What Next?

A Dozen Information-Technology Research Goals

Jm Gray

June 1999

Technica Report
MS-TR-99-50

Microsoft Research
Advanced Technology Divison
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

What Next?

A Dozen Information-Technology Research Goals*
Jm Gray
Microsoft Research
301 Howard St. SF, CA 94105, USA

Abstract: Charles Babbage's vision of computing has largely been realized. We are
on the verge of realizing Vannevar Bush's Memex. But, we are some distance from
passing the Turing Test. These three visions and their associated problems have
provided long-range research goals for many of us. For example, the scalability
problem has motivated me for several decades. This talk defines a set of
fundamental research problems that broaden the Babbage, Bush, and Turing
visions. They extend Babbage's computational goal to include highly-secure, highly-
available, self-programming, self-managing, and self-replicating systems. They
extend Bush's Memex vision to include a system that automatically organizes,
indexes, digests, evaluates, and summarizes information (as well as a human
might). Another group of problems extends Turing's vision of intelligent machines to
include prosthetic vision, speech, hearing, and other senses. Each problem is simply
stated and each is orthogonal from the others, though they share some common
core technologies

1. Introduction

This tak fird argues that long-range research has societa benefits, both in creating new idess
and in training people who can make even better ideas and who can turn those ideas into
products. The education component is why much of the research should be done in a universty
sting. This argues for government support of long-term university research. The second part
of the talk outlines sample long-term information systems research godls.

| want to begin by thanking the ACM Awards committee for sdecting me as the 1998 ACM
Turing Award winner. Thanks aso to Lucent Technologies for the generous prize.

Most of al, I want to thank my mentors and colleagues. Over the last 40 years, | have learned
from many brilliant people. Everything | have done over that time has been a team effort. When |
think of any project, it was Mike and Jm, or Don and Jm, or Franco and Jm, a Irv and Jm, or
or Andrea and Jm, or Andreas and Jm, Dina and Jm, or Tom and Jm, or Robert and Jm, and
S0 on to the present day. In every case it is hard for me to point to anything that | persondly did:
everything has been a collaborative effort.. It has been a joy to work with these people who are
among my closest friends.

More broadly, there has been a large community working on the problems of making automatic
and reliable data stores and transaction processing systems. | am proud to have keen part of this
effort, and | am proud to be chosen to represent the entire community. Thank you al!

! The Association of Computing Machinery selected me as the 1998 A.M. Turing Award recipient. This is

approximately the text of the talk | gave in receipt of that award. The dlides for that tak are at
http://research.microsoft.com/~Gray/Talks/Turing2.ppt

1.1. Exponential Growth Means Constant Radical Change.

Exponentia growth has been driving the information industry for the last 100 years. Moor€'s law
predicts a doubling every 18 months. This means that in the next 18 months there will be as
much new Storage as dl storage ever built, as much new processng as dl the processors ever
built. The area under the curve in the next 18 months equds the area under the curve for dl
humean higtory.

In 1995, George Glider predicted that deployed bandwidth would triple every year, meaning that
it doubles every 8 months. So far his prediction has been pessmidtic: deployed bandwidth seems
to be growing faster than that!

This doubling is only true for the underlying
technology, the scientific output of our fied

L.E+09
is doubling much more dowly. The | J
literature grows a about 15%, per year, o SES [ET B 0TEL dof.tc;l;e;aer\geryf
doubling every five years. ' /
Exponentid growth cannot go on forever. E. | iews L agl -
coli (bacteria in your stomach) double every . 15 '
20 minutes. Eventudly something happens | c.oo0 2
to limit growth. But, for the lag 100 years, doubles every : }{; 1 doublés every
the information industry has managed tO | .o [-5 years — ; 2.3 years
sudan this doubling by inventing its way R e .
around each successve barrier. Indeed, | .
progress seems to be a’;cderating (See 1880 1900 1920 1940 1960 1980 200¢

Figure 1). Some argue that this acceleration

will continue, while others argue that it may ert (operat 0 x (bit)
. . : L ormance = (operations-per-second) x (bits-per-op

stop soon — certanly if we stop innovating it Price system price for 3 years

will stop tomorrow. Performance/price improvements seem to be accelerating.

. . There appear to be three growth curves: (1) Before

These rapid technology doublings mean tha | transistors (1890-1960), performancelprice was doubling

information technology must condantly | every seven years. (20 With discrete €electronics

: : . . performance/price was doubling every 2.3 years between
redefine itsdlf: Ay thlngs that were 1955 and 1985. (3) Since 1985 performance/price has

impossbly hard ten years ago, a¢ NOW | doubled every year with VLS. Sources Hans Moravec,

Figure 1: Graph plots performance/price versus time, where

reaively easy. Tradeoffs are different | Larry Roberts, and Gordon Bell [1].
now, and they will be vey different in ten
years.

1.3. Cyberspace is a New World

One way to think of the Information Technology revolution is to think of cyberspace as a new
continent -- equivaent to discovery of the Americas 500 years ago. Cyberspace is transforming
the old world with new goods and services. It is changing the way we learn, work, and play. It
is dready a trillion dollar per year indudry that has created a trillion dollars of wedth snce
1993. Economids believe that 30% of the United States economic growth comes from the IT
industry. These are high-paying high-export industries that are credited with the long boom — the
US economy has skipped two recessions since this boom started.

With al this money doshing about, there is a gold rush mentdity to stake out territory. There are
gartups saking clams, and thereis great optimism. Overdl, thisisavery good thing.

1.4. This new world needs explorers, pioneers, and settlers

Some have logt sght of the fact that most of the cyberspace territory we are now exploiting was
first explored by IT pioneers a few decades ago. Those prototypes are now transforming into
products.

The gold rush mentdity is casng many research scientists to work on near-term projects that
might make them rich, rather than taking a longer term view. Where will the next generation get
its prototypes if dl the explorers go to dartups? Where will the next generation of students
come from if the faculty leave the universities for industry?

Many beieve that it is time to dart Lewis and Clark style expeditions into cyberspaces mgor
university research efforts to explore far-out ideas, and to train the next generation of research
scientits. Recdl that when Tomas Jefferson bought the Louisana Territories from France, he
was ridiculed for his folly. At the time, Jefferson predicted that the territories would be settled
by the year 2000. To accelerate this, he sent out the Lewis & Clark expedition to explore the
territories. That expedition came back with maps, sociologica sudies, and a corps of explorers
who led the migratory wave west of the Mississippi [6].

We have a amilar opportunity today: we can invest in such expeditions to cregte the intdllectud
and human seed corn for the IT industry of 2020. It is the responghility of government, indudry,
and private philanthropy to make this invesment for our children, much as our parents made this
invesment for us.

1.5. Pioneering research pays off in the long-term

To see what | mean, | recommend
you read the NRC Brooks | 10 . . 1970 1980 19%0 _

Southerland report, Evolving the Ry oyernment funded {13 HUES S0
High_Perforrnance Computing and ® Billion Dollar/year Industry SDS 940, 360/67 VMS
Communications Initiative to
Support the nations Information
Infrastructure [2] or more recently:
Funding the Revolution [3]. Figure 2

Sketchpad, Utsh
GM/IBM, LucasFilm

E&S, SGI, PIXAR,..

