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Abstract. Model programs represent transition systems that are used
to specify expected behavior of systems at a high level of abstraction. The
main application area is application-level network protocols or protocol-
like aspects of software systems. Model programs typically use abstract
data types such as sets and maps, and comprehensions to express com-
plex state updates. Such models are mainly used in model-based testing
as inputs for test case generation and as oracles during conformance
testing. Correctness assumptions about the model itself are usually ex-
pressed through state invariants. An important problem is to validate
the model prior to its use in the above-mentioned contexts. We intro-
duce a technique of using Satisfiability Modulo Theories or SMT to per-
form bounded reachability analysis of a fragment of model programs. We
use the Z3 solver for our implementation and benchmarks, and we use
AsmlL as the modeling language. The translation from a model program
into a verification condition of Z3 is incremental and involves selective
quantifier instantiation of quantifiers that result from the comprehension
expressions.

1 Introduction

Model programs [20] are used to describe protocol-like behavior of systems at a
high level of abstraction, the main application area being application-level net-
work protocols. Model programs typically use abstract data types such as sets
and maps, and comprehensions to express complex state updates. Protocols are
abundant; we rely on the reliable sending and receiving of email, multimedia, and
business data. But protocols, such as the Windows network file protocol SMB
(Server Message Block), can be very complex and hard to get right. They require
careful design to guarantee reliability and failure resilience; they require careful
and efficient implementations; and they require careful documentation and inter-
operability testing, so that different vendors understand the same protocol. The
use of model programs to model such complex protocols is an emerging practice
in the software industry [14].

* Part of this work was done during the authors visit at Microsoft Research.



Correctness assumptions about the model itself are usually expressed through
state invariants. An important problem is to validate the model prior to its use
in the above-mentioned contexts. We introduce a technique of using incremental
SMT solving to perform bounded reachability analysis of a fragment of model
programs. We define the formal framework and describe the implementation to
Z3 [28,11]. The translation from a model program into a verification condition
of Z3 is and involves lazy elimination of quantifiers that result from the compre-
hension expressions.

The use of SMT solvers for automatic software analysis has recently been
introduced [2] as an extension of SAT-based bounded model checking [5]. The
SMT based approach makes it possible to deal with more complex background
theories. Instead of encoding the verification task of a sequential program as
a propositional formula the task is encoded as a quantifier free formula. The
decision procedure for checking the satisfiability of the formula may use combi-
nations of background theories [22]. The formula is generated after preprocessing
of the program. The preprocessing yields a normalized program where all loops
have been eliminated by unwinding the loops up to a fixed bound.

Unlike traditional sequential programs, model programs typically operate on
a more abstract level and in particular make use of (set and bag) comprehensions
as expressions that are computed in a single step, rather than computed, one
element at a time, in a loop. In this paper we consider an extension of the SMT
approach to reachability analysis of model programs where set comprehensions
are supported at the given level of abstraction and not unwound as loops. Al-
lowing arbitrary comprehensions quickly leads to undecidability. We identify a
fragment of model programs using the array property fragment [7] that remains
decidable for bounded reachability analysis.

The construction of the formula for bounded reachability of sequential pro-
grams is based on the semantics of the behavior of the program as a transition
system. The resulting formula encodes reachability of some condition within a
given bound in that transition system. If the formula is satisfiable, a model of
the formula typically is a witness of some bad behavior. The semantics of a
model program on the other hand, is given by a labeled transition system, where
the labels record the actions that caused the transitions. Using the action la-
bel is conceptually important for separating the (external) trace semantics of
the model program from its (internal) state variables. The trace semantics of
model programs is used for example for conformance testing. When composing
model programs, shared actions are used to synchronize steps. We illustrate how
composition of model programs [26] can be used for scenario oriented or user
directed analysis.

