
Robust Location Understanding in Spoken Dialog Systems Using Intersections

Michael L. Seltzer, Yun-Cheng Ju, Ivan Tashev, and Alex Acero

Speech Technology Group, Microsoft Research, Redmond, WA USA
{mseltzer, yuncj, ivantash, alexac }@microsoft.com

Abstract
The availability of digital maps and mapping software has

led to significant growth in location-based software and ser-
vices. To safely use these applications in mobile and automo-
tive scenarios, users must be able to input precise locations us-
ing speech. In this paper, we propose a novel method for loca-
tion understanding based on spoken intersections. The proposed
approach utilizes a rich, automatically-generated grammar for
street names that maps all street name variations into a single
canonical semantic representation. This representation is then
transformed to a sequence of position-dependent subword units.
This sequence is used by a classifier based on the vector space
model to reliably recognize spoken intersections in the presence
of recognition errors and incomplete street names. The efficacy
of the proposed approach is demonstrated using data collected
from users of a deployed spoken dialog system.
Index Terms: location-based spoken dialog systems, spoken
address recognition, vector space model

1. Introduction
The widespread availability of digital maps and mapping soft-
ware has generated significant growth in location-based soft-
ware and services such as route planning, navigation, and locat-
ing nearby businesses, such as restaurants, e.g. [1]. Recently,
such offerings have started moving from desktop computers to
mobile devices and embedded computers. In these applications,
the ability for the user to easily input locations is critical [2].
Because these devices have small screens and are often used in
hands-busy/eyes-busy environments, e.g. while driving, speech
is a safe and natural way to do so.

Locations can be conveyed by the user in several ways. For
example, a business or point of interest can indicate a loca-
tion if the corresponding address is known. However, this only
works for unique entities, and not for chain businesses or res-
idences. For example, in Seattle, WA asking for directions to
“Starbucks” is highly ambiguous, as there are many Starbucks
caf́es in the city, and often more than one on a single street.

The full street address, on the other hand, always corre-
sponds to a unique location. Unfortunately, using the street ad-
dress is difficult in practice because of recognition errors, espe-
cially with a single recognition pass This was confirmed in [3],
where an iterative multi-pass approach using a class-based lan-
guage model was proposed for spoken addresses. The difficulty
is even more apparent when one considers that state-of-the-art
recognition accuracy for a five digit number in noise conditions
that are realistic for mobile scenarios is about 90% [4]. This
means that one out of ten house numbers or zip codes will be
misrecognized. In such cases, the disambiguation strategies to
correct these errors must often resort to tedious digit-by-digit
confirmation.

In this paper, we propose the use of intersections as a way

for users to convey their exact location to a spoken dialog sys-
tem. Intersections have many advantages over conventional
methods of location entry. They are a highly natural and are
often used to convey location in human-human communication.
In addition, it is easier to determine the nearest intersection than
the nearest valid address while driving. Because an intersection
consists of two streets, there are a limited number of ways an
intersection can be misrecognized: either one of the two streets
is wrong, or both are wrong. This makes disambiguation po-
tentially much simpler compared to a street address. Finally,
if intersections can be recognized reliably, users can uniquely
identity an otherwise ambiguous point of interest with a ref-
erence intersection, such as “Starbucks on the corner of Pine
Street and 3rd”.

Recognizing intersections reliably is a challenging prob-
lem. In major cities, there can be thousands of street names
and many more intersections. For example, in the city of Seat-
tle, there over 3500 unique street names and over 20,000 inter-
sections. In addition, streets and intersections are often spoken
informally, with incomplete specifications and a variety of pro-
nunciations.

In this work, we propose a novel method for understand-
ing spoken intersections. In this approach, the user’s speech
is recognized using a rich, automatically generated probabilis-
tic context free grammar (PCFG) for street names that maps
all pronunciation variations of a street name to a single canon-
ical representation during recognition. This representation is
then expanded using a positition-dependent phonetic tokeniza-
tion. This tokenization enables the intersection classifier, which
is based on the vector space model, to accurately classify an
intersection despite the presence of recognition errors and in-
complete street names. The proposed approach only requires a
single recognition pass and works with any recognition engine.
We verify the validity of our approach and compare it to other
methods using data collected from users of a spoken dialog ap-
plication that recognizes intersections in Washingon state.

