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This is a extended version of a shorter paper of the same title. It differs from the short paper in the following regard.

The short version of the paper includes a section 6.2 in which we show how to encode information flow controls while accounting for
leaks through side effects. We indicated that in order to support this encoding, mild extensions (in the form of parameterized monads) to the
core type system described in earlier sections of the paper would be necessary. We have since realized that these extensions while feasible,
are not as straightforward as we thought.

This version of the paper includes a reworked section 6.2. We now present an information flow encoding, suitable for use with pure
programs, that can be handled by our current system with no extensions at all.

In Appendix A, we discuss the encoding of information flow with side effects in detail. We consider encodings in terms of parameterized
monads, and sketch the shape of an extension to the core system to handle these parameterized monads.

Appendix B (also not present in the short paper, for space reasons) formalizes the soundness of the parameterized-monad information
flow encoding via a translation to MLIF, the core language of FlowCaml. This result establishes that our information flow encoding correctly
enforces a noninterference property for programs that include side effects.



Abstract

Many useful programming constructions can be expressed as mon-
ads. Examples include probabilistic computations, time-varying ex-
pressions, parsers, and information flow tracking, not to mention
effectful features like state and I/O. In this paper, we present a
type-based rewriting algorithm to make programming with arbi-
trary monads as easy as using ML’s built-in support for state and
I/0. Developers write programs using monadic values of type m 7
as if they were of type 7, and our algorithm inserts the necessary
binds, units, and monad-to-monad morphisms so that the program
typechecks. Our algorithm is based on Jones’ qualified types and
enjoys three useful properties: (1) principal types, i.e., the rewrit-
ing we perform is the most general; (2) coherence, i.e., thanks to the
monad and morphism laws, all instances of the principal rewriting
have the same semantics; (3) decidability; i.e., the solver for gen-
erated constraints will always terminate. Throughout the paper we
present simple examples from the domains listed above. Our most
complete example, which illustrates the expressive power of our
system, proves that ML programs rewritten by our algorithm to use
the information flow monad are equivalent to programs in Flow-
Caml, a domain-specific information flow tracking language.

1. Introduction

The research literature abounds with interesting programming con-
structions that can be expressed as monads. Examples include
parsers [10], probabilistic computations [21], functional reactiv-
ity [7, 3], and information flow tracking [22]. In a monadic type
system, if values are given type 7 then computations are given type
m 7 for some monad constructor m. For example, an expression of
type 1O 7 in Haskell represents a computation that will produce a
value of type 7 but may perform effectful operations in the process.
Haskell’s Monad type class is blessed with special syntax, the do
notation, for programming with instances of this class.

Moggi [19], Filinksi [8], and others have noted that ML pro-
grams, which are impure and observe a deterministic, call-by-value
evaluation order, are inherently monadic. For example, the value
(fun x-> e) can be viewed as having type 7 — m 7': the argu-
ment type 7 is never monadic because x is always bound to a value
in e, whereas the return type is monadic because the function, when
applied, produces a computation. As such, call-by-value applica-
tion and let-binding essentially employ monadic sequencing, but
the monad constructor m and the bind and unit combinators for
sequencing are implicit rather than explicit. In essence, the explicit
10 monad in Haskell is an implicit [d monad in ML.

While programming with I/O in ML is lightweight, program-
ming with other monads is not. For example, suppose we are in-
terested in programming behaviors, which are computations whose
value varies with time, as in functional reactive programs [7, 3].
Behaviors can be implemented as a monad: expressions of type
Beh « represent values of type « that change over time, and bindp
and unitp are its monadic operations:

Monad(Beh, bindb, unitb)
bindb : Va, 8.Beh o — (v — Beh 3) — Beh 8
unitb : Va.ao — Beh «

As a primitive, function seconds has type unit — Beh float,
its result representing the current time in seconds since the epoch.
An ML program using Beh effectively has two monads: the Id
monad, which applies to normal ML computations, and the user-
defined monad Beh. The former is handled primitively but the latter
requires the programmer to explicitly use bind, unit, function
composition, etc. Instead we would prefer to overload the existing
syntax, e.g., to write the following (call it Q)

let y = is_even (seconds()) in

if y then 1 else 2

The type of this entire expression is Beh int: it is time-varying,
oscillating between values 1 and 2 every second. Using monad
operations directly, we might write

bindb (bindb (seconds()) (fun s-> unitb (is_even s)))

(fun y-> unitb (if y then 1 else 2))

We can see that the programs are structurally related, with a bind
corresponding to each let and application, and unit applied to the
bound and final expressions.

Filinski [8] showed that individual monads could be encoded
using continuations and with this encoding programmers could
write () directly. However, we find his treatment unsatisfactory for
two reasons. First, some of the monadic type structure is hidden,
making programs harder to reason about; e.g., the type of seconds
in his system would be unit — int, not unit — Beh int. Second,
his encoding combines monads implicitly rather than explicitly. We
would prefer that programmers specify how monads ought to be
combined by writing morphisms to lift one monad into another.
For example, suppose that in addition to time-varying expressions
like seconds () we allowed time-varying probability distributions
expressed as a monad BehPrb o (we show an example of this in
the next section). Writing a morphism from the first monad to the
second, i.e., from a time-varying value to a time-varying probability
distribution, ensures there is no mismatch with the representation.

This paper presents a type-based rewriting algorithm that takes
an ML program and automatically translates the implicit use of
monads into explicit uses, inserting binds, units, and morphisms
where needed. Our algorithm does this in conjunction with poly-
morphic type inference, following an approach similar to Jones’
qualified type inference [11]. We interpret ML types according to
the intuition given above: we never have monadic types in negative
positions, and moreover we never apply type constructors (includ-
ing monad constructors) to monadic types, to ensure constructed
types always classify values. We use the syntactic structure of the
program to identify where binds, units, and morphisms may appear.
Type inference introduces a fresh variable for the monad being used
at these various points, and in solving for these variables our algo-
rithm produces principal types; i.e., it finds the most general solu-
tion. Moreover, we show that our solution is coherent: when more
than one rewriting is possible, each is behaviorally equivalent to the
rewriting we actually produce.

Interestingly, while our algorithm bears close resemblance to
Haskell’s algorithm for type class inference (which follows that
of Jones’ OML [11]), our setting confers some useful advantages.
For example, in Haskell one could define morphisms as instances
of a Morphism type class and then rely on inference to insert
them as necessary. However, the standard algorithm would reject
many useful programs as potentially ambiguous. By contrast, our
algorithm knows when constraints arise from morphisms, and can
exploit morphism laws to find more solutions it knows will be
coherent, while still ensuring decidability—in fact, we prove our
constraint solving algorithm completes in linear time.

We have implemented our inference algorithm for a core func-
tional language. We demonstrate its utility by applying it to exam-
ple programs that use monads implementing behaviors, probabilis-
tic computations, and parsers (cited above). We also develop an
example using a family of monads for tracking information flows
of high- and low-security data [6, 22, 16, 4]. We prove that our
rewriting algorithm produces programs accepted by FlowCaml, a
dialect of ML that performs information flow tracking [20], and
thereby show that rewritten programs enjoy the security property
of noninterference [5, 9]. As these examples show, our system can
be viewed as an extension to ML in which programmers can easily
define domain-specific languages using monadic encodings with-



out suffering syntactic overhead. Moreover, they can reason easily
about the semantics of the DSL since rewritings are coherent.

This paper is organized as follows. Section 2 presents an
overview of our approach using several examples. Section 3
presents a declarative and syntactic formulation of our type system.
Section 4 shows that our system can be translated into OML, and
versa, and thereby is sound and has principal types. As OML’s type
inference algorithm is unsatisfactory, we develop our own algo-
rithm in Section 5 and prove that it runs in linear time and produces
coherent solutions. Section 6 develops further examples, including
our information flow monad example. We end with a discussion of
related work (Section 7) and conclude (Section 8).

2. Overview

This section presents an overview of approach through the devel-
opment of a few examples.

Probability monad example Let us illustrate our idea on an ex-
ample using the probability monad [21]. Expressions of type Prb «
describe distributions over values of type o, with bindp and unitp
as its bind and unit combinators, respectively:

Monad(Prb, bindp, unitp)

As mentioned earlier, the pure ML computations may be seen as
a monad Id whose unit operator is the identity function, and bind
is the reverse application (in the examples we may directly apply
them to simplify the notation).

The probability monad can be used to define probabilistic mod-
els. The following program P is an example of model code we
would like to write

let rain = flip .5 in

let sprinkler = flip .3 in

let chance = flip .9 in

let grass_wet = (rain || sprinkler) && chance in
let £ = fail () in

if grass_wet then rain else f

This program uses two functions it does not define:

flip : float — Prb bool
fail : Va.unit — Prba

The first introduces distributions: £1ip(p) is a distribution where
true has probability p and false has probability 1 — p. The
second, fail, represents impossibility.

The first four lines of P define four random variables: rain
is true when it is raining; sprinkler is true when the sprinkler
is running; chance is explained below; and grass_is_wet is true
when the grass is wet. The probability distribution for the last is
dependent on the distributions of the first two: the grass is wet if
either it is raining or the sprinkler is running, with an additional
bit of uncertainty due to chance: e.g., even with precipitation,
grass under a tree might be dry. The last line of P implements a
conditional distribution; i.e., the probability that it is raining given
that the grass is wet. Mathematically, this would be represented
with notation Pr(rain | grass_is_wet).

Unfortunately, in ML we cannot write the above code directly
because it is not type correct. For example, the expression rain
|| sprinkler applies the || function, which has type bool —
bool — bool, to rain and sprinkler, which each have type
Beh bool. Fortunately, our system will automatically rewrite P to
the following type-correct code:!

bindp (flip .5) (fun rain->

! Some trivial simplifications have been made for readability.

bindp (flip .3) (fun sprinkler->

bindp (flip .9) (fun chance->

bindp (unitp ((rain || sprinkler) && chance))
(fun grass_is_wet->

bindp (fail ()) (fun £->

unitp (if grass_is_wet then rain else £))))))

Notice that roughly each let is replaced by a bindp and each
let-bound expression that is not already monadic is wrapped with
unitp.

Time-varying probability monad example Now suppose we wish
to program with both behaviors (see Section 1) and probabilities.
Perhaps we would like the probability of rain to change with time,
e.g., according to the seasons. Then we can modify P (call it P’)
so that the argument to the flip is a function rainprb of type
unit — Beh float:

let rain = flip (rainprb ()) in ...

