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ABSTRACT 
The next-generation astronomy digital archives will cover 
most of the sky at fine resolution in many wavelengths, from 
X-rays, through ultraviolet, optical, and infrared. The ar-
chives will be stored at diverse geographical locations. One 
of the first of these projects, the Sloan Digital Sky Survey 
(SDSS) is creating a 5-wavelength catalog over 10,000 
square degrees of the sky (see http://www.sdss.org/). The 
200 million objects in the multi-terabyte database will have 
mostly numerical attributes in a 100+ dimensional space.  
Points in this space have highly correlated distributions. 
 
The archive will enable astronomers to explore the data in-
teractively. Data access will be aided by multidimensional 
spatial and attribute indices. The data will be partitioned in 
many ways. Small tag objects consisting of the most popular 
attributes will accelerate frequent searches. Splitting the data 
among multiple servers will allow parallel, scalable I/O and 
parallel data analysis. Hashing techniques will allow efficient 
clustering, and pair-wise comparison algorithms that should 
parallelize nicely. Randomly sampled subsets will allow de-
bugging otherwise large queries at the desktop. Central serv-
ers will operate a data pump to support sweep searches 
touching most of the data. The anticipated queries will re-
quire special operators related to angular distances and com-
plex similarity tests of object properties, like shapes, colors, 
velocity vectors, or temporal behaviors.   These issues pose 
interesting data management challenges. 
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Introduction 
Astronomy is about to undergo a major paradigm shift. Data 
gathering technology is riding Moore's law: data volumes are 
doubling every 20 months.   Data sets are becoming larger, 
and more homogeneous. For the first time data acquisition 
and archiving is being designed for online interactive analy-
sis. In a few years it will be much easier to download a de-
tailed sky map or object class catalog, than wait several 
months to access a telescope. In addition, the online data 
detail and quality is likely to rival that generated by the typi-
cal telescopes.    

Several multi-wavelength projects are under way: SDSS, 
GALEX, 2MASS, GSC-2, POSS2, ROSAT, FIRST and 
DENIS. Each is surveying a large fraction of the sky.  To-
gether they will yield a Digital Sky, of interoperating multi-
terabyte databases.  In time, more catalogs will be added and 
linked to the existing ones.  Query engines will become more 
sophisticated, providing a uniform interface to all these data-
sets.  In this era, astronomers will have to be just as familiar 
with mining data as with observing on telescopes. 

The Sloan Digital Sky Survey 
The Sloan Digital Sky Survey (SDSS) will digitally map 
about half of the Northern sky in five spectral bands from 
ultraviolet to the near infrared. It is expected to detect over 
200 million objects. Simultaneously, it will measure redshifts 
for the brightest million galaxies (see http://www.sdss.org/). 

The SDSS is the successor to the Palomar Observatory Sky 
Survey (POSS), which has provided a standard reference 
data set to all of astronomy for the last 40 years. Subsequent 
archives will augment the SDSS and will interoperate with it. 
The SDSS project must not only build the survey hardware, 
it must also design and implement the software to reduce, 
calibrate, classify, index, and archive the data so that many 
scientists can use it. 

The SDSS will revolutionize astronomy, increasing the 
amount of information available to researchers by several 
orders of magnitude.  The SDSS archive will be large and 
complex: including textual information, derived parameters, 
multi-band images, spectra, and temporal data. The catalog 
will allow astronomers to study the evolution of the universe 
in great detail.  It is intended to serve as the standard refer-
ence for the next several decades.  After only a month of 
operation, SDSS found two of the most distant known qua-
sars and several methane dwarfs.  With more data, other ex-
otic properties will be easy to mine from the datasets. 

The potential scientific impact of the survey is stunning. To 
realize this potential, data must be turned into knowledge. 
This is not easy – the information content of the survey will 
be larger than the entire text contained in the Library of Con-
gress. 
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The SDSS is a collaboration between the University of Chi-
cago, Princeton University, the Johns Hopkins University, 
the University of Washington, Fermi National Accelerator 
Laboratory, the Japanese Participation Group, the United 
States Naval Observatory, and the Institute for Advanced 
Study, Princeton, with additional funding provided by the 
Alfred P. Sloan Foundation, NSF and NASA. The SDSS 
project is a collaboration between scientists working in di-
verse areas of astronomy, physics and computer science. The 
survey will be carried out with a suite of tools developed and 
built especially for this project – telescopes, cameras, fiber 
spectrographic systems, and computer software. 

SDSS constructed a dedicated 2.5-meter telescope at Apache 
Point, New Mexico, USA. The telescope has a large, flat 
focal plane that provides a 3-degree field of view. This de-
sign balances the areal coverage of the instrument against the 
detector’s pixel resolution.   

 

 

Figure 1: The SDSS photometric 
camera with the 5x6 CCD array 
contains 120 million pixels. The 
CCDs in each row have a differ-
ent filter attached. As the earth 
rotates, images migrate across 
the CCD array.  The array shifts 
in synchrony with this move-
ment, giving a 55 second expo-
sure for each object in 5 spectral 
bands.  

 

The survey has two main components: a photometric survey, 
and a spectroscopic survey. The photometric survey is pro-
duced by drift scan imaging of 10,000 square degrees cen-
tered on the North Galactic Cap using five broad-band filters 
that range from the ultra-violet to the infra-red. The effective 
exposure is 55 sec, as a patch of sky passes over the focal 
plane with the earth’s rotation. The photometric imaging uses 
an array of 30x2Kx2K Imaging CCDs, 22 astrometric CCDs, 
and 2 Focus CCDs. Its 0.4 arcsecond pixel size provides a 
full sampling of the sky. The data rate from the camera’s 120 
million pixels is 8 Megabytes per second. The cameras can 
only be used under ideal atmospheric conditions, but in five 
years the survey expects to collect 40 terabytes of data from 
its survey of the northern sky.   

The spectroscopic survey will target a million objects auto-
matically chosen from the photometric survey. The goal is to 
survey a statistically uniform sample of visible objects. Due 
to the expansion of the universe, the Doppler-shift in the 
spectral lines of the galaxies is a direct measure of their dis-
tance. This spectroscopic survey will produce a three-
dimensional map of galaxy distribution, for a volume several 
orders of magnitude larger than current maps. 

The primary targets will be galaxies, selected by a magnitude 
and surface brightness limit in the r band. This sample of 
900,000 galaxies will be complemented with 100,000 very 
red galaxies, selected to include the brightest galaxies at the 

cores of galaxy clusters. An automated algorithm will select 
100,000 quasar candidates for spectroscopic follow-up, creat-
ing the largest uniform quasar survey to date. Selected ob-
jects from other catalogs taken at different wavelengths (e.g., 
FIRST, ROSAT) will also be targeted. 