Arpanet, Internet
Ethernet, Pup, Datakit

is based on a figure that appears in
both reports. It shows how
government-sponsored and industry-
goonsored research in Time Sharing
tuned into a hillion dollar indusry
ater a decade. Smilar things
happened with research on graphics,
networking, user interfaces, and
many other fidds. Incidentaly,
much of this research work fits
within Pasteur's Quadrant [5], IT

Windows

Gatenass

DECnet, LANs, TCP/IP

Lisp machine, Stanford
Xerox Alto

Apollo, Sun

Englebart, Rochester
Alto, Smalltalk

Star, Mac, Microsoft

Figure 2. Government-sponsored IT research, after five or ten years, many
become a product that after another five or ten years becomes a billion-dollar
industry. Based on [2]. The Internet and World-Wide Web are recent examples

that became huge industries after the report was written.

research generdly focuses on fundamentd issues, but the results have had enormous impact on
and benefit to society.

Closer to my own discipline, there was nearly a decade of research on relationa databases before
they became products. Many of these products needed much more research before they could
deliver on their usability, rdiability, and peformance promises. Indeed, active research on each
of these problems continues to this day, and new research ideas are congantly feeding into the
products. In the mean time, researchers went on to explore paralled and distributed database
systems that can search huge databases, and to explore data mining techniques that can quickly
summarize data and find interesting patterns, trends, or anomdies in the data These research
ideas are just now cregting another billion-dollar-per-year indudtry.

Research ideas typicdly need a ten year gedtation period to get to products. This time lag is
shortening because of the gold rush. Research ideas Hill need time to mature and develop before
they become products.

1.6. Long-term research is a public good

If dl these billions are being made, why should government subsidize the research for a trillion
dollar a year industry? After dl, these companies are rich and growing fast, why don’'t they do
their own research?

The answver is “most of them do.” The leading IT companies (IBM, Inte, Lucent, Hewlett
Packard, Microsoft, Sun, Cisco, AOL, Amazon,...) spend between 5% and 15% of their revenues
on Research and Development. About 10% of that R&D is not product development. | guess
about 10% of that (1% of the totd) is pure long-term research not connected to any rear term
product (most of the R of R&D is actudly advanced development, trying to improve exisiing
products). So, | guess the IT industry spends more than 500 million dollars on long-range
research, which funds about 2,500 researchers. This is a conservative estimate, others estimate
the number is two or three times as large. By this consarvative measure, the scae of long-term
indudtridl 1T research is comparable to the number of tenure-track faculty in American computer
science departments.

Most of the IT industry does fund long-range IT research; but, to be competitive some companies
cannot. MCI-WorldCom has no R&D line item in the annud report, nor does the consulting
company EDS. Del computer has a smdl R&D budget. In generd, service companies and
gysems integrators have very smal R&D budgets.

One reason for this is that long-term research is a socid good, not necessarily a benefit to the
company. AT&T invented the transstor, UNIX, and the C and C++ languages. Xerox
invented Ethernet, bitmap printing, iconic interfaces, and WYSWYG editing. Other companies
like Intd, Sun, 3Com, HP, Apple, and Microsoft got the main commercid benefits from this
research. Society got much better products and services -- that is why the research is a public
good.

Since long-term research is a public good, it needs to be funded as such: making al the boats rise
together. Tha is why funding should come in pat from society: industry is paying a tax by
doing long-term research; but, the benefits are so great that society may want to add to that, and
fund university research. Funding university research has the added benefit of training the next

generations of researchers and IT workers. | do not advocate Government funding of indudtrid
research labs or government labs without a strong teaching component.

One might argue that US Government funding of long-term research benefits everyone in the
world. So why should the US fund long-term research? After dl, it is a socid good and the US
is less than 10% of the world. If the research will help the Europeans and Adans and Africans,
the UN should fund long-term research.

The argument here is dther dtruidic or jingoigic. The dtruigic argument is that long-term
ressarch is an investment for future generations world-wide. The jingoigic argument is that the
US leads the IT industry. US industry is extremely good a transforming research idess into
products — much better than any other nation.

To maintain IT leadership, the US needs people (the students from the universties), and it needs
new idess to commercidize. But, to be dear, this is a highly competitive business, cyberspace
is globa, and the workers are internationa. If the United States becomes complacent, 1T
leadership will move to other nations.

1.7. The PITAC report and its recommendations.

Mog of my views on this topic grow out of a two year sudy by the Presdentid IT Advisory
Committee (PITAC) http://www.ccic.gov/ac/report/ [4]. That report recommends that the
government sponsor Lewis and Clark style expeditions to the 21% century, it recommends that
the government double universty IT ressarch funding — and that the funding agencies shift the
focus to long-term research. By making larger and longer-term grants, we hope tha university
researchers will be able to atack larger and more ambitious problems.

It dso recommends that we fix the near-tem doaff problem by fadlitaing immigration of
technica experts. Congress acted on that recommendation last year: adding 115,000 extra H1
visas for technical experts. The entire quota was exhausted in 6 months: the last FY99 H1 visas
were granted in early June.

2. Long Range IT Systems Research Goals

Having made a plea for funding long-term research. What exactly are we talking about? What
are examples of long-term research gods that we have in mind? | present a dozen examples of
long-term systems research projects. Other Turing lectures have presented research agendas in
theoretical computer science. My list complements those others.

2.1. What Makes a Good Long Range Research Goal?

Before presenting my lig, it is important to describe the attributes of a good god. A good long-
range god should have five key properties:

Understandable: The god should be smple to date. A sentence, or a most a paragraph should
auffice to explan the god to intdligent people. Having a cear satement hdps recruit
colleagues and support. It is also great to be adle to tdl your friends and family what you
actudly do.

Challenging: It should not be obvious how to achieve the god. Indeed, often the god has been
aound for a long time. Most of the gods | am going to describe have been explicit or
implicit gods for many years. Often, there is a camp who bdieve the god isimpossble.

Useful: If the god is achieved, the resulting system should be dearly useful to many people -- |
do not mean just computer scientists, | mean people at large.

Testable: Solutions to the god should have a smple test so that one can measure progress and
one can tell when the god is achieved.

Incremental: It is very dedrable that the goa has intermediate milestones s0 that progress can
be measured dong theway. These small steps are what keep the researchers going.

2.2. Scalability: a sample goal

To give a specific example, much of my work was motivated by the scalability goal described to
me by John Cocke. The god is to devise a software and hardware architecture that scales up
without limits. Now, there has to be some kind of limit: billions of dollars, or giga-watts, or just
gpace. So, the more redigtic god is to be able to scde from one node to a million nodes Al
working on the same problem.

1. Scalability: Devise a software and hardware architecture that scaes up by a
factor for 10°. That is an applicaion's storage and prn% capacity can

automaticadly grow by a factor of a million, doing jobs faster (10°x speedup) or
doing 10° larger jobs in the same time (10°x scaleup), just by adding more
resources.

