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Abstract. Model programs are used as high-level behavioral specifica-
tions typically representing abstract state machines. For modeling re-
active systems, one uses input-output model programs, where the ac-
tion vocabulary is divided between two conceptual players: the input
player and the output player. The players share the action vocabulary
and make moves that are labeled by actions according to their respective
model programs. Conformance between the two model programs means
that the output (input) player only makes output (input) moves that
are allowed by the input (output) players model program. In a bounded
game, the total number of moves is fixed. Here model programs use a
background theory 7 containing linear arithmetic, sets, and tuples. We
formulate the bounded game conformance checking problem, or BGC, as
a theorem proving problem modulo 7 and analyze its complexity.

1 Introduction

Model programs are typically used to describe protocol-like behavior of
software systems, with the underlying update semantics based on abstract
state machines or ASMs [17]. At Microsoft, model programs are used for
model-based testing of public application-level network protocols in the
Windows organization, as an integral part of the protocol quality assur-
ance process [16]. In such models, the action vocabulary is often divided
into controllable and observable actions, reflecting the testers point of
view, i.e., what actions are controllable by the tester versus what actions
are observable by the tester. The central problem is to determine if an im-
plementation conforms to a given specification. In the presence of control-
lable and observable actions, the problem can be described as a game con-
formance checking problem, where the tester executes controllable actions
and the implementation responds with observable actions. Traditionally,
model-based conformance testing is a black-box testing technique where
the actual implementation code is assumed to be unknown to the tester.

In this paper we look at the game conformance checking problem from
the symbolic (or static) analysis point of view. The implementation is not
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a “black box” but a “gray box”. In other words, the implementation is
also assumed to be given as a model program through some abstraction
function.

The general game conformance checking problem is very hard but can
be approximated in various ways. A natural approximation is to bound
the number of steps or moves that the players make. This corresponds
directly to the fact that actual tests have a finite length. The problem we
introduce and analyze in this paper is the Bounded Game Conformance
problem of model programs, or BGC for short. We translate the problem
into a theorem proving problem modulo a background theory that is most
commonly needed in model programs, and analyze the complexity of the
problem. For a class of model programs that are common in practice the
problem is shown to be decidable. We also discuss a concrete analysis
approach for BGC using a satisfiability modulo theories (SMT) based
theorem prover Z3.

What differentiates model programs from traditional sequential pro-
grams is that model programs typically assume a rich background uni-
verse and often operate on a more abstract level, for example, they use set
comprehensions and parallel updates to compute a collection of elements
in a single atomic step, rather than one element at a time, in a loop. A
model program whose action vocabulary is divided into two disjoint parts
(corresponding to two players), is called an input-output model program.
Figure 1 illustrates two input-output model programs written in AsmL [3,
18]. The Spec model program in Figure 1 is an abstracted version of the
cancellation feature in the SMB2 protocol [22] that is a successor of the
Windows file sharing client-server protocol SMB. The SMB protocol is
used for file sharing by Windows machines and machines running third
party implementations, such as Samba.

In Section 2 we define model programs formally. In Section 3 we in-
troduce the problem of bounded game conformance checking or BGC' and
show its reduction to a theorem proving problem modulo 7. Section 4
discusses the complexity of BGC. Section 5 discusses implementation of
BGC using Z3 [13]. Section 6 is about related work.

2 Model programs

We consider a background 7 that includes linear arithmetic, Booleans,
tuples, and sets. All values in 7 have a given sort. Well-formed expressions
of 7 are shown in Figure 2. Each sort corresponds to a disjoint part
of the universe. We do not add explicit sort annotations to symbols or



Model program Spec Model program Impl
enum Mode
Undef =0
Sent =1
Canceled = 2
var M as Map of Integer to Mode
= {->}
var R as Set of Integer = {}
[i,Action]
Req(m as Integer) [i,Action]
require m notin M Req(m as Integer)
M (m) := Sent require true
add m to R
[i,Action]
Cancel(m as Integer) [i,Action]
require true Cancel(m as Integer)
if M (m) = Sent require true
M (m) := Canceled skip
[o,Action] [0,Action]
Res(m as Integer, b as Boolean) Res(m as Integer, b as Boolean)
require m in M and require (m in R) and b
(b or M(m) = Canceled) remove m from R
remove m from M