The spectroscopic observations will be done in overlapping 
3° circular “tiles”. The tile centers are determined by an op-
timization algorithm, which maximizes overlaps at areas of 
highest target density. The spectroscopic survey uses two 
multi-fiber medium resolution spectrographs, with a total of 
640 optical fibers.  Each fiber is 3 seconds of arc in that di-
ameter providing spectral coverage from 3900 - 9200 Å. The 
system can measure 5000 galaxy spectra per night. The total 
number of galaxy spectra known to astronomers today is 
about 100,000. In only 20 nights of observation, SDSS will 
double this.   

Whenever the Northern Galactic cap is not accessible, SDSS 
will repeatedly image several areas in the Southern Galactic 
cap to study fainter objects and identify variable sources. 

SDSS has also been developing the software necessary to 
process and analyze the data. With construction of both 
hardware and software largely finished, the project has now 
entered a year of integration and testing. The survey itself 
will take 5 to 7 years to complete, depending on weather. 

The Data Products 
The SDSS will create four main data sets: (1) a photometric 
catalog, (2) a spectroscopic catalog, (3) bitmap images in 
five color bands, and (4) spectra.   

The photometric catalog is expected to contain about 500 
distinct attributes for each of one hundred million galaxies, 
one hundred million stars, and one million quasars.  These 
include positions, fluxes, radial profiles, their errors, and 
information related to the observations. Each object will have 
a bitmap “atlas image” in each of the five filters.    

The spectroscopic catalog will contain identified emission 
and absorption lines, and one-dimensional spectra for one 
million galaxies, 100,000 stars, and 100,000 quasars. Derived 
custom catalogs may be included, such as a photometric gal-
axy cluster catalog, or quasar absorption line catalog. In ad-
dition there will be a compressed 1TB Sky Map. As shown in 
Table 1, the total size o f these products is about 3TB.  



 

    

The SDSS will release this data to the public after a period of 
thorough verification. This public archive is expected to be 
the standard reference catalog for the next several decades.  
This long lifetime presents design and legacy problems. The 
design of the SDSS archival system must allow the archive to 
grow beyond the actual completion of the survey. As the 
reference astronomical data set, each subsequent astronomi-
cal survey will want to cross-identify its objects with the 
SDSS catalog, requiring that the archive, or at least a part of 
it, be dynamic with a carefully defined schema and metadata. 

The SDSS Archives 
Observational data from the telescopes is shipped on tapes to 
Fermi National Accelerator Laboratory (FNAL) where it is 
reduced and stored in the Operational Archive (OA), accessi-
ble to personnel working on the data processing.  

Data reduction and calibration extracts astronomical objects 
and their attributes from the raw data.  Within two weeks the 
calibrated data is published to the Science Archive (SA) ac-

cessible to all SDSS collaborators.  The Science Archive 
contains calibrated data organized for efficient use by scien-
tists. The SA provides a custom query engine built by the 
SDSS consortium that uses multidimensional indices and 
parallel data analysis. Given the amount of data, most queries 
will be I/O limited, thus the SA design is based on a scalable 
architecture of many inexpensive servers, running in parallel. 

Science archive data is replicated to many Local Archives 
(LA) managed by the SDSS scientists within another two 
weeks. The data moves into the public archives (MPA, PA) 
after approximately 1-2 years of science verification, and 
recalibration (if necessary).    

The astronomy community has standardized on the FITS file 
format for data interchange [18].  FITS includes an ASCII 
representation of the data and metadata.   All data exchange 
among the archive is now in FITS format.   The community 
is currently considering alternatives such as XML. 

Accessing The Archives  
Both professional and amateur astronomers will want access 
to the archive.  Astronomy is a unique science in that there is 
active collaboration between professional and amateur as-
tronomers.  Often, amateur astronomers are the first to see 
some phenomenon.  Most of the tools are designed for pro-
fessional astronomers, but a public Internet server will pro-
vide public access to all the published data.  The public will 
be able to see project status and see various images including 
the ‘Image of the Week’.  

The Science Archive and public archives both employ a 
three-tiered architecture: the user interface, an intelligent 
query engine, and a data warehouse. This distributed ap-
proach provides maximum flexibility, while maintaining 
portability, by isolating hardware specific features. Both the 
Science Archive and the Operational Archive are built on top 
of Objectivity/DB, a commercial object oriented database 
system.    

Analyzing this archive requires a parallel and distributed 
query system.  We implemented a prototype query system.  
Each query received from the user interface is parsed into a 
query execution tree (QET) that is then executed by the 
query engine, which passes the requests to Objectivity/DB 
for actual execution.  Each node of the QET is either a query 
or a set-operation node, and returns a bag of object-pointers 
upon execution.   The multi-threaded query engine executes 
in parallel at all the nodes at a given level of the QET.  

Results from child nodes are passed up the tree as soon as 
they are generated.  In the case of blocking operators like 
aggregation, sort, intersection, and difference, at least one of 
the child nodes must be complete before results can be sent 
further up the tree.  In addition to speeding up the query 
processing, this as-soon-as-possible data push strategy en-
sures that even in the case of a query that takes a very long 
time to complete, the user starts seeing results almost imme-

Table 1.  Sizes of various SDSS datasets 

Product Items Size 
Raw observational data - 40,000 GB 
Redshift Catalog  106 2 GB 
Survey Description  105 1 GB 
Simplified Catalog  3x108 60 GB 
1D Spectra 106 60 GB 
Atlas Images 109 1,500 GB 
Compressed Sky Map 5x105 1,000 GB 
Full photometric catalog 3x108 400 GB 

 

WWW 

MPA 

PA 

PA 

MSA 

LA 

TV 

LA 
OA 

T 

1 day 
1 week 

2 weeks 
1 month 

1 - 2 years 
Testing, 
Operations 

Project 
Participants 

Astronomers, 
Public 

WWW 

MPA 

PA 

PA 

SA 

LA 

TV 

LA 
OA 

T 

1 day 
1 week 

2 weeks 
1 month 

1 - 2 years 
Testing, 
Operations 

Project 
Participants 

Astronomers, 
Public 

 
 
Figure 2. A conceptual data-flow diagram of the SDSS data. 
Telescope data (T) is shipped on tapes to FNAL, where it is proc-
essed into the Operational Archive (OA).  Calibrated data is trans-
ferred into the Master Science Archive (SA) and then to Local 
Archives (LA). The data gets into the public archives (MPA, PA) 
after approximately 1-2 years of science verification. These serv-
ers provide data for the astronomy community, while a WWW 
server provides public access. 



