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Abstract

We present a method for searching in an image database using a
query image that is similar to the intended target. The query im-
age may be a hand-drawn sketch or a (potentially low-quality) scan
of the image to be retrieved. Our searching algorithm makes use of
multiresolution wavelet decompositions of the query and database
images. The coefficients of these decompositions are distilled into
small “signatures” for each image. We introduce an “image query-
ing metric” that operates on these signatures. This metric essentially
compares how many significant wavelet coefficients the query has in
common with potential targets. The metric includes parameters that
can be tuned, using a statistical analysis, to accommodate the kinds
of image distortions found in different types of image queries. The
resulting algorithm is simple, requires very little storage overhead
for the database of signatures, and is fast enough to be performed on
a database of 20,000 images at interactive rates (on standard desktop
machines) as a query is sketched. Our experiments with hundreds
of queries in databases of 1000 and 20,000 images show dramatic
improvement, in both speed and success rate, over using a conven-
tional L1, L2, or color histogram norm.

CR Categories and Subject Descriptors: I.4.0 [Image Process-
ing]: General — Image processing software; I.3.6 [Computer
Graphics]: Methodology and Techniques — Interaction Techniques.

Additional Key Words: content-based retrieval, image databases,
image indexing, image metrics, query by content, query by example,
similarity retrieval, sketch retrieval, wavelets.

1 Introduction

With the explosion of desktop publishing, the ubiquity of color scan-
ners and digital media, and the advent of the World Wide Web, peo-
ple now have easy access to tens of thousands of digital images. This
trend is likely to continue, providing more and more people with ac-
cess to increasingly large image databases.

As the size of these databases grows, traditional methods of interac-
tion break down. For example, while it is relatively easy for a per-
son to quickly look over a few hundred “thumbnail” images to find
a specific image query, it is much harder to locate that query among
several thousand. Exhaustive search quickly breaks down as an ef-
fective strategy when the database becomes sufficiently large.

One commonly-employed searching strategy is to index the image
database with keywords. However, such an approach is also fraught
with difficulties. First, it requires a person to manually tag all the
images with keys, a time-consuming task. Second, as Niblack et al.
point out [20], this keyword approach has the problem that some
visual aspects are inherently difficult to describe, while others are
equally well described in many different ways. In addition, it may
be difficult for the user to guess which visual aspects have been in-
dexed.

In this paper, we explore an alternative strategy for searching an
image database, in which the query is expressed either as a low-
resolution image from a scanner or video camera, or as a rough
sketch of the image painted by the user. This basic approach to im-
age querying has been referred to in a variety of ways, including
“query by content” [1, 4, 20], “query by example” [10, 13, 14],
“similarity retrieval” [6, 16, 17, 21, 35] and “sketch retrieval” [14].
Note that this type of content-based querying can also be applied in
conjunction with keyword-based querying or any other existing ap-
proach.

Several factors make this problem difficult to solve. The “query”
image is typically very different from the “target” image, so the
retrieval method must allow for some distortions. If the query is
scanned, it may suffer artifacts such as color shift, poor resolu-
tion, dithering effects, and misregistration. If the query is painted,
it is limited by perceptual error in both shape and color, as well as
by the artistic prowess and patience of the user. For these reasons,
straightforward approaches such as L1 or L2 image metrics are not
very effective in discriminating the target image from the rest of
the database. In order to match such imperfect queries more effec-
tively, a kind of “image querying metric” must be developed that
accommodates these distortions and yet distinguishes the target im-
age from the rest of the database. In addition, the retrieval should
ideally be fast enough to handle databases with tens of thousands of
images at interactive rates.

In this paper, we describe how a Haar wavelet decomposition of the
query and database images can be used to match a content-based
query both quickly and effectively. The input to our retrieval method
is a sketched or scanned image, intended to be an approximation
to the image being retrieved. Since the input is only approximate,
the approach we have taken is to present the user with a small set
of the most promising target images as output, rather than with a
single “correct” match. We have found that 20 images (the number
of slides on a slide sheet) are about the most that can be scanned
quickly and reliably by a user in search of the target.

In order to perform this ranking, we define an image querying met-
ric that makes use of truncated, quantized versions of the wavelet
decompositions, which we call signatures. The signatures contain
only the most significant information about each image. The image
querying metric essentially compares how many significant wavelet
coefficients the query has in common with potential targets. We
show how the metric can be tuned, using statistical techniques, to
discriminate most effectively for different types of content-based
image querying, such as scanned or hand-painted images. We also
present a novel database organization for computing this metric ex-
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tremely fast. (Our system processes a 128� 128 image query on
a database of 20,000 images in under 1/2 second on an SGI Indy
R4400; by contrast, searching the same database using an L1 met-
ric takes over 14 minutes.) Finally, we evaluate the results of ap-
plying our tuned image querying metric on hundreds of queries in
databases of 1000 and 20,000 images.

The content-based querying method we describe has applications in
many different domains, including graphic design, architecture [30],
TV production [27], multimedia [29], ubiquitous computing [36],
art history [13], geology [26], satellite image databases [16], and
medical imaging [15]. For example, a graphic designer may want
to find an image that is stored on her own system using a painted
query. She may also want to find out if a supplier of ultra-high-
resolution digital images has a particular image in its database, using
a low-resolution scanned query. In the realm of ubiquitous comput-
ing, a computer may need to find a given document in its database,
given a video image of a page of that document, scanned in from
the real-world environment. In all of these applications, improving
the technology for content-based querying is an important and ac-
knowledged challenge [8].