2 Model programs

The semantics of model programs in their full generality builds on the abstract
state machine (ASM) theory [15]. Model programs are primarily used in model-
based testing tools like Spec Explorer [1,25] where one of the supported input



languages is the abstract state machine language AsmL [4,16]. The NModel
tool [23,20] and Spec Explorer 2007 [14] use plain C# for describing model
programs. Spec Explorer 2007 uses, in addition, a coordination language Cord
for scenario control [13] and model composition. Typically, a model program
makes use of a rich background theory [6] 7, that contains integer arithmetic,
finite collections (sets, maps, sequences, bags), and tuples, as well as user defined
data types.

2.1 Background theory

Let the signature of 7 be X. For each sort S (representing a type) the theory for
S and its signature are denoted by 7g and X'g, respectively. All function symbols
and constants in X', and all variables are typed, and when referring to terms over
2] we assume that the terms are well-typed. For a term ¢, the set of symbols that
occur in it is called the signature of t and is denoted by X(¢). Boolean sort B
is explicit, and formulas are represented by Boolean terms. We use the notation
t[z] to indicate that the free logical variable z may occur in t. Given term s we
also use the notation ¢[s] to indicate the substitution of s for x in ¢. The integer
sort is Z. Given sorts D and R, {D — R} is the map sort with domain sort D
and range sort R. The map sort {D +— B} is also denoted by {D} and called
a set sort with domain sort D. For each sort S there is a designated constant
defaulty denoting a special value in (the type represented by) S. For Booleans,
that value is false. The use of defaulty is to represent partial maps, with range
sort S, as total maps that map all but finitely many elements to defaults. In
particular, sets are represented by their characteristic functions as maps.

Maps For each map sort S = {D — R}, the signature Xs contains the binary
function symbol readg, the ternary function symbol writes and the constant
emptyg. The function reads : S x D — R retrieves the element for the given
key of the map. The function writes : S x D x R — S creates a new map
where the key has been updated to the new value. The constant emptyg denotes
the empty map. The theory 7g contains the classical map axioms (see e.g. [7]),
which we repeat here for clarity and to introduce some notation:

Ym x v y(read(write(m, z,v),y) = Ite(x =y, v, read(m, y))), (1)

Vmy me(Va(read(my, ) = read(ma, x)) — myq = ma). (2)

All symbols are typed, i.e. have the expected sort, but we often omit the sort
annotations as they are clear from the context. The value of an if-then-else term
Ite(p,t1,t2) (in a given structure) is: the value of ¢, if ¢ holds; the value of ¢,
otherwise. The second axiom above is extensionality. 7g also contains the axiom
for the empty map:

Va(read(empty, x) = defaulty). (3)



Sets For each set sort S = {D}, the signature Xs contains additionally the
binary set operations for union Ug, intersection Ng, set difference \ g, and sub-
set Cg. The theory 7g contains the appropriate axiomatization for the set
operations. We write z € s and & ¢ s as abbreviations for read(s,z) and
—read(s, x), respectively. A set comprehension term s of sort S has the form
Compr(t[z], z,r, o[x]) or

{tlz] : @ € r, 0[a]}, (4)

where t[x] is a term of sort D called the element term of s, x is a logical variable
of some sort F called the variable of s, r is a term of sort { E} called the range of
x, and ¢[z] is a formula called the restriction condition of s. When the restriction
condition is true, we write the set comprehension as {t[z] : € r}. Given a closed
set comprehension term s as (4), the constant 5 defines s by (5).

Vy(y €3 « Ja(y = tlx] Az € 1 A pl])). (5)

The element term t[z] of s is invertible for x, if 1) the function f = Az.t[z] is
injective, 2) there exists a formula v;[y] that is true iff y is in the range of f, and
3) there exists a term ¢~1[y] such that t~1[y] = f~1(y) for all y such that 1/;[y]
holds. If ¢[z] is invertible, then the existential quantifier in (5) can be eliminated
and (5) can be simplified to (6). (Just extend the body of the existential formula
with the conjunct ¢t~ 1[y] = x A ¢ [y] and substitute t~1[y] for x.)

Vy(y €5t yl € r Aplt yl] Adnly)) (6)

We say that a set comprehension term s is normalizable if the element term
of s is invertible for the variable of s. The form (6) is called the normal form
definition for s.