 

    

diately, or at least as soon as the first selected object perco-
lates up the tree. 

We have been very pleased with Objectivity/DB’s ability to 
match the SDSS data model.  For a C++ programmer, the 
object-oriented database nicely fits the application’s data 
structures.  There is no impedance mismatch [18].  On the 
other hand, we have been disappointed in the tools and per-
formance.   The sequential bandwidth is low (about 3 
MBps/cpu while the devices deliver more than 10 times that 
speed) and the cpu overhead seems high.  OQL has not been 
useable, nor have we been able to get the ODBC tools to 
work.  So we have had to do record-at-a-time accesses.  
There is no parallel query support, so we have had to imple-
ment our own parallel query optimizer and run-time system.   

Despite these woes, SDSS works on Objectivity/DB and is in 
pilot use today.  Still, we are investigating alternatives.  We 
have designed a relational schema that parallels the SDSS 
schema.  Doing this has exposed some of the known prob-
lems with SQL: no support for arrays, poor support for user-
defined types, poor support for hierarchical data, and limited 
parallelism.  Still, the schema is fairly simple and we want to 
see if the better indexing and scanning technology in SQL 
systems, together with the use of commodity platforms, can 
offset the language limitations and yield a better cost-
performance solution. 

In order to evaluate the database design, we developed a list 
of 20-typical queries that we are translating into SQL.  The 
database schema and these queries are discussed in Section 4. 
Preliminary results indicate that the parallelism and non-
procedural nature of SQL provides real benefits. Time will 
tell whether the SQL OO extensions make it a real alternative 
to the OODB solution.  You can see our preliminary schema, 
the 20-queries, and the SQL for them at our web site: 
http://www.sdss.jhu.edu/SQL.   

Typical Queries 
The astronomy community will be the primary SDSS user. 
They will need specialized services. At the simplest level 
these include the on-demand creation of (color) finding 
charts, with position information. These searches can be 
fairly complex queries on position, colors, and other parts of 
the attribute space.  

As astronomers learn more about the detailed properties of 
the stars and galaxies in the SDSS archive, we expect they 
will define more sophisticated classifications. Interesting 
objects with unique properties will be found in one area of 
the sky. They will want to generalize these properties, and 
search the entire sky for similar objects.  

The most common queries against the SDSS database will be 
very simple - finding objects in a given small sky region. 
Another common query will be to distinguish between rare 
and typical objects, based upon their colors and sizes. Other 
types of queries will be non-local, like “find all the quasars 
brighter than magnitude 22, which have a faint blue galaxy 
within 5 arcseconds on the sky”. Yet another type of a query 

is a search for gravitational lenses: “find objects within 10 
arcseconds of each other which have identical colors, but 
may have a different brightness”. This latter query is a typi-
cal high-dimensional query, since it involves a metric dis-
tance not only on the sky, but also in color space.   It also 
shows the need for approximate comparisons and ranked 
results.   

We can make a few general statements about the expected 
queries: (1) Astronomers work on the surface of the celestial 
sphere. This contrasts with most spatial applications, which 
operate in Cartesian 2-space or 3-space.  (2) Most of the que-
ries require a linear or at most a quadratic search (single-item 
or pair-wise comparisons). (3) Many queries are clustering or 
top rank queries. (4) Many queries are spatial involving a 
tiny region of the sky. (5) Almost all queries involve user-
defined functions.  (6) Almost all queries benefit from paral-
lelism and indices.   (7) It may make sense to save many of 
the computed attributes, since others may be interested in 
them.  

Special operators are required to perform these queries effi-
ciently. Preprocessing, like creating regions of mutual attrac-
tion, appears impractical because there are so many objects, 
and because the operator input sets are dynamically created 
by other predicates. 

Geometric Data Organization 
Given the huge data sets, the traditional astronomy approach 
of Fortran access to flat files is not feasible for SDSS. 
Rather, non-procedural query languages, query optimizers, 
database execution engines, and database indexing schemes 
must replace traditional file processing.   

This "database approach" is mandated both by computer effi-
ciency (automatic parallelism and pipelining), and by the 
desire to give astronomers better analysis tools. 

The data organization must support concurrent complex que-
ries. Moreover, the organization must efficiently use process-
ing, memory, and bandwidth. It must also support adding 
new data to the SDSS as a background task that does not 
disrupt online access. 

It would be wonderful if we could use an off-the-shelf ob-
ject-relational, or object-oriented database system for our 
tasks.  We are optimistic that this will be possible in five 
years – indeed we are working with vendors toward that 
goal.  As explained presently, we believe that SDSS requires 
novel spatial indices and novel operators. It also requires a 
dataflow architecture that executes queries and user-methods 
concurrently using multiple disks and processors. Current 
products provide few of these features.  But, it is quite possi-
ble that by the end of the survey, some commercial system 
will be adequate.    

Spatial Data Structures 

The large-scale astronomy data sets consist primarily of re-
cords containing numeric data, maps, time-series sensor logs, 



 

    

 
Figure 4. The figure shows a simple range query of latitude in one 
spherical coordinate system (the two parallel planes on the left 
hand figure) and an additional latitude constraint in another system 
(the third plane). The right hand figure shows the triangles in the 
hierarchy, intersecting with the query, as they were selected. The 
use of hierarchical triangles, and the use of Cartesian coordinates 
makes these spatial range queries especially efficient. 

 
Figure 3. The hierarchi-
cal subdivision of 
spherical triangles, rep-
resented as a quad tree. 
The tree starts out from 
the triangles defined by 
an octahedron. 

and images. The vast majority of the data is essentially 
geometric.  The success of the archive depends on captur-
ing the spatial nature of this large-scale scientific data.  

The SDSS data has high dimensionality - each item has 
thousands of attributes. Categorizing objects involves 
defining complex domains (classifications) in this N-
dimensional space, corresponding to decision surfaces.  

The SDSS teams are investigating algorithms and data 
structures to quickly compute spatial relations, such as 
finding nearest neighbors, or other objects satisfying a 
given criterion within a metric distance. The answer set 
cardinality can be so large that intermediate files simply 
cannot be created. The only way to analyze such data sets 
is to pipeline the answers directly into analysis tools.  This 
data flow analysis has worked well for parallel relational 
database systems [2. 3, 4, 5, 9].  We expect that the 
implementation of these data river ideas will link the 
archive directly to the analysis and visualization tools.  

