∈s

 ∑
u6=v 6=vi,m(u,vi,2)>0

mv(u, vi, 2)
m(u, vi, 2)

 .

Suppose now we change S to a single vertex set {vi} for some i. The value of mv(u, vi) and m(u, vi)
will not change because none of these paths goes through any other edges that start from v. On the other
hand, mv(u, vj) will become 0 if j 6= i. So we have

btwv(Gv,{vi}, 2) =
∑

u6=v 6=vi,m(u,vi,2)>0

mv(u, vi, 2)
m(u, vi, 2)

.

Compare the formulas of btwv(Gv,S , 2) and btwv(Gv,{vi}, 2). We know that

btwv(Gv,S , 2) =
∑

1≤i≤k

btwv(Gv,{vi}, 2)

Therefore, the lemma holds. �

The lemma shows that for 2-B3C game, the betweenness of a node can be computed by a simple sum of
the its betweenness when adding each of its outgoing edges alone into the graph.

Theorem 6. Computing a best response in a uniform `-B3C game when ` = 2 can be done in O(n3) time.

Proof. Consider a graph G with n nodes and k outgoing edges for each node. For any node v in G, let
btwv(u, 2) be the betweenness value of node v if v chooses {u} as its strategy. We can compute btwv(u, 2)
using the following method: for each node w where (w, v) ∈ G, if (w, u) ∈ G, then node v will not get any
betweenness value from the path from w to u. If (w, u) /∈ G, let m(w, u, 2) be the number of length-two
paths (which are the shortest paths) from w to u. Notice that m(w, u, 2) can be computed in O(n) time by
enumerating the intermediate node of the path. Node v gains 1

m(w,u,2) betweenness value from these paths.
Adding such values for all node w where (w, v) ∈ G together, we can get btwv(u, 2) in O(n2) time.

Then we can compute btwv(u, 2) for all nodes u 6= v in O(n3) time, and by Lemma 19, the top k nodes
with the largest btwv(u, 2) values will form the best response for node v. The sorting and selecting only cost
O(n log n) time. Thus the whole algorithm can be done in time O(n3). �
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For ` ≥ 3, we show that the task of computing a best response in a uniform `-B3C game is NP-hard. This
also implies that the task is NP-hard in the B3C game without path length constraint. To show the result, we
define its decision problem version below.

For ` ∈ N, we define a decision problem `-BESTRESPONSE as follows. The input of the problem
includes (a) a directed graph G = (V,E) with n nodes and each node has k outgoing edges; (b) a natural
number k, (c) one node v in G, and (d) a natural number b. The output is Yes or No. Let Sv be a strategy of
v (i.e., Sv ⊆ V \ {v} and |Sv| = k). Let Gv,Sv be the graph where v uses strategy Sv and all other nodes
have same outgoing edges as in G. The output of the problem is Yes if and only if there exists a strategy Sv

of node v such that btwv(Gv,Sv , `) ≥ b.

Theorem 7. For all ` ≥ 3, problem `-BESTRESPONSE is NP-hard.

Proof. We reduce this problem from the set cover problem. Given an instance of the set cover problem
〈U, S, t〉, in which U is a universe and S is a family of subsets of U with |U | = n, |S| = m, and t is a
natural number. The problem is to determine whether there are at most t subsets in S whose union is the
universe. We construct an instance of the betweenness problem as follows (see Figure 5).

– Let r be the maximum size of subset in T , i.e., r = max{|s| | s ∈ S}.
– Let t′ = min(t,m), x = max(r − t′, 0), k = t′ + x.
– We use k+ 1 nodes to form a clique so that each node has out degree k. These nodes are used to absorb

links from other nodes that would otherwise do not have k outgoing edges.
– We set node B to be the one we need to compute the best response for.
– We set node A to connect to B and another k − 1 nodes in the clique;
– We set n element nodes v1, . . . , vn to correspond to n elements in U , and they connect to arbitrary k

nodes in the clique;
– We add x new elements to U to form a new universe U ′. Then set x new elements nodes
vn+1, vn+2, . . . , vn+x to correspond to them. Connect these new nodes to arbitrary k nodes in the clique;

– We add x new subsets to S to form a new family of subsets S′, where the ith subset contains only one
element vn+i (1 ≤ i ≤ x). Then set m + x subset nodes s1, . . . , sm+x to correspond to m + x subsets
in S′ (here sm+1, sm+2, . . . , sm+x are set to correspond to the new added subsets). For a slight abuse of
notation, we use vi to denote both the node in the graph and the element in U ′, and sj to denote both the
node in the graph and the subset in S′. We connect sj to all node vi if vi ∈ sj , because |sj | ≤ r ≤ k,
we can always make such connections. For subsets have less than k nodes, we connect them arbitrarily
to nodes in the clique to increase their out-degree to k.