Range expressions For the sort S = {Z} of integer sets, Xg contains the
binary function symbol Range : Z x Z — S. A term Range(l,u) is called a
range expression with [ as its lower bound and w as its upper bound. We also
use the notation {l..u} for Range(l,u). The interpretation of a range expression
is the set of integers from its lower bound to its upper bound. 7g contains the
axiom (7) for range expressions, where it is assumed that 7z includes Pressburger
arithmetic.

Velu(z e {l.u} =l <zAz<u) (7)

Note that a formula ¢ € {I..u} simplifies to [ < tAt < u, and a formula t ¢ {l..u}
simplifies to [ >tV t > u. More generally, any formula that is a Boolean combi-
nation of range expressions and set operations can be simplified to linear equa-
tions. Similarly, range expressions that are used as sets and that do not depend
on bound variables (inside nested comprehesion terms) can also be eliminated
by introducing fresh constants and adding constraints corresponding to (7).
The theories for sets are assumed to contain definitions for all closed set
comprehension terms. When considering particular model programs below, the
signature X' is expanded with new application specific constants. However, for



technical reasons it is convenient to assume that all those constants are available
in X' a priori, so that the extension with set comprehension definitions is already
built into the theories.

Ezample 1. Let s be {m+x : x € {1..c}} where m and ¢ are application specific
integer constants. The term m + z is invertible for x; let 1,4, be true and let
(m + )t be y — m. The normal form definition for s is Vy(y € 3 < y —m €
{1..c}), which reduces to Vy(y € 5 > 1 <y—mAy—m <c).

Ezample 2. Let s be {z + x : © € {l..c}} where ¢ is an application specific
constant. The term x + z is invertible provided that 77 supports divisibility by
a constant; let (z 4+ 2)~! be y/2 and let ¢, ., be Divisible(y,2). The normal
form definition for s is Vy(y € 5 < y/2 € {1..c} A Divisible(y, 2)), or equivalently
Vyly €5 2 <yAy<2-cA Divisible(y,2)).

Arrays A class of model programs, e.g. those used typically in protocol speci-
fications, do not depend on the full background theory but only on a fragment
of it. The particular fragment of interest is when all map sorts have domain sort
Z and Tz is Pressburger arithmetic, with X7 including {+, —, <, =} and integer
numerals. In particular, multiplication is omitted. Multiplication by a numeral
is used as a convenient shorthand for repeated addition. In this case, the set
comprehension term in Example 1 is normalizable. This fragment is called array
theory [7] and has useful properties that are exploited below.

Note that it is possible to express divisibility constraints by for example intro-
ducing auxiliary variables and eliminating positive occurrences of Divisible(t, k)
by k- z = t, and negative occurrences by k-z+u =t A1 < u < k for fresh z and
u. One can even consider extending the array fragment to Biichi arithmetic [18].

2.2 Variables and values

We refer to the part of the global signature X' that only includes symbols
whose interpretation is fixed by the background theory 7 as Xstatic; includ-
ing for example arithmetic operations and numerals and set operations. We let
yvar — 37\ Xstatic denote the uninterpreted symbols. We let X¥*" and Xgatic
indicate the corresponding signatures restricted to the sort S. Note that XV?*
includes an unlimited supply of variables for all sorts, treated as uninterpreted
constants.

A ground term over X5%4¢ is called a value term. The interpretation of a value
term ¢ is uniform in all models of 7 and is denoted by [t], i.e., [t] = {s: s =1 t}.
As the universe of values we consider the set of all [¢] for value terms t.

2.3 Actions

There is an action sort A. The theory 7, axiomatizes a collection X'y of action
symbols as free constructors. For each action symbol f of arity n, the sort of f is
A if n = 0 and the sort of f is S; x --- x S,, — A otherwise, where each S; is a



sort distinct from A. In other words, actions cannot take actions as parameters.

A term t = f(x1,...,x,) where x; € 2§, for 1 <i < n, is called a signature
term for f.
An action is value term f(t1,...,t,) where f is an action symbol. We also

say action for [f(t1,...,t.)] = f([t1],-- -, [tn])

2.4 Update rules

As update rules we consider basic ASMs [15] enriched with 7. Thus, update
rules are built using: the empty update rule or skip; simple assignment of a
term to a state variable; conditional update rule; parallel update rule; update
rule with a local let-binding. As the concrete language in this paper we use the
corresponding fragment of AsmL [16].