2. Generating a grammar for street names
There is a high degree of variability in the way people refer to
street names. For example, users may use a partial street name,
either out of familiarity or convenience, e.g. “the gas station on
148th,” or because they do not know or remember the complete
name or order of the terms, e.g. “5th Ave S” vs. “S 5th Ave”.

In order to recognize these entities robustly, we first create
a rich PCFG that captures the variety of ways people refer to
streets. We start with a geographic database that contains all
street names and intersections in a particular city. The street
names follow conventional address abbreviations, such as stan-
dard street suffixes, e.g. St, Ave, Ln, and compass directions,
e.g. N, S, NE, SW. Each full street name in the database is
first parsed into a sequence of entities using regular expressions



Table 1: Street name entity labels

Street Entity Examples

<InterstatePrefix> I, US
<HighwayPrefix> Hwy, SR, Route
<CardinalAlpha> 9A
<AlphaCardinal> A101,
<Cardinal> 101, 5, 90
<Ordinal> 148th, 3rd
<Direction> N, S, NE, SW
<StreetType> Ave, Ln, St, Ct
<TextName> Main, Ashbury

<StreetType>

Ave NE148th

<Ordinal> <Direction>

Figure 1: Grammar generating graph for “148th Ave NE”

based on hand-crafted rules. A list of the entities and examples
are shown in Table 1.

Once this labeling is performed, all possible variations of
the full street name are enumerated using a graph-based repre-
sentation. The graph is constructed such that all paths in the
graph constitute a valid pronunciation of that street name. A
valid street name must include a Cardinal, Ordinal, AlphaCar-
dinal, CardinalAlpha, or TextName, while all other labels such
as Direction, StreetSuffix, and HighwayPrefix can be skipped.
An example graph for “148th Ave NE” is shown in Figure 1.

Once all paths of the graphs are enumerated, the utterance
corresponding to each path through the graph is extracted, text
normalized, and added to the grammar. For each valid path
through the grammar, additional utterances are also generated
for alternate pronunciations and common prefix substitutions.
This frequently occurs for ordinal street names, e.g. “140th”
can be pronounced “one hundred and fortieth”, “one fortieth”,
“a hundred fortieth”, etc. and for highways, where a variety
of prefixes, such as “I, interstate, or highway” are common.
Each variation is mapped to a common semantic identity that
represents the path taken through the word graph. This seman-
tic identity is used as the semantic tag in a W3C standardized
SRGS grammar [5]. The benefit of the proposed PCFG is that
a large variety of possible street name pronunciations are col-
lasped down to a concise canonical representation.

Because the grammar is quite large, adding prior proba-
bilities to the entries in the grammar can significantly improve
recognition accuracy over a simple uniform distribution. In this
work, we set the priors for streets based on the number of inter-
sections of which it is a member. This idea has intuitive appeal,
as long, busy streets will have many intersections, while smaller
neighborhood streets will have significantly fewer. Once this
grammar is generated, duplicate entries are counted and aggre-
gated and their weights are combined. For example, both “148th
Ave NE” and “NE 148th Pl” will generate entries in the gram-
mar as “148th”, so this entry’s weight is proportion to the sum
of the weights of all streets with the root ordinal “148th”. This
increases the prior probability of a root ordinal which is shared
across several street names.

In order to recognize naturally spoken intersections, the
street PCFG is embedded in a context free grammar that cap-
tures typical ways of specifying an intersection, such as “I’m

on the corner of<Street> and<Street> ”. This intersec-
tion CFG is then combined with a domain-independent n-gram
filler model to generate a hybrid CFG/n-gram grammar which
is much more robust than a standalone CFG to variations in the
grammar [6].

3. Robust Recognition of Intersections
Once the user’s utterance is recognized and parsed, we have
a recognition hypothesis (and corresponding semantic tag) for
each of the streets in the intersection. However, there is a high
likelihood that user uttered only a fragment of the complete
street name. In addition, because of the high acoustic confus-
ability among many street names, especially numeric streets,
there is a good chance that recognition errors will occur. In this
section, we address both of these issues.