Again, this program fragment is ill-typed, because £1ip expects a
float but we have passed it a Beh float. If our rewriting system is
to be applied, what should be the type of rain? One might expect
it to be Beh (Prb bool), since it is a time-varying distribution.
However, this would not correspond to the monadic structure of the
source program—only one monad can unambiguously characterize
the effects of a computation (essentially for the same reason that
types such as list (m «) would be problematic). Therefore, we
require that monad types only appear in positive positions, and
may not be the type argument of other monad types. As such the
programmer must construct a combined monad, BehPrb, along
with morphisms from the individual monads into the combined one,
to ensure that the overall program’s semantics makes sense. There
are several standard techniques for combining monads [13]; here,
we can combine them by tupling, with the obvious morphisms:

Monad(BehPrb, bindbp, unitbp)
p2bp : Prb > BehPrb
b2bp : Beh > BehPrb

In general, a morphism f1,2 : m1 > ma2 has the type Va.m; o —
mz o and is expected to satisfy the morphism laws, namely:

fi1,2 0 unity = unito
f172 (bind1 e1 ez) = bindg (f172 61) (fl}g o eg)
fezo fiz=fis

With this additional information, our system rewrites P’ as follows:

bindpb (bindpb (b2bp (rainprb ()))
(fun vi-> p2bp (flip v1))) (fun rain->
p2bp (bindp (flip .3) (fun sprinkler->

where ... is identical to the corresponding part of the rewrit-
ing for P, and the final type is BehPrb bool. Here, the result
of rainprb() is lifted into BehPrb float and then bound to the
current value v1, which is passed to £1ip to generate a distribu-
tion. This value is in turn lifted into BehPrb bool and bound to
boolean rain for the rest of the computation, whose result, of type
Prb bool, is lifted into BehPrb bool by application of p2bp.

Properties of the rewriting Importantly, our algorithm infers
principal types, i.e. most general types. Any of the types accepted
by the declarative rules can be converted to the principal type.

As already mentioned, restricting the form and position of
monadic types keeps constraint solving during inference tractable;
our solving procedure chooses least upper bounds of relevant mor-
phisms and runs in linear time. A solution of constraints allows
us to instantiate the monadic operators and the morphisms in the
elaborated term.



types T =«
| TT1...Tn (n > 0 is the arity of T')
| T1 — T T2

monadic types m = u| M

type variables v = alup

constraints II = Ti,...,Tn

constraint T = mi>me

type schemes o = VYoll=171

environment I' == -|T,co|Tl,z0

values v = z|c]|Aze

expressions e = wv|eiex|letz=erines

Figure 1. The grammar of types, constraints, environments, and
expressions

mi > meo €11

M= mem Ty — - (M-Hyp)
1 2
DEmi>me IEmM2>ms (M-Trans)
IT ': mi1 > ms }

InIm I 7,
IIFE7, ..., m

(M-Many)

Figure 2. The constraint entailment relation.

Last but not least, our algorithm enjoys coherence: any two
rewritings of the same program are semantically equivalent. Said
otherwise, choosing a particular solution does not affect the mean-
ing of the program. We eliminate one source of ambiguity by al-
lowing at most one morphism for each pair of monads. Then, we
take advantage of the monadic laws to convert different rewritings.
For instance, the constraints of the type inferred for the last exam-
ple admit other valid solutions. One of them directly lifts all the let
bindings to the BehPrb monad:

bindbp (bindbp (b2bp (rainprb ()))
(fun v1i-> p2bp (flip v1))) (fun rain->
bindbp (p2bp (flip .3)) (fun sprinkler->
bindbp (p2bp (flip .9)) (fun chance->
bindbp (unitbp ((rain || sprinkler) && chance))
(fun grass_is_wet->
bindpb (fail ()) (fun f->
unitpb (if_ grass_is_wet then rain else £))))))

Using the morphism laws, we can show that the two rewritings are
equivalent. However we argue that the first rewriting, produced by
our algorithm, is more precise than this one; intuitively it applies
morphisms “as late as possible” and uses the “simplest” monad as
long as possible.

3. Qualified types for monadic programs

This section describes the formal type rules of our system. Figure 1
gives the grammar of types, constraints, environments, and expres-
sions. Monotypes 7 consist of type variables «, full applied type
constructors 7' 7y ... T, and function types 71 — m T2. In partic-
ular, function arrows can be seen as taking three arguments where
the m is the monadic type. We could use a kind system to distin-

p=m7 0 = [p/7]
7 =0 0o & ftv(Vin.m1 = 1)
IIEVYo,. 7 =7 > Vie. T = 01

(Inst)

Figure 3. The generic instance relation over type schemes.

guish monadic types from regular types, but for simplicity we dis-
tinguish them using different syntactic categories. Monadic types
m are either monad constants M or monadic type variables p.

Since types can be polymorphic over the actual monad (which is
essential to principal types) we also have monadic constraints 7 of
the form m1 >m2, which states that a monad m can be lifted to the
monad myz. Type schemes are the usual qualified types [11] where
we can quantify over both regular and monadic type variables.

In the expression language, we distinguish between syntactic
value expressions v, and regular expressions e. This is in order to
impose the value restriction of ML where we can only generalize
over let-bound values.

Figure 2 describes the structural rules of constraint entailment,
where I |= 7 states that the constraints in II entail the constraint
7. The entailment relation is monotone (where II' C TI implies
II = IT'), transitive, and closed under substitution. We also require
that morphisms between the monads form a semi-lattice. This re-
quirement is not essential for type inference but as shown in Sec-
tion 5 it is necessary for a coherent evidence translation.

Using entailment, we define the generic instance relation II
o1 > o2 in Figure 3. This is just the regular instance definition
on type schemes where entailment is used over the constraints. In
the common case where one instantiates to a monotype, the rule
simplifies to:

p=m7 0=lpp Upon
II-Yo. 7 =71 > 601

(Inst-Mono)

3.1 Declarative type rules

Figure 4 describes the basic type rules of our system; we discuss
rewriting in the next subsection. The rules come in two forms: the
rule IT|T' F v : o states that value expression v is well typed with
a type o, while the rule IT|I" I e : m 7 states that expression e is
well-typed with a monadic type m 7; in both cases assuming the
constraints II and type environment I'. The rule (TI-Id) allows one
to lift a regular type 7 into a monadic type Id 7.

The rules for variables, constants, let-bound values, instantia-
tion, and generalization are all standard. The rule for lambda ex-
pressions (TI-Lam) takes a monadic type in the premise to get well-
formed function types. An expression like A\z.x therefore gets type
a — |d a where the result is in the identity monad.

The application rule (TI-App) and let-rule (TI-Do) lift into an
arbitrary result monad. The constraint Vi. IT = m; > m ensures
that all the monads in the premise can be lifted to a common
monad m, which allows a type-directed evidence translation to the
underlying monadic program.

3.2 Type directed monadic translation

As described in the previous section, we rewrite a source program
while performing type inference, inserting binds, units, and mor-
phisms as needed. This translation can be elegantly described us-
ing a type directed evidence translation [11]. Since this is entirely
standard, we elide the full rules, and only sketch how this is done.
In Section 5 we do show the evidence translation for the type infer-
ence algorithm W since it is needed to show coherence.

Our elaborated target language is System F where we leave out
type parameters for simplicity (since those can be inferred). For the
declarative rules, we can define a judgment like IT |[T'F e : m 7~



’H|Fl—v:a H|F|—e:m7‘ INz)=o0 (c)=0 I,z kFe:mm
————— (TI-Var) (TI-Const) (TI-Lam)
'z : o IIre IITFAze: 71 = mme
nmf-wv:r nirtv:c HOFox=T IL7|Thov:7 »¢&ftv(T, 1)
— (TI-1d) (TI-Inst) — (TI-Gen)
Irkov:ldr nmr-v:r Orrov:vVo.n=r1
IIlker:my (e > m37) I|TFex:moame VillEm;>m
(TI-App)
IM'keirex:mT
NI'rv:oc II|Tzioke:mT nIi'Fey:mimn T,z bes:mere VillEm;>m
(TI-Let) (TI-Do)

IICkletz=vine:mT

Dk letz=eiines :m 72

Figure 4. The basic declarative type rules

e which proves that source term e is given monadic type m 7 and
elaborated to the well-typed output term e. Similarly, the entailment
relation IT |= m1 > mga ~ f returns a morphism witness f with
type Va.. mi o« — ma a.

As an example, consider the (TI-App) rule. We would get evi-
dence terms for e; and ez as e; and e, respectively, and we would
get a morphism witness for each constraint m; > m as f;. The ap-
plication e; ez is now translated into the target language as:

bindm (f1 61) ()\X:(Tg — ms3 T). bindm (f2 62) ()\y:TQ. f3 (X y)))

The bind,, evidence comes from an implicit Monad m constraint
that is always satisfied (since it originates from morphism con-
straints) and therefore it is not present in the type rules. Also note
that most of the time the morphisms will be the identity function
and the binding operations will be in the Id monad which can all
be optimized away. An optimizer can make further use of the mor-
phism laws to aggressively simplify the target terms.

3.3 Compatibility with ML

Figure 4 is backwards compatible with the ML type system: it
accepts any program that is accepted by the standard Hindley-
Milner typing rules extended with the value restriction — we write
an ML derivation as I' iy, e : 7. To compare the derivations in
both systems, we need to translate regular ML function types to
monadic function types, and we define (1) as:

(@) =«
(T71eomn) =T{11) ... (Tn)
<T1 — T2> = <7‘1> — Id <7‘2>

We can state compatibility with ML formally as:

Theorem 1 (Compatibility with ML). For any well-typed ML non-
value expression e such that I' by e : 7, we also have a valid
monadic derivation in the |d monad of the form O [T + e : Id (7).
For any well-typed value v where I" -y v : T, we have a monadic
derivation of the form O |T b v : (7).

The proof is by straightforward induction over typing deriva-
tions. We observe that for a standard ML program, we only need
the Id monad which means we can always reason under an empty
constraint set (). Assuming empty constraints, the instance relation
and generalization rule coincide exactly with the Hindley-Milner
rules. The other rules now also correspond directly. We show the
case for the App rule as an example. By the induction hypothe-
sis, we can assume the premise @ |T' - e; : Id (72 — 7) and the
premise |’ ez : Id (72). The first premise is equivalent to
O|T F eq :Id ({r2) — Id () by definition. Using the tautology
rule of entailment, we can also conclude that @ = Id > Id and there-

OTke:mr OEm>mM
OTke:m' 7

(TL-Lift)

Figure 5. The type rules extended with a lifting rule.

fore we can apply rule (TI-App) to derive § |T" - e1 ez : Id (7)
which is the desired result.