Fig. 1. Here Req and Cancel are i-actions and Res is an o-action. The model program
Spec specifies a request cancellation protocol. A request, identified by a message id m,
can be Canceled at any time. A response must be associated to some pending request,
where if b is false then the request must have been Canceled. The model program Impl
describes a particular implementation that never cancels any requests, and responds
to all requests in some arbitrary order.

expressions but always assume that all expression are well-sorted. A value
is basic if it is either a Boolean, an integer, or a tuple of basic values.

The expression Ite(p,t1,t2) equals 1 if ¢ is true, and it equals to, oth-
erwise. For each sort, there is a specific Default value in the background.
In particular, for Booleans the value is false, for set sorts the value is 0,
for integers the value is 0 and for tuples the value is the tuple of defaults
of the respective tuple elements.

The function TheElementOf maps every singleton set to the element
in that set and maps every other set to Default. Note that extensionality
of sets: Vow (Vy(y € v < y € w) — v = w), allows us to use set compre-
hensions as terms: the comprehension term {t(z) |z ©(Z)} represents the
set such that Vy(y € {t(Z) |z ¢(Z)} < Iz(t(T) = y A ¢(T))).
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Fig. 2. Well-formed expressions in 7. Sorts are shown explicitly here. An expression
of sort o is written 7. The sorts Z and B are for integers and Booleans, respectively,
k stands for any integer constant, x° is a variable of sort o. The sorts Z and B are
basic, so is the tuple sort op X --- X ok, provided that each o; is basic. The set sort
S(o) is not basic and requires o to be basic. All quantified variables are required to
have basic sorts. The sort A is called the action sort, f(‘”’"“"’"*l) stands for an action
symbol with fixed arity n and argument sorts oo, ...,0,—1, where each argument sort
is a set sort or a basic sort. The sort A is not basic. The only atomic relation that can
be used for T* is equality. Default® is a nullary action symbol. Boolean expressions
are also called formulas in the context of 7. In the paper, sort annotations are mostly
omitted but are always assumed.

Actions. There is a specific action sort A, values of this sort are called
actions and have the form f(vo, . . ., Varity(f)—1)- Default® has arity 0. Two
actions are equal if and only if they have the same action symbol and their
corresponding arguments are equal. An action f(?) is called an f-action.
Every action symbol f with arity n > 0, is associated with a unique
parameter variable f; for all i, 0 < i < n.!

An assignment is a pair x := t where z is a variable and t is a term
(both having the same sort). An update rule is a finite set of assignments
where the assigned variables are distinct. In the following definition, in-
ternal non-determinism of model programs (through choice variables [7])
is excluded, the initial state condition is omitted, and all state variables
must be updated by each action. The last two restrictions are without loss
of generality, and allow us to provide a simplified view of the definitions.

Definition 1 (Input-Output Model Program). An input-output model
program is a tuple P = (X, ', I'°, R), where

— X is a finite set of variables called state variables;

! In AsmL one can of course use any formal parameter name, such as m in Figure 1,
following standard conventions for method signatures.
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— I'' is a finite set of i-action symbols, I'® is a finite set of o-action
symbols, I'' N I"° = (;
— R is a collection {Ry}repiyro of action rules Ry = (7,U), where
e 7 is a formula called the guard of f;
e U is an update rule {z :=t, },cx, called the update rule of f.
All free variables in Ry must be in XU {f; }icarity(f)-

We often say action to also mean an action rule or an action symbol,
if the intent is clear from the context. In the following, we say model
program for input-output model program. The following special class of
model programs is important when considering analysis.

Definition 2 (Basic Model Programs). A model program is basic if
all parameter variables in it are basic.