3.1. Vector space model using TF-IDF

The street name classification is performed using a vector space
model (VSM). The VSM was originally proposed for informa-
tion retrieval of text documents [7]. In this model, each docu-
mentdi in a collectionD is represented as a vectorvi, whose
components represent the importance of particular terms in the
document. The most commonly used values for the components
in these vectors are based on Term Frequency-Inverse Docu-
ment Frequency (TF-IDF).

The TF-IDF score is composed to two terms, the term fre-
quency (TF), which is the ratio of the number of occurances a
word to the total number of words in the document, and inverse
document frequency (IDF), which is the ratio of the total num-
ber of documents in a collection to the number of documents
containing that word. Thus, for wordwi in documentdj , we
compute TF-IDF as

vij = TFij · log(IDFi) =
Nij

Nj
· log

�
M

Mi

�
(1)

whereNij is the number occurances ofwi in dj , Nj is the total
number of words indj , M is the number of documents in the
collectionD andMi is the number of documents that contain
wi.1

The TF-IDF scores can be computed for each document
for all terms (words) that appear in the document collection.
Thus, each documentdj is represenented by a vectorvj =
[v0j , v1j , . . . , vKj ] whereK is the number of unique words
present inD. The vector space model then computes the simi-
larity of two documents as the cosine of the angle between their
corresponding vectors, as

S(di, dj) = cos θ =
vi · vj

‖ vi ‖‖ vj ‖ (2)

If the two documents are identical, thenS(di, dj) = 1 and if
the documents share no terms, thenS(di, dj) = 0. When a
queryq is made, it is treated as a document, and the appropriate
vectorvq is created. Documents similar to the query can then
be identified.

In our system, streets are considered documents with words
corresponding to the entities that comprise a particular street’s
full name. For example, if the street names were used direclty
in the VSM, “148th Ave NE” would be represented by a vector
with non-zero TF-IDF scores for the terms “148th”, “Ave”, and

1Note that this is one of many variants of TF-IDF that have been
proposed [8].



Phonetic
ASR Model

VectorPosition−Dependent

0.523

corner of
eighth and
eightieth

s2: 80th

s1: 8th

q2: ey10 t10 iy10 ih0 th0

q1: ey1 t1 th0

Space
Tokenization

(Sec. 3.2)(Sec. 2) (Sec. 3.3)

Street 1

NE 8th St
NE 8th St
NE 28th St
NE 8th St

Street 2

80th Ave NE
83rd Ave NE
80th Ave NE
118th Ave NE

Score

D

0.786
0.624
0.551

I’m on the

Figure 2: The components of the intersection understanding system. The speech is recognized by the street and intersection grammar,
which maps the user’s spoken words to canonical semantic tags. The tags are then tokenized into a sequence of position-dependent
phonemes which are then used to query the intersection databaseD using the vector space model.

Table 2: Three different representation of ordinal numbers.

Ordinal Word Position Dependent Phonemes

30th thirtieth th10 er10 t10 iy10 ih0 th0

38th thirty eighth th10 er10 t10 iy10 ey1 t1 th0

13th thirteenth th10 er10 t10 iy10 n1 th0

“NE”. This model can find candidate street names when only a
partial street name is spoken by the user.

3.2. Position-dependent phonetic tokenization of numeric
streets

The high acoustic confusability among street names will cause
recognition errors. To enable the system to recover from some
misrecognitions we propose a novel tokenization scheme for
numeric street names. We have focused on these streets in par-
ticular as we have observed empirically, that these are often the
streets with the highest acoustic confusability.

In the proposed tokenization scheme, each numeric street
name in the database is represented by a sequence of phonemes
based on a standard speech recognition dictionary. In addi-
tion, each phoneme in the sequence is labeled with the posi-
tion of its parent digit, where “100” marks the hundreds place,
“10” marks the tens place, and “1” marks the ones place.
The phonemes of ordinal suffixes (st, nd, rd, th) are labeled
with “0”. For example, the “one” in “one hundred” is repre-
sented as “w100 ah100 n100”, while “eighth” is transformed to
“ey1 t1 th0”.