The typical search of these multi-terabyte archives evaluates 
a complex predicate in k-dimensional space, with the added 
difficulty that constraints are not necessarily parallel to the 
axes. This means that the traditional indexing techniques, 
well established with relational databases, will not work, 
since one cannot build an index on all conceivable linear 
combinations of attributes. On the other hand, one can use 
the facts that the data are geometric and that every object is a 
point in this k-dimensional space [11,12]. Data can be quan-
tized into containers. Each container has objects of similar 
properties, e.g. colors, from the same region of the sky. If the 
containers are stored as contiguous disk pages, data locality 
will be high - if an object satisfies a query, it is likely that 
some of the object's “friends” will as well. There are non-
trivial aspects of how to subdivide the containers, when the 
data has large density contrasts [6].  

These containers represent a coarse-grained density map of 
the data. They define the base of an index tree that tells us 
whether containers are fully inside, outside or bisected by our 
query. Only the bisected container category is searched, as 
the other two are wholly accepted or rejected. A prediction of 
the output data volume and search time can be computed 
from the intersection volume.  

Indexing the Sky 
There is great interest in a common reference frame for the 
sky that can be used by different astronomical databases. The 
need for such a system is indicated by the widespread use of 
the ancient constellations – the first spatial index of the celes-
tial sphere. The existence of such an index, in a more com-
puter friendly form will ease cross-referencing among cata-
logs.  

A common scheme, that provides a balanced partitioning for 
all catalogs, may seem to be impossible; but there is an ele-
gant solution, that subdivides the sky in a hierarchical fash-
ion. 

Instead of taking a fixed subdivision, 
we specify an increasingly finer 
hierarchy, where each level is fully 
contained within the previous one. 
Starting with an octahedron base set, 
each spherical triangle can be 
recursively divided into 4 sub-
triangles of approximately equal 
areas. Each sub-area can be divided 
further into additional four sub-areas, 
ad infinitum. Such hierarchical 
subdivisions can be very efficiently 
represented in the form of quad-trees. 
Areas in different catalogs map either 
directly onto one another, or one is 
fully contained by another (see Figure 
3.) 

We store the object’s coordinates on 
the surface of the sphere in Cartesian form, i.e. as a triplet of 
x,y,z values per object.  The x,y,z numbers represent only the 
position of objects on the sky, corresponding to the normal 
vector pointing to the object. (We can guess the distance for 
only a tiny fraction (0.5%) of the 200 million objects in the 
catalog.) While at first this representation may seem to in-
crease the required storage (three numbers per object vs. two 
angles,) it makes querying the database for objects within 
certain areas of the celestial sphere very efficient. This tech-
nique was used successfully by the GSC project [7]. The 
coordinates of other celestial coordinate systems (Equatorial, 
Galactic, Supergalactic, etc) can be constructed from the Car-
tesian coordinates on the fly.  

Using the three-dimensional Cartesian representation of the 
angular coordinates makes it particularly simple to find ob-
jects within a certain spherical distance from a given point, 
or combination of constraints in arbitrary spherical coordi-
nate systems. They correspond to testing linear combinations 
of the three Cartesian coordinates instead of complicated 
trigonometric expressions. 

The two ideas, partitioning and Cartesian coordinates merge 
into a highly efficient storage, retrieval and indexing scheme. 



 

    

We have created a recursive algorithm that can determine 
which parts of the sky are relevant for a particular query [16]. 
Each query can be represented as a set of half-space con-
straints, connected by Boolean operators, all in three-
dimensional space.  

The task of finding objects that satisfy a given query can be 
performed recursively as follows.  Run a test between the 
query polyhedron and the spherical triangles corresponding 
to the tree root nodes. The intersection algorithm is very effi-
cient because it is easy to test spherical triangle intersection. 
Classify nodes, as fully outside the query, fully inside the 
query or partially intersecting the query polyhedron. If a 
node is rejected, that node's children can be ignored. Only the 
children of bisected triangles need be further investigated.   
The intersection test is executed recursively on these nodes 
(see Figure 4.) The SDSS Science Archive implemented this 
algorithm in its query engine [15].  We are implementing a 
stored procedure that returns a table containing the IDs of 
triangles containing a specified area.   Queries can then use 
this table to limit the spatial search by joining answer sets 
with this table. 

Broader Metadata Issues 
There are several issues related to metadata for astronomy 
datasets. First, one must design the data warehouse schema, 
second is the description of the data extracted from the ar-
chive, and the third is a standard representation to allow que-
ries and data to be interchanged among archives.  

The SDSS project uses a UML tool to develop and maintain 
the database schema. The schema is defined in a high level 
format, and an automated script generator creates the .h files 
for the C++ classes, and the data definition files for Objectiv-
ity/DB, SQL, IDL, XML, and other metadata formats. 

About 20 years ago, astronomers agreed on exchanging most 
of their data in a self-descriptive data format. This format, 
FITS, standing for the Flexible Image Transport System [17] 
was primarily designed to handle images. Over the years, 
various extensions supported more complex data types, both 
in ASCII and binary form. The FITS format is well sup-
ported by all astronomical software 
systems. The SDSS pipelines ex-
change most of their data as binary 
FITS files. 

Unfortunately, FITS files do not 
support streaming data, although 
data could be blocked into separate 
FITS packets. The SDSS has im-
plemented an ASCII FITS output 
stream, using a blocked approach. A 
binary stream is under development.  

We expect large archives to com-
municate with one another via a 
standard, easily parseable inter-
change format. SDSS plans to par-

ticipate in the definition of interchange formats in XML, 
XSL, and XQL. 

Data Loading 
The Operational Archive exports calibrated data to the Sci-
ence Archive as soon as possible. Datasets are sent in coher-
ent chunks. A chunk consists of several segments of the sky 
that were scanned in a single night, with all the fields and all 
objects detected in the fields. Loading data into the Science 
Archive could take a long time if the data were not clustered 
properly. Efficiency is important, since about 20 GB arrives 
after each night of photometric observations. 

The incoming data are organized by how the observations 
were taken. In the Science Archive they are organized into 
the hierarchy of containers as defined by the multi-
dimensional spatial index (Figure 3), according to their col-
ors and positions.  

Data loading might bottleneck on creating the clustering 
units—databases and containers—that hold the objects. Our 
load design minimizes disk accesses, touching each cluster-
ing unit at most once during a load.  The chunk data is ex-
ported as a binary FITS file from the Operational Archive 
into the Science Archive. It is first examined to construct an 
index. This determines where each object will be located and 
creates a list of databases and containers that are needed. 
Then data is inserted into the containers in a single pass over 
the data objects.  