Standard ASM update rules can be translated into update rules of
model programs. A detailed translation from standard ASMs to model
programs is given in [7]. In the general case, model programs also use
maps, e.g., M is a map in Spec in Figure 1, that are used to represent
dynamic functions of ASMs. In 7, maps are represented by their graphs
as sets of pairs, see [7].

States. A state is a mapping of variables to values. Given a state S and
an expression E, where S maps all the free variables in F to values, E° is
the evaluation of E in S. Given a state S and a formula ¢, S = ¢ means
that ¢ is true in S. A formula ¢ is valid (in 7) if ¢ is true in all states.
Since T is assumed to be the background theory we usually omit it, and
assume that each state also has an implicit part that satisfies 7. In the
following let P = (X, I'!, I"°, R) be a fixed model program.

Definition 3. An action a = f(vg,...,vp—1) is enabled in a state S if
S" = SU{fi — v;}icp satisfies the guard of f. If a is enabled in S then a
causes a transition from S to the state Sy = {2 +— tJ },ex, denoted by
S % 8.

An input-output labeled transition system or LTS for short is a tuple
(S,80, L, L°,T), where S is a set of states, S° € S is an initial state,
L =L'ULP is a set of labels, where L'NL° =0, and TC S x L xS is a
transition relation.

Definition 4. [P]is the LTS (S,S°, L, L°,T); S° = {x + Default},ex;
L' (L°) is the set of all actions over I'! (I"°); T and S are the least sets
such that, S° € S, and if S € S and S % Sy then (S,a,5;) € T.



Given an action sequence a = (ao,...,a,_1) and transitions S; LN
Si+1 for 0 < i < k, of an LTS, we write Sy %, Si. If Sy is the initial state
then « is called a trace of the LTS. The set of all traces of P is denoted
by Traces(P).

3 Bounded Game Conformance

The basic notion of conformance between two (input-output) model pro-
grams is based on the notion of alternating simulation between two LT'Ss.
Definition 5 below is consistent with [11], and is based on [2]. The defini-
tion makes the assumption that the L'TSs are deterministic, i.e., for any
two transitions S —— S’ and S —— S”, S’ = §”. Thus, LTSs are viewed
here as interface automata [12] and the transition relation becomes a
transition function. Note that [P] is deterministic for a model program
P2 Let M; = (S;,SY, LY, L°, T;), for i = 1,2, be deterministic LTSs.

Definition 5 (=X). M; < M, iff there exists an alternating simulation p
from M; to My such that (SY,59) € p, where an alternating simulation
from My to My is a relation p C &1 X S such that, for all (S1,S2) € p:

— For all a € L°, if S; —> S} then Sy — S} and (S, Sh) € p.
— For all a € L}, if S % S} then S; — S} and (S}, 5%) € p.

Example 1. Consider the following two model programs, where s° := () is
the initial and only state, and in and out are nullary action symbols.

Specriviar = (0, {in}, {out}, {(false,0)in, (true,0)ou})

Impl i = (0,{in}, {out}, {(true, 0) i, (false,0)ou})
[Specirivial = ({s°}, 8%, {in}, {out}, {(s°, out,s")})
[Tmplriviat] = ({8°}, 8%, {in}, {out}, {(s°, in, s°)})

Clearly [[Impltrivial]] = [[Spectrivial]] and [[Spectrivial]] ﬁ [[Impltrivial]]'
X

The following characterization of < in terms of traces, follows from
Definition 5 and is used below.

Lemma 1. N A M iff there exists a trace o that is a trace of both N
and M, and there is an o-label (i-label) a such that («,a) is a trace of N
(M) but not a trace of M (N ).

2 This is not the case when choice variables are allowed in model programs.



For symbolic analysis, we are primarily interested in the approxima-
tions =<, of < where the depth n > 0 is bounded.

0 <0
Definition 6 (=<,). M; =<, Mo A 55131752)

My iff, either n = 0, or the following holds:

My where M, ngI’SQ)

— For all a € L°, if §; - S} then Sy N S and M, ﬁqu_iisé) M.