1.1 Related work

Previous approaches to content-based image querying have applied
such properties as color histograms [33], texture analysis [12], and
shape features like circularity and major-axis orientation of regions
in the image [7], as well as combinations of these techniques.

One of the most notable systems for querying by image content,
called “QBIC,” was developed at IBM [20] and is now available
commercially. The emphasis in QBIC is in allowing a user to com-
pose a query based on a variety of different visual attributes; for ex-
ample, the user might specify a particular color composition (x% of
color 1, y% of color 2, etc.), a particular texture, some shape fea-
tures, and a rough sketch of dominant edges in the target image,
along with relative weights for all of these attributes. The QBIC sys-
tem also allows users to annotate database images by outlining key
features to search on. By contrast, the emphasis in our work is in
searching directly from a query image, without any further specifi-
cations from the user — either about the database images or about
the particulars of the search itself.

The work of Hirata and Kato [10] is perhaps the most like our own
in its style of user interaction. In their system, called “query by vi-
sual example” (QVE), edge extraction is performed on user queries.
These edges are matched against those of the database images in
a fairly complex process that allows for corresponding edges to be
shifted or deformed with respect to each other.

It is difficult to directly compare our results with these previous
methods, since running times are rarely reported, and since the num-
ber of tests reported and the size of the databases being searched
have generally been quite small. From the little information that has
been provided, it appears that the success rate of our method is at
least as good as that of other systems that work from a simple user
sketch.

To our knowledge, we are the first to use a multiresolution approach
for solving this problem. Among other advantages, our approach al-
lows queries to be specified at any resolution (potentially different
from that of the target); moreover, the running time and storage of
our method are independent of the resolutions of the database im-
ages. In addition, the signature information required by our algo-
rithm can be extracted from a wavelet-compressed version of the
image directly, allowing the signature database to be created con-
veniently from a set of compressed images. Finally, our algorithm
is much simpler to implement and to use than most previous ap-
proaches.
1.2 Overview of paper

In the next section, we discuss our approach to image querying in
more detail and define an “image querying metric” that can be used
for searching with imprecise queries. Section 3 describes the image
querying algorithm in detail; the algorithm is simple enough that al-
most all of the code is included here. Section 4 describes the appli-
cation we have built on top of this algorithm, and gives some exam-
ples of its use. Section 5 describes the results of our tests, and Sec-
tion 6 outlines some areas for future research. Finally, the appendix
discusses the statistical technique, “logit,” that we used to tune the
weights of our metric.

2 Developing a metric for image querying

Consider the problem of computing the distance between a query
image Q and a potential target image T . The most obvious metrics
to consider are the L1 or L2 norms:

jjQ;T jj1 = ∑
i; j
jQ[i; j]�T [i; j]j (1)

jjQ;T jj2 =

 
∑
i; j

(Q[i; j]�T [i; j])2

!1=2

(2)

However, these metrics are not only expensive to compute, but they
are also fairly ineffective when it comes to matching an inexact
query image in a large database of potential targets. For example,
in our experience with scanned queries (described in Section 5),
the L1 and L2 error metrics rank their intended target image in the
highest 1% of the database only 3% of the time. (This rank is com-
puted by sorting the database according to its L1 or L2 distance from
the query, and evaluating the intended target’s position in the sorted
list.)

On the other hand, the target of the query image is almost always
readily discernible to the human eye, despite such potential arti-
facts as color shifts, misregistration, dithering effects, and distortion
(which, taken together, account for the relatively poor performance
of the L1 and L2 metrics). The solution, it would seem, is to try to
find an image metric that is “tuned” for the kind of errors present in
image querying; that is, we would like a metric that counts primarily
those types of differences that a human would use for discriminat-
ing images, but that gives much less weight to the types of errors
that a human would ignore for this task. This problem is related to
that of finding a good perceptual error metric for images, although,
to our knowledge, most previous work in this area has been devoted
primarily to minimizing image artifacts, for example, in image com-
pression [11, 24, 34].

Since there is no obvious “correct” metric to use for image querying,
we are faced with the problem of constructing one from scratch, us-
ing (informed) trial and error. The rest of this section describes the
issues we addressed in developing our image querying metric.

2.1 A multiresolution approach

Our goal was to construct an image metric that is fast to compute,
that requires little storage for each database image, and that im-
proves significantly upon the L1 or L2 metrics in discriminating the
targets of inexact queries. For several reasons, we hypothesized that
a two-dimensional wavelet decomposition of the images [31, 32]
would provide a good foundation on which to build such a metric:

� Wavelet decompositions allow for very good image approxima-
tion with just a few coefficients. This property has been exploited



for lossy image compression [3]. Typically, in these schemes, just
the wavelet coefficients with the largest magnitude are used.

� Wavelet decompositions can be used to extract and encode edge
information [19]. Edges are likely to be among the key features
of a user-painted query.

� The coefficients of a wavelet decomposition provide informa-
tion that is independent of the original image resolution. Thus,
a wavelet-based scheme allows the resolutions of the query and
the target to be effectively decoupled.

� Wavelet decompositions are fast and easy to compute, requiring
linear time in the size of the image and very little code.

2.2 Components of the metric

Given that we wish to use a wavelet approach, there are a number
of issues that still need to be addressed:

1. Color space. We need to choose a color space in which to repre-
sent the images and perform the decomposition. (The same issue
arises for L1 and L2 image metrics.) We decided to try a number
of different color spaces: RGB, HSV, and YIQ. Ultimately, YIQ
turned out to be the most effective of the three for our data, as
reported in Figure 4 of Section 5.