There are several advantages to this tokenization scheme. It
enables the hypothesized numeric strings to be decomposed into
a series of elements such that recognition errors remain local to
the incorrect subword units. Also, by augmenting the phonemes
with position of the corresponding digit, sequence information
is preserved, which allows the downstream classification to sep-
arate digits that are acoustically identical but semantically dif-
ferent, such as the three in “300” and the three in “23”. Table 2
compares the proposed position-dependent phonetic tokeniza-
tion to two other common representations for three acoustically
confusable entities. Note how the phonetic similarity of the
three entities is captured in the proposed scheme but is missing
from the ordinal and word-based representations. The sequence
information is also retained, as the leading “th” is represented
differently than the trailing “th”.

3.3. Intersection recognition using the vector space model

We now describe how the streets and intersections grammars
described in Section 2, and the VSM and the position depen-
dent phonetic tokenization scheme described in this section are
combined to understand the user’s spoken intersection. A block
diagram of the complete system is shown in Figure 3.

First, the user’s utterance is recognized and parsed, and the
semantic identities of the two hypothesized streets or street frag-
ments are generated. The semantic tag for the first street entity
s1 is then tokenized as described in Section 3.2 to create a street
queryq1. The vector of TF-IDF scores is created for this query
and the VSM is then used to compare the similarity ofq1 to the
first street of all intersections in the database. This results in a
ranked list of candidate intersections, based on the hypothesized
first streets1.

The semantic tag of the second streets2 is then transformed
to a queryq2 and the vector space model is then used to com-
pute the similarity betweens2 and all second streets in the just-
generated list of candidate intersections. The overall score for
an intersection is then computed as the product of the VSM
scores of the two streets in the intersection. Thus, the score
for intersectionI is

I(s1 = di, s2 = dj) = S(q1, di) · S(q2, dj) (3)

whereS(q1, di) andS(q2, dj) are computed according to (2)
In order to reduce redundency in our database, all intersec-

tions are represented once with an arbitrary street ordering. If
if a user refers to an intersection with the opposite ordering, it
will not match in our database. As a result, the above procedure
for intersection search is performed both with the original or-
dering and with the queriesq1 andq2 swapped. Thus, the final
hypothesized intersection is

I(s1 = di, s2 = dj) =

argmax
i,j

{S(q1, di) · S(q2, dj), S(q2, di) · S(q1, dj)} (4)

The top scoring intersection or a ranked list of candidate
intersections is then returned to the user. We have found em-
pirically, that in densely populated areas, many users believe a
location to be in particular city while it is actually in a neighbor-
ing city. To account for this, the intersections for all bordering
cities are also included in the search, with a fixed penalty ap-
plied to their VSM scores to reflect the fact that they are outside
the user’s specified search area. The value of this penalty is
tuned using development data.



Table 3: Street name documents for “NE 138th St” for word-
level, semantic, and the proposed phonetic representations

Terms Street name document

Words north east one hundred and thirty eighth street
Semantics NE 138th St
Pos-dep NE w100 ah100 n100 th10 er10 t10 iy10

Phones ey1 t1 th0 St

4. Experiments
To evaluate the proposed method for intersection recognition,
we developed a telephone-based spoken dialog system that tries
to identify any intersection in Washington state. The system
works as follows. The caller is first asked for the city they are
interested in. Once the city is identified, the streets grammar de-
scribed in Section 2 is loaded. This grammar contains the streets
in the user’s desired city plus the streets in all neighboringing
cities. The user is then asked to tell the system what intersec-
tion they are on. The user’s response is recognized, parsed, and
the semantic identities of the two hypothesized streets or street
fragments are obtained. These semantic tags are then tokenized
and processed by the vector space model. The top scoring in-
tersection is then returned to the user for confirmation.