Attacking the scalability problem leads to work on dl aspects of large computer sysems. The
system grows by adding modules, each module performing a smal pat of the overdl task. As
the system grows, data and computation has to migrate to the new modules. When a module
fals, the other modules must mask this falure and continue offering services — Automatic
management, fault-tolerance, and load-didribution are till chdlenging problems.

The benefit of this vison is that it suggests problems and a plan of atack. One can dat by
working on automéatic paralelism and load baancing. Then work on fault tolerance or autometic

management. One can dat by working on the 10x scaleup problem with an eye to the larger
problems.

My paticular research focused on building highly-pardle database systems, able to service
thousands of transactions per second. We developed a smple model that describes when
transactions can be run in padld, and dso showed how to automaticdly provide this
padleism. This work led to studies of why computers fal, and how to improve computer
avalability. Lady, | have been exploring very large database gpplications like
http://terraserver.microsoft.com/ and http://www.sdss.org/.

Returning to the scaeabilty god, how has work on scdability succeeded over the years?
Progress has been astonishing, for two reasons.

1.There hasbeen alot of it.
2. Much of it has come from an unexpected direction — the Internet.

The Internet is a world-scde computer system that surprised us al. A computer system of 100
million nodes, and now merely doubling in Sze each year. It will probably grow to be much
larger. The PITAC worries that we do not know how to scale the network and the servers. |
share that gpprehension, and think that much more research is needed on protocols and network
enginesring.

On the other hand, we do know how to build huge
savers. Companies have demondrated single

systems that can process a hillion transactions per Records Sorted per Second — |
day. That is comparable to dl the cash Doubles Every Year

transactions in the US in a day. It is comparable to LE+06 i 45:

dl the AOL interactionsin aday. Itisalot. — =

In addition, these sytems can process a e o .
transaction for about a micro-dollar. That is, they /

are very chegp. It is these chegp transactions that 1'E+°3§’

dlow free access to the Internet data servers. In =
essence, accesses can be paid for by advertising. /‘Z.i
Through a combination of hadware (60% LE+00 >

improvement per year) and software (40% - |

improvement per year) peformance and price Z/ GB Sorted per Dollar
performance have doubled every year since 1985. Leos Doubles Every Year
Severd more years of this progress are in dght 1985 1990 1995 2009
(seeFiguresland 3)

Sll, we have some very dirty laundry. | Figure 3: Top: a picture of the 6,000 node
Computer scientists have yet to make pardld | computer at LANL. Bottom: Scaleabilty of
programming easy. Mogs of the scaeable | computer systems on the simple task of

: ; ; sorting data. Sort speed and sorting price-
tSy stems i like daases’ file bzrerv erts’ lmd Or;‘l:ge performance has doubled each year over the
r lon Prng ac em ra@'”gy_p“ * | last 15 years. Thisis progressis partly dueto
The pardlelisn comes from the application. We | hardware and partly due to software.
have merdy learned how to preserve it, rather

than creating it autometicaly.

When it comes to running a big monalithic job on a highly pardld computer, there has been
modest progress. Padld database sysems that automaticadly provide pardldism and give
answvers more quickly, have been very successful. Pardld programming systems that ask the
programmer to explicitly write paralle programs have been embraced only as a last resort. The
best examples of this ae the Beowulf clusters used by scientids to get very inexpensve
supercomputers (http:/Amwww.beowulf.orgy), and the huge ASCI machines, congging of
thousands of processors (see top of Figure 3). Both these groups report spectacular
performance, but they also report considerable pain.

Managing these huge clugters is dso a serious problem. Only some of the automation postulated
for scdesble sysems has been achieved. Virtudly dl the large cugsers have a custom-built
management system. We will return to thisissue later.

The scaability problem will become more urgent in the next decade. It appears that new
computer architectures will have multiple execution sreams on a single chip: so each processor
chip will be an SMP (symmetric multi-processor). Others are pursuing processors imbedded in
memories, disks, and network inteface cards (eqg. http://iram.csberkeey.edu/istore/). Sill
another trend is the movement of processors to Micro-Electro-Mechanicd Systems (MEMS).
Each 10$ MEMS will have sensors, effectors, and onboard processng. Programming a
collection of amillion MEMS systemsis achdlenge[7].

So, the scdeabilty problem is dill an interesting long-term god. B, in this lecture, | would like
to describe a broad spectrum of systems-research goals.

2. Long-term IT Systems Research Goals

In looking for the remaning deven long-term research problems | read the previous Turing
lectures, consulted many people, and ultimady settled on organizing the problems in the context
of three semind visonaries of our fied. In the 1870s Charles Babbage had the vison of
programmable computers that could gSore information and could compute much faster than
people. In the 1940's Vannevar Bush articulated his vision of a machine that sored dl human
knowledge. In 1950, Alan Turing argued that machines would eventudly be intdligent.

The problems | sdected are systems problems. Previous Turing taks have dne an excdlent job
of aticulating an IT theory research agenda. Some of the problems here necessarily have an
"and prove it" cdause. These problems pose chdlenging theoreticd issues. In picking the
problems, | tried to avoid specific gpplications — trying rather to focus on the core issues of
information technology that seem generic to al gpplications.

One aea where | wish | had more to say, is the topic of ubiquitous computing. Alan Newdl
fird aticulated the vison of an intdligent universe in which every pat of our environment is
intelligent and networked [8]. Many of the research problems mentioned here bear on this
ubiquitous computing vison, but | have been unable to crigoly state a specific long-term research
god that isuniqueto it.

3. Turing's vision of machine intelligence

To begin, recdl Alan Turing's famous “Computing Machinery and Intelligence”
paper published in 1950 [9]. Turing argued that in 50 years, computers would be
intdligent.

This was a very radica idea a that time. The debate that raged then is largely echoed today:

Will computers be tools, or will they be conscious entities, having identity, volition, and free
will? Turing was a pragmdisd. He was just looking for intdligence, not trying to define or

evauate free will. He proposed a test, now cdled the Turing Test, that for him was an
intdligence litmus tet.

3.1 The Turing Test

The Turing Test is based on the Imitation Game, played by three people. In the imitation game,
a man and a woman are in one room, and a judge is in the other. The three cannot see one
another, s0 they communicate via Email. The judge questions them for five minutes, trying to
discover which of the two is the man and which is the woman. This would be very easy, except
that the man lies and pretends to be a woman. The woman tries to help the judge find the truth.
If the man is a redly good impersonator, he might fool the judge 50% of the time. In pactice, it
seemsthe judge is right about 70% of the time.

Now, the Turning Test replaces the man with a computer pretending to be a woman. If the
computer can fool the judge 30% of the time, it passesthe Turing Test.

2. The Turing Test: Build a compuer sysem that wins the imitation game at least
30% of thetime.

Turing's actud text on this matter isworth re-reading. What he said was.

“1 believe that in about fifty years time it will be possible, to programme
computers, with a storage capacity of about 109, to make them play the imitation
game so well that an average interrogator will not have more than 70 per cent
chance of making the right identification after five minutes of questioning. The
original question, "Can machines think?" | believe to be too meaningless to
deserve discussion. Nevertheless | believe that at the end of the century the use of
words and general educated opinion will have altered so much that one will be
able to speak of machines thinking without expecting to be contradicted.”