2.5 Model program definition

Intuitively, a model program describes a transition system with a set of states
and transitions labeled by actions where the transition relation is induced by
the action rules of the model program.

Definition 1. A model program P is a tuple (Vp, Ap,Ip, Rp), where

— Vp is a finite subset of V2", called the state variables of P;
— Ap is a finite subset of Xy, called the action symbols of P;
— Ip is a formula over ystatic | 175 called the zmtzal state condztzon of P;
— Rp is a family {RL} jea, of action rules R}, = (FL, G4, UL), where

° FP is a signature term for f called the action signature term of Rj

. GjP is a formula called the guard or enabling condition ofR P

o U, p is an update rule called the update rule of Rf

It is required that all symbols that occur in RY, are in 234 U Vp U 2(FL).

Let P be a fixed model program. Let X(P) stand for Xstatic yVp. A P-state
is a first-order X (P)-structure that models 7. Given a P-state S, an extension
of S with parameters {z; — v; }1<i<n is denoted by (S;{x; — v;}1<i<n). Given
a first-order structure S, the reduction of S to a sub-signature X is denoted by
STX.

Definition 2. Let f € Ap, let S be a P-state and let f(x1,...,2,) = Flé. An
action f(t1,...,tn) is enabled in S if (S;{z; — [t:]}1<i<n) E G;.

We use the notion of firing of an update rule U in a state S [15], denoted

here by Fire(S,U), that yields the updated state.

Definition 3. Let S; be a P-state and let a = f(¢1,...,t,) be an action that
is enabled in S;. Let f(z1,...,2,) = F}; and let
Sy = Fire((S; {z: = [t:l}1<i<n), U}) | 2(P).

Then a causes a transition from Sy to Sz, or Ss is the result of executing a from
state 5.



A labeled transition system or LTS is a tuple (S,So, L, T), where S is a set
of states, Sg C S is a set of initial states, L is a set of labelsand T C S x L x S
is a transition relation.

Definition 4. Let P be a model program. The LTS of P, denoted by [P] is the
LTS (S, S0, L, T), where Sy is the set of all P-states s such that s |= Ip; L is the
set of all actions over Ap; T and S are the least sets such that: Sy C S, and if
s € S and a € L causes a transition from s to s’ then s’ € S and (s,a,s’) € T

A run of P is a sequence of transitions (s;, a;, Si+1)i<k in [P] where sg is an
initial state of [P]. A run may be empty.

2.6 Composition of model programs

Under composition, model programs synchronize their steps for the same action
symbols. The guards of the actions in the composition are the conjunctions of
the guards of the component model programs. The update rules are the parallel
compositions [15], denoted by ‘|’, of the update rules of the component model
programs. The formal definition is a simplification of the parallel composition of
model programs from [26].

In order to avoid parameter renaming, it is convenient to assume that action
rules that are composed, use fixed formal parameter names, i.e. the signature
term for each action symbol is fixed and can be omitted from the definition of
an action rule.

Definition 5. Let P and () be model programs such that A = Ap = Ag. The
composition P& Q is (Vp U Vg, A, Ip A g, (GH A GfQ, Ul | Ué)feA).

Composition can be used to do scenario oriented modeling [26]. In Section 5
we illustrate how composition can also be used to do scenario oriented analysis,
or assist the theorem prover with lemmas.

3 Bounded reachability of model programs

Let P be a model program and let ¢ be a X'(P)-formula. The main problem we
are addressing is whether ¢ is reachable in P within a given bound.

Definition 6. Given ¢ and k > 0, ¢ is reachable in P within k steps, if there
exists an initial state sop and a (possibly empty) run (s;, a;, Si+1)i<; in P, for
some | < k, such that s; = ¢. If so, the action sequence o = (a;);<; is called a
reachability trace for ¢ and sq is called an initial state for a.