3.4 Extension with lifting

Unfortunately, the basic type rules are fragile with respect to 7-
expansion. For example, consider the following functions:

id = \z.x

iapp : (int — Beh int) — Beh int
iapp = Af.f 1

The basic rules infer the type of ¢d to be Va.. @ — Id o (we assume
the type of tapp is given). With these types both the applications
tapp id and iapp (Ax.x) are rejected because id and Az.z have
the type @ — |d o where the monadic type Id doesn’t match the
expected monad Beh.

However, we can lift the monadic result type by using n-
expansion and introducing an application node, e.g. the n-expanded
expression iapp (Az.id x) is accepted since the application rule
allows one to lift the result monad to the required Beh monad.
Since the monadic types only occur on arrows, the programmer
can always use a combination of applications and n-expansions to
lift a monadic type anywhere in a type.

Fortunately, such manual n-expansion is rarely required — only
when combining higher-order functions where automatic lifting
is expected on the result type. The inferred types in the basic
system are also often general enough to avoid need of it. For
example, without annotation, the inferred principal type for tapp
is Vauipz. (1 > p2) = (int — p1 o) — pe o where all the
given applications are accepted as is without need for n-expansion.

It is possible though to make the type rules more robust under n-
expansion, where we extend the basic system with a general lifting
rule (TI-Lift) given in Figure 5 which allows arbitrary lifting of
monadic expressions. For example, the id function in this system
has the inferred type Vau. o — p . Using this new type, all
the applications iapp id, iapp (Az.x), and iapp (Az.id z) are
accepted. The good news is that extending the system with (TI-Lift)
is benign: we can still do full type inference and constraint solving
as shown in later sections. The bad news is that some inferred types
get slightly more complicated. At the moment our implementation
uses the simpler strategy.

(* given *)



’H|F|_*’UZT H\FI—‘e:mT‘ I(z)=o0c

ME=o>T

INe)=0c NEo>2T

nre*z:r

nr-wv:r

(TS-1d)

H|F|—. €1 :mq (T—>m3’7'/)

(TS-Var)

TS-Const
't c: 7 (T5-Consy

M ex:mo7m VillEm;>m

Mk v:ldr

T,z F*e:m e

MT+*erex:m7’

rH v

(TS-App)

o=Gen(I',I' = 7') M| ziokte:mT

" (TS-Lam)
ITE Are:mm —>mm

e1rZv I|TF e :min

T,z F° ezt ma T2

. . (TS-Let)
T letz=vine:mr

VZH):’ITL@DW

(TS-Do)

IITF*letz=e1ines :m 7o

Figure 6. The syntax-directed type rules. The generalization function is defined as: Gen(T", o) = V(ftv(o) \ ftv(I")).o .

OTke:r MET>T
; (TI-Subsume)
Ifke:r
NE@M>bn D> IEmb>m

/ YR (S-Fun)
N >mmn>n —>m n

IT = 7> 7 (S-Taut)

Figure 7. The type rules extended with a subsumption rule that
allows structural morphisms between monadic types.

Or+ov:r
Inir+-*v:mr

(TS-Lift)

Figure 8. The syntax directed type rules extended with a lifting
rule which replaces the rule (TS-1d).

3.5 Syntax-directed type inference

Figure 6 presents a syntax directed version of the declarative type
rules. The rules come in two flavors, one for value expressions
II|T F* v : 7, and one for regular expressions IT |[T" +* e : m 7.
Since each flavor has a unique rule for each syntactical expression,
the shape of the derivation tree is uniquely determined by the
expression syntax. Just like the Hindley-Milner syntax directed
rules, all instantiations occur at variable and constant introduction,
while generalization is only applied at let-bound value expressions.

We can show that the syntax directed rules are sound and com-
plete with respect to the declarative rules.

Theorem 2 (The syntax directed rules are sound and complete).
Soundness: For any derivation IL|T" F* v : 7 there exists a
derivation I1|T" & v : 7, and similarly, for any I1|T +* e : m 7
we have II|T' Fe:m 7.

Completeness: For any derivation on a value expression I1|T' +
v : o there exists a derivation I |T +* v : 7, such that T + (TII' |
7) = (I | o). Similarly, for any derivation IL|T" F e : m T,
there exists a derivation II' [T +=* e : m’ 7', such that T + (IT' |
m' ) > (| m7).

Both directions are proved by induction on the derivations. Follow-
ing Jones [11], we use an extension of the instance relation in order
to define an ordering of polymorphic types schemes and monadic

types under some constraint set. We can define this formally as:
o1 =Vo.7 =71 Il F Gen(T,Vu.(II1,T) = 7) > 02
L' (I [o1) 2 (I | 02)

a, = ftv(ma, 7, )\ ftv(l) 0 = [m/ix, 7/@]
11, }Z 0114 I, 'I Omy > mo 0r =7
'k (H1 |’ITL1 7‘1) = (H2 ‘ ma TQ)

Besides extending the instance relation to monadic types, the def-
inition of this qualified instance relation allows us specifically to
relate derivations in the declarative system that can end in a type
scheme o, to derivations in the syntax directed system that always
end in a monotype.

Finally, the syntax directed rules for the declarative type rules
extended with the rule (TI-Lift) can be obtained by replacing the
rule (TS-Id) with the rule (TS-Lift) given in Figure 8. This extended
system is also sound and complete with respect to the extended
declarative rules.

4. Principal types

The standard next step in the development would be to define an
algorithmic formulation of the system (including a rewriting to out-
put terms) and then prove that the algorithm is sound and complete
with respect to the syntactical rules, thereby establishing the prin-
cipal types property. Interestingly, we can do this by translation. In
particular, we can show that the syntactical rules in Figure 6 di-
rectly correspond to the syntactical rules of OML in the theory of
qualified types [11]. In the next subsection we prove that for every
derivation on an expression e in our syntactical system, there ex-
ists an equivalent derivation of an encoded term [e] in OML [11]
and the other way around. Since OML has a sound and complete
type reconstruction algorithm, we could choose to reuse that as is,
and thereby get sound and complete type inference (and as a con-
sequence there exist principal derivations).

Unfortunately, the OML type reconstruction algorithm (essen-
tially the Haskell type class inference algorithm) is not satisfactory,
as it would reject many useful programs. Intuitively, this is because
it conservatively rejects solutions to constraints that are reasonable
in light of the morphism laws; since it is unaware of these laws it
cannot take advantage of them. The next section develops an algo-
rithm that, while still enjoying principal types, takes advantage of
the morphism laws to be both permissive and coherent.

4.1 Translation to OML

The translation between our system and OML is possible since we
use the same instance and generalization relation as in the theory
of qualified types. Moreover, it is easy to verify that our entailment



relation over morphism constraints satisfies all the requirements
of the theory, namely monotonicity, transitivity, and closure under
substitution. The more difficult part is to find a direct encoding to
OML terms. First, we are going to assume some primitive terms in
OML that correspond to derivations in our syntactical system:

lift :Va.a—Ida

do  :VaBuipep. (1 > p, p2 > p)
= a— (o= p2 B)—ppb

app i VaBpipapsp. (1 > p, 2 B> p, pis > )
= (@ —p3 B) > p2a—pup

Using these primitives, we can give a syntactic encoding from our
expressions into OML terms:

x]* =z

c]* =c

Az.e]* = \z.[€e]

v] = lift [v]*

e1 es] = app [e1] [ez2]

let z=wv in €] = let z=[v]* in [€]

let x=e1 ine2x] =do [ei] [Ax.e2]* (with e1 # v)

We can now state soundness and completeness of our syntactic
system with respect to encoded terms in OML, where we write
II|T Fow e : 7 for a derivation in the syntax directed inference
system of Jones [11].

Theorem 3 (Elaboration to OML is sound and complete).
Soundness: Whenever I1|T' +* v : T we can also derive
II|T Fom [v]* : 7 in OML. Similarly, when IL|T' F* e : m T we
have I1 | T Fouy. [e] : m 7.

Completeness: If we can derive IL | T Fouy [V]* : 7, there also ex-
ists aderivation I1 | T +* v : 7, and similarly, whenever 11| T Foumy
le] : m T, we also have I1|T' +* e : m 7.

The proof of both properties can be done by straightforward induc-
tion on terms. As a corollary, we can use the general type recon-
struction algorithm W from the theory of qualified types which is
shown sound and complete to the OML type rules. Furthermore, it
means that our system is sound, and we can derive principal types.

Corollary 4. The declarative and syntactic type rules admit prin-
cipal types.

Again, the same results hold for the extended type rules with the
(TI-Lift) and (TS-Lift) rules. The only change needed is that the
lifting primitive now needs to be polymorphic to reflect the (TS-
Lift) rule, i.e. lift : Vau. o = p a.

4.2 Ambiguous types

Following Theorem 3, we could encode our type inference algo-
rithm using the type class facility of a language like Haskell, em-
ploying a morphism type class that provides morphisms between
monads. In particular:

class Morph m n where
lift :: ma ->na

app :: Morph ml m, Morph m2 m, Morph m3 m, Monad m
=>ml (a->m2b) >m3a->mb
app mf mx = lift mf >>= \f ->
lift mx >>= \x ->
lift (f x)

Type checking could now be implemented using the syntactical
encoding into a Haskell program and running the Haskell type
checker. Unfortunately, this approach would not be very satisfac-
tory: it turns out that our particular morphism constraints quickly

lead to ambiguous types that cannot be solved by a generic sys-
tem. In particular, Haskell rejects any types that have variables in
the constraints that do not occur in the type (which we call free
constraint variables).

Recall our function iapp : (int — Beh int) — Beh int.
The expression [iapp (Ax. id (id z))] has the Haskell type
V. (Morph 1 Beh) = Beh int where the type variable 1 only oc-
curs in the constraint but not in the body of the type. Any such type
must be rejected in a system like Haskell. In general, there could ex-
ist multiple solutions for such free constraint variables where each
solution gives rise to a different semantics. A common example in
Haskell is the program show [] with the type Show « = string.
In that example, choosing to resolve « as char results in the string
“_while any other choice results in []. This is also the essence of
why subtyping combined with polymorphism is generally undecid-
able, where again different choices for free constraint variables can
lead to different semantics.