The experimental SQL design 

SQL Schema 
We translated the Objectivity/DB schema into an SQL 
schema of 25 tables. They were generated from a UML 
schema by an automated script, and fine-tuned by hand.  

The SQL schema has some differences from our Objectivity 
schema. Arrays cannot be represented in SQL Server, so we 
broke out the shorter, one-dimensional arrays f[5] as scalar 

fields f_1,f_2,… The poor indexing in Objectivity/DB 
forced us to separate star and galaxy objects (for the 2x 
speedup), while in SQL we were able to merge the two 
classes and their associations. Object Associations were 
converted into foreign keys. Other than this, the schema 
conversion and data extraction and loading was remarkably 
easy. Detailed information about the data model can be 
found at 
(http://www.sdss.jhu.edu/ScienceArchive/doc.html). 

The tables can be separated into several broad categories. 
The first set of tables relate to the photometric observa-
tions. A base table, called the Photo table, contains the ba-
sic photometric attributes of each object. Each record con-
tains about 100 attributes, describing each object detected 
in the survey, its colors, position in each band, the errors of 
each quantity, and some classification parameters. The 

 
Figure 5. A typical com-
plex object involving sev-
eral nearby stars and a 
galaxy. 



 

    

30% least popular attributes, and a 5x15 radial light profile 
array are vertically partitioned into a separate PhotoProfile 
table. The array is represented as a BLOB with some user-
defined functions to access it.   

In the same spirit, the 13 most popular attributes were split 
off into the Tag objects in the Objectivity/DB design, to 
make simple queries more efficient. In SQL the Tag table 
object is represented as one or more indexes on the Photo 
table.  After this vertical partitioning we also segmented the 
data horizontally in the Objectivity/DB design. After an ob-
ject classification, still performed by the pipelines, extended 
objects, classified as galaxies, and compact objects classified 
as stars are stored in separate object classes, since they will 
typically be queried separately most of the time.  In SQL the 
design unifies the two tables, and assumes that clustering and 
partitioning will be done by the DBMS across the multiple 
disks and servers. We also created a few attributes from our 
internal spatial indices – these are the hash codes correspond-
ing to a bit interleaved address in the triangular mesh or on 
the k-d tree. 

There is a particular subtlety in dealing with merged objects. 
On the sky one often finds a nearby star superimposed over 
the image of a distant galaxy (see Figure 5). These can often 
be recognized as such, and deblended. This deblending proc-
ess creates a tree of object relations, where a parent object 
may have two or more children, and so on.  Also, about 10% 
of the sky is observed multiple times. All the detections of 
the same object will have a common object identifier.  A 
unique primary selected by its sky position. Each Photo ob-
ject record is marked as a primary or secondary, and all in-
stances of the object have the same object-identifier.   

Another set of tables is related to the hierarchy of observa-
tions and the data processing steps. The SDSS project ob-
serves approximately 130-
degree long 2.5-degree wide 
stripes on the sky. Each stripe is 
actually two runs from two dif-
ferent nights of observation.  
Each run has six 5-color col-
umns, corresponding to the six 
CCD columns in the camera (see 
figure 1) separated by 90% of 
the width of the CCDs. These 
columns have 10% overlap on 
each side, and are woven to-
gether to form a seamless mo-
saic of the 130x2.5 degree 
stripe.    Each 5-color column is 
split into about 800 fields. Each 
field is a 5-color 2048x1489 2-
byte per pixel image. There are 
separate tables with the metadata 
for stripes, runs, and fields. Each 
field carries about 60 attributes, 
consisting of its precise calibra-
tion data, and the coefficients of 

the transformation that maps pixel positions onto absolute 
sky coordinates. Chunks and Segments carry the observation 
date and time, the software version used during the data re-
duction process, and various parameters of the instruments 
during the observing run.  

Another set of tables is related to the spectroscopic observa-
tions. They capture the process of target selection and even-
tual observation. There is a separate SpectroTarget table, 
corresponding to objects selected from the photometry to be 
observed with the spectrographs. Not all of them will be ob-
served. The observed objects will then be classified as a gal-
axy, star, quasar, blank sky, and unknown. The observed 
objects have various attributes, a list of emission and absorp-
tion lines detected, estimated redshift, its errors, and quality 
estimate, stored in a Spectro table.  Every object has a differ-
ent number if lines, so the lines are stored in a Lines table.  
Each record has the object identifier, line type, (emission or 
absorption), lab wavelength, and rest-frame wavelength, line 
identifier, line width, and strength, and a few fitting parame-
ters, and of course uncertainly estimates.  There is also a 
Plate table describing the layout of a spectroscopic observa-
tion, since 640 objects are measured simultaneously. 

Finally, there is a table to capture cross-reference information 
about SDSS objects also detected in other catalogs, if a 
unique identification can be made. This cross-reference table 
can evolve as the need arises. 

SQL Queries 
We developed a set of 20 queries that we think characterize 
the kinds of questions Astronomers are likely to ask the 
SDSS archives. This is much in the spirit of the Sequoia 
2000 benchmark of [14]. We are in the process of translating 
these queries into SQL statements and evaluating their per-

formance on a relational system.   
Here follow the queries and a narrative description of 
how we believe they will be evaluated. 
 
Q1: Find all galaxies with unsaturated pixels within 1 
arcsecond of a given point in the sky (right ascension 
and declination). This is a classic spatial lookup. We 
expect to have a quad-tree spherical triangle index 
with object type (star, galaxy, …) as the first key and 
then the spatial attributes.  So this will be a lookup in 
that quad-tree. Select those galaxies that are within 
one arcsecond of the specified point.  

Q2: Find all galaxies with blue surface brightness 
between 23 and 25 mag per square arcseconds, and -
10<super galactic latitude (sgb) <10, and declination 
less than zero.  This searches for all galaxies in a cer-
tain region of the sky with a specified brightness in 
the blue spectral band.   The query uses a different 
coordinate system, which ismust first be converted to 
the hierarchical triangles of Figure 3 and section 3.5. 
It is then a set of disjoint table scans, each having a 
compound simple predicate representing the spatial 
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boundary conditions and surface brightness test.  

Q3: Find all galaxies brighter than magnitude 22, where the 
local extinction is >0.75.  The local extinction is a map of the 
sky telling how much dust is in that direction, and hence how 
much light is absorbed by that dust.  The extinction grid is 
stored as a table with one square arcminute resolution – 
about half a billion cells. The query is either a spatial join of 
bright galaxies with the extinction grid table, or the extinc-
tion is stored as an attribute of each object so that this is just 
a scan of the galaxies in the Photo table.  