Note that, given a trace o and an initial state sy for it, the state where the
condition is reached is reproducible by simply executing « starting from sg. This
provides a cheap mechanism to check if a trace produced by a solver is indeed
a witness. In a typical model program, the initial state is uniquely determined



by an initial assignment to state variables, so the initial state witness is not
relevant.

Note also that an important use of action parameters is to make all non-
determinism explicit, by providing a parameter and making a choice based on
that parameter using a conditional update rule. Therefore update rules consid-
ered here do not have the nondeterministic choose construct of nondeterministic

ASMs [15].

3.1 Step formula creation

The basic idea of generating a reachability formula for bounded model checking
and to use SAT to check this formula was introduced in [5]. Here we use a similar
translation scheme and apply it to model programs. Given a state variable or
action parameter z we use z[i] to denote a new variable or parameter for step
number . For step 0, we assume that z[0] is z, i.e. the original variable is used.

For a term ¢, t[i] produces a term by induction over the structure of terms
where all state variables and action parameters are given step number ¢. During
the translation all set comprehension terms are replaced by constants that define
them as described above. If a comprehension term is normalizable, the generated
definition has the form as shown in (6).

A translation from an update rule U to a step formula for step nr ¢, denoted by
Uli], is defined by induction over the structure of update rules. For an assignment
update rule ‘z :=t’, (x := t)[i] is the equality x[i + 1] = ¢[i]. If U is a conditional
update rule ‘if ¢ then Uy else Uy’ let X; C Vp be the state variables assigned
in Uy but not in Uy, for {j, k} = {1,2}. The translation of U[i] is

(il AT Awexy @i + 1] = afi]) V (=li] A Usli] Avex, i + 1] = x[il)

For a parallel update rule, (U || Uz)li] is U1[i] A Uzli].
Consider an action symbol f € Ap. Let X C Vp be the state variables not
assigned in f. The step formula for step ¢ generated for the action rule R'Jfg is:

RL[] = GLEAULEIA N ali+1] = fi]
reX
Intuitively this means that the updates can take place provided that the action
is enabled and all state variables not assigned by the action rule preserve their
old values.

There is a variable action[i] of sort A for each step nr i. Let skip = default,
be the action that “skips” a step. Let Skip[i] be the formula:

Skipli] =\ ali+1] = =i]
zeVp
Finally, the step formula P[i] for P is:

Pli] = (action]i] = skip A Skiplil) v \/ (actioni] = F{[i] A Rp]i])
feAp



The translation assumes that the signatures of all signature terms of all actions
are pairwise disjoint. In other words, each action uses unique parameter names
for its parameters.

3.2 Reachability

The bounded reachability formula for a given model program P, step bound k
and reachability condition ¢ is:

Reach(P,o,k) 2 IpA( N\ PI)AC oli) (8)
0<i<k 0<i<k

Recall from above, that during the creation of P[i] comprehension terms are
given explicit definitions and replaced by corresponding Skolem constants in P/[i],
thus the formula P[é] is quantifier free (provided that quantifiers are not used in
conditions of conditional update rules or in if-then-else terms). Recall also the
assumption that these definitions are part of 7g for the corresponding set sort
S. Introduce the function RemoveSkips which removes all the Skip actions from
the trace. We can state the following theorem that follows from the construction
of P[i] and the definition of a model program.

Theorem 1. Let P be a model program, k > 0 a step bound and ¢ a reachability
condition. Then Reach(P,p, k) is satisfiable if and only if ¢ is reachable in P
within k steps. Moreover, if M satisfies Reach(P, p, k), let Mo = M | X(P), let
a; = action[i]™ for 0 <i < k, and let a be the sequence RemoveSkips((a;)i<k)-
Then « is a reachability trace for ¢ and My is an initial state for a.

3.3 Array model programs and quantifier elimination

We consider here the fragment of 7 when 77z is Pressburger arithmetic and all
map sorts have domain sort Z. We call model programs that only depend on
this fragment of 7, array model programs. In the following lemma we refer to
the array property fragment introduced in [7]. An example of a model program
in this fragment is the Credits model program in Figure 1. The model program
is explained in detail in [27].