2. Wavelet type. We chose Haar wavelets, both because they are
fastest to compute and simplest to implement. In addition, user-
painted queries (at least with our simple interface) tend to have
large constant-colored regions, which are well represented by
this basis. One drawback of the Haar basis for lossy compres-
sion is that it tends to produce blocky image artifacts for high
compression rates. In our application, however, the results of the
decomposition are never viewed, so these artifacts are of no con-
cern. We have not experimented with other wavelet bases; others
may work as well as or better than Haar (although will undoubt-
edly be slower).

3. Decomposition type. We need to choose either a “standard” or
“non-standard” type of two-dimensional wavelet decomposition
[2, 31]. In the Haar basis the non-standard basis functions are
square, whereas the standard basis functions are rectangular. We
would therefore expect the non-standard basis to be better at
identifying features that are about as wide as they are high, and
the standard basis to work best for images containing lines and
other rectangular features. As reported in Figure 4 of Section 5,
we tried both types of decomposition with all three color spaces,
and found that the standard basis works best on our data, for both
scanned and painted queries.

4. Truncation. For a 128� 128 image, there are 1282 = 16;384
different wavelet coefficients for each color channel. Rather
than using all of these coefficients in the metric, it is preferable
to “truncate” the sequence, keeping only the coefficients with
largest magnitude. This truncation both accelerates the search for
a query and reduces storage for the database. Surprisingly, trun-
cating the coefficients also appears to improve the discrimina-
tory power of the metric, probably because it allows the met-
ric to consider only the most significant features — which are
the ones most likely to match a user’s painted query — and to
ignore any mismatches in the fine detail, which the user, most
likely, would have been unable to accurately re-create. We exper-
imented with different levels of truncation and found that stor-
ing the 60 largest-magnitude coefficients in each channel worked
best for our painted queries, while 40 coefficients worked best for
our scanned queries.
5. Quantization. Like truncation, the quantization of each wavelet
coefficient can serve several purposes: speeding the search, re-
ducing the storage, and actually improving the discriminatory
power of the metric. The quantized coefficients retain little or no
data about the precise magnitudes of major features in the im-
ages; however, the mere presence or absence of such features
appears to have more discriminatory power for image querying
than the features’ precise magnitudes. We found that quantizing
each significant coefficient to just two levels — +1, represent-
ing large positive coefficients; or�1, representing large negative
coefficients — works remarkably well. This simple classification
scheme also allows for a very fast comparison algorithm, as dis-
cussed in Section 3.

6. Normalization. The normalization of the wavelet basis func-
tions is related to the magnitude of the computed wavelet co-
efficients: as the amplitude of each basis function increases,
the size of that basis function’s corresponding coefficient de-
creases accordingly. We chose a normalization factor that makes
all wavelets orthonormal to each other. This normalization fac-
tor has the effect of emphasizing differences mostly at coarser
scales. Because changing the normalization factor requires re-
building the entire database of signatures, we have not experi-
mented further with this degree of freedom.

2.3 The “image querying metric”

In order to write down the resulting metric, we must introduce some
notation. First, let us now think of Q and T as representing just a
single color channel of the wavelet decomposition of the query and
target images. Let Q[0;0] and T [0;0] be the scaling function coef-
ficients corresponding to the overall average intensity of that color
channel. Further, let Q̃[i; j] and T̃ [i; j] represent the [i; j]-th trun-
cated, quantized wavelet coefficients of Q and T ; these values are
either �1, 0, or +1. For convenience, we will define Q̃[0;0] and
T̃ [0;0], which do not correspond to any wavelet coefficient, to be 0.

A suitable metric for image querying can then be written as

jjQ;T jj = w0;0 jQ[0;0]�T [0;0]j + ∑
i; j

wi; j
��Q̃[i; j]� T̃ [i; j]

��
We can simplify this metric in a number of ways.

First, we have found the metric to be just as effective if the differ-
ence between the wavelet coefficients jQ̃[i; j]� T̃ [i; j]j is replaced
by (Q̃[i; j] 6= T̃ [i; j]), where the expression (a 6= b) is interpreted as 1
if a 6= b, and 0 otherwise. This expression will be faster to compute
in our algorithm.

Second, we would like to group terms together into “buckets” so that
only a small number of weights wi; j need to be determined experi-
mentally. We group the terms according to the scale of the wavelet
functions to which they correspond, using a simple bucketing func-
tion bin(i; j), described in detail in Section 3.

Finally, in order to make the metric even faster to evaluate over
many different target images, we only consider terms in which the
query has a non-zero wavelet coefficient Q̃[i; j]. A potential benefit
of this approach is that it allows for a query without much detail to
match a very detailed target image quite closely; however, it does
not allow a detailed query to match a target that does not contain
that same detail. We felt that this asymmetry might better capture
the form of most painted image queries. (Note that this last mod-
ification technically disqualifies our “metric” from being a metric
at all, since metrics, by definition, are symmetric. Nevertheless, for
lack of a better term, we will continue to use the word “metric” in
the rest of this paper.)



Thus, the final “Lq” image querying metric jjQ;T jjq is given by

w0 jQ[0;0]�T [0;0]j + ∑
i; j : Q̃[i; j]6=0

wbin (i; j)
�
Q̃[i; j] 6= T̃ [i; j]

�
(3)

The weights wb in equation (3) provide a convenient mechanism for
tuning the metric to different databases and styles of image query-
ing. The actual weights we use are given in Section 3, while the
method we use for their computation is described in the appendix.