The decision problem in the game is to determine whether node B can choose a set of edges of size at
most k that make its betweenness at least n+ x+ k.

Lemma 20. If there is a cover of size at most t whose union is the universe U , then node B can choose a
set of edges of size at most k that makes its betweenness to be at least n+ x+ k.

Proof. Suppose that the cover which satisfies the requirement is C. Without loss of generality, we can
assume that |C| = t′. Let node B connects to the subset nodes si for all si ∈ C and all the new added subset
nodes sm+j , where 1 ≤ j ≤ x. In this case, B stands on the shortest paths from A to the k subset nodes,
and thus gains betweenness k from these shortest paths. Since ∪si∈Csi = U and ∪1≤i≤xsm+i = U ′\U ,
according to the construction of the structure, B can reach all n + x element nodes {v1, . . . , vn+x} and B
stands on all the paths from A to the elements nodes. Hence they contribute n+ x to the betweenness of B.
So betweenness of B is at least n+ x+ k. This concludes the proof. �
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Fig. 5. Structure corresponding to a set cover instance.

Lemma 21. If node B can find a set of edges of size at most k that makes its betweenness to be at least
n+ x+ k, then there is a cover of size at most t whose union is the universe U .

Proof. We first prove that B can achieve the best betweenness by connecting to k subset nodes sj’s.
Node B’s betweenness comes from the shortest paths from A to other nodes. If B connects to a node L

not in the clique, it will not gain any betweenness from the paths from A to B to L and then to any clique
node, because A can reach k− 1 clique nodes directly and the remaining two clique nodes in one more step,
but the paths through B and L have length at least 3.

Since k ≤ m + x, if B connects to any nodes other than the subset nodes, it will lose a connection
to some subset node sj . We argue case by case below that it will not give a better betweenness than B
connecting to some subset node instead.

– Node B connects to some element node vi. It can gain at most 1 by the shortest path from A to vi via
B, since vi only connects to clique nodes, and we have already argued that the path from A to B to vi

and then to clique nodes are not shortest paths. In this case, B can instead connect to an available subset
node sj not yet connected, by which it gains betweenness of at least 1, no worse than the connection to
vi.

– Node B connects to some clique node L. If A has a direct connection to L, B will not gain any be-
tweenness by this connection. If A does not have direction connection to L, 〈A,B,L〉 is a shortest path
of length 2, but there are k − 1 other shortest paths from A to L. Thus B gains betweenness of at most
1/k. In this case, B is better off connecting to an available subset node sj .

– NodeB connects to nodeA. This does not contribute any betweenness toB, soB is better off connecting
to an available subset node sj .

Therefore, node B can achieve the best betweenness by connecting to k subset nodes. Let these k subset
nodes form a set C ′. In this case, the betweenness of B is k + | ∪si∈C′ si|, because only through B node
A can reach all k subset nodes in C ′ plus nodes in ∪si∈C′si, but for the clique nodes A has shorter paths
to reach them not through B. Since B can achieve a betweenness of at least n + x + k, we know that
| ∪si∈C′ si| ≥ n + x, which means that C ′ must cover all the element nodes. Also notice that sm+i is the
only subset that contains element vm+i. So C ′ must all the new added subset nodes sm+i (1 ≤ i ≤ x). Then
let C = C ′\{sm+1, . . . , sm+x}. We know C must have k − x = t′ elements and can cover {v1, . . . , vm}.
Thus C is a solution to the set cover instance. �

The proof of Theorem 7 is now complete with Lemmata 20 and 21. �
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Theorem 7 can be directly applied to both B3C games without path length constraint and the nonuniform
`-B3C games for ` ≥ 3. For nonuniform `-B3C games with ` = 2, however, our polynomial-time algorithm
does not work any more. In the non-uniform version, we define a decision problem 2-NBESTRESPONSE as
follows. The input of the problem contains (a) a 2-B3C game with parameter (n, b, c, w); (b) a configuration
s of the game; (c) one node v in graph G; and (d) a natural number A. The output is Yes or No. Let Sv be a
strategy of v and Gv,Sv be the graph that node v uses strategy Sv and all other nodes use the same strategies
in configuration s. The output of the problem is Yes if and only if there exists a strategy Sv of node v such
that btwv(Gv,Sv , 2) ≥ A. In Lemma 22 we prove the problem is reducible from the knapsack problem.

Lemma 22. Problem 2-NBESTRESPONSE is NP-hard.

Proof. We reduce this problem from the knapsack problem. Given an instance of the knapsack problem
〈U, w̃, value〉, in which set U containsm items. Each item Ui = (wi, valuei) has its weight wi and its value
valuei. The problem is to determine whether we can pick items from the set U such that the total weight
does not exceed w but the total value is at least value.