Lemma 1. Let P be an array model program and assume that all set compre-
hension definitions of P are normalizable and that P[i] is quantifier free. As-
sume also that Ip and @ are in the array property fragment. Let k > 0. Then
Reach(P, p, k) is in the array property fragment.

The following is a corollary of Lemma 1 and [7, Theorem 1], using the fact
that the only range sort theory besides 7z is 7 and thus this fragment of 7 is
decidable. We also refer to SAT 4 in [7, Definition 9].

Corollary 1. Let P and ¢ be as in Lemma 1. Then SATy is a decision proce-
dure for Reach(P,p, k).



var window as Set of Integer = {0}
var mazxld as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action]
Req(m as Integer, c as Integer)
require m € window and c > 0
requests := requests. Add(m, c)
window := window — {m}
[Action]
Res(m as Integer, ¢ as Integer)
require m € requests and requests(m) > c and ¢ > 0
//require requests.Size > 1 or window <> {} or ¢ >0 <-- bug
window := window + {mazld+i|i € {l..c}}
requests := requests. RemoveAt(m)
mazld := mazld+ c

[Invariant]

ClientHasEnoughCredits()
require requests = {->} implies window <> {}

Fig. 1. Credits model program. Specifies how a client and a server need to use message
ids, based on a sliding window protocol.

The decision procedure SAT 4 eliminates universal quantifiers by restricting
the universal quantification to a finite index set generated from the formula.
In our case the formula under consideration is ¥ = Reach(P, ¢, k). We assume
here that the set (comprehension) definitions are conjuncts of the respective step
formula.

Typically, a set comprehension uses a range expression, see e.g. the Credits
example in Figure 1, and the index set for this formula yields at least four indices
(the boundary cases for the range and its negation). The size of the index set
grows at least proportionally to k, because each step formula introduces new
indices, and thus the elimination process increases the size of the final quantifier
free formula at least quadratically.

In our elimination scheme, the index set used to eliminate quantifiers of
a given step formula, only originates from that step formula. For the set of
model programs we have encountered so far, this restricted elimination preserves
completeness of SAT 4 for satisfiability of ¥. While we do not yet have identified
a general class of model programs where this restriction remains complete, we
can use Z3 to lazily augment the constraints we generate by model-checking the
model returned by Z3. Section 4 explains the way we use Z3 lazily.

4 Implementation using Z3

73 [11,28] is a state of the art SMT solver. SMT generalizes Boolean satisfi-
ability (SAT) by adding equality reasoning, arithmetic, fixed-size bit-vectors,



arrays, quantifiers, and other useful first-order theories. Of particular relevance
to model-programs, Z3 exposes a theory of extensional arrays, which has a built-
in decision procedure. Thus, terms built up using the array constructs read and
write are automatically subjected to the axioms (1) and (2). Constant arrays
are also supported natively, such that axiom (3) can be obtained as a side-effect
of declaring a constant array const(default). Enumerations are translated into
integers, and for maps whose range consists of non-negative integers we assign
default to a negative number.

Boolean algebras, also known as sets, are implemented natively in Z3 as a
layer on top of the extensional array theory. Thus, adding and removing elements
from a set is obtained by using write, set membership uses read, and the empty
sets are the constant sets:

s =sU{x} < s = write(s, x, true)
s = s\ {x} « & = write(s, x, false)
x € s <> read(s, x)
() < const(false)

The set operations U, N, \ are encoded using a generalized write, which we will
call write-set. It has the semantics:

Vmm'm” x (read(write-set(m,m’,m"),z) =

Ite(read(m, x) = read(m’, x), read(m” , x), read(m’, x)),
such that the set operations can be encoded using:

sU s < write-set(const(false), s, s')
sN s < write-set(const(true), s, s')

s\ 8" < write-set(s’, const(false), s)

Z3 hides these encodings, such that expressions involving sets can be formulated
directly using the usual set operations.