2.4 Fast computation of the image querying metric

To actually compute the Lq metric over a database of images, it is
generally quicker to count the number of matching Q̃ and T̃ coef-
ficients, rather than mismatching coefficients, since we expect the
vast majority of database images not to match the query image well
at all. It is therefore convenient to rewrite the summation in (3) in
terms of an “equality” operator (a = b), which evaluates to 1 when
a = b, and 0 otherwise. Using this operator, the summation

∑
i; j : Q̃[i; j]6=0

wk
�
Q̃ 6= T̃

�

in equation (3) can be rewritten as

∑
i; j : Q̃[i; j]6=0

wk � ∑
i; j : Q̃[i; j]6=0

wk
�
Q̃ = T̃

�

Since the first part of this expression ∑wk is independent of T̃ , we
can ignore it for the purposes of ranking the different target images
in Lq. It therefore suffices to compute the expression

w0 jQ[0;0]�T [0;0]j � ∑
i; j : Q̃[i; j]6=0

wbin (i; j)
�
Q̃[i; j] = T̃ [i; j]

�
(4)

This expression is just a weighted sum of the difference in the aver-
age color between Q and T , and the number of stored wavelet coef-
ficients of T whose indices and signs match those of Q.

3 The algorithm

The final algorithm is a straightforward embodiment of the Lq met-
ric as given in equation (4), applied to the problem of finding a given
query in a large database of images. The complexity of the algorithm
is linear in the number of database images. The constant factor in
front of this linear term is small, as discussed in Section 5.

At a high level, the algorithm can be described as follows: In a
preprocessing step, we perform a standard two-dimensional Haar
wavelet decomposition [2, 31] of every image in the database, and
store just the overall average color and the indices and signs of the
m largest-magnitude wavelet coefficients. The indices for all of the
database images are then organized into a single data structure in the
program that optimizes searching. Then, for each query image, we
perform the same wavelet decomposition, and again throw away all
but the average color and the largest m coefficients. The score for
each target image T is then computed by evaluating expression (4).

The rest of the section describes this algorithm in more detail.

3.1 Preprocessing step

A standard two-dimensional Haar wavelet decomposition of an im-
age is very simple to code. It involves a one-dimensional decom-
position on each row of the image, followed by a one-dimensional
decomposition on each column of the result.
The following pseudocode performs this one-dimensional decom-
position on an array A of h elements, with h a power of two:

proc DecomposeArray(A : array [0::h�1] of color):
A  A=

p
h

while h > 1 do:
h  h=2
for i  0 to h�1 do:

A0[i]  (A[2i]+A[2i+1])=
p

2
A0[h+ i]  (A[2i]�A[2i+1])=

p
2

end for
A  A0

end while
end proc

In the pseudocode above, the entries of A are assumed to be 3-
dimensional color components, each in the range [0;1]. The various
arithmetic operations are performed on the separate color compo-
nents individually.

An entire r� r image T can thus be decomposed as follows:

proc DecomposeImage(T : array [0::r�1; 0::r�1] of color):
for row  1 to r do:

DecomposeArray(T [row ; 0::r�1])
end for
for col  1 to r do:

DecomposeArray(T [0::r�1; col ])
end for

end proc

(In practice, the DecomposeImage routine is best implemented by
decomposing each row, then transposing the matrix, decomposing
each row again, and transposing back.)

After the decomposition process, the entry T [0;0] is proportional to
the average color of the overall image, while the other entries of T
contain the wavelet coefficients. (These coefficients are sufficient for
reconstructing the original image T , although we will have no need
to do so in this application.)

Finally, we store only T [0;0] and the indices and signs of the largest
m wavelet coefficients of T . To optimize the search process, the re-
maining m wavelet coefficients for all of the database images are or-
ganized into a set of six arrays, called the search arrays, with one ar-
ray for every combination of sign (+ or�) and color channel (such
as R, G, and B).

For example, let Dc
+ denote the “positive” search array for the color

channel c. Each element Dc
+[i; j] of this array contains a list of all

images T having a large positive wavelet coefficient T [i; j] in color
channel c. Similarly, each element Dc

�[i; j] of the “negative” search
array points to a list of images with large negative coefficients in c.

These six arrays are used to speed the search for a particular query,
as described in the next section. In our implementation, the search
arrays are created as a preprocess for a given database and stored on
disk. We use a small stand-alone program to add new images to the
database incrementally. This program performs the wavelet decom-
position for each new image, finds the largest m coefficients, and
augments the database search arrays accordingly.

3.2 Querying

The querying step is straightforward. For a given query image Q,
we perform the same wavelet decomposition described in the pre-
vious section. Again, we keep just the overall average color and the
indices and signs of the largest m coefficients in each color channel.

To compute a score, we loop through each color channel c. We first



Figure 1: The image querying application. The user paints a query in the large rectan-

gular window, and the 20 highest-ranked targets appear in the small windows on the

right. To avoid copyright infringements, the database for this example contains only

96 images (all created by artists who have been dead more than 75 years). Because the

database is so limited, only the intended target (in the upper-left small window) appears

to match the query very closely.

compute the differences between the query’s average intensity in
that channel Qc[0;0] and those of the database images. Next, for
each of the m non-zero, truncated wavelet coefficients Q̃c[i; j], we
search through the list corresponding to those database images con-
taining the same large-magnitude coefficient and sign, and update
each of those image’s scores accordingly:

func ScoreQuery(Q : array [0::r�1; 0::r�1] of color; m : int ):
DecomposeImage(Q)
Initialize scores [i]  0 for all i
for each color channel c do:

for each database image T do:
scores [index(T)] += wc[0]� jQc[0;0]�Tc[0;0]j

end for
Q̃  TruncateCoefficients(Q; m)
for each non-zero coefficient Q̃c[i; j] do

if Q̃c[i; j]> 0 then
list  Dc

+[i; j]
else

list  Dc
�[i; j]

end if
for each element ` of list do

scores [index(`)]�= wc[bin(i; j)]
end for

end for
end for
return scores

end func

The function bin(i; j) provides a way of grouping different coeffi-
cients into a small number of bins, with each bin weighted by some
constant w[b]. For a given set of bins, the best weights w[b] can be
found experimentally, as discussed in the appendix. The larger the
training set, the more weights that can be used. The size of our train-
ing set was sufficient for 18 weights: 6 per color channel.