— Forall a e Li, if S - 8, then Sy —% 8! and M; <\*1:%) pg,.

n—1

It follows easily from the definitions that My < My iff My <,, My for
all n > 0.

Let P and @ be fixed model programs with the same action vocabu-
laries.

Definition 7. Q n-refines P, Q =<, P, iff [Q] =, [P].

Intuitively, when P is a specification model program and @ is an
implementation model program and @ <,, P, then () behaves as expected
by P within n steps. Such bounded refinement (or a generalization of it
with object-bindings) is used as the underlying notion of conformance
in testing of reactive systems in [27], in particular, it is checked in the
context of online testing [28]. The bound is due to the fact that tests are
finite.

Ezxzample 2. Let Impl and Spec be as in Figure 1. One can show that
Impl =<, Spec for all n and thus Impl < Spec. It is also the case that
Spec =1 Impl but Spec A9 Impl; for example the trace (Req(1), Req(1))
is a trace of Impl but not a trace of Spec. X

Definition 8 (BGC). Bounded Game Conformance problem or BGC
is the problem of deciding if Q < P.

In order to reduce BGC into a theorem proving problem, we construct
a special formula from given P, QQ and n, as defined in Definition 9.
Given an expression E and a step number i > 0, we write E[i] below
for a copy of E where each (unbound) variable  in E has been uniquely
renamed to a variable z[i]. We assume also that E[0] is £. The intuition
for the notation P, and P, below is that P; is the “owner” of i-actions
(P; is the specification), and P, is the “owner” of o-actions (P, is the
implementation).

Definition 9 (BGC Formula). Let P; and P, be model programs
(Tx T 10, (Y Utx)feriure), for x = B, Po. Assume that Tp, N TR, =
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0.3 Let i = 0 and 6 = i. The BGC formula for P;, P,, and n is:

BGC(Py, P;,n) = (Tp, = Default A Tp, = Default) = Ref (0,n)
Ref(n,n) < true

(i <n) Ref(i,m) = NN\

pe{i,o} ferr

VI (el n N\ wli+ 1) =]

z:=t€Uy p,
Aaction[i] = f(fi]))

= (il AC N\ yli+1] =]
y:ZSEUfypﬁ

= Ref(i+1,n))))

where f[i] = fo[i]... farity(r)—1[i] are the parameter variables of action f
for step i.* For each step number i, there is an additional variable action|i]
of sort A that records the selected action for step 1.

Note that all parameter variables have distinct names in each step. The
only connection between the steps happens via the state variables. Note
also that the resulting formula is a universal formula, assuming that the
guards and the update rules do not involve quantifiers (e.g. in comprehen-
sions), i.e., in prenex form, all the quantifiers for the parameter variables
are universal. This implies that the negation of the BGF formula is well
suited for non-BGC checking of basic model programs (where the state
variables can be eliminated) using satisfiability modulo 7. The sole pur-
pose of the action variables is to enable easy extraction of the action
sequence as a witness of the refinement violation.

The following theorem allows us to prove n-refinement by proving that
the BGC formula is valid in 7.

Theorem 1. BGC(P,, P;,n) is valid in T iff Py <, B;.

Proof (Sketch). The case k = 0 is trivial. Assume k& > 0. For the direction
(=) we assume that P, A; P; and get a shortest run of length [ < n
where the last action is either a i-action that is enabled in P; but not in Py,
(or an o-action that is enabled in P, but not in F;). From this run we can
construct a state that satisfies “BGC(P,, P;,n), using the property that
if ~BGC(P,, P;,1) is satisfiable then “BGC(FP,, P;,1) is also satisfiable,

3 Or just rename the state variables.
4 Note that the parameter variables of f are shared between P; and Po.



for I' > I (because if y p,[I] is false then so is the conjunct vs p [[] A...).
The proof of the direction (<=) is similar. X

Relation to BMPC. There is an alternative way how =<,, can be analyzed:

by reducing #,, to the BMPC problem [7]. BMPC'is the problem: given

a model program P, a reachability condition ¢ and step bound k, does

there exist a trace a of length at most k such that SEP]] %, Sand S = .
For this reduction we use product of model programs. Let

Pi - (Eiypiypoy {(Vf,m Uf,z)}fEF)

for i = 1,2, where X and Y5 are disjoint and I" = 'l U I"°.

def

PLe Py = (21U X, I IO {(v1 Avpas Up1 UU2) rer})

The following property holds for the product construction.
Lemma 2. Traces(Py ® Py) = Traces(Py) N Traces(Py).