We construct an instance of the betweenness problem as follows. There arem+2 nodes u, v, v1, · · · , vm

in the graph. The edge (u, v) is the fixed edge, and the edge (v, vi) for i = 1, · · · ,m are flexible edges. Other
edges in the graph are forbidden edges. We use the parameters (n, b, c, w) of 2-B3C game as follows. In
particular, (a) n = m+2; (b) b(v) = w̃, b(u) = b(vi) = 0(i = 1, · · · ,m); (c) c(v, vi) = wi(i = 1, · · · ,m),
c(u, v) = 0 and c(i, j) = M > w̃ for all other edges; and (d)w(u, vi) = valuei(i = 1, · · · ,m). The
knapsack instance has a solution exceeding value if and only if the 2-B3C instance has a configuration such
that the betweenness of node v exceeds value. �

Therefore, for nonuniform `-B3C games, computing a best response is NP-hard even for ` = 2. Com-
bined these results, we summarize as follows.

Theorem 8. It is NP-hard to compute the best response in either a nonuniform 2-B3C game, or an `-B3C
game with ` ≥ 3 (uniform or not), or a B3C game without path length constraint (uniform or not).

5 Nash equilibria in uniform games

In this section we focus on uniform `-B3C games. we first define a family of graph structures called shift
graphs and show that they are able to produce Nash equilibria for B3C games. We then study some properties
of Nash equilibria in uniform games.

5.1 Construction of Nash equilibria via shift graphs

We first define shift graphs and non-rotational shift graphs. Then we show that for any `, k and any `′ ≥ `,
the non-rotational shift graphs with n = (`′ + k)!/k! nodes are all Nash equilibria in the uniform `-B3C
game with parameter n and k. Moreover, we use shift graphs to construct strict Nash equilibria for both
`-B3C games and B3C games without path length constraint, for certain combinations of n and k where
k = Θ(

√
n).

Definition 1. A shift graph G = (V,E) with parameters m, t ∈ N+ and t ≥ m, denoted as SG(m, t),
is defined as follows. Each vertex of G is labeled by an m-dimensional vector such that each dimen-
sion has t symbols and no two dimensions have the same symbol appeared in the label. That is, V =
{(x1, x2, . . . , xm) | xi ∈ [t] for all i ∈ [m], and xi 6= xj for all i, j ∈ [m], i 6= j}. A vertex u has a
directed edge pointing to a vertex v if we can obtain v’s label by shifting u’s label to the left by one digit
and appending the last digit on the right. That is, E = {(u, v) | u, v ∈ V, u[2 : m] = v[1 : (m−1)]}, where
u[i : j] denote the sub-vector (xi, xi+1, . . . , xj) with u = (x1, x2, . . . , xm).
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Fig. 6. Non-rotational shift graph SGnr(2, 4).

In the shift graph SG(m, t), we know that the number of vertices is n = t · (t − 1) · · · (t −m + 1) =
t!/(t−m)!, and each vertex has out-degree t−m+ 1. Notice that the definition requires that m dimensions
have all different symbols. If they are allowed to be the same, then the graphs are the well-known De Bruijn
graphs, whereas if we require only that the two adjacent dimensions have different symbols, the graphs are
Kautz graphs, which are iterative line graphs of complete graphs.

Definition 2. A non-rotational shift graph with parameter m, t ∈ N+ and t ≥ m + 1, denoted as
SGnr(m, t), is a shift graph with the further constraint that if (u, v) is an edge, then v’s label is not a
rotation of u’s label to the left by one digit. That is, E = {(u, v) | u, v ∈ V, u[2 : m] = v[1 : (m− 1)] and
u[1] 6= v[m]}, where u[i] denotes the i-th element of u.

Graph SGnr(m, t) also has t!/(t −m)! vertices but the out-degree of every vertex is t −m. A simple
non-rotational shift graph SGnr(2, 4) is given in Figure 6 as an example. Non-rotational shift graphs have
the following basic properties.

Proposition 1. Non-rotational shift graph SGnr(m, t) satisfies the following properties:
(1) It is Eulerian, i.e., every vertex has the same in-degree t−m.
(2) It is vertex-transitive.
(3) When t ≥ m+ 2, it is strongly connected, with diameter at most 2m(m+ 1).
(4) For m ≥ 2, it is the line graph of SGnr(m − 1, t) with all edges on the smallest circles of the

line graph removed; for m = 1, it is simply t-clique (completely connected t-vertex directed graph with no
self-loop).