In our implementation, we use the function

bin(i; j) := minfmaxfi; jg;5g:
For our database of images, a good set of weights, using the YIQ
color space and standard decomposition, was found to be:

Painted Scanned
b wY [b] wI[b] wQ[b] wY [b] wI[b] wQ[b]
0 4.04 15.14 22.62 5.00 19.21 34.37
1 0.78 0.92 0.40 0.83 1.26 0.36
2 0.46 0.53 0.63 1.01 0.44 0.45
3 0.42 0.26 0.25 0.52 0.53 0.14
4 0.41 0.14 0.15 0.47 0.28 0.18
5 0.32 0.07 0.38 0.30 0.14 0.27

(All scaling function coefficients in our implementation are reals in
the range [0;1], so their differences tend to be smaller than the dif-
ferences of the truncated, quantized wavelet coefficients. Thus, the
weights on the scaling functions w[0] have relatively large magni-
tudes because they generally multiply smaller quantities.)

As a final step, our algorithm examines the list of scores, which may
be positive or negative. The smallest (typically, the most negative)
scores are considered to be the closest matches. We use a “Heap-
Select” algorithm [23] to find the 20 closest matches in linear time.

4 The application

We have built a simple interactive application that incorporates our
image querying algorithm. The program is written in C++, using
OpenGL and Motif. It runs on SGI workstations.

A screen dump of the running application is shown in Figure 1. The
user paints an image query in the large rectangular area on the left
side of the application window. When the query is complete, the user
presses the “Match” button. The system then tests the query against
all the images in the database and displays the 20 top-ranked targets
in the small windows on the right. (The highest-ranked target is dis-
played in the upper left, the second-highest target to its right, and so
on, in row-major order.)
For convenience, the user may paint on a “canvas” of any aspect ra-
tio. However, our application does not currently use this informa-
tion in performing the match. Instead, the painted query is internally
rescaled to a square aspect ratio and searched against a database in
which all images have been similarly rescaled as a preprocess. We
discuss how a user-specified aspect ratio might also be used to im-
prove the match in Section 6.

Figure 2(a) shows an example of a painted query, along with the Lq

rank of its intended target (c) in databases of 1093 and 20,558 im-
ages.

(a) Painted (b) Scanned (c) Target

1 j 2 1 j 1

Figure 2: Queries and their target: (a) a query painted from memory; (b) a scanned

query; and (c) their intended target. Below the queries, the Lq ranks of the intended

target are shown for two databases of sizes 1093 j 20;558.
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Figure 3: Progression of an interactive query. Above each partially-formed query is the actual time (in seconds) at which the snapshot was taken. Below each query are the Lq ranks

of the intended target for databases of sizes 1093 j 20;558.
Rather than painting a query, the user may also click on any of the
displayed target images to serve as a subsequent query, or use any
stored image file as a query. Figure 2(b) shows an example of using
a low-quality scanned image as a query, again with itsLq rank in the
two databases.

Because the retrieval time is so fast (under 1/2 second in a database
of 20,000 images), we have also implemented an “interactive”
mode, in which the 20 top-ranked target images are updated when-
ever the user pauses for a half-second or more. Figure 3 shows the
progression of an interactive query, along with the actual time at
which each snapshot was taken and the Lq rank of the intended tar-
get at that moment in the two different databases.

5 Results

To evaluate our image querying algorithm, we collected three types
of query data.

The first set, called “scanned queries,” were obtained by printing out
small 1=2”�1=2” thumbnails of our database images, using a full-
color Tektronix Phaser IISDX printer at 300dpi, and then scanning
them back into the system using a Hewlett-Packard ScanJet IIc scan-
ner. As a result of these steps, the scanned images became somewhat
altered; in our case, the scanned images generally appeared fuzzier,
darker, and slightly misregistered from the originals. An example
of a scanned query is shown in Figure 2(b). We gathered 270 such
queries, of which 100 were reserved for evaluating our metric, and
the other 170 were used as a training set.

The second set, called “painted queries,” were obtained by asking 20
subjects, most of whom were first-time users of the system, to paint
complete image queries, in the non-interactive mode, while looking
at thumbnail-sized versions of the images they were attempting to
retrieve. We also gathered 270 of these queries and divided them
into evaluation and training sets in the same fashion.