Define the game conformance invariant as the following formula:

Inv<(Pr, Py) (N (vp1 = v52) A C (2 = 710))
fere feri

The following holds.

Theorem 2. Py A, P> iff ~Inv<(P1, P,) is reachable in Py ® Py within
n steps.

Proof. (=) Assume P; %, P». By Lemma 1 there is a trace « of length
m of some m < n such that o € Traces(Py) and o € Traces(P2) and
there is either an output action a such that («,a) is in Traces(P;) but
not in Traces(Pz) or an input action a such that («,a) is in Traces(Ps)
but not in Traces(P;). It follows that Inv<(Py, P») must be false in the
state reached by «. Moreover « € Traces(P; ® P), by Lemma 2.

(«<=) Similar to (=), by using Lemma 2 and Lemma 1. X

Relation to ioco. A common notion of conformance that is used for test-
ing reactive systems is ioco [23] that stands for input-output conformance.
There are also several variations of ioco, discussed in [23], that are used
for testing various extensions of reactive systems. Here we only look at
basic ioco and consider traces that exclude quiescence 9.

The rationale behind excluding ¢ as a special action is that, in a model
program, 0 can be defined as a nullary o-action with an empty update
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rule’ and a guard that is the negation of the existential closure of the
conjunction of the guards of all the other o-actions. Thus, ¢ is enabled

in a state S iff no other o-action is enabled in S and S > S. Let P
denote a model program where ¢ is defined in this way.

Ezxzample 3. Consider the model program Impl in Figure 1, where Res is
the only o-action. In Impl®, § has the guard —3Imb(m € R Ab), that is
equivalent to R = (). Similarly, in Spec®, § has the guard M = ().

An LTS M is input-enabled if in all states in M that are reachable from
the initial state, all i-labels are enabled.® For example, Impl in Figure 1
is input-enabled. The following definition of ioco is consistent with the
definition in [23] (provided that ¢ is defined as above).

Definition 10 (ioco). Let M and N be LTSs over the same i-labels and
o-labels. Assume N is input-enabled. N ioco M iff, for all traces a of
M, if there is an o-label a such that (a,a) is a trace of N then (a,a) is
a trace of M.

The relationship between ioco and < has been somewhat unclear in
the testing community (see for example the discussion in [28]). In our
context, =< is a generalization of ioco. The particular advantage of using
=< instead of ioco is that < is compositional. The definition of < can also
be generalized to non-deterministic LTSs, in such a way that the theorem
holds when P and @ include choice variables.

Theorem 3. If [Q] is input-enabled then [Q] ioco [P] <= Q <X P.

Proof. By Lemma 1 and the assumption that [(Q] is input-enabled. The
assumption is needed for the direction =—. X

For the bounded version of ioco we restrict the length of the traces
by a given bound n so that all traces in Definition 10 have a length that
is at most n; denoted here by ioco,. We get the following corollary of
Theorem 1 and Theorem 3.

Corollary 1. If [Q] is i-enabled then, BGC(Q, P,n) is valid in T iff
[Q] ioco,, [P].

5 An empty update rule is equivalent to the trivial update rule {z :=2}scs.
6 Such LTSs are called input-output transition systems in [23).
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4 Complexity of BGC

The general BGC problem over arbitrary model programs is highly un-
decidable. This follows from the well-known result that the validity prob-
lem of formulas in Presburger arithmetic with unary relations is IT7-
complete [1,19]. Using this result, it is enough to consider model pro-
grams that have one action with a single set-valued parameter and a
linear arithmetic formula as the guard. To show inclusion in I}, one can
use the same argument that is used in [7] to show that the BMPC problem
is in X1.