We were initially discouraged by these undecidability results
until we realized that our particular morphism constraints confer
an advantage: the rich monad morphism laws allow us to show
that any valid solution for the free constraint variables leads to
semantically equivalent programs; i.e., the evidence translations for
each solution are coherent.

Moreover, there is an efficient and decidable algorithm for find-
ing a particular ‘least’ solution. At a high-level our algorithm works
by requiring that the set of monad constants and morphisms be-
tween them form a semi-lattice where all morphisms satisfy the
monad morphism laws. Another requirement that is fulfilled by
careful design of the type system is that the only morphism con-
straints are between monadic type constants or monadic type vari-
ables, and never between arbitrary types (we note such constraints
could occur with a deep subtyping relation, which we lack). Given
a constraint graph we can repeatedly simplify by eagerly substi-
tuting free constraint variables p that only have constant lower
bounds, with the least upper bound of their lower bounds. This
simple strategy yields a linear-time decision procedure. The next
section presents the algorithm in detail and proves coherence of the
constraint solutions.

5. Constraint solving and coherence

This section presents an algorithmic formulation (a variation on the
Hindley-Milner algorithm W) of the syntax-directed rules in § 3.5.
Section 5.1 discusses the key algorithmic typing and rules and il-
lustrates elaboration of source terms to System F target terms. Sec-
tion 5.2 gives our constraint solving algorithm. Finally, Section 5.3
shows, by appealing to the morphism laws, that our solving algo-
rithm is coherent and does not introduce ambiguity into the seman-
tics of elaborated terms.

5.1 Algorithmic rewriting

The structure of our algorithm W closely follows the standard
algorithm for qualified types [11], and includes an elaboration into
a calculus with first-class polymorphism. Even though we showed
in the previous section that we can use the type reconstruction
algorithm of Jones’ unchanged to do type inference, we are going
to formulate a slight modification of that algorithm specifically for
our system. The main reason is that we want to prove semantic
coherence of the constraint simplification, and improvement for the
free constraint variables. This proved very difficult to do on general
constraint sets that result from the naive algorithm.

Compared to [11] our algorithm has two key differences. First,
we include (optional) constraint simplification and improvement
[12] when generalizing types. Second, the constraints produced
by our algorithm are grouped into constraint “bundles”—instead
of producing constraints of the form m [> m’ as in the syntax-
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directed system, we group related constraints together. Constraint
bundles come in three different flavors, corresponding to the frag-
ments of the typing derivation (and hence bits of program syntax)
that induced the constraints. These bundles allow us to formulate a
structured constraint solving algorithm and to reason about its se-
mantic coherence in a more structured way. Despite these two dif-
ferences, our system follows Jones’ type reconstruction algorithm
very closely, so we believe that, like his, it produces principal types.

Figure 9 gives the syntax of target terms e and types t, and
alters the syntax of constraints 7 to constraint bundles. As we will
see shortly, the bundle Do(m1, m2, m) is induced by the monadic
let-binding rule (W-Do); App(m1,m2,ms,m) by the (W-App)
rule; and Lift(m) by the (W-Lift) rule. Substitutions 6 map type
variables to types, and 01602 denotes substitution composition.

Figure 10 shows the key rules in our algorithm W, expressed as
judgment IT | T' % e : ¢;0 ~ e (where t is either 7 or m 7,
as shown in Figure 9). As in the syntax-directed rules « denotes
one of two modes, x and e, and the constraints II and type ¢ are
synthesized. The judgment produces an explicitly typed target term
e and a substitution € that applies to the free type variables in I'. An
invariant of the rules is that 6(¢) = ¢, (II) = II, and §(e) = e. For
simplicity, we omit types on formal parameters and instantiation
of type parameters in elaborated terms e. We also assume that a
morphism from a monad m to m’ is named fm,m; and the bind
and unit of a monad m are bind,, and unit,,. The omitted rules
are standard and are shown in the appendix.

Rule (W-Lift) switches modes from e to «x in its premise, and
generates a fresh monad variable p, and elaborates the term by
inserting the unit for p.

Rule (W-App) elaborates each sub-term in its first two premises,
and in the fourth and fifth premises, computes the most-general
unifier 03 of the formal parameter type of e; and the value type of
e2. We generate a constraint bundle OApp(m1,ma, 1, i), which
indicates that there be a morphism from each 6 mi, 8 ma, and
Oy’ to the result monad p. In the elaborated terms, f,,, stand
for morphisms that will be abstracted (or solved) at the nearest
enclosing let; similarly the bind,, are the binds of the result monad.
The rule for monadic let-bindings, (W-Do), is nearly identical to
(W-App), except that there is one fewer monad variable.

Finally, rule (W-Let) implements let-generalization. We rewrite
the let-bound value v in the first premise, and compute the variable
v over which we can soundly generalize. In the third premise, we
compute the variables [ that appear in the constraints II; but are
not free in the type 7: these variables are candidates for constraint

simplification in the fourth premise. The judgment ITy ohelf) 0

optionally simplifies constraints; this is a key contribution of our
approach and is discussed in the next subsection. The last premise
rewrites the body under a context with a generalized type for x.
In the conclusion, we translate to System F’s application form,
where the let-bound value is elaborated to generalize over both its
constraints and the type variables .

5.2 Efficient constraint solving

Intuitively, our algorithm views a constraint set II as a directed
graph, where the nodes in the graph are the monad types, and the
edges are introduced by the constraint bundles. For example, we
view a bundle Do(m1, m2, m) as a graph with vertices for m1, ma
and m, with edges from m; to and m2 to m. In the discussion
below, we informally use intuitions from this graphical view of II.
For each edge between m and m/ in the constraint graph, a solution
to IT must compute a specific morphism between m and m’.

We start our description of the algorithm with a standard notion
of least-upper bounds, shown below. Our definition is relative to
an initial set of constraints Py that define the monad constants and
primitive morphisms to be used to type a source program.

Definition 5 (Least-upper bounds). With respect to an initial con-
text Ilo, given a set of monad constants A = {M, ..., My}, we
write lub(A) = M to mean that M is the least upper bound of the
monad constants in A, i.e., Vi.Illo |E M; > M; and for any M’
such thatVi.llo |= M, > M', we have Tlp = M > M'.

Figure 11 presents a set of inference rules that codify our solv-

ing algorithm, implementing the judgment II SO]VL(';) IT'; 0. The al-
gorithm tries to eliminate the free constraint variables i in II, re-
placing as many as possible with monad constants, and returning
the residual constraints IT' that cannot be simplified further. This
judgment ensures that dom(6) C [ and that TI' = II'. Thus, in
the (W-Let) rule we apply 0’ to the body of e; in the conclusion, in
effect resolving any free morphism f, ,/ to the specific morphism
determined by ¢’.

The inference rules make use of three auxiliary functions,
defined to the right of Figure 11. First, for a constraint bundle
up-bnd () is the type of the resulting monad. In contrast, lo-bnd ()
is the set of types in a constraint bundle from which we require mor-
phisms. Both of these are lifted to sets of constraints in the natural
way. We also define II,, the restriction of a set of constraints to
a variable py—intuitively, II,, computes the neighborhood of the
vertex corresponding to p in the graph corresponding to II.

The algorithm starts with a cycle-elimination phase. To keep
the rules readable, we omit the definition of cycle-elimination from
Figure 11. For each cycle in the constraint graph, we require that
every edge in the cycle be solved using the identity morphism. That
is, on every cycle, there can be at most one monad constant M, and
all variables in the cycle can be substituted for M.

Given a cycle-free constraint set P, the rules in Figure 11
are relatively straightforward. The first three rules state (1) con-
straints may remain unsimplified; (2) duplicate constraints may be
dropped; and (3) constraints may be permuted. This last rule is non-
deterministic, but it can be implemented easily using simple topo-
logical sort of a cycle-free constraint constraint graph.

The rule (S-M) picks a constraint = where both the lower-
bounds and the upper bounds of 7 are monad constants and solv-
able (i.e., lub(lo-bnds(m)) is defined and is coercible to the upper
bound of 7) and eliminates this constraint.

The rule (S-y) is most interesting. It considers a constraint 7w
whose upper bound is a free constraint variable y which (according
to the third premise) has some upper bound in II. (Note, it is
important for the coherence of solutions for p to have an upper
bound in II in order to solve it—we discuss this point in the next
subsection) For such a variable u, we consider all its lower bounds
A, and if we find them all to be monad constants (i.e., lub(A) = M
for some M), we assign the variable to M in 6 and proceed to solve
the rest of the constraints.

The next definition and the following lemma establishes that

solve

P if) P’;0 only produces valid solutions to a constraint set,
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and that these solutions can be found efficiently. The proof is
straightforward.

Definition 6 (Valid solutions). Given an initial context 1ly, a
constraint set 11, a set of variables i, and a substitution 0 with
dom(0) C [, we say 0 is valid partial solution for 11 (denoted
Iy = 6 validFor 1) when for all w € 11, if 1 € up-bnds(I1) and
€ dom(8), then there exists M such that lo-bnd(07) = M and

Lemma 7 (Validity of constraint solving). For all Ilo, I1, i, IT', 6,
if we have Iy + IT el IT'; 0, then Ty = 6 validFor IT. O

Theorem 8 (Constraint solving is linear time). Given a constraint
set I1, and an initial context I, there exists a O(|I1|) algorithm to
decide whether or not 11 is fully solvable, where a constraint set 11

is fully solvable if for i = ftv(11), " - 11 ohel§) 0.

Proof. (sketch) The algorithm views II as a graph, with the monad
variables and type constructors as nodes, and edges induced by
the ordering constraints. A bound on the number of edges (and
the number of vertices) is three times the number of W-App con-
straints, plus twice the number of do constraints, plus the number
of lift constraints. Detecting and eliminating cycles in the graph is
linear in number of vertices and edges. We then perform a topolog-
ical sort of the graph (O(|V'|+|E|)), where in this case the number
of vertices and edges is bounded by the number of constraints.

Then start from the leaves and consider variable p only after all
its children have been considered. All variables have lower bounds
(in-edges), since variables are introduced by (W-Do) and (W-App),
where they, by construction have lower bounds; and a lower-bound
of (W-Lift) is Id. Computing the lub for elements of a finite lattice
in Ilg is constant time (it can be pre-computed). At each step a
variable is eliminated, until we are left either, with a graph that has
variables that do not have upper bounds (in which case we answer
“no”); or we have a graph with only constants.

