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ABSTRACT This has prompted researchers to devise models that are seeded

We develop a general model to estimate the throughput and good-USing measurements from the underlying network [1, 24]. These
measurements are usually collected in a simple configuration, such

put between arbitrary pairs of nodes in the presence of interfer- h . ’
ence from other nodes in a wireless network. Our model is based @S €ach node sending by itself. They are then used to predict the

on measurements from the underlying network itself and is thus IMmPactof interference in more complex configurations such as mul-
more accurate than abstract models of RF propagation such as thosgpIe transmitting n(_)des. This is a promising Q|rect|on be_cause n
based on distance. The seed measurements are easy to gather, r 1akes no assumptions abou_t the nature of radio propagation which
quiring only O(N) measurements in aN-node networks. Com- a; proven d:f'cu“_ to model in real ener)onmdentsd | ite I
pared to existing measurement-based models, our model advances owever, the existing measurement-based models are guite lim-
the state of the art in three important ways. First, it goes beyond €d- They do not apply to configurations that have more than two

pairwise interference and models interference among an arbitraryse”ders or two flows, have unicast traffic, or have senders with finite
number of senders. Second, it goes beyond broadcast transmisgemands' The on!y way todgy to predict network pehawor under
these general configurations is to actually measure it. (Indeed, most

sions and models the more common case of unicast transmissions. . ; .
Third, it goes beyond homogeneous nodes and models the generaf*Perimental research today is forced to adopt this methodology.)
But measurement alone is insufficient because it lacks predictive

fh ith diff ffi if-
case of heterogeneous nodes with different traffic demands and di power and scalability. While it can accurately predict the perfor-

ferent radio characteristics. Using simulations and measurements ; L .
from two different wireless testbeds, we show that the predictions Mance of the measured configuration, it cannot predict perforenanc
for other configurations. To optimize network performance, one of-

of our model are accurate in a wide range of scenarios. ) - .
ten needs to predict the performance of many alternative configu-
rations. Since measuring all possible configurations is not feasible,

Categories and Subject Descriptors it is necessary to develop a model to estimate network performance
C.4 [Performance of Systemp Modeling techniques under arbitrary configurations (e.g., to perform what-if analysis).
In this paper, we develop a general model of interference in het-

General Terms erogeneous multihop wireless networks with asymmetric link qual-
Measurement, Performance ity and non-binary interference relationships. Our model takes as

input traffic demand and received signal strength (RSS) between
Keywords pairs of nodes, which requires on@(N) measurements in ax-
Model, Wireless Interference node network. It then estimates the rate at which each sender will

transmit and the rate at which each receiver will successfully re-
ceive packets.
1. INTRODUCTION Compared to existing measurement-based models [1, 24], we ad-
Interference is fundamental to wireless networks. Due to the vance the state of art in three important ways. First, we go beyond
broadcast nature of the medium, transmissions from one senderthe case of two senders (or flows) and model interference among
interfere with the transmission and reception capabilities of other an arbitrary number of senders. This is challenging due to complex
nodes. Understanding and managing interference is essential tanteractions among nodes. For instance, the sending rate ofmode
the performance of wireless networks. For instance, it can directly depends on those of all other nodes, which in turn depend on the
benefit channel assignment [21, 25], transmit power control [12] sending rate ofn itself. Second, we go beyond broadcast trans-
routing [5, 6], transport protocols [18], and network diagnosis [4]. missions and model the more common case of unicast transmis-
Unfortunately, the state of the art in estimating the impact of in- sions. Unicast transmissions introduce additional complexities due
terference is rather primitive. Much of the existing work is based to retransmissions, exponential backoff, possibly asymmetric link
on simple, abstract models of radio propagatiem the interfer- qualities, and collisions with not only data packets but also ACK
ence range is twice the communication range). While such models packets. Third, we go beyond the case of infinite traffic demands
may predict the asymptotic behavior, they can be highly inaccurate and model the more realistic case of finite demands. Most real net-
in any given network [14, 1]. works have heterogeneous nodes with varying traffic demands.

Our model consists of three major components:
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2. A receiver model of packet-level loss ratés particular, we Model inputs: measured
find that slot-level and packet-level loss rates can be quite R RSSfrom nodenton

different depending on how losses are generated. Hidden ter- d‘?:n _Brf;flggrgg;i:&t?gerﬁr:gim

minals can significantly increase the packet-level loss rates Model inputs: radio-dependant constants
well beyond the slot-level loss rates by spreading the lossy B CCA threshold ofn
time slots across many packets. Based on this observation,  vn Radio sensitivity of
our receiver model captures both synchronized and unsyn-  n SINR threshold ofi
chronized packet-level collision losses. Wh Thermal noise of
_ Model outputs _
3. Unicast sender and receiver modeldle further extend the tmn Normalized throughput: rate of traffic sent byto n

above broadcast sender and receiver models to capture inter- Emn 'B‘O”ll‘ft"lzed ?Ciocifur;w rtate of traffic received bjrom m
actions among unicast transmissions. We develop two major ——=mn acket foss rate romton

extensions for this purpose. The first extension models the S Subset of nodegttnzrt\é?(g?ggzmitting in state

retransmission and exponential backoff at the sender side, Probability that the network is in stae
and the second extension models data/data, data/ACK, and M Matrix of transition probabilities among states
ACK/ACK collision losses at the receiver side. C(m|S) Probability that channel is clear atin statei