Q4: Find galaxies with a surface brightness greater than 24 
with a major axis 30"<d<1', in the red-band, and with an 
ellipticity>0.5. . Each of the 5 color bands of a galaxy will 
have been pre-processed into a bitmap image which is bro-
ken into 15 concentric rings. The rings are further divided 
into octants.  The intensity of the light in each ring is ana-
lyzed and recorded as a 5x15 array.  The array is stored as an 
object (SQL blob in our type impoverished case).  The con-
centric rings are pre-processed to compute surface bright-
ness, ellipticity, major axis, and other attributes. Conse-
quently, this query is a scan of the galaxies with predicates 
on precomputed properties. 

Q5: Find all galaxies with a deVaucouleours profile (r¼ fal-
loff of intensity on disk) and the photometric colors consis-
tent with an elliptical galaxy.  The deVaucouleours profile 
information is precomputed from the concentric rings as dis-
cussed in Q4.  This query is a scan of galaxies in the Photo 
table with predicates on the intensity profile and color limits. 

Q6: Find galaxies that are blended with a star, output the 
deblended magnitudes. 
Preprocessing separates objects that overlap or are related (a 
binary star for example). This process is called deblending 
and produces a tree of objects; each with its own ‘deblended’ 
attributes such as color and intensity. The parent child rela-
tionships are represented in SQL as foreign keys.   The query 
is a join of the deblended galaxies in the photo table, with 
their siblings.  If one of the siblings is a star, the galaxy’s 
identity and magnitude is added to the answer set.    

Q7: Provide a list of star-like objects that are 1% rare for 
the 5-color attributes.   This involves classification of the 
attribute set and then a scan to find objects with attributes 
close to that of a star that occur in rare categories. 

Q8: Find all objects with spectra unclassified.  
This is a sequential scan returning all objects with a certain 
precomputed flag set. 
 
Q9: Find quasars with a line width >2000 km/s and 
2.5<redshift<2.7.   This is a sequential scan of quasars in the 
Spectro table with a predicate on the redshift and line width. 
The Spectro table has about 1.5 million objects having a 
known spectrum but there are only 100,00 known quasars. 
 
Q10: Find galaxies with spectra that have an equivalent 
width in H� >40Å  (H� is the main hydrogen spectral line.)  

This is a join of the galaxies in the Spectra table and their 
lines in the Lines table. 
 
Q11: Find all elliptical galaxies with spectra that have an 
anomalous emission line.  This is a sequential scan of galax-
ies (they are indexed) that have ellipticity above .7 (a pre-
computed value) with emission lines that have been flagged 
as strange (again a precomputed value). 
 
Q12: Create a grided count of galaxies with u-g>1 and 
r<21.5 over 60<declination<70, and 200<right ascen-
sion<210, on a grid of 2', and create a map of masks over 
the same grid.  Scan the table for galaxies and group them in 
cells 2 arc-minutes on a side. Provide predicates for the color 
restrictions on u-g and r and to limit the search to the portion 
of the sky defined by the right ascension and declination 
conditions. Return the count of qualifying galaxies in each 
cell. Run another query with the same grouping, but with a 
predicate to include only objects such as satellites, planets, 
and airplanes that obscure the cell. The second query returns 
a list of cell coordinates that serve as a mask for the first 
query. The mask may be stored in a temporary table and 
joined with the first query. 
  
Q13: Create a count of galaxies for each of the HTM trian-
gles (hierarchal triangular mesh) which satisfy a certain 
color cut, like 0.7u-0.5g-0.2 and  i-magr<1.25  and  r-
mag<21.75, output it in a form adequate for visualization. 
This query is a sequential scan of galaxies with predicates for 
the color magnitude. It groups the results by a specified level 
in the HTM hierarchy (obtained by shifting the HTM key) 
and returns a count of galaxies in each triangle together with 
the key of the triangle.  
 
Q14: Provide a list of stars with multiple epoch measure-
ments, which have light variations >0.1 magnitude.  Scan for 
stars that have a secondary object (observed at a different 
time) with a predicate for the light variations. 
 
Q15: Provide a list of moving objects consistent with an as-
teroid.  Objects are classified as moving and indeed have 5 
successive observations from the 5 color bands.  So this is a 
select of the form: select moving object where sqrt((deltax5-
deltax1)2 + (deltay5-deltay1)2)  < 2 arc seconds.  
 
Q16: Find all star-like objects within DeltaMagnitde of 0.2 
of the colors of a quasar at 5.5<redshift<6.5. Scan all ob-
jects with a predicate to identify star-like objects and another 
predicate to specify a region in color space within ‘distance’ 
0.2 of the colors of the indicated quasar (the quasar colors are 
known). 
 
Q17: Find binary stars where at least one of them has the 
colors of a white dwarf. Scan the Photo table for stars with 
white dwarf colors that are a child of a binary star. Return a 
list of unique binary star identifiers. 
 



 

    

Q18: Find all objects within 1' of one another other that have 
very similar colors: that is where the color ratios u-g, g-r, r-I   
are less than 0.05m. (Magnitudes are logarithms so these are 
ratios.)  This is a gravitational lens query. 
 Scan for objects in the Photo table and compare them to all 
objects within one arcminute of the object.  If the color ratios 
match, this is a candidate object.  We may precompute the 
five nearest neighbors of each object to speed up queries like 
this.  

Q19: Find quasars with a broad absorption line in their 
spectra and at least one galaxy within 10". Return both the 
quasars and the galaxies. Scan for quasars with a predicate 
for a broad absorption line and use them in a spatial join with 
galaxies that are within 10 arc-seconds. The nearest 
neighbors may be precomputed which makes this a regular 
join. 

 
Q20: For a galaxy in the BCG data set (brightest color gal-
axy), in 160<right ascension<170, 25<declination<35, give 
a count of galaxies within 30" which have a photoz within 
0.05 of the BCG.  First form the BCG (brightest galaxy in a 
cluster) table. Then scan for galaxies in clusters (the cluster 
is their parent object) with a predicate to limit the region of 
the sky. For each galaxy, test with a sub-query that no other 
galaxy in the same cluster is brighter.  Then do a spatial join 
of this table with the galaxies to return the desired counts.  

Analysis and Visualization 
We do not expect many astronomers to know SQL.  Rather 
we expect to provide graphical data analysis tools.  Much of 
the analysis will be done like a spreadsheet with simple equa-
tions.  For more complex analysis, the astronomers will want 
to apply programs written in Java, C++, JavaScript, VB, Perl, 
or IDL to analyze objects.   