Corollary 2. BGC is II{-complete.

Even when all sets in the background are required to be finite the
validity problem in 7 over finite sets is still co-re-complete [7].

Corollary 3. BGC over finite sets is co-re-complete.

Even though the general BGC problem is undecidable, we are primar-
ily concerned about practical applications. In most model programs, such
as the ones in Figure 1, that are used to specify protocols (see also [21, 30]),
the actions typically only use basic parameters, i.e., parameters whose sort
is not a set sort. In other words, our main target for analysis are basic
model programs (recall Definition 2).

Theorem 4. BGC of basic model programs is decidable. Moreover, the

upper bound of the computational complexity is 22" and the lower bound
is 227", where ¢ is a constant and n is the size of the input (P,Q,k).

Proof (Sketch). Consider the formula ¢» = BGC(Q, P, k). First, the for-
mula ) is translated into logic without sets but with unary relations, by
replacing set variables with unary relations and by eliminating set com-
prehensions and set operations in the usual way, e.g., t € S, where S is a
set variable, becomes the atom Rg(t), where Rg is a unary relation sym-
bol. Let the resulting formula be p. Next, introduce auxiliary predicates
that define all the subformulas of ¢, by applying the Tseitin transforma-
tion [24] to ¢. Subsequently, eliminate those auxiliary predicates (as a
form of de-Skolemization), by introducing additional quantifiers. (A sim-
ilar elimination technique that can be used here follows from [15, p 129],
see also [25]). The overall reduction implies that the computational com-
plexity of BGC of basic model programs, regarding both the lower and
the upper bound, is the same as that of Presburger arithmetic [15]. X
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A naive implementation of definition 9 could repeat the recursive calls to
an exponential number of times. However, note that the results are all
shared common sub-expressions.

From a practical perspective, the actual computational complexity of
BGC over basic model programs problem depends on the quantifier al-
ternation depth. In many problems the final formula is universal, because
quantifiers are not used inside guards or update rules.

5 Implementation

We created a prototype for testing the Bounded Game Conformance for-
mulas generated from definition 97. The prototype uses the F# program-
matic interface to the state-of-the art SMT solver Z3 [13] to represent
Input-Output Model Programs as a collection of transition pairs. Each
pair consists of a specification and an implementation transition and is
tagged as either i or o to indicate which direction to check the alternat-
ing simulation. The data-types used in the model program are mapped
directly to native Z3 theories. For example, the Mode enumeration type
is mapped into a special case of algebraic data-types where enumerations
are encoded as nullary constructors.

The finite map M is rep-
resented as an array, and
the theory of extensional ar-
rays is used to handle the
operations on M. Similarly,
the set R is represented as v
an array that maps integers 1
to Booleans. The operations, 01
element-wise addition and re- oo
moval required by Req and @ .,
Res) are simply array up-
dates. Z3 supports richer set
operations as an extension to Fig. 3. Timing BGC(P,, P;,n), n = 1..19.
the theory of arrays, but this
example does not make use of these. The prototype uses the fact that
terms in Z3 are internally represented as shared directed acyclic graphs.
In particular, the repeated occurrences of Ref (i+1,n) represent the same
formula. The formula is built only once, and reused in the different occur-

100000

10000

1000

" See http://research.microsoft.com/en-us/people/nbjorner /ictac09.zip.
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rences. The size of the resulting path formula is therefore proportional to
the number of unfoldings n and to the size of the input model program.
On the other hand, the