The third set, called “memory queries,” were gathered in order to
see how well this style of querying might work if users were not
looking at small versions of the images they wanted to retrieve, but
instead were attempting to retrieve images from memory. To obtain
these queries, we asked each subject to initially examine two targets
T1 and T2, and paint a query for T1, which we threw away. The sub-
ject was then asked to iteratively examine a targetTi+1 (starting with
i = 2) and paint query Ti, which had not been viewed since before
query Ti�1 was painted. In this way, we hoped to get a more accurate
idea of how well a user might do if attempting to retrieve a familiar
image from memory, without being able to see the image directly.
An example of a memory query is shown in Figure 2(a). We gath-
ered 100 of these queries, which were used for evaluation only.
5.1 Training

Each training set was subdivided into 2 equal sets. The first training
set of 85 queries was used to determine the weights of the image
querying metric, as described in the appendix. The second training
set of 85 queries was used to find the optimal color space, decom-
position type, and number m of coefficients to store for each image.
We performed an exhaustive search over all three dimensions, us-
ing color spaces RGB, HSV, and YIQ; standard and non-standard
wavelet decompositions; and m= 10;20;30; : : : ;100. For each com-
bination, we found weights using the first set of images, and then
tested these weights on the second set of images, using “the percent-
age of intended targets that were ranked among the top 1% in our
database of 1093 images” as the evaluation function.

The results of these tests for scanned and painted queries are re-
ported in Figure 4. For scanned queries, 40 coefficients with a stan-
dard decomposition and YIQ worked best. The same configura-
tion, except with 60 coefficients, worked best for painted queries.
This latter configuration was used for testing the success of mem-
ory queries as well.
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Figure 4: Choosing among color spaces (RGB, HSV, or YIQ), wavelet decomposition

type (standard or non-standard), and number of coefficients.

5.2 Performance on actual queries

Using the weights obtained from the training set, we then evaluated
the performance using the remaining 100 queries of each type. The
graphs in Figure 5 compare our Lq metric to the L1 and L2 metrics
and to a color histogram metric Lc, for a database of 1093 images.
The three graphs show, from left to right: scanned queries (using 40
coefficients), painted queries (using 60 coefficients), and memory
queries (using 60 coefficients).

The L1 and L2 metrics in these graphs were computed on both the
full-resolution images (128� 128 pixels) and on averaged-down
versions (8�8 pixels), which have roughly the same amount of data
as the 60-coefficient Lq metric. The color histogram metric Lc was
computed by quantizing the pixel colors into a set of 6�6�6 bins
in RGB space, and then computing an L1 metric over the number of
pixels falling in each bin for the query versus the target.

Results for all six methods are reported by giving the percentage of
queries y that were ranked among the top x% of the database images,
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Figure 5: Comparison of Lq metric against L1, L2, and a color histogram metric Lc. The percentage of queries y ranked in the top x% of the database are plotted on the x and y axes.
with x and y plotted on the x- and y-axes. For example, the leftmost
data point of each curve, at x = 1=1093 � 0:09%, reports the per-
centage of queries whose intended targets were ranked in first place
for each of the six methods; the data points at x = 1% report the per-
centage of queries whose intended targets were ranked among the
top b0:01�1093c= 10 images; and so on.

Note that the scanned queries perform remarkably poorly under the
L1, L2 and Lc metrics. These poor scores are probably due to the
fact that the scanned queries were generally darker than their in-
tended targets, and so matched many incorrect (darker) images in
the database more closely.

5.3 Robustness with respect to distortions

In order to test more precisely how robust the different metrics are
with respect to some of the distortions one might find in image
querying, we devised the following suite of tests. In the first test, 100
randomly chosen color images from the database were scaled by a
factor s ranging from 1 to 2 and used as a query. In the second test,
the same images were rotated by a factor r between 0� and 45�. In
the third test, the same images were translated in a random direction
by a distance t between 0 and 0.5 times the width of the query. In the
fourth test, the colors of these images were uniformly shifted in nor-
malized RGB space in a random direction by a distancec between 0
and 1. In the final test, all four of these transformations were applied
for each test, in the order scale/rotate/translate/color-shift, with s, r,
t, and c ranging as in the other tests. For all five tests, in cases where
a border of the distorted image was undefined by the transformation
(which occurs for rotations and translations), the image was padded
with its overall average color. In cases where the color shift would
lie outside the RGB cube, the color was clamped to [0;1]3.

The top row of Figure 6 shows the results of these five tests.
The curves in these graphs report the percentage of queries whose
intended targets were ranked in the top 1% of the 1093-image
database. Note that the Lq metric performs as well as or better than
all other methods, except for Lc. However, as expected, the Lc met-
ric does very poorly for color shifts, severely reducing this metric’s
utility in situations where a query’s color is not always true. The bot-
tom row shows the same five tests, but applied to each of our 100
scanned, painted, and memory queries — all with the Lq metric.

5.4 Effect of database size

We also wanted to test how well our method would perform as the
size of the database was increased. We therefore gathered 19,465
images from the World Wide Web, using the WebCrawler [22] to
find files on the Web with a “.gif” extension. We computed a signa-
ture and thumbnail for each image and stored the resulting database
locally, along with a “URL” for each image — a pointer back to the
original Web site. The resulting application is a kind of graphical
“Web browser,” in which a user can paint a query and very quickly
see the images on the Web that match it most closely. Clicking on
one of these thumbnail images calls up the full-resolution original
from the Web.

In order to check how well our metric performed, we created a set
of 20 nested databases, with each database containing our original
1093 images plus increasingly large subsets of the Web database.
The largest such database had 20,558 images. For each of the three
sets of 100 queries, we then evaluated how many of those queries
would find their intended target in the top 1% of the different nested
databases. We found that the number of queries matching their cor-
rect targets by this criterion remained almost perfectly constant in all
three cases, with the number of correctly matching queries varying
by at most 2% across the different database sizes.