Deciding the ordering in a variable-free graph is again linear in
the number of constraints, since each ordering can be answered in
constant time (again, pre-computed on 1lp) O

One would also like to show that our constraint solving algo-
rithm does not solve constraints too aggressively. We define an im-
provement relation on type schemes (following the terminology of
Jones [12]), as a lifting of the solving algorithm.

Definition 9 (Improvement of type schemes). Given a type scheme
o' = VuIly = 7 and a set of type variables i = (ftv(Il;) \

fev(r)) N 2. I 1 %) 1150 then we say o' = Vo115 = 7 is an
improvement of o.

We might conjecture at first that improvement of types is con-
sistent with the type instantiation relation. That is, if o’ is an im-
provement of o, then Py - ¢/ > o and Py - o > o'. How-
ever, by eliminating free constraint variables, our solving algorithm
intentionally makes o’ less general than o. For example, given



o = Vu.(Mi > p,u > Mz) = 7, (Where u & ftv(7)) our al-
gorithm could improve this to ¢/ = M; > M = 7, and indeed
further to 7, if Il = M1 > M>. However, for an arbitrary constant
1, it is not that case that Ilo = M1 > p, p > Mo, which is what is
demanded by the instantiation relation.

Nevertheless, the type improvement scheme is still useful since
improvement at generalization points does not impact the typeabil-
ity of the remainder of the program.

Theorem 10 (Improvement is justified). For all II,T, z, 0,0’
e,m, T, ifwe have Il | T, x:0 + e : m 7, and o’ is an improvement
of o, then 1l | T, z:0' Fe:mT.

Intuitively, we can see this theorem holds because the improvement
of atype 0 = Vu.Il1 = 7 to Vi.1lo = 7 only effects the free
constraint variables: the actual type 7 is unchanged and if IT = II;
we always have IT |= Il too. At any instantiation of o, we can
always substitute the improved type since the type 7 is the same
and the improved constraints IIs are also entailed if the original
constraints II; were.

5.3 Coherence

The effectiveness of our constraint-solving strategy stems from our
ability to eagerly substitute constraint variable p with the least
upper bound M of all the types that flow to it. Such a technique is
not sound in a setting with general purpose type-class constraints,
particularly when the evidence for constraints (in this case our
morphisms, binds and units) has operational meaning. One may
worry that by instantiating p with some M’ # M where M >
M’, we may get an acceptable solution to the constraint graph
but the meaning of the elaborated programs differs in each case.
This section shows that when the monad morphisms satisfy the
morphism laws our constraint improvement strategy is sound, i.e.,
all admissible solutions to the constraints yield elaborations with
the same semantics. So, any specific solution (including the one
produced by the /ub-strategy) can safely be chosen.
Our approach to showing coherence proceeds as follows:

solve((f2)
-3 6o,

1. Given a constraint set IT and a derivation IIp - II —

we call 6y the [ub-solution to I1.

2. We argue that all other solutions to II can be derived from the
lub-solution by repeated local modifications to the lub-solution.
A local modification involves picking a single variable p such
that 6 = 6(p ~ M); and considering a solution to the
constraint set §'II that assigns some other solution M’ to ju;
i.e., we have some solution 61 = 0'(p — M'). We iterate this
process, generating the solution 6;1 from 6; in this manner.

3. We enumerate the ways in which 6,11 can differ from 6,411,
considering interactions between pairs of constraint bundles
(App/App, Do/Do, Do/App, App/Do, etc.). In each case,
since each kind of constraint bundle can be related to the ab-
stract syntax of elaborated programs, we can reason about the
differences in semantics that might arise from the 6; and the
0;+1 solutions. We show that when all the morphisms satisfy
the morphism laws, that the solutions are indeed equivalent.

~

Our notion of term equality, written e; = e», is extensional
equality on well-typed elaborated terms axiomatized by the mor-
phism laws. The following definition formalizes our notion of well-
formed contexts, including the key requirements (3), (4), and (5),
that the morphisms form a semi-lattice, and that they satisfy the
morphism laws of transitivity and commutation with the bind oper-
ations of the relevant monads.

Definition 11 (Well-formedness of a context). A context I1g, T is
well-formed if and only if the following are true:

. For any pair of monad constants M we have bind; and unit ar

bound as constants in U, with appropriate types.

. For all My, Mo, if Tl |: M > Ms then I' contains a constant

fary v, bound at the type Vo My o — Mo .

. For any set of monad constants A, there exists M such that

Tlo F lub(A) = M.

. For all Ml,MQ,Mg, lfH() ': My > Ms and 11 ': Mo > Ms,

then fury ms © faryg vy = farg ;-

. For all My, M, e1,ez,t1,to, such that Py |= My > Ms and

e1 : My tyandes : My to, we have far, m, (bind v, €1 Az:t.es) =
bindnr, (fary,mz €1) Azit.(fary, n, €2)

The following lemma establishes that in well-formed contexts,

our algorithm produces well-typed System F terms. The proof is a
straightforward induction on the structure of the derivation, where
by [I'] we mean the translation of a source typing context to a
System F context.

Lemma 12 (Well-typed elaborations). Given I' such that 11y, T is
well-formed, e,t,0,e, kK, such thatI1 | T' F" e : t;0 ~ e. Then
there exists t such that [0T'] k- abstractConstraints(I1, e) : t.

Next, we formalize the notion of a local modification 6’ of

a valid solution € to constraint set. Condition (1) identifies the
variable p which, the locus of the modification. Conditions (2) and
(3) establish the range of admissible solutions to x, and condition
(4) asserts that the modified solution &’ picks a solution for  that
is different than 6, but still admissible.

Definition 13 (Local modification of a solution). Given a solution
01 to a constraint set (7T7 I1), a local modification to 01 is a solution
02, where the following conditions are true:

1.

2.

3.

4.

There exists a variable p and a constant M such that y =
up-bnd(m) and 61 = 01 (p — M).

There exists a constant M1, a lower-bound for p, where M, =
tub(lo-bnds((6iT0)],0) \ {1}).

There exists a set of constants (upper bounds for 1) { M7, . .
up-brds(61T)],0) \ {1}

There exists a monad constant M' # M such that T = My>M
andVi.T' = M > Mj, such that 62 = 01 (p — M")

LMy} =

Finally, we state and sketch a representative case of the main

result of this section: namely, that the lub-strategy is coherent when
the morphisms form a semi-lattice and satisfy the morphism laws.

Theorem 14 (Coherence of constraint solving).
Given 11y, I', 11, e, t,0, 01,02, e, k, i, such that

1.
2.

3.
4.
5.

Ilo, I is well-formed.

Forall i € [, the set (lo-bnds(I1|,,) \ {p}) is non-empty, i.e.,
w has an upper bound.

I e:t;0~e

There exists 01 such that dom(61) C fwand Py + 01 validFor IL
There exists 02, a local modification of 0.

Then, 916 = 926.

Proof. (Sketch) Since 62 is a local modification, we have (from

condition (1) of Definition 13) #; =

01(p — Mj), for some

W, M1, 67, and T1 = I, where u = up-bnd () is the modified
variable. We proceed by cases on the shape of 7.

Case 7 is an App bundle: We have 07 = App(Mi, M2, M3, ;1)
(since from condition (2) of Definition 13, lower-bounds are only
defined on monad constant). To identify the upper bounds of i, we
consider the constraints in (6111')|,,, note that all the upper bounds
must be constants (from condition (3)), and proceed by cases on the
shape of each of the constraints 7’ in this set.



Sub-case 7’ is an App bundle: Without loss of generality on the
specific position of i, we have 8'n’ = App(m1, p, ms, M), where
M is an upper-bound of 7. From the shape of the constraints,
we reason that we have a source term of the form e (e1 e2),
that is elaborated to the term shown below, where e, e1, es are the
elaboration of the sub-terms.

1. bil’td}y[ (fmh]\{ e) ()\:U:,.bindM

2. (fu.na(bindy (far, pe1) (Awa:e.

3. bind,, (frg,p e2) (Az2:-.(frs,u(T1 22))))))
4. (Wi fmsm (2 Y)))

Under the solutions 67 and 62, the inner subterm at lines 2 and
3 may differ syntactically. Specifically, the solution €; chooses
1 — M1 while 62 may choose y — M3, for some My > M5> M.
However, using two applications of the morphism laws, (condition
(5) of Definition 11), we can show that the sub-term in question is
extensionally equivalent to the term shown below.

2. ((bindnr (fu,nr 0 fary,u 1) (A1

3. bindy (fu,m © [y, €2) (Az2:io.(fu,m 0 furg,u(z1 22))))))

Finally, appealing to condition (4) of Definition 11, we get that the
term above is extensionally equivalent to the term below.

2. ((bindM (fIWLM 61) ()\1'1:,.
3. bindnr (favo,mr €2) (Ax2:io(farg, v (1 2))))))

The semantics of this term is independent of the choice of u, and we
have our result for this sub-case. The other cases are similar. O

5.4 Ambiguity and limitations of constraint solving

Our constraint solving procedure is effective in resolving many
common cases of free constraint variables in types that would oth-
erwise be rejected as ambiguous by Haskell. However, a limitation
of our algorithm is that, for coherence of solving, we require free
constraint variables to have some upper bound in the constraint set.
(See condition (2) of Theorem 14.) A variable with no upper bound
may admit several possible solutions, so the morphisms leading to
these solutions differ and result in different program rewritings—
our algorithm rejects such a program as ambiguous.

We argue that for typical programs our constraint solving strat-
egy is effective since it is difficult to construct a term with an un-
bounded constraint variable, and we conjecture that all such exam-
ples consist of ‘dead’ computations that are never executed. Next
we discuss a particular example program with such an ambiguous
type. All the other examples in this paper are deemed unambiguous
by our algorithm (though many would be rejected by Haskell).

Consider the following example, with a state monad ST and a
primitive function read: int — ST char:

let g = fun O —>

let £ = fun x -> fun y >
let z = read x in read y in
let w=f£f 0 in ()

Here, the type inferred for £ is Vu. (ST > pu) = it —
Id int — @ char. Because of the partial application £ 0, we must
give g the type Vpu, 1. (ST >, Id > p') = unit — p’ unit. Here,
the constraint variable p resulting from the partial application of £
does not appear in the return type, while it appears in the constraints
without an upper bound.