Map comprehensions, on the other hand, are not supported over Z3’s API. As
explained before, we are therefore using a reduction in the style of [7] in order to
handle comprehensions. Our reduction, however, remains hybrid in two respects.
First, our reduction does not require eliminating write, which would be necessary
to follow the approach in [7] literally, instead we use the built-in support for
extensional array constructs, together with write-set. Second, we are using the
APT of Z3 to supply an incremental decision procedure for comprehensions. We
will explain how this is achieved in the following.

73’s API exposes the method AssertCnstr - to assert a logical formula,
and the method CheckAndGetModel - to check for satisfiability of the asserted
constraints and return a model if the constraints are satisfiable, Push, Pop -
to create logical contexts using a stack discipline. The life-time of an asserted
formula follows the scoping indicated by Push/Pop. We use these facilities to



implement theory specific extensions on top of Z3. Our implementation intro-
duces axioms based on a potential partial index set explained in Section 3.3.
These axioms are asserted to Z3 together with the input path constraint. Mod-
els returned by CheckAndGetModel are checked according to the semantics of
the set comprehensions. If the current model can be extended to a model sat-
isfying the comprehensions we are done, if not, additional assertions are added
to the current scope, and the updated logical context is re-checked. The model-
checking loop furthermore ensures that our reduction that retains write and
write-set constructors in the input does not miss checking array indices that
are introduced during Z3’s search. For example, Z3 internally introduces Skolem
constants for array disequalities. These constants should for completeness be
counted into the index set in the SAT 4 reduction, these indices are extracted
lazily during model checking. Figure 2 illustrates a model refinement loop around
Z3 (using the NET managed APT calls with F#). The model refinement loop
is iterated with additional assertions as long as Z3 returns a satisfying model
which does not satisfy the model _check (not shown here) test on the set of ex-
tracted indices. The function model_check uses another API exposed by Z3
to evaluate terms in the context of a model M. To describe the function-
ality of model_check by example, when encountering a subterm of the form
Range(l,u) of a formula ¢, we call the evaluation function with the two for-
mulas ¢ € Range(l,u) and | < i Ai < u for every ¢ in the supplied index set.
If their evaluations disagree on a given index ¢ (one version evaluates to true,
the other to false), we add the axiom i € Range(l,u) < (I < iANi < u).
Note that Z3 supports quantifiers and therefore allows to add axioms such as
Vi, l,u{i € Range(l,u)} i € Range(l,u) < (I < iAi < u), where {i € Range(l,u)}
is a pattern. However, relying on such axioms is incomplete as they are only ex-
panded if search explicitly builds a subterm that matches the pattern.

In the context of checking model-based programs we have an alternative way
of checking and refining models produced by the SMT solver, Z3. We simply run
the model program on the trace returned by the SMT solver. If the run deviates
from the model by violating comprehensions on certain indices, we may augment
the path constraint by the corresponding index constraints.

5 Experiments

As the concrete input language of model programs we use a subset of AsmL [4]
that captures the fragment of ASMs described in Section 2. Model programs
have the same meaning as in the Spec Explorer tool [25] or in NModel [23]. The
difference is that here the analysis is done symbolically using a theorem prover,
rather than using explicit state exploration through execution. An action rule
is given by a method definition annotated with the [Action] attribute, with
the method name being the action symbol and the method signature providing
the signature term for the action. The conjunction of all the require-statements
defines the precondition. The main body of the method defines the update rule,
where parallel update is the default in AsmlL.



let check formula =
z3.Push();
z3.AssertCnstr formula;
let indices = get_indices formula in
let m = ref (null : Model) in
let rec refine_model() =
if Im <> null then
(('m).Dispose(); m := null);
if LBool.True = z3.CheckAndGetModel(m) then
match model_check (Im) indices formula with
| None -> O
| Some violated_comprehension ->
z3.AssertCnstr violated_comprehension;
refine_model()
in
refine_model();
z3.Pop();
if Im <> null then Some (!m) else None

Fig. 2. Model refinement loop with Z3.