Proof. (1) and (2) are straightforward by definition.
(3): We first prove the following claim.
Claim 1. For any node v = (x1, . . . , xm), there exist a length m + 1 path from v to node u =

(x1, . . . , xi−1, y, xi+1, . . . , xm) for every 1 ≤ i ≤ m and y 6= xj , 1 ≤ j ≤ m, j 6= i.

Proof. Notice that t ≥ m+ 2, so there must exist a symbol t such that t 6= xi(1 ≤ i ≤ m) and t 6= y. Then
we can construct the following path:
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v = (x1, x2, . . . , xm)
→ (x2, x3, . . . , xm, t)
→ (x3, . . . , xm, t, x1)
→ (x4, . . . , xm, t, x1, x2)
· · ·

→ (xi+1, . . . , xm, t, x1, . . . , xi−1)
→ (xi+2, . . . , xm, t, x1, . . . , xi−1, y)
→ (xi+3, . . . , xm, t, x1, . . . , xi−1, y, xi+1)
· · ·

→ (x1, x2, . . . , xi−1, y, xi+1, . . . , xm) = u

It’s easy to check that each step here is a valid edge in G and the total length is m+ 1. �

Having this claim, now we can use it as a subroutine. Consider two nodes v = (x1, x2, . . . , xm) and
u = (y1, y2, . . . , ym) inG. In order to find a path from v to u, we first reach a node v1 that satisfy v1[1] = y1

from node v using the following way: if y1 exists in node v’s label, namely xj = y1 for some j, then we first
go from node v to node w1 = (x1, . . . , xj−1, t, xj+1, . . . , xm) using m + 1 steps, here t is a symbol that
doesn’t appear in node v’s label. If y1 doesn’t appear in v’s label, we can just let w1 = v. Then from node
w1, we can reach node v1 = (y1, x2, . . . , xj−1, t, xj+1) in m+ 1 steps. Thus total length from v to w1 is no
more than 2(m+ 1).

Using the similar way, we can find a path from vi to some node vi+1 with length no more than 2(m+1),
where vj satisfies vj [t] = yt for all 1 ≤ t ≤ j. Thus finally we will reach vm = u, and the total path length
is no more than 2m(m+ 1).

(4): According to the definition of line graph, each edge (u, v) in SGnr(m−1, t) will become a new ver-
tex t. Suppose the labels for u, v in SGnr(m− 1, t) are u = (x1, x2, . . . , xm−1) and v = (x2, . . . , xm−1, y)
where y 6= x1. Then we can label the new vertex t = (x1, . . . , xm−1, y), which is a valid label in
SGnr(m − 1, t). And it is easy to check that every edge (s, t) in this line graph satisfies s[2 : m] =
t[1 : m − 1]. Thus the line graph is just the shift graph SG(m, t). Since the smallest circles in SG(m, t)
have length m and every edge (s, t) in such circles has form s[2 : m] = t[1 : m − 1], s[1] = t[m]. Thus
after removing these edges, we get exactly the non-rotational shift graph SGnr(m, t). �

Moreover, non-rotational shift graphs have one important property that leads to their being Nash equi-
libria of `-B3C games, as we now explain.

We say that a vertex v in a graph G is `-path-unique if any path that passes through v (neither starting
nor ending at v) with length no more than ` is the unique shortest path from its starting vertex to its ending
vertex. A graph is k-out-regular if every vertex in the graph has out-degree k. A k-out-regular graph is an
`-path-unique graph (or `-PUG for short) if every vertex in the graph is `-path-unique.

Lemma 23. Non-rotational shift graph SGnr(`, k + `) is an `-PUG.

Proof. Suppose for a contradiction that there exist two nodes s and t, such that there are two paths from s
to t which both have length no more than `, which are denoted as below:

s = a1 → a2 → · · · → a`1 = t and
s = b1 → b2 → · · · → b`2 = t,

where (ai, ai+1) and (bi, bi+1) are all edges in this graph, 1 < `1, `2 ≤ `+1. Let i be the smallest index such
that ai 6= bi(1 < i ≤ `). Since ai−1 = bi−1, we have ai[1 : `−1] = ai−1[2 : `] = bi−1[2 : `] = bi[1 : `−1].
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So it must be that ai[`] 6= bi[`]. We also know that ai[`] = ai+1[`−1] = · · · = a`1 [`−`1 + i] = t[`−`1 + i].
Similarly we have bi[`] = t[` − `2 + i]. So t[` − `1 + i] 6= t[` − `2 + i], which means `1 6= `2. So one of
them must be less than `+ 1. Suppose `1 < `+ 1, we have

s[`1] = a1[`1] = a2[`1 − 1] = · · · = a`1 [1] = t[1]

If `2 < ` + 1, use the same way we can get s[`2] = t[1] = s[`1]. But this cannot be true since `1 6= `2
and the symbols must be all different in one label. So `2 = ` + 1. Then we have t[1] = b`+1[1] = b2[`].
But according to the definition, b2[1 : ` − 1] = b1[2 : `] = s[2 : `] and t[1] = b2[`] 6= b1[1] = s[1] (the no
rotation requirement in SGnr() graphs). This implies that t[1] cannot be same with any symbol in s’s label.
So t[1] 6= s[`1], which is a contradiction. Therefore, the lemma holds. �

The following lemma shows the importance of `-PUG to uniform `-B3C games.