Picking an arbitrary solutions for p, say u = ST or p = 10,
where IIp = ST > 10, causes the sub-term w to be given differ-
ent types. This is a source of decoherence, since our extensional
equality property is only defined on terms of the same type. How-
ever, pragmatically, the specific type chosen for w has no impact on
the reduction of the program, and we conjecture that in all cases
when this occurs, the unbounded constraint variable has no influ-
ence on the semantics of the program. As such, our implementation

supports a “permissive” mode, so that despite it technically being
ambiguous, we can accept the program g, and improve its type to
Vu'Ad > p', = unit — u’ unit, by solving y = ST.

6. Implementation and applications

We have implemented our inference algorithm for the core lan-
guage of Figure 1 extended with standard features, including con-
ditionals and recursive functions. Our implementation is written in
Objective Caml (v3.12) and is about 2000 lines of code. We imple-
ment our basic morphism insertion strategy (i.e., Figure 4 without
(TI-Lift) from Figure 5). The rewritings shown in Section 2 were
produced with our implementation.

In this section we present programs using two additional mon-
ads, to give further examples of the usefulness of our system: pars-
ing and information flow tracking. For the latter, Appendix A fur-
ther considers a source language extended with mutable references,
which for tracking information flow requires parameterized mon-
ads. We can type our rewritten programs using the FlowCaml se-
curity type system [20] and thereby prove they are secure.

6.1 Parsing example

A parser can be seen as a function taking an input string, and return-
ing its unconsumed remainder along with a result of type o. We can
apply this idea directly by implementing a parser as a monad whose
type Par a conveniently hides the input and output strings. Its bind
and unit combinators have names bindp and unitp, respectively.
The token: char — Par unit parser parses a particular character,
while choice: Par o — Par o — Par « returns the result of the
first parser if it is successful, and otherwise the result of the second
argument.

As an example we shall write a parser that computes the maxi-
mum level of nested brackets in an input string:

(rec nesting. fun (O->
let nonempty = fun ()->

let _ = token ’[’ in
let n = nesting() in
let _ = token ’]’ in
let m = nesting() in
max (n + 1) m in

let empty = fun () -> 0 in
choice (fun ()-> nonempty()) (fun (O-> empty())) ()

The above program would be rejected in ML: the functions max and
+ are typed as int — int — int, which does not match with the
type of n and m of type Par int.

In our system the example is well-typed where the term gets
type Par int, and where n and m can be used with type int (instead
of Par int). The type directed translation automatically inserts the
binds for sequencing and units to lift the final result into the parser
monad. The actual translation produced by our implementation is:

(rec nesting. fun () ->

let nonempty = (fun ()->
bindp (token ’[’) (fun _ ->
bindp (nesting()) (fun n ->
bindp (token ’]’) (fun _ ->
bindp (nesting()) (fun m ->

unitp (max (n + 1) m)))))) in
let empty = fun () -> 0 in
bindp (unitp (choice (fun () -> nonempty())))
(fun v3 -> v3 (fun () -> unitp (empty())))) O

6.2 Information flow

We are interested in enforcing a confidentiality property by tracking
information flow. Data may be labeled with a security level, and



the target independence property, called noninterference [5, 9],
ensures that low-security outputs do not depend on high-security
inputs. There is a large body of research in this area (for language-
based techniques, see Sabelfeld and Myers’ survey [23]). Ever
since Abadi et al. showed how to encode information flow tracking
in a dependency calculus [1], a number of monadic encodings have
been proposed [6, 22, 16, 4]. We focus on an expressive information
flow monad for standard ML.

We implement a variant of the Sec monad [22] that wraps data
protected at some security level for a pure functional subset of ML.
In the absence of side effects, we only have to ensure that data
with a certain confidentiality level is not disclosed to lower-level
adversaries (explicit flows).

Let us consider a simple security lattice {L < L < H <
T}. The information flow monad SecH (resp., SecL) tracks data
with confidentiality level H (resp., L) with monadic operators
bindh,unith (resp., bindl,unitl). The may-flow relation is ex-
pressed via a morphism that permits public data at a protected level:

labup: SecL > SecH

The following small example computes the interest due for a sav-
ings account, and the date of the last payment. Primitive savings
returns a secret, having type unit — SecH float, rate returns
a public input having type unit — SecL float. add_interest
is a pure function computing the new amount of the account af-
ter adding interest, having type float — float — float. Finally,
current_date returns the current date, having type unit — int.

add_interest (savings ()) (rate())

The rewriting lifts the low security rate to compute the high
secrecy update for savings. The final type of the entire expression
is SecH float.

bindh
(bindh (savings () (fun y ->
unith (add_interest y)))
(fun £ >
bindh (labup (rate ())) (fun z ->
(fun x -> labup (unitl x)) (f z)))

Appendix B gives a proof of soundness with respect to Flow-
Caml for an information flow state monad which subsumes the
Secx monads; therefore they also soundly encode non-interference.

7. Related work

Filinski previously showed that any monadic effect can be syn-
thesized from first-class (delimited) continuations and a storage
cell [8], and thereby can be expressed in direct style without explicit
use of bind and unit. Kiselyov and Shan [14] apply this representa-
tion to implement probabilistic programs as an extension to Objec-
tive Caml. While our system shares the same goals as these, it uses a
different mechanism—type-directed rewriting—to insert monadic
operators directly, rather than requiring them to be implemented in
terms of continuations. Though we have not explored the ramifica-
tions of this difference in depth, our experience implementing the
probability and behavior monads suggests that direct implementa-
tions may enjoy a performance advantage over the continuation-
based approach. Another difference is our support for inferring
morphisms between monads; monads in Filinski’s system appear
to be combined implicitly. As such the programmer has less control
over monad interactions (though perhaps morphisms could be in-
serted manually). Finally, Filinski’s representation elides monadic
types from terms, complicating program understanding.

We can view our rewriting algorithm as a particular case of a
more general strategy for type-directed coercion insertion, which

supports automatic coercion of data from one type to another, with-
out explicit intervention by the programmer. Most related to our ap-
proach is that of Luo [18, 17], which considers coercion insertion as
part of polymorphic type inference. In Luo’s system rewritings may
be ambiguous: when more than one is possible, each may have dif-
ferent semantics. Also, the system does not include qualified types,
so coercions may not be abstracted and generalized, hurting expres-
siveness. Our own prior work addressed the problem with ambigu-
ity by carefully limiting the form and position of coercions [24].
However, we could not scale this approach to a setting with poly-
morphic type inference, as even the simplest combinations of co-
ercions admitted (syntactic) ambiguity. Our restriction to monads
in the present work addresses this issue: we can prove coherence
by relying on the syntactic structure of the program to unambigu-
ously identify where combinators should be inserted, and when the
choice of combinators is unconstrained, the morphism laws allow
us to prove that all choices are equivalent.

Benton and Kennedy developed MIL, the monadic intermediate
language, as the basis of optimizations in their MLj compiler [2].
They observe, as we do, that ML terms can be viewed as having the
structure of our types 7 (Figure 1) where monads appear in positive
positions. While our approach performs inference and translation
together, their approach suggests an alternative: convert the source
ML program into monadic form and then infer the binds, units,
and morphisms. We know from our translation to Haskell that
this approach can only work by informing the solver of monad
morphisms.

8. Conclusions

Monads are a powerful idiom in that many useful programming
disciplines can be encoded as monadic libraries. ML programs
enjoy an inherent monadic structure, but the monad in question is
hardwired to be the I/O monad. We set out to provide a way to
exploit this structure so that ML programmers can program against
monads of their choosing in a lightweight style.

The solution offered by this paper is a new way to infer monadic
types for ML source programs and to elaborate these programs
in a style that includes explicit calls into monadic libraries of the
programmer’s choice. A key consideration of our approach is to
provide programmers with a way to reason about the semantics of
elaborated programs. We achieve this in two ways. First, the types
we infer are informative in that they explicitly indicate the monads
involved. And, second, when our system accepts a program, we
show that all possible elaborations of a program have the same
meaning, i.e., our elaborations are coherent.

We implement our system in a prototype compiler, and evaluate
it on a variety of domains. We find our system to be relatively
simple, both to implement and to understand and use, and powerful
in that it handles many applications of wide interest.
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A. Information flow for computations with side

effects

In a language with state like ML, side effects may also reveal
information (implicit flows), so we must track the security level
of the control flow. Both confidentiality and control flow levels
should be parameters of the monad. Let us first consider a simple
extension of the language where monad constructors are allowed
to have type parameters, morphisms can be polymorphic in those
type parameters, and every instantiation of a monad constructor is a
monad. Through a sample encoding of the information flow monad,
we show the limitations of this approach, and motivate an important
extension of our system to handle parameterized monads.

An information flow state monad IST [y [2 7 is parameterized
with security levels /1 and l». It wraps data of type 7 with confi-
dentiality level l>: data should not be disclosed at level lower than
l2 (explicit flows). The program counter of the program should be
at most /1, so that the effects of the data do not leak information
on the program counter (implicit flows). For instance, IST H L is
a type of a computation that has high-security side effects and low
secrecy.

Two morphisms between instances of the IST monad describe
the may-flow order of the security lattice: (1) it is safe to require
higher secrecy; (2) it is safe to assume lower level side effects.

VIISTHI > IST LI
Vpe. IST pe L > IST pc H

We consider an extension of our language with references,
which ML typically provides, though we give them special monadic

pcdown
labup

types. A reference to a value of plain type 7 with contents of sensi-
tivity [ is given type [ 7 ref. A freshly allocated reference, as well as
its contents, are at least as sensitive as the current program counter.
Reading an [-secret reference yields a [-secret value. Writing an
l-secret value has effect {.

alloc Vpe, . o — IST pe pe (pe aref)
read Vi,a.l aref - IST Hl «
write Vi,a.l aref — a — IST [ L unit

Binding computations In this richer setting we might think to

write bind as follows:
Vpe,l,a, B.1ST pcl a — (a = IST pel ) = IST pel B

Unfortunately, this would be too permissive: it would allow instan-
tiating pc as L and [ as H, resulting in a bind for monad IST L H
of type IST LHa — (. — IST LH ) — IST L H 3. Such
a bind would allow illegal flows because the latent effects of the
second computation should not be visible on level less than the
confidentiality level of the first computation.

The simplest fix would be to disallow the IST L H monad
entirely. We can formalize this solution directly in our current
system. Moreover, we show a sound encoding into the FlowCaml
security type system in Section A.1.