The Credits model program in Figure 1 illustrates a typical usage of model-
programs as protocol-specifications. The actions use parameters, maps and sets
are used as state variables and a comprehension expression is used to compute
a set. Here the reachability condition is the negated invariant. One of the pre-
conditions is missing (indicated by bug). There is a two-action trace leading to a
state where the invariant is violated due to this. Asking Z3 with a bound of 2 or
more steps (in an incremental mode) produces that trace Req(0,1) ,Res(0,0)
in 21ms.

We are also investigating this analysis technique in the context of some em-
bedded real time scheduling problems [19]. In some cases, in particular if the
formula is not satisfiable, the solver may stall while trying to exhaust the search
space. In this case it may be useful to apply composition to constrain the search
space. This is reminiscent to adding user defined lemmas to the theorem prover.
A typical example would be the use of a model program that fixes the order
of some actions relative to some other actions, tantamount to user controlled
partial order reduction. The Count example in Figure 3 is a distilled version
of the counting aspect of the partiture model from [19]. There are a number of
indexed counters that can be decremented. Each index corresponds to an atomic
part of a schedule (called a bar) and the count for that bar specifies the total
number of times that this bar can be executed. Suppose that there are two
bars, 0 and 1, the initial count for both bars is some value n, and that we are
interested in finding a sequence of actions that exhausts all the counters, i.e.
the reachability condition ¢ is ‘counter is the empty map’. If the step bound &
is smaller than 2n then Reach(Count(n), ¢, k) is clearly unsatisfiable. The size
of the search space of the theorem prover grows exponentially in %k in this case



var counter as Map of Integer to Integer = {0->n,1->n}
[Action]
Execute(bar as Integer)
require bar € counter
if counter(bar) =1
counter := RemoveAt(counter, bar)
else
counter(bar) := counter(bar) — 1

Fig. 3. Count(n) model program.

var current as Integer

[Action]

Execute(bar as Integer)
require current < bar
current := bar

Fig. 4. Model program Order. It imposes a linear order on the execution of bars where
execution of bar ¢ has to precede execution of bar j if i < j. For example, if the bars
are a, b and ¢, where a < b < ¢, this model program essentially defines the regular
expression Execute(a)*Execute(b) Execute(c)”.

(see Table 1). In this simplified example we can use the knowledge that the order
of decrementing the different counters is irrelevant and fix such an order using
another model program Order shown in Figure 4.

6 Related and future work

The unrolling of transition systems into SAT was introduced in [5] and the
extension to SMT was introduced in [2] that also compares the SMT approach
to other related program verification work. SMT solvers that support arrays are
described in [3, 24].

Our formula encoding into SMT [28,11,9,10] follows the same scheme but
does not unwind comprehensions and makes the action label explicit. The ex-
plicit use of the action label is needed to compose model programs [26]. The
composition by using actions and identifying an action signature is somewhat
different from composition of modules through shared state variables as in SAL
2 [12], although it can be encoded by introducing a special shared action vari-
able. However, in this case special projection functions need to be used in the
semantics to eliminate the action, because in a labeled transition system the
action label is not part of the state, i.e. the same target state can be reached
through distinct actions. Compositional modeling and verification of physical
layer protocols involving real time is done in [8] using SAL 2.

Our quantifier elimination scheme builds on [7], but refines it by using model-
checking to implement an efficient incremental saturation procedure on top of
the SMT solver of our choice. A recent application of the quantifier elimination



Table 1. Running times of the bounded reachability checking of the Count example
in Z3 for different values of the counting limit n and step bound k.

|M0del program|Step bound|Verdict|Time (in seconds)|

Count(5) 10 Sat 0.14
Count(5) @& Order|10 Sat 0.14
Count(5) 9 Unsat |1.5

Count(5) @ Order|9 Unsat [0.16
Count(8) 16 Sat 2.2

Count(8) & Order |16 Sat 1.4

Count(8) 15 Unsat [152
Count(8) @ Order|15 Unsat |1

scheme has been pursued by [21] in the context of railway control systems. Several
areas have been left for future work. In particular model-programs use data
structures that we are not yet handling with the SMT solver. For instance, a
proper encoding of bags (multi-sets) has been left to future work. The class of
array model programs is too restrictive for analysis of more general algorithms,
see e.g. [17].
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