Answers to queries will be steamed to a visualization and 
analysis engine that SDSS is building using VTK and 
Java3D.   Presumably the astronomer will examine the ren-
dered data, and either drill down into it or ask for a different 
data presentation, thereby steering the data analysis.       

In the spirit of the database query statements, here are a 
dozen data visualization and analysis scenarios. 

VA1:  Generate a 2D scatter plot of two selected attributes.   
This is the bread and butter of all data analysis tools. The 
user wants to point at some data point and then drill down on 
it.  It is also important to subset the data, do regressions, and 
other statistical tests of the data. 

VA2: Generate a 3D scatter-plot of   three selected attrib-
utes, and at each point use color, shape, size, icon, or anima-
tion to display additional dimensions. 
This is the next step in visualization after VA1, handling 
higher dimensional data. 

VA3: Superpose objects (tick marks or contours) over an 
image. 
This allows analysts to combine two or more visualizations 
in one pane and compare them visually. 

VA4: Generate and 2D and 3D plot of a single scalar field 
over the sky, in various coordinate systems. 
Astronomers have many different coordinate systems.  They 
are all just affine transformations of one another.   Some-
times they want polar, sometimes Lambert, sometimes they 
just want to change the reference fame.  This is just a re-
quirement that the visualization system supports the popular 
projections, and allows new ones to be easily added. 

VA5: Visualize condensed representations or aggregations. 
For example compute density of objects in 3D space, phase 
space, or attribute space and render the density map. 

VA6: 2D/3D scatter plots of objects, with Euclidean prox-
imity links in other dimensions represented.   
Use connecting lines to show objects that are closely linked 
in attribute space and in 3 space.   

VA7: Allow interactive settings of thresholds for volumetric 
visualizations, showing translucent iso-surfaces of 3D func-
tions. 
This kind of visualization is common in parts-explosion of 
CAD systems; it would also be useful in showing the volu-
metric properties of higher-dimensional data spaces. 

VA8: Generate linked multi-pane data displays. 
In steering the computation, scientists want to see several 
“windows” into the dataset, each window showing one of the 
above displays.   As the analyst changes the focus of one 
window, all the other windows should change focus in uni-
son.  This includes subsetting the data, zooming out, or pan-
ning across the parameter space.  The http://aai.com/ Image 
Explorer is and example of such a tool. 

Scalable Server Architectures  
The SDSS data is too large to fit on one disk or even one 
server.  The base-data objects will be spatially partitioned 
among the servers.  As new servers are added, the data will 
repartition.   Some of the high-traffic data will be replicated 
among servers.  In the near term, designers must specify the 
partitioning and index schemes, but we hope that in the long 
term, the DBMS will automate this design task as access 
patterns and data volumes change.      

Accessing large data sets is primarily I/O limited. Even with 
the best indexing schemes, some queries must scan the entire 
data set. Acceptable I/O performance can be achieved with 
expensive, ultra-fast storage systems, or with many servers 
operating in parallel. We are exploring the use of inexpensive 
servers and storage to allow inexpensive interactive data 
analysis.     

As reviewers pointed out, we could buy large SMP servers 
that offer 1GBps IO.  Indeed, our colleagues at Fermi Lab 



 

    

are using SGI equipment for the initial processing steps.   
The problem with the supercomputer or mini-supercomputer 
approach is that the processors, memory, and storage seem to 
be substantially more expensive than commodity servers – 
we are able to develop on inexpensive systems, and then de-
ploy just as much processing as we can afford.   The “slice-
price” for processing and memory seems to be 10x lower 
than for the high-end servers, the storage prices seems to be 
3x lower, and the networking prices seem to be about the 
same (based on www.tpc.org prices). 

We are still exploring what constitutes a balanced system 
design: the appropriate ratio between processor, memory, 
network bandwidth, and disk bandwidth.   It appears that 
Amdahl’s balance law of one instruction per bit of IO applies 
for our current software (application + SQL+OS). 

Using the multi-dimensional indexing techniques described 
in the previous section, many queries will be able to select 
exactly the data they need after doing an index lookup.   
Such simple queries will just pipeline the data and images off 
of disk as quickly as the network can transport it to the as-
tronomer's system for analysis or visualization.   

When the queries are more complex, it will be necessary to 
scan the entire dataset or to repartition it for categorization, 
clustering, and cross comparisons.  Experience will teach us 
the necessary ratio between processor power, main memory 
size, IO bandwidth, and system-area-network bandwidth. 

Our simplest approach is to run a scan machine that con-
tinuously scans the dataset evaluating user-supplied predi-
cates on each object [1].  We are building an array of 20 
nodes.  Each node has dual Intel 750 MHz processors, 
256MB of RAM, and 8x40GB EIDE disks on dual disk con-
trollers (6TB of storage and 20 billion instructions per sec-
ond in all). Experiments show that one node is capable of 
reading data at 120 MBps while using almost no processor 
time – indeed, it appears that each node can apply fairly 
complex SQL predicates to each record as the data is 
scanned.  If the data is spread among the 20 nodes, they can 
scan the data at an aggregate rate of 2 GBps. This 100 K$ 
system could scan the complete (year 2005) SDSS catalog 
every 2 minutes.  By then these machines should be 10x 
faster.  This should give near-interactive response to most 
complex queries that involve single-object predicates. 

Many queries involve comparing, classifying or clustering 
objects. We expect to provide a second class of machine, 
called a hash machine that performs comparisons within 
data clusters.  Hash machines redistribute a subset of the data 
among all the nodes of the cluster. Then each node processes 
each hash bucket at that node.  This parallel-clustering ap-
proach has worked extremely well for relational databases in 
joining and aggregating data.  We believe it will work 
equally well for scientific spatial data.    

The hash phase scans the entire dataset, selects a subset of 
the objects based on some predicate, and "hashes" each ob-
ject to the appropriate buckets – a single object may go to 
several buckets (to allow objects near the edges of a region to 

go to all the neighboring regions as well).  In a second phase 
all the objects in a bucket are compared to one another.   The 
output is a stream of objects with corresponding attributes.    

These operations are analogous to relational hash-join, hence 
the name [5].  Like hash joins, the hash machine can be 
highly parallel, processing the entire database in a few min-
utes. The application of the hash-machine to tasks like find-
ing gravitational lenses or clustering by spectral type or by 
redshift-distance vector should be obvious: each bucket 
represents a neighborhood in these high-dimensional spaces. 
We envision a non-procedural programming interface to de-
fine the bucket partition function and to define the bucket 
analysis function. 