But doing so could be more restrictive than necessary. Alterna-
tively, we could extend our system to support parameterized mon-
ads [15], which permit composing computations within different
monads. We leave extending our system to future work, but, as-
suming that we have this extension, we conclude by considering
how we would take advantage of it.

Stepping back, the most precise type for bind would be:
(Bind_ideal)

Vper, 1, pea, l2, pes, Uz, o, 5.
IST pc1 11 @ — (. = IST pez lo B) — IST pes U3 B
with [y < pca, pes = per Mpee, Is =11 Uls

This type rules out leaks, and ensures that the composition has the
lower bound of the effects and the upper bound of the secrecy of
the composed computations. However, our system cannot directly
support such a type for bind because it operates over several mon-
ads, not just one, and because it requires additional constraints on
labels, which our system does not support.

In a parameterized monadic bind, the monad may vary:

VOé,ﬁ.Mloé%(Oé%Mgﬁ)%Mggﬁ

This gets us partway toward expressing (Bind_ideal). The next
problem is avoid the additional ordering constraints on labels.

Since we consider a fixed security lattice, we can enumerate
all possible legal instantiations of labels that would satisfy these
constraints, as expressed by Table 1.

For the sake of completeness, we should support binds (1), (5),
(8), (2), and (12); note that only the first three of them are prop-
erly monadic. Thanks to the morphisms, the argument types of the
other possible binds can always be coerced to match one of these
five specifications without any loss of precision. For example, (6)
could be converted to (8) by applying the morphism labup to its
first argument. (5) is needed because we would lose precision if we
applied either the pcdown morphism to both arguments and used
(1), or the 1abup morphism and used (8): the resulting computa-
tion would then have type IST LLg, or IST H H /3 instead of
IST H LS. So we end up with five bind operators for the parame-
terized monad:



# | per |l | pea |12 | pes | s

1 L L | L L | L L | Needed, monadic
2 L L | L H | L H | Needed

3 L H | L L | — — | Violates I1 < pca
4 L H | L H | — — | Violates I; < pca
5 H L | H L | H L | Needed, monadic
6 H L | H H| H H | (8) vialabup-1

7T |H |H|H |L |H | H]| (8)vialabup-2

8 H H | H H | H H | Needed, monadic
9 L L | H L | L L | (1) via pcdown-2
10 | L L | H H | L H | (2) via pcdown-2
11| L H | H L | L H | (12) via labup-2
12 | L H | H H | L H | Needed

13| H L | L L | L L | (1) via pcdown-1
14| H |L | L H | L H | (2) via pcdown-1
15| H H | L L | — — | Violates I1 < pca
16| H |H|L H | - — | Violates I1 < pca

Table 1. Applying (Bind_ideal) to the simple H — L lattice

bLL:Va, 8. ISTLLa — (a - ISTLLB) = ISTLLS
bHL:Va, 8. ISTH Lav — (a = ISTH L3) —»ISTH Lj
bHH:Va, 8. ISTH Ha — (a — IST H H B) — IST H H 8
bLLLH:Va, 3. ISTLLa — (a« = ISTLHB) = ISTLHS
bLHHH:VYa, 8. IST L H a — (a — IST H H 3) — ST L H 3

Sequencing The monadic bind implies a computational depen-
dence. In particular, for an arbitrary bind e; e2, the computation
e1 influences the computation in e2. Assuming e; always influ-
ences e can be too restrictive, though, so we also use a monadic
sequence operator, seqi e; ez which ensures that the result value
of ey cannot influence e-.
seqi : Vpc,l1,lo, , 8. IST pcli a —
IST pcly B — IST pcls

To accommodate this special situation, we extended the type di-
rected translation. Programmers must reflect the information flow
in their source programs, by using either a normal let-binding
(which is rewritten into one of the bind forms above) or a sequenc-
ing operator ; which is rewritten to seqi.

Example We can use references to rewrite our example of adding
the interest due. First we updates a savings account with the interest
due, and we update the public date of the last payment. Variable
savings is secret (having type H float ref), rate is a public input
(having type L float ref), and lastpayment is a public output (of
type L int ref). add_interest is a pure function computing the
new amount of the account after receiving the interests, having type
float — float — float. Finally, current_date returns the current
date, having type unit — int.

let current = read savings in

let r = read rate in

write savings (add_interest current r));
write lastpayment (current_date ()

The rewriting lifts the access to the low secrecy rate to compute
the high secrecy update for savings. Unlike the first two bindings,
sequenced using let and rewritten into bindi, the last low effect
write is independent of the preceding computation and so must
be composed using ; to get rewritten into seqi. The type of the
resulting computation is IST L L unit.

seqi (pcdown

(bHH (read savings) (fun current->
labup (bHL (read rate) (fun r ->
(write savings (add_interest current r)))))))
(write lastpayment (current_date ()))

Note that if we reorder our code as shown below:

let current =
(write lastpayment (current_date ());
read savings) in

let r = read rate in

write savings (add_interest current r)

the type inference is still possible, but yields a different type
IST L H wunit and a different rewriting:

bLHHH (seqi (write lastpayment (current_date ()))
(read savings)) (fun current->
labup (bHL(read rate) (fun r ->
(write savings (add_interest current r)))))

Even though the example was simple and natural to write, it is no-
table that the rewriting is quite sophisticated where multiple mon-
ads are automatically combined and lifted to the required types.

A.1 Soundness of the encoding

We prove that our information flow monad is sound by translating
rewritten programs into FlowCaml [20], an extension of ML for
tracking information flow. Informally, our approach involves defin-
ing a type-directed translation from the elaborated terms computed
by our inference algorithm (terms that are well-typed against the
IST signature) to terms in MLIF, the core calculus of FlowCaml.
The type system of MLIF is known to correctly enforce noninter-
ference. So, our approach is to show, first, that our translation pre-
serves types, and then to show that the translation is a (weak) sim-
ulation. That is, each reduction step taken by a well-typed target
term is matched by one or more reductions in MLIF. Since MLIF
programs respect non-interference, programs using our encoding
do as well.

We include a concise statement of this result here—the full
statement, the definition of the translation, and the proof is in
Section B. Note, that we have yet to prove the completeness of
our approach, i.e., that every well-typed MLIF program is typeable
in our system—we leave this to future work.

Lemma 15 (Soundness of the FlowCaml encpding).
ForallT)eo, 7 if T I3 e : t ~ e wheret = IST pcl T, and
I'ke:t2£ ¢then

o (translation preserves types) pc; [U'] Fywr € : [t]

e (translation is a simulation) For all M such that T' |= M, and
FME2 M;
if (M;e) — (M';¢')
then (M;e) —suur (M';€') and for T’ such that T' = M/,

we have TV e 11 2% ¢ and T - M 2£ M.



B. Soundness of the information flow encoding

We prove our information flow encoding sound (noninterferent) by giving a translation of elaborated terms (well-typed against the IST
API) into well-typed FlowCaml programs. We show that the translation is a simulation, and hence, we inherit FlowCaml’s noninterference
property.

We start by recalling in Figure 12 (a fragment of) the type system MLIF, the core calculus of FlowCaml, as presented by Pottier and
Simonet [20]. We restrict our attention to the monomorphic calculus, without fix points, exception handlers, and pairs.

Next, in Figure 13, we give a type-directed translation from the target terms (described first in Section 5.1) to MLIF. Our goal is to show
that this translation preserves types, and furthermore, that the transaltion is a (strong) simulation with regard to the reduction relations of
each language, i.e., each step of reduction of our elaborated terms is matched by a step in MLIF.

We start with a standard lemma regarding the typing of our target language—a standard result for a polymorphic lambda calculus with
references.

& MLIF

Lemma 16 (Target typing (preservation of types)). For allT',M,e,t, where ' = M and T - e : t == _. Then, if (M;e) — (M’;¢’) then
forT" |= M', and extension of T, we have T &’ : t.
Proof. Standard induction on the structure of the typing derivation. O

2~ MLIF

Lemma 17 (Target typing (progress)). For all T',M, e, t, where ' = M and T - e : t == _ Then if e # v, there exists M’ e’ such that
(M;e) — (M’;€').

Proof. Standard induction on the structure of the typing derivation. O

Next, we show that our translation to MLIF preserves types.

Lemma 18 (Translation preserves types (values and expressions)).

MLIF L

1. ForallT,v,t,v; if T' v :t = v, then [I'] Fawr v : [t]
2. ForallT et e ifT'Fe:t M o wheret = IST pcl t. Then pc; [I'] Fuur e : [E].

Proof. Proof by mutual induction over the structure of the value and expression translations.
Case (TV-1), (TV-2), (TV-3): Trivial, noting that from the translation of environments we have [z:t] = x:[t] ¥

Doathe: 1 2L ¢ totf=t1 254
Case (TV-4): ’ — L I (TV-4)
I'F Az:te:t =t = Ay:t1.y case x > e else raise

Lett =ISTpclt'.
From the induction hypothesis, we have (TH) pc; [T, z:t] F e : [£], where t/ = .
From the definition of type translation, we have t1 = ([t]% 4 unit)P°.
For the goal, we apply (MLIF-T6), picking the unconstrained [ in the conclusion to be L.
For the premise, we must now show pc; [I'], y:t1 Fmur y case ¢ > e else raise : ta.
This follows from an application of (MLIF-T13), using

the variable rule (MLIF-T1) for the first premise,

the rule for raise, (MLIF-T14), for the last premise, which can be given any type.

and, for the key second premise, we must show pc U pc; I, y:t1, x:[[t]]L Fyur e @ to.

This follows from the assumption (IH), and an application of MLIF weakening.

Case (TE-5): Easy from the mutual induction hypothesis and a use of (MLIF-T1), which permits values to be typed at any pc.

Fhe:ISTper ht 2 e Thv:(t—ISTpelat) 2L o
I < < per M Ll <1
Case (TE-6): 1= pea pe = parl1pe 12 = (TE-6)

T+ (e bind[pc, 1] v) : IST pel t/ =X (bind z=e¢ in v z)

From the induction hypothesis, we have (IH1) pe; [T F e : ([t]Y + unit)h
And we have (IH2) [I] F v : (([t]% + unit)'t 22 [IST pcl t'])E
For the conclusion, we apply (MLIF-T9), the rule for bind = in .
For the first premise, we first apply (MLIF-T16) (corresponding to pcdown) with (IH1) in the premise.
The second premise of (MLIF-T16) is satisfied by the constraint pc < pcy in the premise of (TE-6).
For the second premise of (MLIF-T9), we first note that from (IH2), we have (using the app rule),
that T, x:([[t]]L + unit)ll Fvur (vx)  IST pea lo t'.
Then, we apply (MLIF-T16) as for the previous premise to conclude.