. . 10000
size of the input does not
depend on the size of the | f/_J\J“
state space. The potentially 100 et
unbounded size of the state ,_,/\//
. 10 A
space is also not a factor /\/V
when checking for bounded ! [,I
135 © 111315171921 23252729313335373941434547
game conformance, but our 01
techniques are sensitive to oot \/

the number of paths in the
unfoldings. Figure 3 shows
the number of seconds it took Fig. 4. Timing Inv<(Py, Py), n = 1..47.
73 to check for conformance -
for up to 19 unfoldings for
our example in Figure 1. We observe that the time overhead grows ex-
ponentially with the number of unfoldings n (so linear in the number of
paths that are checked). Not shown is the space overhead, which was very
modest: space consumption during solving grew linearly with n, from 12
MB to around 20 MB. Figure 4 shows the similar timings required for
checking the equivalent property Inv<(P;, P;) for the BMPC formula-
tion. The overhead of checking the invariant in this formulation is still
exponential, but the growth is much slower and it is therefore possible to
explore up to 47 unfoldings, with each check taking less than 20 minutes.

A more interesting use of bounded conformance checking is to detect
bugs in the models used for either the specifications or implementations.
We can plant a bug in our example from Figure 1 by changing the Impl
transition Res to forget removing m from R. The bogus transition is
therefore:

[0,Action]

Res(m as Integer, b as Boolean)

require (m in R) and b
skip

It takes Z3 well below a second to create a counter-example of length
3. Since the BGC(P,, P;,n) formula contains equalities that track which
actions are taken together with their parameters, it is easy to use Z3’s
model-producing facilities to extract the counter-example:

actionsO -> (req 1)
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actionsl -> (res 1 true)
actions2 —> (res 1 true)

The counter-example says that the client request (Req) action is ap-
plied with input 1, followed by two server responses (Res) using the same
parameter 1. The Spec model program is not enabled in response to this
second action.

6 Related work

BGC is related to the bounded model program checking problem or
BMPC [7, 26, 29], that is a bounded path exploration problem of a given
model program. BMPC is a generalization of bounded model checking
to model programs. The technique of bounded model checking by using
SAT solving was introduced in [4] and the extension to SMT was intro-
duced in [14]. BMPC reduces to satisfiability modulo 7. BMPC can be
reduced in polynomial time to BGC, providing the computational com-
plexity bounds for BMPC, using Theorem 4, that are left open in [7].
Unlike BGC, the BCC [25] problem introduces k-depth quantifier alter-
nation in the resulting formula, where £ is the step bound. This is also the
case for a generalization of BGC for non-deterministic model programs,
in which case the reduction to BMPC, shown in Section 3, does not work.
The resulting formula for a BMPC problem does not have quantifier alter-
nation, even for non-deterministic model programs, since choice variables
and parameter variables are treated equally.

Symbolic analysis of refinement relations through theorem proving are
used in hardware [10, 9]. Various refinement problems between specifica-
tions are also the topic of many analysis tools, where sets and maps are
used as foundational data structures, such as ASMs, RAISE, 7, TLA+,
B, see [5], where the techniques introduced here could be applied. In some
cases, like in RAISE, the underlying logic is three-valued. In many of the
formalisms, frame conditions need to be specified explicitly, and are not
implicit as in the case of model programs or ASMs. In Alloy [20], the
analysis is reduced to SAT, by finitizing the data types. In our case we
bound the search depth rather than the size of the data types

For implementation, we use the state of the art SMT solver Z3 [13],
discussed in Section 5. Implementation of the reduction of BGC of basic
input-output model programs to linear arithmetic, based on Theorem 4,
is future work. In that context the reduction to Z3 can take advantage
of built-in support for Ite terms, sets, algebraic data-types, and tuples.
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The background theory 7 can also be extended to include reals, that are
natively supported in Z3. Our experiment indicated that Z3 could be used
for modest bounded exploration. More interestingly, it posed an intriguing
challenge for solvers like Z3 to better handle diamond structured formulas.
One technique for handling diamond style formulas is explored in [6]. It
uses a combination of abstract interpretation and constraint propagation
to speed up the underlying constraint solving engine.

We see conformance from a game point of view, that view is inspired
by [11]. The game view can also be used to formulate other problems re-
lated to input-output model programs, such as finding winning strategies
to reach certain goal states. In the context of testing, a overview of using
games is given in [31]. Game based testing approaches with finite model
programs are also discussed in [8] using reachability games.
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