5.5 Speed of evaluation

We measured the speed of our program by running 68 queries 100
times each, with databases ranging in size from n = 1093 to n =
20;558, and with the number of coefficients ranging from m =
20 to m = 1000. A regression analysis indicates that the running
time is linear in both m and n, with each query requiring approx-
imately 190+ 0:11m+ 0:012n milliseconds to process on an SGI
Indy R4400. This running time includes the time to decompose a
128�128-pixel query, score all n images in the database according
to the Lq metric, and find the 20 top-ranked targets.

As two points of comparison, Table 1 reports the average running
time of our algorithm to that of the other methods surveyed for find-
ing a query using m = 20 coefficients per channel in databases of
size n = 1093 and n = 20;558 images. In all cases, the times re-
ported do not include any preprocessing that can be performed on
the database images alone.

Metric Time
n = 1093 n = 20;558

Lq 0.19 0.44
L1 (8�8) 0.66 7.46
L2 (8�8) 0.68 6.39
L1 (128�128) 47.46 892.60 (est.)
L2 (128�128) 42.04 790.80 (est.)
Lc 0.47 5.03

Table 1: Average times (in seconds) to match a single query in databases of 1093 and

20,558 images under different metrics.
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Figure 6: Robustness of various querying metrics with respect to different types of image distortions: (a) Scale changes; (b) Rotations; (c) Translations; (d) Color shifts; (e) All four

effects combined. The top row (legend at upper right) compares the Lq metric to L1 , L2 and Lc, using the target itself as the original undistorted query. The bottom row (legend at

lower right) shows the same five tests applied to each of our 100 scanned, painted, and memory queries, using the Lq metric.
5.6 Interactive queries

To test the speed of interactive queries, we asked users to paint in
the interactive mode, and we kept track of how long it took for the
intended target to appear among the top 20 images in the database.
For these tests, we used just m = 20 significant coefficients.

For the first such test, we had 5 users paint a total of 106 interactive
queries, allowing them to look at thumbnails of the intended targets.
The overall median time to retrieve the target images was 20 sec-
onds.

Next, in order to see how this median query time might vary with
database size, we asked 2 users to paint a total of 21 interactive
queries in our database of 20,558 images. For each query, the ap-
plication kept a log of each paint stroke and the time at which it was
drawn. We then used these logs to simulate how quickly the same
query would bring up the intended target among the top 20 images
in databases of various sizes. The results are shown in Figure 7.
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Figure 7: The effect of database size on median interactive query time.

To see if painting from memory would affect retrieval time, we se-
lected 20 target images and, for each subject, we randomly divided
these targets into two equal sets. Each subject was then asked to
paint the 10 images from the first set while looking at a thumbnail of
the image, and the 10 images from the second set from memory, in
the style described for “memory queries” above. We used 3 subjects
in this experiment. We found that the median query time increased
from 18 seconds when the subjects were looking at the thumbnails,
to 22 seconds when the queries were painted from memory.

In our experience with interactive querying, we have observed that
users will typically be able to sketch all the information they know
about an image in a minute or less, whether they are looking at a
thumbnail or painting from memory. In most cases, the query suc-
ceeds within this short time. If the query fails to bring up the in-
tended target within a minute or so, users will typically try adding
some random details, which sometimes help in bringing up the im-
age. If this tactic fails, users will simply give up and, in a real system,
would presumably fall back on some other method of searching for
the image. (In this case, we report an “infinite” query time.)

We have observed two benefits of painting queries interactively.
First, the time to retrieve an image is generally reduced because the
user simply paints until the target image appears, rather than paint-
ing until the query image seems finished. Second, the interactive
mode subtly helps “train” the user to find images more efficiently,
because the application is always providing feedback about the rel-
ative effectiveness of an unfinished query while it is being painted.

6 Discussion and future work

The algorithm we have described is extremely fast, requires only
a small amount of data to be stored for each target image, and is
remarkably effective. It is also fairly easy to understand and im-
plement. Finally, it has parameters that can be tuned for a given
database or type of query image.

Although this new image searching method has substantial advan-
tages over previous approaches, its ultimate utility may depend to
a large extent on the size of the image database being searched.
Our tests suggest that, for the majority of non-interactive queries,
our method will be able to pinpoint the correct target to within a
1%-sized subset of the overall database, regardless of the database’s
size. Thus, for a database of 100 images, it is easy to pull up the
correct image precisely. However, for a database of 20,000 images,
the user is still left with a list of 200 potential matches that must be
searched visually, or by some other means. On the other hand, with
interactive querying, even for a 20,000-image database it is still pos-
sible to place the target into the top 20 images the majority of the
time. Nonetheless, creating a good query becomes increasingly dif-
ficult as the database grows. For a large enough database, even this
interactive style of querying would begin to require more precision
than most users can provide.

We have tried to perform a number of different tests to measure the
success and robustness of our image querying metric. However, it
is easy to envision many more tests that would be interesting to per-
form. One interesting test would be to try to quantify the degree to
which different training sets affect our metric’s sensitivity to vari-
ous image distortions. For example, in querying images from mem-
ory, colors are less likely to be accurate. Presumably, a training set



of “memory queries” would therefore reduce the metric’s sensitiv-
ity to color accuracy. How significant is this effect? In addition, it
would be interesting to examine whether providing separate train-
ing sets for individual users or for particular databases would make
a significant difference in the metric’s discriminatory power.

Our method also has some limitations, which we hope to address in
future work. For example, while it is fairly robust with respect to a
large degree of distortion in the query image, our metric does not
currently allow for general pattern matching of a small query, such
as an icon or company logo, inside some larger database image.