Case (TE-7): Easy, from the induction hypothesis and an application of (MLIF-T16).
Case (TE-8): Easy, from the induction hypothesis and an application of (MLIF-T15).
MLIF

Case (TE-9): IEv:it=w — (TE-9)
I' - allocv : IST pepe ((pe, t) ref) = ref v




Our goal is to show that pc; [I'] Fmur ref v : [t]P€ refPe.

From the induction hypothesis, we have (IH) [I'] F v : [t]~.

For the conclusion, we apply (MLIF-T11) with (IH) in the premise.
The second premise, pc <1 [t]P€ is satisfied immediately.
And, in the goal, we chose | = pc.

Thv:(t)ref 22Xy

Case (TE-10): — ST H It = Iv

(TE-10)

Our goal is to show H; [I'] Fmuir!v : [t].
From the induction hypothesis, we have (IH) [I'] - v : [t]* ref%.
We use (MLIF-T10), using (IH) for the first premise, and noting that L <1 ¢ for all ¢.

Tk vy (pe,t) ref 2£ Dhvy:t 2L
Case (TE-11): vii(pe,t)r i e 2 e

' write vy vo : IST pec L unit g V] 1= v2

From the induction hypothesis, we have (IH1) [I'] - vy : [t]P¢ refl.

From the induction hypothesis, we have (IH2) [I'] - va : t.

For the goal, we require pc; [I'] Faur v1 = v2 @ unit.

We apply (MLIF-T10) using,
(IH1) for its first premise;
(IH2) for the second premise, preceded by an application of the value subtyping rule (MLIF-TO0).
For the third premise, we need to show pc LI L < pc, which is valid.

O
Lemma 19 (Translation is substitutive).
I ForallT,z,t, T, vi,t1,v1,v,v. IFT, z:t, T F vy 11 2% vy and if T F v s t 225 0. Then, T, TV ++ vi[v/z] : t ELS v1[v/z].
2. ForallT,z,t,I" e, t,e,v,v. If T, zx:t, T F e : t 2 cand if [ F v : t 22> v. Then, T',I" I e[v/z] : t == e[v/x].
Proof. Straightforward induction over the structure of the translation judgment. O

2 MLIF

Lemma 20 (Translation is a simulation). For all M,T,e,t,e such that T = M. IfT - e : £ =2 ¢; and T - M =% M; and
(M;e) — (M';€'); then (M;€) —b (M';€') and for T’ = M/, we have T' ¢’ -t =% ¢’ and T + M’ 25 M.

Proof. By induction over the structure of the translation judgment. A key invariant (INL) is showing that if I' - v : IST pcl t 22 v, then
v = inl v/, which ensures that the translated programs never raise failures.

Case TE-5: mreturn|pc, l]v is a value form; and so is inl v. Neither steps. Note that the invariant (INL) is true.

Case TE-6: In the case where we have e bind[pc, [] v, for e not a value, we simply use the induction hypothesis.
When e is a value, appealing to progress, we have a reduction using (E6).

From the invariant (INL) we have that e = mreturn[pc, I][pc, 1] v/ and that v/ 2% inl o/
And from inversion, we have v = Ax:t.e
And we have a step to e[v/ /z].
In MLIF we have bind y=inl v/ in \y: y case = >~ e else raise
where ', z:t F e[]e.
We take a steps in MLIFusing (MLIF-E3) followed by (MLIF-E) to obtain e[v’ /z].
Where e[v’ /z] to e[v’ /] are related using substitutivity.
Case TE-7, TE-8: In each case, the application of the morphism f e is translated to bind z=e in x, where e is translated to e.
When e is a not a value, we step using (E-7). This is matched in MLIF by a reduction (MLIF-E2).
If e is a value, we have a reduction using (E-8) and this is matched in MLIF using (MLIF-E3). We relate the resulting configurations using substitutivity.

Case TE-9, TE-10, TE-11: These rules correspond to the memory operations and here, the two sematics are in immediate correspondence.



levels L|H
values v | ()lcl|inlv]inrv| Az :te
expressions e n= wv|vivz|bindx=ejines|vcasex > e elsees |raise | refv | lv| vy =02
pre-types t = int| (ts +t2) | tref | (t1 25 t2)
types t = unit | £
memory M == {}| MWY][loc— v]
r

= st t<t
Tbvur vt

v € {z,loc} T(v)=t

(MLIF-T1) ———————— (MLIF-T2) —————— (MLIF-T3)
I'byur vt Py () @ unit T byur ¢ @ intL
. . ;T it - ot
Pl vt (vuipns) Pl vits _ aips) e -2 T © (MLIF-T6)
I Favur inl v (81 + t2) T Faur inro s (61 + t2) T Fyur Azit.e: (¢ e, t')!
(peddl)
: I St —=tH Tk it 1<t
pol rame:t| —wrvil ey e 01 ( ) Mp U2 (MLIF-T8)
pe; T Fyur v s t pe; Ty v, vo o t
;T it T, xet = fat : l
pe; I v e : pc; L, x t Py e (MLIE-T9) Thygev:treft 1<t (MLIF-T10)
pc; T by bind z=eine’ : t/ pe; T byvr vt
I it t I ctrefl  TF it ul<t
MLIF U pc (MLIE-T11) MLIF V1 re MLIF U2 : pc < (MLIF-T12)
pe; T by ref o s ¢ reft pe; I Fyur v1 1= v2 @ unit

'k vt +t2) Vie{1,2 .(pe(W));T,zt;Fej:t 1<t
mur v : (t1 + ¢2) 7€ 41,2}-(pe()D) LR (MLIF-T13) . (MLIF-T14)
pe; T Fvur v case @ > eg elseeg @ ¢ pe; T v raise @ ¢

pe;Dhyur et ¢ <t (MLIE-TIS) pc;Thvur et pe < pd (MLIE-T16)
pe; U bvur e t ’ pe; U byvur e t

(M;e) —wmur (M/§e,)‘

(M; Az:t.e v) —mur (M;e[v/z]) (MLIF-ED)

(M;bind z=ey ine2) —>mur (M’;bind z=¢] in e2) when (M;e1) —mur (M’;€]) (MLIF-E2)
(M;bind z=v1 in e2) —wr (M’;ez[vi/z]) (MLIF-E3)

(M;inlv case z > e else e2) —wur (M;ei[v/z]) (MLIF-E4)

(M;inrv case z > ej else e2) —mur (M;ez([v/z]) (MLIF-ES)

(M;raise) — e (M;raise) (MLIF-E6)

(M;refv) —mur (M W [loc — v];loc) (MLIF-E7)

(M W [loc — v'];loc := v) —mur (M W [loc — v]; ()) (MLIF-E8)

(M W [loc — v]; oc) —smur (M W [loc — v];v) (MLIF-E9)

Figure 12. Syntax, typing and dynamic semantics of a fragment of MLIF, the core calculus of FlowCaml



Syntax of elaborated terms well-typed against IST

levels l,pc == L|H

values v = x|loc|c|Ax:te|mreturn[pc,i] v |

expressions e = v |ebind[pc,l]v| fe|allocv|readv | write v va
types t = unit |int | (I,t)ref |t — &

mon-types  t = ISTpclt

memory M = {} | MW [loc — V]|

[z4] = 2:[t]*  [,T] = [T],[I"]

Translation of environments
Translation of types to MLIF pre-types
[unit] = unit [int] =int [(I,tref)] = [t]' ref [t — IST pelt’] = ([]& + unit)Pe 25 [IST peit’]

Translation of mon-types to MLIF types [IST pclt] = ([t] + unit)’

TSy, PFMEE M TIrv:t2Ly
{20 I+ MW [loc — v]] Z£ M, {loc — v}

I'+v:t 2L 4 | Translation of well-typed non-monadic values

I'(z)=t L(loc) =t
MLIF (TV-D) MLIF (TV-2) MLIF (TV-3)
'Fa:t==x T'Floc:t = loc T'ke:int=c
Naothe: 12 e [t—=i=t 5t
(TV-4)

I'FAzte:t —»&XE Ay:ty.y case x > e else raise

I'+e:t 2L ¢ |Translation of well-typed expressions

Fhe:ISTper it 2L e TDhv:(t—ISTpeylot) XLy
(2 h < < pey M lhiuly <1
I'Fv:t—=—wv — (TE-S) 1 S pe2 pc < pci pifm 1 9 < (TE6)
T+ mreturn(pe, l]v : IST pcl v = inl (v) T+ (e bind[pc,l] v) : IST pclt/ = (bind z=e in v z)
The:ISTHItXE, Ihe:ISTpeLtXE ¢
: MLIF (TE-T) MLIF (TE-8)
I'Fpcdowne:IST LIt = bindz=einx I' - labupe: IST pc Ht = bind x=einz
s M TFv:(l,t)ref 25
F'Fv:t=w (TE-9) v:(l,t)re v (TE-10)

T'Fallocv : IST pe pe ((pe, t) ref) M refv PFreadv:ISTHIt=lv

F)—vlz(pc,t)refgm F"VQItg’UQ

LF (TE-11)
'k writevy vo : IST pc L unit = vy := v2

(M;e) — (M’;€’) | Reduction of elaborated terms

(M; Az:t.ev) — (M;e[v/z]) ED

(M;allocv) — (MW [loc — v];loc) (E2)

(MW [loc — V'];write locv) — (MW [loc — v]; () (E3)

(MW [loc — v];read loc) — (M W [loc — v];v) (E4)

(M;eq bind[pc,l]v) — (M;e] bind[t;t] v)when (M;e1) — (M’;e}) (E5)
(M; (mreturn[pc, l|v) bind[pc,l] Ax:-.e) — (M;e[v/z]) (E6)

(Ms f &) — (M5 f /) when(M;e) —> (M's’) 1)

(M; fv) — (M;v) (E8)

Figure 13. Translation of elaborated ML terms, types, and environments into MLIF. NB: We identify unit’ with unit, for all . Additionally,
note that, by construction, each of the combinators bLL, bHH, bHL, bLLLH, bLHHH satisfy the label-ordering premises of (TV-6) .
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