Lemma 24. If a directed graphG has n nodes and is k-out-regular and `-path-unique, thenG is a maximal
Nash equilibrium for the uniform `-B3C game with parameter n and k.

Proof. For any node v in G, we want to show that v is at its best response in the current configuration.
Suppose total(v) is the total number of paths with length no more than ` that pass through node v

(neither starting nor ending at v) in the current configuration. Note that here we consider all paths, including
paths may visit some node multiple times. We first show that total(v) is invariant with respect to node v’s
strategy and it’s an upper bound of v’s betweenness if v can only change its own strategy.

Let startx(v) be the number of paths with length x that start from node v. Since every node has out-
degree k, we know startx(v) = startx−1(v) ∗ k = · · · = start0(v) ∗ kx = kx, which only depends on x
and k and is invariant to the choice of v’s k outgoing edges.

Let endx(v) be the number of paths with length x that end at v. Notice that every path with length no
more than l that ends at v will not contain v’s outgoing edges. Otherwise there will be a path from v to
itself with length no more than `, which is not a shortest path (the shortest path is just the node v itself). So
endx(v) is independent of node v’s strategy.

Now consider the number of paths with length x that pass through node v (neither starting or ending at
v), denoted as passx(v). We know passx(v) =

∑
1≤i≤x−1

endi(v)∗ startx−i(v) =
∑

1≤i≤x−1

endi(v) ∗ kx−i.

Thus total(v) =
∑

2≤x≤l

passx(v) is also independent of v’s strategy. At the same time, notice that these

are the only paths that can contribute to v’s betweenness. Thus for any strategy sv of node v, we have
btwv(sv) ≤ total(v).

On the other hand, in the current configuration G every path with length no more than ` that passes v is
a unique shortest path, thus will contribute one to v’s betweenness. So we get btwv(G) = total(v), which
means that node v is at its best response. Therefore the lemma holds. �

With the above result, we immediately have

Theorem 9. For any ` ≥ 2, `′ ≥ `, k ∈ N+, graph SGnr(`′, k + `′) is a maximal Nash equilibrium of the
uniform `-B3C game with parameters n = (k + `′)!/k! and k.

Proof. This is immediate from Lemmata 23 and 24, and from the fact that any `′-PUG is an `-PUG for
`′ ≥ `. �

The above construction of maximal Nash equilibria is based on path-unique graphs. Next we show that
shift graphs also lead to another family of Nash equilibria not based on path uniqueness. In fact, we show
that they are strict Nash equilibria for uniform `-B3C games for every ` ≥ 2 as well as B3C games without
path length constraint.
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Fig. 7. Vertex duplicated shift graph D(SG(2, 3), 2).

Definition 3. Given a graph G = (V,E), a vertex-duplicated graph G′ = (V ′, E′) of G with parameter
d ∈ N+, denoted as D(G, d), is a new graph such that each vertex of G is duplicated to d copies, and each
duplicate inherits all edges incident to the original vertex. That is, V ′ = {(v, i) | v ∈ V, i ∈ [d]}, and
E′ = {((u, i), (v, j)) | u, v ∈ V, (u, v) ∈ E, i, j ∈ [d]}.

Theorem 10. For any t ≥ 2, d ≥ 2, graphD(SG(2, t), d) is a strict Nash equilibrium of the uniform `-B3C
game with parameters n = dt(t − 1) and k = d(t − 1). It is also a strict Nash equilibrium of the uniform
B3C game without the path length constraint.

Proof. LetG be the graphD(SG(2, t), d). The nodes inG can be represented as (i, j, δ) where 1 ≤ i 6= j ≤
t and 1 ≤ δ ≤ d. The strategy of each node v = (i, j, δ) in configuration graph G is s∗v = {(j, i′, δ′) | 1 ≤
i′ 6= j ≤ t, 1 ≤ δ′ ≤ d}.

Claim 1. For any node v in G, G\{v} has diameter 2.
Proof: notice that d ≥ 2, and thus for any two nodes u = (i, j, δ) and u′ = (i′, j′, δ′) inG\{v}, there are

at least two length-2 paths from u to u′ in G: one goes through (j, i′, 1) and the other goes through (j, i′, 2).
Thus, after removing one node v, u and u′ are still connected with at least one length-2 path. Claim 1 holds.