With the benefit of hindsight, Turing's predictions read very well. His technology forecast was
agonishingly accurate, if a little pessmidic. The typicad computer has the requiste capaat%/
and is comparably powerful. Turing estimated that e human memory is between 10" and 10™
bytes, and the high end of that estimate stands today.

On the other hand, his forecast for machine inteligence was optimistic. Few people characterize
computers as intdligent. You can interview ChateBots on the Internet
(http:/Awww.loebner.net/Prizef/loebner-prizehtml) and judge for yoursdf. | think they are dill a
long way from passing the Turing Test. But, there has been enormous progress in the last 50
years, and | expect that eventudly a machine will indeed pass the Turing Tet. To be more

10

gpecific, | think it will happen within the next 50 years because | am persuaded by the argument
that we are nearing parity with the storage and computationa power of Smple brains.

To date, machine-intelligence has been more of a patnership with sdentidss a symbiotic
relationship. To give some sunning examples of progress in machine inteligence, computers
helped with the proofs of severd theorems (the four-color problem is the most famous example
[9]), and have solved a few open problems in mathematics. It was front page news when IBM’s
Deep Blue beat the world chess champion. Computers help design dmos everything now — they
are usad in conceptudization, Imulation, manufacturing, testing, and evauation.

In dl these roles, computers are acting as tools and collaborators rather than intelligent machines.
Vermnor Vinge cdls this 1A (inteligence amplification) as opposed to Al [11]. These computers
ae not forming new concepts. They ae typicaly executing datic programs with very little
adaptation or learning. In the best cases, there is a pre-established Structure in which parameters
automaticaly converge to optima settings for this environment. This is adaptation, but it is not
learning new things they way a child, or even a spider seemsto.

Despite this progress, there is generd pessmism about machine intdligence, and atificd
intelligence (Al). We are 4ill in Al winter. The Al community promised breskthroughs, but they
did not ddiver. Enough people have gotten into enough trouble on the Turing Ted, that it has
given rise to the expresson Turing Tar Pit “Where everything is possble but nothing is easy.”

Al complete is short for even harder than NP complete. This is in part a pun on Turing's most
famous contribution: the proof that very smple computers can compute anything computable,

Paradoxically, today it is much eader to research machine inteligence because the machines are
0 much faster and o much less expensve. This is the “counting argument” that Turing used.
Desktop machines should be about as intelligent as a spider or a frog, and supercomputers ought
to be nearing human inteligence.

The argument goes as follows. Various experiments and measures indicate that the human brain
sores a most 10 bytes (100 Terabytes). The neurons and synaptic fabric can execute about
100 tera-operations per second. This is about thirty times more powerful than the biggest
computers today. So, we should start seeing intelligence in these supercomputers any day now
(ust kidding). Persond computers are a million times dower and 10,000 times smdler than
that.

This is amilar to the argument that the human genome is aout a billion base pairs. 90% of it is
junk, 90% of the residue is in common with chimpanzees, and 90% of that resdue is in common
with dl people. So each individud has just a million unique base pars (and would fit on a
floppy disk).

Both these arguments gppear to be true. But both indicate that we are missng something very
fundamenta. There is more going on here than we see. Clearly, there is more than a megabyte
difference among babies. Clearly, the software and databases we have for our super-computers
is not on a track to pass the Turing Test in the next decade. Something quite different is needed.
Ouit-of-the-box, radical thinking is needed.

We have heen handed a puzzle genomes and brains work. But we are cludess what the solution
is. Underganding the answer is awonderful long-term research god.

11

3.2. Threemore Turing Tests: prosthetic hearing, speech, and vision.

Implicit in the Turing Ted, are two sub-chalenges that in themsdves are quite daunting: (1) read
and undergand as well as a human, and (2) think and write as well as a human. Both of these
gopear to be as difficult asthe Turing Test itself.

Interestingly, there are three other problems that gppear to be esder, but Hill very difficult:
There has been great progress on computers hearing and identifying naturd language, music, and
other sounds. Speech-to-text systems are now quite useable. Certainly they have benefited from
faser and chegper computers, but the agorithms have aso benefited from deeper language
understanding, using dictionaries, good natura language parsers, and semantic nets. Progress in
this area is steady, and the error rate is dropping about 10% per year. Right now unlimited-
vocabulary, continuous speech with a trained spesker and good microphone recognizes about
95% of the words. | joke that computers understand English much better than most people
(note most people do not undersand English a dl.) Joking adde, many blind, hearing
impaired, and disabled people use speech-to-text and text-to-gpeech systems for reading,

ligening, or typing.

Spesking as well as a person, given a prepared text, has recelved less atention than the speech
recognition problem, but it is an important way for machines to communicate with people.

There was a mgor thrust in language trandation in the 1950s, but the topic has falen out of
favor. Cetanly smple language trandation sysems exis today. A sysem that passes the
Turing Test in English, will likdy have a very rich internd representation. If one teaches such a
system a second language, say Mandarin, then the computer would likely have a smilar internd
representation for information in that language. This opens up the possbility for fathful
trandation between languages. There may be a more direct path to good language trandation,
but so far it is not obvious. Bablefish (http:/babefish.dtavistacom/) is a far example of the
current state of the art. It trandates context-free sentences between English and French, German,
Itdian, Portuguese, and Spanish. It trandates the sentence “Please pass the Turing Test” to
“Veuillez passer I'essal de Turing”, which trandates back to “Please pass the test of Turing.”

The third area, is visud recognition: build a sysem that can identify objects and recognize
dynamic object behaviors in a scene (horse-running, man-smiling, body gestures,...).

Visual rendering is an area where computers dready outshine al but the best of us. Again, this
IS a manrmachine symbioss, but the “specid effects’ and characters of from Lucasfilm and
Pixar are gunning. Still, the challenge remains to make it easy for kids and adults to create such
illusonsin red time for fun or to communicate idess.

The Turing Test dso suggests prosthetic memory, but I'll reserve that for Bush's section. So the
three additiona Turing Testsare:

3. Speech totext: Hear aswdl as a native speaker.
4. Text to speech: Spesk aswell as a native speaker.

5. Seeaswell asa person: recognize objects and behavior.

As limited as our current progress is in these three aress, it is dill a boon to the handicapped and
in certain indudriad settings. Optica character recognition is used to scan text and speech

12

gynthesizers read the text doud. Speech recognition systems are used by deaf people to lisgten to
telephone cdls and are used by people with carpd tunnd syndrome and other disabilities to enter
text and commands. Indeed, some programmers use voice input to do their programming.

For amgority of the deaf, devices that couple directly to the auditory nerve could convert
sounds to nerve impulses thereby replacing the eardrum and the cochlea. Unfortunately, nobody
yet understands the coding used by the body. But, it seems likely that this problem will be
solved someday.