The hash machine is a simple form of the more general data-
flow programming model in which data flows from storage 
through various processing steps.  Each step is amenable to 
partition parallelism. The underlying system manages the 
creation and processing of the flows.  This programming 
style has evolved both in the database community [4, 5, 9] 
and in the scientific programming community with PVM and 
MPI [8].  This has evolved to a general programming model 
as typified by a river system [2, 3, 4].   

We propose to let astronomers construct dataflow graphs 
where the nodes consume one or more data streams, filter 
and combine the data, and then produce one or more result 
streams.    The outputs of these rivers either go back to the 
database or to visualization programs. These dataflow graphs 
will be executed on a river-machine similar to the scan and 
hash machine.  The simplest river systems are sorting net-
works.  Current systems have demonstrated that they can sort 
at about 100 MBps using commodity hardware and 5 GBps if 
using thousands of nodes and disks [13].   

With time, each astronomy department will be able to afford 
local copies of these machines and the databases, but to start 
they will be network services. The scan machine will be in-
teractively scheduled: when an astronomer has a query, it 
will be added to the query mix immediately.  All data that 
qualifies is sent back to the astronomer, and the query com-
pletes within the scan time.   The hash and river machines 
will be batch scheduled.   

Desktop Data Analysis 
Most astronomers will not be interested in all of the hundreds 
of attributes of each object.  Indeed, most will be interested 
in only 10% of the entire dataset – but different communities 
and individuals will be interested in a different 10%.   

We plan to isolate the 10 most popular attributes (3 Cartesian 
positions on the sky, 5 colors, 1 size, 1 classification parame-
ter) into a compact table or index. We will build a spatial 
index on these attributes that will occupy much less space 
and thus can be searched more than 10 times faster, if no 
other attributes are involved in the query.    This is the stan-
dard technique of covering indices in relational query proc-
essing. 



 

    

Large disks are available today, and within a few years 
100GB disks will be common. This means that all astrono-
mers can have a vertical partition of the 10% of the SDSS on 
their desktops.  This will be convenient for targeted searches 
and for developing algorithms.  But, full searchers will still 
be much faster on servers because they have more IO band-
width and processing power. 

The scan, hash, and river machines can also apply vertical 
partitioning to reduce data movement and to allow faster 
scans of popular subsets.  

We also plan to offer a 1% sample (about 10 GB) of the 
whole database that can be used to quickly test and debug 
programs.  Combining partitioning and sampling converts a 2 
TB data set into 2 gigabytes, which can fit comfortably on 
desktop workstations for program development.  

Distributed Analysis Environment 
It is obvious, that with multi-terabyte databases, not even the 
intermediate data sets can be stored locally. The only way 
this data can be analyzed is for the analysis software to di-
rectly communicate with the data warehouse, implemented 
on a server cluster, as discussed above. An Analysis Engine 
can then process the bulk of the raw data extracted from the 
archive, and the user needs only to receive a drastically re-
duced result set.  

Given all these efforts to make the server parallel and dis-
tributed, it would be stupid to ignore I/O or network bottle-
necks at the analysis level. Thus it is obvious that we need to 
think of the analysis engine as part of the distributed, scal-
able computing environment, closely integrated with the da-
tabase server itself. Even the division of functions between 
the server and the analysis engine will become fuzzy — the 
analysis is just part of the river-flow described earlier. The 
pool of available CPU’s will be allocated to each task.    

The analysis software itself must be able to run in parallel. 
Since it is expected that scientists with relatively little ex-
perience in distributed and parallel programming will work 
in this environment, we need to create a carefully crafted 
application development environment, to aid the construction 
of customized analysis engines. Data extraction needs to be 
considered also carefully. If our server is distributed and the 
analysis is on a distributed system, the extracted data should 
also go directly from one of the servers to one of the many 
Analysis Engines. Such an approach will also distribute the 
network load better. 

Sky Server 
Some of us were involved in building the Microsoft Ter-
raServer (http://www.TerraServer.Microsoft.com/) which is a 
website giving access to the photographic and topographic 
maps of the United States Geological Survey.   This website 
has been popular with the public, and is starting to be a portal 
to other spatial and spatially related data (e.g., encyclopedia 
articles about a place.) 

 
We are in the process of building the analog for astronomy: 
SkyServer (http://www.skyserver.org/).  Think of it as the 
TerraServer looking up rather than down.  We plan to put 
online the publicly available photometric surveys and cata-
logs as a collaboration among astronomical survey projects. 
We are starting with Digitized Palomar Observatory Sky 
Survey (POSS-II) and the preliminary SDSS data.  POSS-II 
covers the Northern Sky in three bands with arcsecond pixels 
at 2 bits per pixel.  POSS-II is about 3 TB of raw image data.    
In addition, there is a catalog of approximately one billion 
objects extracted from the POSS data.   The next step will 
add the 2 Micron All Sky Survey (2MASS) that covers the 
full sky in three near-infrared bands at 2-arcsecond resolu-
tion.  2MASS is an approximately 10 TB dataset.  We are 
soliciting other datasets that can be added to the SkyServer. 
 
Once these datasets are online, we hope to build a seamless 
mosaic of the sky from them, to provide catalog overlays, 
and to build other visualization tools that will allow users to 
examine and compare the datasets.    Scientists will be able 
to draw a box around a region, and download the source data 
and other datasets for that area of the sky.  Other surveys will 
be added later to cover other parts of the spectrum. 

Summary 
Astronomy is about to be revolutionized by having a detailed 
atlas of the sky available to all astronomers, providing huge 
databases of detailed and high-quality data available to all.   
If the archival system of the SDSS is successful, it will be 
easy for astronomers to pose complex queries to the catalog 
and get answers within seconds, and within minutes if the 
query requires a complete search of the database. 
 
The SDSS datasets pose interesting challenges for automati-
cally placing and managing the data, for executing complex 
queries against a high-dimensional data space, and for sup-
porting complex user-defined distance and classification met-
rics. 
 
The efficiency of the instruments and detectors used in the 
observations is approaching 80%.  The factor limiting resolu-
tion is the Earth atmosphere. There is not a large margin for a 
further dramatic improvement in ground-based instruments.  
 
On the other hand, the SDSS project is “riding Moore’s law”: 
the data set we collect today – at a linear rate – will be much 
more manageable tomorrow, with the exponential growth of 
CPU speed and storage capacity. The scalable archive design 
presented here will be able to adapt to such changes. 
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