Here are some other areas for future research:

Aspect ratio. Currently, we allow users to choose an aspect ratio
for their query; however, this aspect ratio is not used in the search
itself. It would be straightforward to add an extra term to our image
querying metric for the similarity of aspect ratio. The weight for this
term could be found experimentally at the same time as the other
weights are computed.

Perceptually-based spaces. It would be interesting to try using a
perceptually uniform color space, such as CIE LUV or TekHVC [5],
to see if it improves the effectiveness of our metric. In the same vein,
it may help to compute differences on logarithmically-scaled inten-
sities, which is closer to the way intensity is perceived [9].

Image clusters. Images in a large database appear to be “clustered”
in terms of their proximity under our image querying metric. For ex-
ample, using a portrait as a query image in our Web database selects
portraits almost exclusively as targets. By contrast, using a “planet”
image pulls up other planets. It would be interesting to perform some
statistical clustering on the database and then show the user some
representative images from the center of each cluster. These could
be used either as querying keys, or merely as a way of providing an
overview of the contents of the database.

Multiple metrics. In our experience with the system, we have no-
ticed that a good query will bring up the target image, no mat-
ter which color space and decomposition method (standard or non-
standard) is used; however, the false matches found in these differ-
ent spaces all tend to be very different. This observation leads us to
wonder whether it is possible to develop a more effective method
by combining the results of searching in different color spaces and
decomposition types, perhaps taking the average of the ranks in the
different spaces (or, alternately, the worst of the ranks), as the rank
chosen by the overall metric.

Affine transformation and partial queries. As discussed above,
a very interesting (and more difficult) direction for future research
is to begin exploring methods for handling general affine transfor-
mations of the query image or for searching on partial queries. The
“shiftable transforms,” described by Simoncelli et al. [28], which
allow for multiresolution transforms with translational, rotational,
and scale invariance, may be helpful in these respects. Another idea
for specifying partial queries would be to make use of the alpha
channel of the query for specifying the portions of the query and tar-
get images over which the Lq metric should be computed.

Video querying. We would like to extend our method to the prob-
lem of searching for a given frame in a video sequence. The sim-
plest solution would be to consider each frame of the video as a sep-
arate image in the database and to apply our method directly. A more
interesting solution would be to explore using a three-dimensional
multiresolution decomposition of the video sequence, combined
perhaps with some form of motion compensation, in order to take
better advantage of the extra coherence among the video frames.
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A Tuning the weights of the metric

Recall that our Lq metric (3) involves a linear combination of terms. In this section, we
discuss how a good set of weights wk for these terms can be found.

The most straightforward approach for finding these weights is to use some form of mul-
tidimensional continuous optimization over these variables, such as Powell’s method
[23], using an evaluation function like “the number of queries that ranked their intended
target in the upper 1% of the database.” The difficulty is that this kind of evaluation
function is fairly slow to compute (on the order of many seconds), since we would like
to perform the evaluation over a large number of queries.

An alternative approach is to assume a regression model and to perform a kind of least-
squares fit to the data [23]. For each pair ` of query and target images, we record an
equation of the form:

r` = v + ∑
k

wktk;` + u`

where r` is either 1 or 0, depending on whether or not the query and target are intended
to match; tk;` is the sum of the terms of equation (3) in bucket k; variables v and wk are
the unknowns to be found by the least-square fit; and u` is an error term to make the
equality hold.

However, there are a number of problems with this method. The first problem is primar-
ily an aesthetic one: once we have computed the weights v and wk , they will give results
that are in general neither 0 nor 1 — and in fact, may not even lie in the interval [0;1].
In that case, we are left with the problem of interpreting what these other values should
mean. The second problem is even more serious. The difficulty is that when collect-
ing the data for tuning the weights, it is much easier to create data for mismatches than
for matches, since in a database of 1000 images, every query corresponds to 999 mis-
matches and only a single match. If we use all of this data, however, the least-squares
fit will tend to give weights that are skewed toward finding mismatches, since the best
least-squares fit to the data will be to make every query–target pair score very close to 0.
The alternative, using equal-sized sets of matched and mismatched image pairs, means
throwing out a lot of perfectly useful and inexpensive data.

For these reasons, we use an approach from statistics called the logit model [18]. In the
logit model, we assume a regression model of the form:

r�` = v + ∑
k

wktk;` + u`

where r�` is called a “latent variable,” which is not observed directly. Observed instead
is a dummy variable r`, defined by

r` =

�
1 if r�` > 0
0 otherwise

The idea behind the logit model is that there exists some underlying continuous variable
r�` (such as the “perceptual closeness” of two images Q and T) that is difficult to measure
directly. The continuous variable r�` determines a binary outcome r` (such as “image T is
the intended target of the query Q”), which is easily measured. The logit model provides
weights wk , which can be used to compute the probability that a given r�` produces a
positive outcome r`.

Indeed, under the assumptions of the logit model, the probability P̀ that the query–
target pair ` is indeed a match, is given by

P̀ = F

 
v+∑

k

wktk;`

!
where F(x) =

ex

1+ ex

Once the weights are found, since F(x) is monotonic and v is constant for all query–
target pairs `, it suffices to compute the expression

∑
k

wktk;`

in order to rank the targets in order of decreasing probability of a match.

To compute the weights, we use the logit procedure in SAS [25]. It takes SAS about 30
seconds on an IBM RS/6000 to find appropriate weights for an input of 85 matches and
8500 (randomly chosen) mismatches. While these weights are not necessarily optimal
with respect to our preferred evaluation function, they appear to give very good results,
and they can be computed much more quickly than performing a multidimensional con-
tinuous optimization directly.