Longer term these prosthetics will hdp a much wider audience. They will revolutionize the
interface between computers and people. When computers can see and hear, it should be much
eaeser and less intrusive to communicate with them. They will dso help us to see better, hear
better, and remember better.

| hope you agree that these four tests meet the criterion | set out for a good god, they are
understandable, chalenging, useful, testable, and they each have incrementd steps.

13

4. Bush's Memex

Vannevar Bush was an ealy information technologist: he had built andog
computers a MIT. During World War 11, he ran the Office of Scientific Research
and Devdopment. As the war ended he wrote a wonderful piece for the
government caled the Endless Frontier [13][14] tha has defined America's science policy for
the last fifty years.

In 1945 Bush published a visonay piece “As We May Think” in The Atlantic Monthly,
http:/Aww.thestl anti c.com/unbound/fl ashbks/computer/bushf.htm ~ [14]. In that aticle, he
described Memex, a desk that stored “a hillion books’, newspapers, pamphlets, journals, and
other literature, dl hyper-linked together. In addition, Bush proposed a set of glasses with an
integal camera that would photograph things on demand, and a Dictgphone that would record
what wassaid. All thisinformation was aso fed into Memex.

Memex could be searched by looking up documents, or by following references from one
document to another. In addition, anyone could annotate a document with links, and those
annotated documents could be shared among users. Bush redized that finding information in
Memex would be a chdlenge, so he postulated “association search”, finding documents that
meatched some Smilarity criteria

Bush proposed that the machine should recognize spoken commands, and that it type when
gooken to. And, if that was not enough, he casualy mentioned that “a direct dectricd path to
the human nervous sysem” might be a more efficient and effective way to ask questions and get
answers.

Wadl, 50 years laer, Memex is dmost here. Mogt stientific literature is online The scientific
literature doubles every 8 years, and most of the last 15 years are online. Much of Turing's work
and Bush's articles are online. Mogt literature is adso online, but it is protected by copyright and
S0 not visble to the web.

The Library of Congress is online and gets more web vigtors each day than regular vistors even
though just a tiny pat of the library is online. Smilarly, the ACM97 conference was recorded
and converted to a web ste. After one month, five times more people had vidted the web Site
than the origina conference. After 18 months, 100,000 people had spent a total of 50,000 hours
watching the presentations on the web dte. This is subgdantidly more people and time than
attendees a the actua event. The Site now averages 200 visitors and 100 hours per week.

This is dl wonderful, but anyone who has used the web is aware of its limitations. (1) it is hard
to find things on the web, and (2) many things you want are not yet on the web. Still, the web is
very impressve and comes close to Budhv's vison. It is the first place | look for information.
Information is increassingly migrating online to cyberspace. Mogt new information is crested
online. Today, it is about 50 times less expengve to store 100 letters (1 MB) on magnetic disk,
than to dtore them in a file cabinet (ten cents versus 5 dollars) Smilarly, storing a photo online
is about five times less expensive than printing it and storing the photo in a shoebox. Every yesr,
the cost of cyberspace drops while the cost of real spacerises.

The second reason for migrating information in cyberspace is that it can be searched by robots.
Programs can scan large document collections, and find those that match some predicate. This
is faster, cheaper, easier, and more reliable than people searching the documents. These searches

14

can dso be done from anywhere -- a document in England can be easily accessed by someone in
Audrdia

So, why ign't everything in Cyberspace? Wadl, the smple answver is tha most information is
vauable property and currently, cyberspace does not have much respect for property rights.
Indeed, the cyberspace culture is that dl information should be fredy avaladle to anyone
anytime. Perhaps the information may come cluttered with advertisng, but otherwise it should
be free. As a consequence, most information on the web is indeed advertisng in one form or
another.

There are subgtantid technical issues in protecting intellectual property, but the redly thorny
issues revolve around the law (eg., What protection does each party have under the law given
that cyberspace is trans-national?), and around business issues (eg., What are the economic
implications of this change?. The laiter two issues ae retarding the move of “high vaue’
content to the Internet, and preventing libraries from offering Internet access to their collections.
Often, customers must come to the physica library to browse the electronic assets.

Severd technica solutions to copy-protect intelectud property are on the table. They dl dlow
the property owner to be paid for use of his property on a per view, or subscription, or time basis.
They dso dlow the viewers and listeners to use the property eesily and anonymoudy. But, until
the legal and business issues are resolved, these technicd solutions will be of little use.

Perhaps better schemes will be devised that protect intellectua property, but in the mean time we
as stientists must work to get our scientific literature online and fredy available. Much of it was
paid for by taxpayers or corporations, so0 it should not be locked behind publisher’s copyrights.
To their credit, our technicd society the ACM has taken a very progressive view on web
publishing. Your ACM technicd articles can be posted on your web site, your department’s web
gte, and on the Computer Science Online Research Repository (CoRR). | hope other societies
will follow ACM’slead on this

4.1 Personal Memex

Returning to the research challenges, the sixth problem is to build a persond Memex. A box
that records everything you see, hear, or read. Of course it must come with some safeguards so
that only you can get information out of it. But, it should on command, find the rdevant event
and display it to you. The key thing about this Memex is that it does not do any data andysis or
summarization, it just returns what it sees and hears.

6. Personal Memex: Record everything a person sees and hears, and quickly

retrieve any item on request.

Since it only records what you see and hear, persond Memex seems not to violate any copyright
issues [15]. It il raises some difficult ethical issues. If you and | have a private conversation,
does your Memex have the right to disclose our conversation to others? Can you sl the
conversation without my permisson? But, if one takes a very consarvetive approach: only
record with permisson and make everything private, then Memex seems within lega bounds.
But the designers must be vigilant on these privacy issues.

15

Memex seems feasble today for everything but video. A persond record of everything you
ever read is about 25 GB. Recording everything you hear is a few terabytes. A persond Memex
will grow at 250 negabytes (MB) per year to hold the things you read, and 100 gigabytes (GB)
per year to hold the things you hear. This is just the capacity of one modern magnetic tape or 2
modern disks. In three years it should be one disk or tape per year. So, if you dart recording
now, you should be able to stick with one or two tapes for the rest of your life,

Video Memex seems beyond our technology today, but in a few decades, it will likey be
economic. High visud qudity would be hundreds times more -- 80 terabytes (TB) per year.
That is a lot of Sorage, eight petabytes (PB) per lifetime. It will continue to be more than most
individuads can afford. Of course, people may want very high definition and stereo images of
what they see. S0, this 8 petabyte could easily rise to ten times that. On the other hand,
techniques that recognize objects might give huge image compresson. To keep the rate to a
terabyte a year, the best we can offer with current compresson technology is about ten TV-
quaity frames per second. Each decade the quality will get at least 100x better. Capturing,
goring, organizing, and presenting this informeation is a fascinating long-term research godl.