With Claim 1, it is immediate that for any possible strategy sv of v and the graph G′ that differs from G
only in v’s outgoing edges, all shortest paths that can contribute to the betweenness btwv(G′) are of length
2. Therefore, btwv(G′) = btwv(G′, `) for all ` ≥ 2. Hence in the following we only show that G is a strict
Nash equilibrium for the uniform B3C game without the path length constraint, and the result immediately
applies to the uniform `-B3C games for all ` ≥ 2.

Given a vertex v, we fix the strategies for all of the vertices other than v and consider the betweenness
value of v under different choice of v’s strategy. By Lemma 1, we only need to consider maximal strategies
of v when computing its best response. Let sv = {v1, v2, . . . , vk} be a maximal strategy of v. Let btwv(sv)
be the betweenness value of vertex v if v chooses sv as its strategy, and btwv(u) be the betweenness value of
v if v changes its strategy to sv = {u} (a non-maximal strategy). By lemma 19 and the fact that btwv(G′) =
btwv(G′, 2) for all G′ that differs from G only in v’s outgoing edges, we have

btwv(sv) =
k∑

i=1

btwv(vi)
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Thus for any vertex v = (i, j, δ), we only need to compare btwv(u) for all of the other vertices u and
prove that the largest d(t− 1) values are exactly from the vertices in s∗v.

By symmetry, we only need to consider vertex v = (2, 1, 1). There are (t − 1)d vertices (i′, 2, δ′) with
1 ≤ i′ ≤ t, i′ 6= 2, 1 ≤ δ′ ≤ d) connecting to vertex v. We divide the outgoing edges of v into seven
cases based on their end points u = (i, j, δ) to compute the corresponding betweenness value btwv(u). We
assume 1 ≤ δ ≤ d and i 6= j.

u = (2, 1, δ) : btwv(u) = 0, since there is already an edge from (i′, 2, δ′) to (2, 1, δ);
u = (i, 1, δ), i ≥ 3 : btwv(u) = (t−1)d

d+1 ;
u = (1, 2, δ) : btwv(u) = (t−1)d−1

d ;
u = (i, 2, δ), i ≥ 3 : btwv(u) = (t−1)d−1

d+1 ;
u = (1, j, δ), j ≥ 3 : btwv(u) = (t−1)d

d ;
u = (2, j, δ), j ≥ 3 : btwv(u) = 0, since there is already an edge from (i′, 2, δ′) to (2, j, δ);
u = (i, j, δ), i, j ≥ 3 : btwv(u) = (t−1)d

d+1 .

When t ≥ 3, we have (t−1)d
d > (t−1)d−1

d > (t−1)d
d+1 > (t−1)d−1

d+1 > 0. Thus the top k = d(t− 1) vertices
with the best btwv(u) values are (1, j, δ) with 2 ≤ j ≤ t and 1 ≤ δ ≤ d, which is exactly s∗v. Moreover,
the sum of btwv(u)’s of these vertices are strictly larger than the sum of any other subsets of k vertices.
Therefore, s∗v is a strict best response and the graph is a strict Nash equilibrium.

When t = 2, only two cases u = (2, 1, δ) and u = (1, 2, δ) are left, and the k = d best choices are
u = (1, 2, δ) with 1 ≤ δ ≤ d, again exactly s∗v. Any other subset of k nodes give strictly lower betweenness.
Therefore, the graph is a strict Nash equilibrium too when t = 2. �

In the simple case of t = 2, graph D(SG(2, 2), d) is the complete bipartite graph with d nodes on each
side. For larger t, D(SG(2, t), d) is a t-partite graph with more complicated structure. Figure 7 shows an
example of graph D(SG(2, 3), 2). When d = 2, we have n = 2t(t − 1) and k = 2(t − 1). Thus, we have
found a family of strict Nash equilibria with k = Θ(

√
n).

An important remark is that when d ≥ 2, each node is split into at least two nodes inheriting all incoming
and outgoing edges, and thus graphs D(SG(2, t), d) for all t ≥ 2 and d ≥ 2 are not `-PUGs for any ` ≥ 2.
Therefore, the construction by splitting nodes in shift graphs SG(2, t) are a new family of construction not
based on path-unique graphs.

5.2 Properties of Nash equilibria

From Lemma 24, we learn that `-PUGs are good sources for maximal Nash equilibria for uniform `-B3C
games. Thus we start by looking into the properties of `-PUGs to obtain more ways of constructing Nash
equilibria. The following lemma provides a few ways to construct new `-PUGs given one or more existing
`-PUGs.