We collected a total of 104 intersection dialogs from 22 dis-
tinct users. Once the data was collected, we compared the pro-
posed approach to the two other methods of representation. In
the the first method, the streets were represented in the data-
base by their text transcriptions. In this case, the semantic tags
are ignored, and the VSM then computes the similarity between
word-level TF-IDF vectors and query vectors that are derived
from the recognized text for each street. In the second method,
the original full street names themselves are used in the data-
base and the queries are generated from the semantic tags asso-
ciated with the recognized text. Table 3 shows example street
name documents for “NE 138th St” corresponding to each of
the three representations evaluated in these experiments.

The results of the experiment are shown in Figure 3, with
the performance obtained using the highest scoring intersection
in black and the performance using the top four intersections
shown in white. As the figure shows, the proposed approach re-
sults in intersection error rate of 8.6% for the single best hypoth-
esis. This is a substantial performance improvement over the
other more conventional methods based on a VSM applied to
the recognized text or the semantic tags. The figure also shows
that using semantic tags reduces the variability in the queries
of the street names and results in improved performance over a
word-based approach. Expanding the semantic tags to position
dependent phonemes enables the classification to recover from
some misrecognitions caused by acoustically confusable street
names. The error-recovery benefits are further evident from the
results obtained when the top four intersections are returned.
The error rate for the proposed system is reduced 22% relative
when the top four intersections are returned. The resulting error
rate of 6.7% is a 30% relative improvement over the top four
intersections hypothesized by the other two approaches.

5. Conclusion
In this paper we have proposed a novel method for under-
standing spoken intersections as a means of conveying loca-
tion. Recognition is performed using an automatically gener-
ated PCFG for street name pronunciations that maps all pro-

WORD SEM PD-PHN
4

6

8

10

12

14

In
te

rs
ec

tio
n 

E
rr

or
 R

at
e 

(%
)

N=1
N=4

Figure 3: The intersection error rate using word level features
(WORD), semantic features (SEM), and position-dependent
phonetic features (PD-PHN). The last column shows the per-
formance of PD-PHN using the top 4 candidates.

nunciations of a street name to a single semantic identity. This
semantic tag is then expanded to a string of position-dependent
phonemes that preserves the sequence information of the pho-
netic units. The intersection classification is done using a vector
space model with TF-IDF features derived from the position-
dependent phonetic tokens, as well as the other terms such as
street type and direction. The proposed approach requires only
a single recognition pass and results in an intersection error rate
of 8.6%. When the vector space model returns the top four inter-
sections, the error rate drops to 6.7%, highlighting the system’s
ability to recover from recognition errors.

6. References
[1] A. Gruenstein, S. Seneff, and C. Wang, “Scalable and

portable web-based multimodal dialog interaction with ge-
ographical databases,” inProc. of Interspeech, Pittsburgh,
PA, Sep 2006.

[2] O. Tsimhoni, D. Smith, and P. Green, “Address entry while
driving: speech recognition vs. a touch-screen keyboard,”
Human Factors, vol. 46, no. 4, pp. 600–610, Winter 2004.

[3] A. Venkataraman, H. Franco, and G. Myers, “An archi-
tecture for rapid retrieval of structured information using
speech with application to spoken address recognition,” in
Proc. of ASRU, St. Thomas, USVI, Dec 2003.

[4] D. Macho, L. Mauuary, B. Noe, Y. M. Cheng, D. Ealey,
D. Jouvet, H. Kelleher, D. Pearce, and F. Saadoun, “Evalua-
tion of a noise-robust DSR front-end on Aurora databases,”
in Proc. ICSLP, Denver, USA, Sep 2002, pp. 17–20.

[5] A. Hunt and S. McGlashan,Speech Recognition Grammar
Specification Version 1.0, 2002.

[6] D. Yu, Y. C. Ju, Y. Wang, and A. Acero, “N-gram based
filler model for robust grammar authoring,” inProc. of
ICASSP, Toulouse, France, May 2006.

[7] G. Salton, A. Wong, and C. S. Yang, “A vector space
model for automatic indexing,”Communications of the
ACM, vol. 18, 1975.

[8] M. Lan, C.-L. Tan, H.-B. Low, and S.-Y. Sung, “A compre-
hensive comparative study on term weighting schemes for
text categorization with support vector machines,” inProc.
WWW, Chiba, Japan, 2005, pp. 1032–1033.