4.2 World Memex

What about Bush's vison of putting all professondly produced information into Memex?
Interestingly enough, a book is less than a megabyte of text and al the books and other printed
literature is about a petabyte in Unicode. There are about 500,000 movies (most very short). |If
you record them with DVD qudity they @me to about a petabyte. If you scanned dl the books
and other literature in the Library of Congress the images would be a few petabytes. There are
3.5 million sound recordings (most short) which add a few more petabytes. So the consumer-
qudity digitized contents of the Library of Congress totd a few petabytes. Librarians who want
to preserve the images and sound want 100x more fiddlity in recording and scanning the images,
thus getting an exabyte. Recording al TV and radio broadcasts (everywhere) would add 100 PB
peryear.

Michad Lek did a nice andyss of the question “How much information is there?” He
concludes that there are 10 or 20 exabytes of recorded information (excluding persona and
aurveillance videotapes) [16]. An interesting fact is that the storage industry shipped exabyte of
disk storage in 1999 and about 100 exabytes of tape storage. Near-line (tape) and on-line (disk)
storage cost between a 10 k$ and 100 k$ per terabyte. Prices are falling faster than Moore's law
— dorage will likely be a hundred times chegper in ten years. So, we are getting close to the time
when we can record most of what exists very inexpensvely. For example, a lifetime cyberspace
cemetery plot for your most recent 1 MB research report or photo of your family should cost
about 25 cents. That is 10 cents for this year, 5 cents for next year, 5 cents for the successve
years, and 5 cents for insurance.

Where does this lead us? If everything will be in cyberspace, how do we find anything? Anyone
who has used the web search engines knows both joy and frudraion: sometimes they are
wonderful and find just what you want. They do some summarization, giving title and first few
sentences. But they do very little redl analysis or summarization.

So, the next chdlenge after a persond Memex that just returns exactly what you have seen,
undigested, is a Memex tha andyzes a large corpus of materia and then presents it to you an a
convenient way. R& Reddy described a system that can read a textbook and then answer the

16

guestions at the end of the text as well as a (good) college student [17]. A more demanding task
is to take a corpus of text, like the Internet or the Computer Science journds, or Encyclopedia
Britannica, and be able to answer summarization questions about it as well as a human expert in
thet fied.

Once we magter text, the next obvious sep is to build a smilar system that can digest a library of
sounds (speeches, conversations, musc, ...). A third chalenge is a system that can absorb and
summarize a collection of pictures, movies, and other imagery. The Library of congress has 115
million text and grephic items, the Smithsonian has 140 million items which ae 3D (eg. the
Wright Brothers arplane). Moving those items to cyberspace is an interesting chdlenge. The
visgble humans (http:/mww.nim.nih.gov/researchivisblelvisble humanhtml), millimeter dices
varsons of two cadavers, give a sense of where this might go. Another exciting project is
copying some of Leonardo DeVinci'swork to cyberspace.

7. World Memex: Build a sysem that given a text corpus, can answer questions
about the text and summarize the text as precisdy and quickly as a human expert

inthat fiedd. Do the same for music, images, art, and cinema

The chdlenge in each case is to automdicdly parse and organize the information. Then when a
someone has a quedtion, the question can be posed in a naturd interface that combines a
language, gesture, graphics, and forms inteface. The system should respond with answers
which are gppropriate to the leve of the user.

This is a demanding task. It is probably Al Complete, but it an excdlent god, probably smpler
and more useful than a.computer that plays the imitation game as well as a human.

4.3 Telepresence

Ore interesting aspect of being able to record everything is that other people can observe the
event, e@ther immediately, or retrospectivdy. | now routindy listen to lectures recorded at
another research inditution. Sometimes, these are “live’, but usualy they are on-demand. This
is extraordinarily convenient -- indeed, many of us find this time-shifting to be even more
vaduable than space-shifting. But, it is fundamentdly just tdevison-on-demand; or if it is audio
only, just radio-on-demand — turning the Internet into the world's most expensive VCR.

A much higher-qudity experience is possble with the use of computers and virtud redity. By
recording an event in high-fidelity from many angles, computers can recondruct any the scene a
high-fiddity from any perspective. This dlows a viewer to St anywhere in the space, or wander
around the space. For a sporting event, the spectator can be on the field watching the action
close up. For a busness meeting, the participant can St in the meeting and look about to read
facid gestures and body |language as the meseting progresses.

The chdlenge is to record events and then creste a virtud environment on demand that alows
the observer to experience the event as wel as actudly being there. This is cdled Tele-
Observer because it is redly geared to a passive observer of an event — either because it is a past
event, or because there are sO many observers that they must be passve (they are watching, not
interacting). Televison and radio give a low-qudity verson of this today, but they are
completely passive.

17

The next chalenge is to dlow the participant to interact with the other members of the event, i.e.
be Tele-Present. Tde-presence dready exigts in the form of telephones, teleconferences, and
cha rooms. But, again the experience there is very much lower qudity than actudly being
present. Indeed, people often travel long distances just to get the improved experience. The
operationad test for Telepresence is that a group of students taking a telepresent class score as
well as sudents who were physicaly present in the dassroom with the ingtructor. And that the
indructor has the same ragpport with the teepresent students, as he has with the physcaly
present ones.

8. TelePresence: Simulate being some other place retrogpectively as an observer
(TeleOberserver): hear and see as wdl as actualy being there, and as wdl as a

participant, and smulate being some other place as a participant (TelePresent):
interacting with others and with the environment as though you are actudly there.

There is great interest in dlowing a telepresent person to physicaly interact with the world via a
robot. The robot is dectricd and mechanicd engineering, the rest of the system is information
technology. That | why | have left out the robot. As Dave Huffman said: “Computer Science

has the patent on the byte and the dgorithm. EE has the dectron and Physics has energy and
meatter.”

18

5. Charles Babbage's Computers

Turing's and Bush's visons are heady Suff: machine intdligence, recording
everything, and telepresence. Now it is time to condder long-term research
issues for traditiond computers. Charles Babbage (1791-1871) had two
computer designs, a difference engine, that did numeric computations well,
and a fully programmable anaytical engine that had punched card programs,
a 3-address indruction set, and a memory to hold variables. Babbage
loved to compute things and was adways looking for trends and patterns. He wanted these
meachines to help him do his computations.

By 1955, Babbage's vison of a computer had been redized. Computers with the power he
envisoned were generating tables of numbers, were doing bookkeeping, and generdly doing
what computers do. Certainly there is more to do on Babbage's vison. We need better
computationa agorithms, and better and faster machines.

But | would like to focus on another aspect of Babbage's computers. What happens when
computers become free, infinitely fast, with infinite Storage, and infinite bandwidth? Now, this
is not likey to happen anytime soon. But, computation has gotten a 10 million times chegper
snce 1950 and a trillion times chegper since 1899 (see Figurel). Indeed, in the last decade they
have gotten a thousand times chegper. So, from the perspective of 1950, computers today are
amod free, and have dmogt infinite speed, storage, and bandwidth.