Lemma 25. Suppose that G is a k-out-regular `-PUG. The following statements are all true:
(1) If G′ is a k′-out-regular subgraph of G for some k′ ≤ k, then G′ is an `-PUG.
(2) Let v be a node of G and {v1, v2, . . . , vk} be v’s k outgoing neighbors. We add a new node u to G to

obtain a new graph G′. All edges in G remains in G′, and u has k edges connecting to v1, v2, . . . , vk. Then
G′ is also an `-PUG.

(3) If G′ is another k-out-regular `-PUG and G′ does not shared any node with G, then the new graph
G′′ simply by putting G together with G′ is also an `-PUG.

The proof of the lemma is straightforward by definition and is omitted. Lemma 25 has several important
implications. First, by repeatedly applying Lemma 25 (2) on an existing `-PUG, we can obtain an `-PUG
with an arbitrary size. Combining it with Theorem 9, it immediately implies the following theorem.
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Theorem 11. For any ` ≥ 2, k ∈ N+, and n ≥ (k + `)!/k!, there is a maximal Nash equilibrium in the
uniform `-B3C game with parameters n and k.

Next, Lemma 25 implies that there exist rich structures among the Nash equilibria of uniform `-B3C
games. In particular, Lemma 25 (3) implies that Nash equilibria may be disconnected, while Lemma 25
(2) implies that Nash equilibria may be weakly connected but not strongly connected. Furthermore, by
repeatedly adding new nodes based on Lemma 25 (2) such that all new nodes connected to the same set
of {v1, v2, . . . , vk} nodes, we may have very unbalanced Nash equilibria in which some nodes have zero
in-degree while other nodes have in-degree close to n. This also implies that Nash equilibria may have some
nodes with zero betweenness while other nodes have very large betweenness, that is, we have very unfair
Nash equilibria. Note that Nash equilibria based on shift graphs given in Theorems 9 and 10 are all fair in
that all nodes have the same betweenness.

Finally, we investigate non-PUG maximal Nash equilibria in the uniform 2-B3C game with parameters
(n, k), which by Theorem 6 is the most interesting case since its best response computation is polynomial.
We want to see that when we fix k, whether we can find non-PUG maximal Nash equilibria for arbitarily
large n. Let maxInd(G) denotes the maximum in-degree in graph G. The following result provides the
condition under which all maximal Nash equilibria are PUGs.

Theorem 12. LetG be a k-out-regular graph with n nodes. IfmaxInd(G) ≤ n−k
k2+k+1

, thenG is a maximal
Nash equilibrium for the uniform 2-B3C game with parameter n and k if and only if G is a 2-PUG.

Proof. Lemma 24 already shows the part of sufficient condition. Thus we only need to prove that if G is not
a 2-PUG, some node will have better response in G.

Suppose node v is a node in G that is not 2-path unique. Let S = {u|(u, v) ∈ G}. We know that
|S| ≤ maxInd. Then let S′ be the set of nodes that can be reached from any node in S in no more than 2
steps. Since every node has out-degree k, we know that |S′| ≤ |S|+|S|×k+|S|×k×k = |S|×(1+k+k2) ≤
maxInd× (1 + k + k2). Also notice that n ≥ maxInd× (1 + k + k2) + k, so there exist at least k nodes
that are not in S′. If we let node v connect to these k nodes, then every length 2 path that passes through v in
the form x→ v → y will be the unique shortest path from x to y, because y is not reachable from x within
2 steps in any other ways. So v is 2-path unique now, and this will give it a better response. �

The above theorem implies that non-PUG equilibria is only possible if maxInd(G) = Θ(n) when k is
a constant, which means that non-PUG equilibria must have very unbalanced in-degrees when n is large. In
the following, we show as an example how to construct such non-PUG equilibria for the case of k = 2.

First, we introduce a general scheme of adding nodes, similar to the one in Lemma 25 (2), such that if
the original graph is non-PUG Nash equilibria with certain properties, then the new graph is still a non-PUG
Nash equilibria with the same properties.

We say that an edge (v, u) in G is shortcut by a node w if (w, v) and (w, u) is in G. Then we have the
following lemma.

Lemma 26. Suppose that G is a k-out-regular graph in which only one node v is not 2-path unique, and
every edge (v, u) in G is shortcut by at most one node. Let (w, v) be an edge in G, and w has k outgoing
neighbors v1, v2, . . . , vk including v. We add a new node x to G to obtain a new graph G′ such that x
connects to v1, v2, . . . , vk and all edges in G remains in G′. Then in G′ only node v is not 2-path unique. If
G is a maximal Nash equilibria for the uniform 2-B3C game, then G′ is also a maximal Nash equilibria.