Figure 1 chats how things have changed snce Babbage's time. It measures the price-
performance of these systems. Larry Roberts proposed a performance/price metric of
Operations _ Per _Second ? Bits _Per _ Operation |

Sydem _Price
This measures bits-processed per dollar. In 1969 Roberts observed that this metric was doubling
about every 18 months. This was contemporaneous with Gordon Moore's observation about
gates-per dlicon chip doubling, but was measured a the sysem level. Using data from Hans
Moravac's web dte (http://www.frc.ri.cmu.edu/~hpm/book98/), and some corrections from
Gordon Béll, we plotted the data from Herman Hollerith forward. Between 1890 and 1945,
systems were either mechanica or eectro-mechanica. Their performance doubled about every
seven years. In the 1950's, computing shifted to tubes and transstors and the doubling time
dropped to 2.3 years. In 1985, microprocessors and VLSl came on the scene. Through a
combination of lower sysems prices and much faster machines, the doubling time has dropped
to one year.

This accderation in performance/price is asonishing, and it changes the rules. Similar graphs
apply to the cost of storage and bandwidth.

This is red deflation. When processng, storage, and transmisson cost micro-dollars, then the
only red vdue is the daia and its organization. But we computer scientists have some dirty
laundry: our “best” programs typicdly have a bug for every thousand lines of code, and our
“free” computers cost a least a thousand dollars a year in care-and-feeding known as system
adminigration.

Computer owners pay comparatively little for them today. A few hundred dollars for a pamtop
or desktop computer, a few thousand dollars for a workgation, and perhaps a few tens of
thousands for a server. These folks do not want to pay a large operations staff to manage their

Performance/Price ?

19

gysdems. Raher, they want a sdf-organizing system that manages itsdf. For smple systems like
handheld computers, the customer just wants the system to work. Always be up, dways store
the data, and never lose data When the system needs repairing, it should “cadl home’ and
schedule a fix. Either the replacement sysem arives in the mail, or a replacement module
arives in the mal — and no information has been log. If it is a software or data problem, the
software or data is just refreshed from the server in the sky. If you buy a new appliance, you just
plug it in and it refreshes from the server in the sky (just as though the old appliance had failed).

This is the vidon tha mogt sarver companies are working towards in building information
gppliances. You can see prototypes of it by looking a8 WebTVs or your web browser for
example.

5.1. Trouble-Free Systems

So, who manages the server-inthe sky? Server systems are more complex. They have some
semi-custom gpplications, they have much heavier load, and often they provide the very services
the hand-held, appliances, and desktops depend on. To some extent, the complexity has not
disappeared, it has just moved.

People who own servers do not mind managing the server content, thet is their business. B,
they do not want to be systems management experts. So, saver sysems should be sdf
managing. The human sysems manager should set gods, polices, and a budget. The system
should do the res. It should digtribute work among the servers. When new modules arrive,
they should just add to the cluser when they are plugged in. When a server fals, its sorage
should have been replicated somewhere ese, 0 the storage and computation can move to those
new locations. When some hardware bresks, the sysem should diagnose itsdf and order
replacement modules which arrive by express mal. Hardware and software upgrades should be
automatic.

This suggests the very first of the Babbage gods: trouble-free systems.

9. Trouble-Free Systems. Build a sysem used by millions of people each day and

yet administered and managed by a single part-time person.

The operationd test for this is that it serves millions of people each day, and yet it is managed by
a fraction of a person who does dl the adminidrative tasks. Currently, such a system would
need 24-hour a day coverage by a subgtantid staff. With specid expertise required for upgrades,
maintenance, system growth, database adminigtration, backups, network management, and the
like

5.2. Dependable Systems

Two issues hiding in the previous requirements deserve specid dtention. There have been a
rash of security problems recently: Melissa, Chernobyl, and now a mathematicd attack on RSA
that makes 512-hit keys seem dangeroudy smdll.

We cannot trust our assets to cyberspace if this trend continues. A mgor chalenge for systems
designers is to develop a system which only services authorized uses. Service cannot be denied.

20

Attackers cannot destroy data, nor can they force the system to deny service to authorized uses.
Moreover, users cannot see data unless they are so authorized.

The added hook here is that most systems are penetrated by stedling passwords and entering as
an authorized user. Any authentication based on passwords or other tokens seems too insecure.
| believe we will have to go to physo-metric means like retind scans or some other unforgeable
authenticator — and that al software must be signed in an unforgeable way.

The operationad test for this research god is tha a tiger team cannot penetrate the system.
Unfortunately, that test does not redly prove security. So this is one of those instances where the
Security system must rest on a proof that it is secure, and that al the thrests are known and are
guarded againgt.

The second attribute is that the system should dways be avallable. We have gone from 90%
avaldbility in the 1950s to 99.99% availability today for wel managed systems. Web uses
experience about 9% availability due to the fragile nature of the web, its protocols, and the
current emphad's on time-to-market.

Nonetheless, we have added three 9s in 45 years, or about 15 years per order-of-magnitude
improvement in avalability. We should am for five more 9s an expectaion of one second
outage in a century. This is an extreme god, but it seems achievable if hardware is very chegp
and bandwidth is very high. One can replicate the sarvices in many places, use transactions to
manage the data condstency, use design divergty to avoid common mode failures, and quickly
repair nodes when they fal. Agan, this is not something you will be able to test: so achieving
this goa will require careful andysis and proof.

10. Secure System: Assure that the system of problem 9 only services authorized
users, service cannot be denied by unauthorized users, and information cannot be
stolen (and proveit.)

11. AlwaysUp: Assure that the system is unavalable for less than one second per
hundred years -- 8 9's of availahility (and proveit.)

5.3. Automatic Programming.

This brings us to the find problem: Software is expendve to write. It is the only thing in
cyberspace that is getting more expensve, and less reliable. Individud pieces of software are
not redly less rdiable, it is just that the typica program has one bug per thousand lines after it
has been tested and retested. The typica software product grows Bst, and so adds bugs as it
grows.

You might ask how programs could be so expensve? It is Smple designing, credting, and
documenting a program costs about 20$ per line. It costs about 150% of that to test the code.
Then once the code is shipped, it codts that much again to support and maintain the code over its
lifetime.

This is grim news. As computers become chegper, there will be more and more programs and
this burden will get worse and worse.

21

The solution so far is to write fewer lines of code by moving to high-levd nonprocedura
languages. There have been some big successes. Code reuse from SAP, PeopleSoft, and others
ae an enormous savings to large companies building semi-custom gpplications. The companies
gill write alot of code, but only asmdl fraction of what they would have written otherwise.

The user-written code for many database gpplications and many web gpplications is tiny. The
tools in these aress are very impressive. Often they are based on a scripting language like
JavaScript and a set of pre-built objects. Again an example of software reuse. End users are able
to create impressive websites and gpplications using these tools.

If your problem fits one of these pre-built paradigms, then you are in luck. If not, you are back
to programming in C++ or Java and producing a 5 to 50 lines of code a day at a cost of 100$ per
line of code.

So, what is the solution? How can we get past this logjam? Automatic programming has been
the Holy Grall of programming languages and ystems for the last 45 years. Sad to report, there
has been rdaively little progress -- perhaps a factor of 10, but certainly not a factor of 1,000
improvement in productivity unless your problem fits one of the application-generator paradigms
mentioned earlier.

Perhaps the methodicd software-engineering approaches will findly yied fruit, but | am
pessmigtic. | believe that an entirdy new gpproach is needed. Perhaps it is too soon, because
this is a Turing Tar Fit. | bdieve that we have to (1) have a high level specification language
that is a thousand times easer and more powerful that the current languages, (2) computers
should be able to compile the language, and (3) the language should be powerful enough so that
al gpplications can be described.

We have sysems today that do any two of these three things, but none that do dl three. In
essence this is the imitation gave for a programming daff. The customer comes to the
progranming staff and describes the application. The daff returns with a proposed design.
There is discusson, a prototype is built and there is more discusson. Eventudly, the desred
goplication is built.

12. Automatic Programmer: Devise a Specification language or user interface that:
(8 makesit easy for people to express designs (1,000x easier),
(b) computers can compile, and
(c) can describe dl applications (is complete).

The system should reason about application, asking questions about exception cases
and incomplete pecification. But it should not be onerous to use.

The operationd test is replace the programming staff with a computer, and produce a result that
is better and requires no more time than dedling with a typicad human daff. Yes it will be a
while until we have such a sysem, but if Alan Turing was right about machine intdligence, it's
just be a matter of time.

22

6. Summary

These are a dozen very interesting research problems. Each is a long-term research problem.
Now you can see why | want the government to invest in long-term research. | suspect that in 50
years future generations of computer scientists will have made substantid progress on each of
these problems. Paradoxicadly, many (5) of the dozen problems appear to require machine
intelligence as envisoned by Alan Turing.

The problems fdl in the thee broad caegories Turing's intdligent machines improving the
human-computer interface, Budv's Memex recording, andlyzing, and summarizing everything
that heppens, and Babbage's computers which will findly be civilized so0 that they program
themselves, never fal, and are safe.

No matter how it turns out, | am sure it will be very exciting. As | sad a the beginning, progress
appears to be accderating: the base-technology progress in the next 18 months will equd dal
previous progress, if Moore slaw holds. And there are lots more doublings after that.

23

A Dozen Long-Term Systems Resear ch Problems.

. Scalability: Devise a software and hardware architecture that scales up by a factor for 10°.
That is, an gpplication's storage and processng capacity can automaticaly grow by a
factor of a million, doing jobs faster (10°x speedup) or doing 10° larger jobs in the same
time (10°x scaleup), just by adding more resources.

: The.Turing Test: Build a computer sysem that wins the imitation game at least 30% of the
time.

. Speech to text: Hear aswell as a native speaker.

. Text to speech: Speak aswell as anative speaker.

. Seeaswell as a per son: recognize objects and maotion.

. Personal Memex: Record everything a person sees and hears, and quickly retrieve any item
on request.

. World Memex: Build a system that given a text corpus, can answer questions about the text
and summarize the text as precisdy and quickly as a human expert in tha fidd. Do the
same for music, images, art, and cinema

. TelePresence: Smulate beng some other place retrospectivdly as an observer
(TeleOberserver): hear and see as well as actudly being there, and as well as a
participant, and sSmulate being some other place as a paticipant (TeePresent):
interacting with others and with the environment as though you are actudly there.

9. Trouble-Free Systems. Build a sysem used by millions of people each day and yet
administered and managed by a single part-time person.

10. Secure System: Assure that the system of problem 9 only services authorized users, service
cannot be denied by unauthorized users, and information cannot be stolen (and proveit.)

11. AlwaysUp: Assure that the system is unavailable for less than one second per hundred years
-- 8 9sof availability (and proveit).

12. Automatic Programmer: Devise a specification language or user interface that:
(a) makes it easy for people to express designs (1,000x easier),
(b) computers can compile, and
(c) can describe all applications (is complete).
The system should reason about gpplication, asking questions about exception cases and
incomplete pecification. But it should not be onerous to use.

24

7. References

[1]

[2]
[3]
[4]

[5]
[6]

[7]
[8]

[9

[11]

[12]

[13]

[14]
[15]
[16]

(17]

Graph based on datain Hans P. Moravec Robot, Mere Machines to Transcendent Mind, Oxford,
1999, ISBN 0-19-511630-5, (http://www.frc.ri.cmu.edw/~hpm/book98/) personal communication
with Larry Roberts who devel oped the metric in 1969, and personal communication with Gordon
Bell who helped analyze the data and corrected some errors.

CSTB—NRC, Evolving the High-Performance Computing and Communications I nitiative to
Support the Nation’s Information Infrastructure, National Academy Press, Washington DC, 1995.

CSTB-NRC Funding a Revolution, Government Support for Computing Research, Nationa
Academy Press, Washington DC, 1999. ISBN 0-309-6278-0.

I nformation Technology Research: Investing in Our Future, President’ s Information Technol ogy
Advisory Committee, Report to the President, Feb. 1999. National Coordination Office for
Computing, Information, and Communications, Arlington VA.

Donald E. Stokes, Pasteur’ s Quadrant: Basic Scienceand Technological Innovation, Brookings,
1997, ISBN 0-8157-8178-4.

Stephen E. Ambrose, Undaunted Courage: Meriwether Lewis, Thomas Jeffer son, and the Opening
of the American West, Smon & Schuster, NY, 1996, ISBN: 0684811073

“From Micro-device to Smart Dust”, Science News, 6/26/97, Vol. 152(4), pp 62-63

Alan Newdll, “Fairy Taes,” appearsin R. Kruzwell, The Age of Intelligent Machines, MIT Press,
1990,I SBN: 0262610795, pp 420-423

Alan M. Turing, “Computing Machinery and Intelligence’, Mind, Val. LI1X. 433-460, 1950). Also
on the web at many sites. K. Appel and W. Haken, “The solution of the four-color-map problem,”
Scientific American, Oct 1977, 108-121,

http://www.math.gatech.edu/~thomas/FC/fourcolor.html (1995) has a*“manual” proof

Vernor Vinge, “Technological Singularity.” VISION-21 Symposium sponsored by NASA Lewis
Research Center and the Ohio Aerospace Ingtitute, March, 1993. aso at
http://www.frc.ri.cmu.edu/~hpm/book98/com.chl/vinge.singularity.html

Endless Frontier: Vannevar Bush, Engineer of the American Century, G. Pascal Zachary, Free
Press, 1997 ISBN: 0-684-82821-9

Vannevar Bush, Science-The Endless Frontier, Appendix 3, "Report of the Committee on Science
and the Public Welfare,” Washington, D.C.: U.S. Government Printing Office, 1945. Reprinted as
Nationa Science Foundation Report 1990, online

http://rits.stanford.edu/siliconhistory/Bush/Bush text.html

Vannevar Bush ”As We May Think” The Atlantic Monthly, July 1945,
http://www.thest|anti c.com/unbound/flashbks/computer/bushf.htm

Anne Wdls-Branscomb, Who Owns Information?: From Privacy to Public Access Basic Books,
1995, ISBN: 046509144X.

Miched Lesk, “How much information is there in the world?’
http://mww.lesk.com/mlesk/ksg97/ksg.html

Ra Reddy, “To Dream The Possible Dream,” CACM, May 1996,V al. 39, No. 5 ppl106-112.

25