Proof. First it’s easy to see that v is also not 2-path unique in G′ because every path in G is still a path in
G′.

For every length 2 path that passes through node v, suppose it’s x → v → y. If it’s not the unique
shortest path from node x to node y, we must have (x, y) ∈ G, i.e. (v, y) is shortcut by node x. Because
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Fig. 8. A Nash equilibrium for the uniform 2-B3C game with n = 10, k = 2 that is not a 2-PUG. The number next to a vertex is its
betweenness value. The vertex with betweenness 5 is not 2-path-unique.

otherwise there must exist another node u such that x → u → y is also a shortest path. But then u is also
not 2-path unique, and that will contradict the fact that v is the only node in G that is not 2-path unique.

Now suppose that G is a maximal Nash equilibria. Let a be the in-degree of node v. Then for each
(v, u) ∈ G, since it is shortcut by at most one node, which means there is at most node w such that (w, v) ∈
G and w → v → u is not the unique shortest path from w to u. Therefore we have a−1 ≤ btwv(G{u}, 2) ≤
a. Since node v is at its best response in G, along with Lemma 19 we know that btwv(G{t}, 2) ≤ a− 1 for
every node t where (v, t) /∈ G

Now considerG′ with new node x in it. First is obvious to see that every node inG′ except node v is still
at its best response. And we have btwv(G′{u}, 2) = btwv(G{u}, 2)+1 for every node u 6= x, u 6= v. Because
there is exactly one more unique shortest path x→ v → u that contribute betweenness value to edge (v, u).
Thus we have a ≤ btwv(G′{u}, 2) ≤ a+ 1 when (v, u) ∈ G and btwv(G′{u}, 2) ≤ a when (v, u) /∈ G. Also
notice that btwv(G′{x}, 2) ≤ a because path x→ v → a is not a shortest path. So we know node v is also at
its best response in graph G′, thus G′ is a maximal Nash equilibria too. �

Figure 8 shows a Nash equilibria for the uniform 2-B3C game with n = 10, k = 2, which we found by
our experiments. In this graph, only one node is not 2-path unique and every edge out of this node is shortcut
by at most one node. This means that, at least for k = 2, we apply the scheme of Lemma 26 to Figure 8 to
generate arbitrarily large graphs that are still non-PUG Nash equilibria.

Theorem 12 can also be used to eliminate some families of graphs with balanced in-degrees as maximal
Nash equilibria. We now show that a family of symmetric graphs called Abelian Cayley graphs cannot be
Nash equilibria of uniform 2-B3C games. An Abelian Cayley graph G = (V,E) is a graph generated by
the additive group Zn = {0, 1, . . . , n − 1} and a generating set A ⊆ Zn of size k, such that V = Zn and
E = {(x, y) | x, y ∈ Zn, ∃z ∈ A, y = x+ z mod n}. We denote such a graph by 〈Zn, A〉.

It is easy to see that Abelian Cayley graphs are not 2-PUGs when k ≥ 2. Let z1, z2 ∈ A, and y =
x+ z1 + z2 mod n for some x ∈ Zn. Then from node x to node y, there are at least two length-two paths,
one passing through w1 = x + z1 mod n and the other passing through w2 = x + z2 mod n. Therefore
none of the nodes in an Abelian Cayley graph is 2-path unique. Moreover, it is clear that every node in the
Abelian Cayley graph has in-degree k. Therefore, by Theorem 12 we have the following result.
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Corollary 2. For any n ≥ k3 + k2 + 2k, any Abelian Cayley graph 〈Zn, A〉 with |A| = k is not a maximal
Nash equilibria for the uniform 2-B3C game with parameters n and k.

6 Conclusion and future work

In this paper, we present results on bounded budget betweenness centrality (B3C) game, a type of network
formation games in which nodes in the network try to strategically select other nodes to connect subject
to the budget constraint in order to maximize their betweenness centrality in the network. We focus on
`-B3C game, where shortest paths contributing to betweenness have path length constraint of at most `,
which matches realistic scenarios and generalizes the work of [12]. We present both hardness results for the
nonuniform version of the game and constructive existence results for the uniform version of the game. We
also study the complexity of computing best response in the game.

There are a number of directions to continue the study of B3C games. First, besides the Nash equilibria
we found in the paper, there are other Nash equilibria in the uniform games, some of them have been found
by our experiments. We plan to further search for other Nash equilibrium structures and more properties of
Nash equilibria. Second, we may also look into other variants of the game and solution concept, such as
undirected connections or approximate Nash equilibria. Another direction is to study beyond betweenness
definitions based on shortest paths, e.g. betweenness definitions based on network flows or random walks.
This can be coupled with enriching the strategy set of the nodes to include fractional weighted edges.
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