. . i . Q(m) Probability thatm has data to send when backoff counter = 0
We evaluate our model using both extensive simulations and real OH(m)  Average overhead from DIFS, SIFS, and ACK at semder

measurements over two different wireless testbeds. Our results CW(m) Average contention window af
show that the model gives accurate predictions over a wide range of T,(m)  Average packet transmission time for
scenarios for both broadcast and unicast traffic, with both saturated
and unsaturated demands, and across different number of sender
In simulations, where accurate RF profile is available, our model’s sender does not receive an ACK, it doubles its contention window
root mean square error (RMSE) is less than 0.05 for both through- to reduce its access rate. When the contention window reaches its
put and goodput predictions. In the testbeds, where the RF profile maximum value, it stays at that value until a transmission succeeds,
is empirically measured and subject to measurement noise and biasn which case the contention window is reseC\yin.

due to lost packets, our model's RMSE is less than 0.12. While our

model is more general, we find that its accuracy is higher than the 3. OVERVIEW OF OUR MODEL

state-of-art model that considers the special case of two broadcast - . .
senders with infinite demands [24]. Our model takes traffic demands and RF profile as input and out-

puts the estimated sending and receiving rates for each node. Such
a model is a powerful tool for performing what-if analysis and fa-
cilitating network optimization and diagnosis. More specifically,
consider a network wittN nodes. The inputs to the model ai¢:
traffic demand from each senderto each receiven, andii) RF
profile, which refers to the received signal strength (RSS) between
every pair of nodes, denotedRg. The outputs ard:) normalized
throughputny, i.e, the fraction of time whemis sending traffic to
n (including header overhead and retransmissiansjjormalized
goodputgmn, i.e. the fraction of time whem is receiving useful
2. BACKGROUND ON 802.11 data fromm (excluding header overhead and duplicate traffic), and
The IEEE 802.11 standard [22] specifies two types of coordi- iii ) the packet loss ratienn.
nation functions for stations to access the wireless medium: dis- In this paper, we focus oone-hograffic demands, which means
tributed coordination function (DCF) and point coordination func- that traffic is only sent over one hop and not routed further.cin-
tion (PCF). In this paper, we focus on DCF, which is much more not hear fronm, its receiving rate is zero. Modeling network per-
widely used than PCF. DCF is based on CSMA/CA. Before trans- formance under one-hop traffic demands is an important and neces-
mission, a station first checks to see if the medium is available sary step towards estimating end-to-end throughput over multihop
by using virtual carrier-sensing and physical carrier-sensing. The paths, which we plan to investigate in the future.
medium is considered busy if either carrier-sensing indicates so. Our model operates as follow. First, we measure the RF profile
Virtual carrier-sensing considers the medium to be idle if the Net- of the network by letting each sender broadcast in turn and having
work Allocation Vector (NAV) is zero, otherwise it considers the the other nodes measure received RSSI values and loss rates. From
medium to be busy. Only when NAV is zero, physical carrier- these measurements, we recover pairwise R%g)(and back-
sensing is performed. A station determines the channel to be idle ground interferenceB,) due to external sources other than nodes in
when the total energy received at a node is less than the CCA (clear-the modeled network (Section 6). While we use custom traffic for
channel assessment) threshold. In this case, a station may begimur experiments, it may be feasible to perform these measurements
transmission using the following rule. If the medium has been using normal application traffic.
idle for longer than a distributed inter-frame spacing time (DIFS)  Then, we apply ousender modetb estimate the amount of traf-
period, transmission can begin immediately. Otherwise, a station fic sent by each sender under the given demand andeaeiver
that has data to send first waits for DIFS and then waits for a ran- modelto estimate the amount of traffic successfully received. Our
dom backoff interval uniformly chosen betwefnCWy,n], where key contributions lie in the generality and accuracy of the sender
CWhin is the minimum contention window. If at any time during and receiver models. They apply to both broadcast and unicast
the period above the medium is sensed busy, the station freezegransmissions for an arbitrary number of senders, with and with-
its counter and the countdown resumes only after the medium be-out saturated traffic demands. For saturated broadcast demands,
comes idle again for DIFS. When the counter decrements to zero,our model can directly estimate throughput and goodput by com-
the node transmits the packet. In the case of unicast, if the re- puting the stationary probabilities of a Markov model. For unicast
ceiver successfully receives the packet, it waits for a short inter- demands or unsaturated broadcast demands, the transition matrix
frame spacing time (SIFS) and then transmits an ACK frame. If the of the Markov model itself involves additional unknown variables

Table 1: A summary of key notations.

Paper organization: The rest of the paper is organized as follows.
In Section 2, we review the background of IEEE 802.11. In Sec-
tion 3, we give an overview of our interference model. We present
broadcast models in Section 4, and unicast models in Section 5. In
Section 6, we describe how to obtain model inputs. We evaluate
our model using simulations in Section 7 and using testbed exper-
iments in Section 8. We discuss the related work in Section 9 and
conclude in Section 10.



to be estimated. As a result, the stationary probabilities cannot We compute the four per-node probabilities based on 802.11
be directly solved. We solve the problem by applyingitenative DCF. A node can begin transmission when the following three con-
framework, where we first initialize the unknown variables in the ditions are satisfied) its random backoff counter reachesi;the
transition matrix and then compute stationary probabilities, which medium is clear; andi ) the node has data to transmit. Therefore:
are then used to update the transition matrix. Our results show that A
the iteration framework is effective and converges quickly (within  Po1(MIS) = Pr[medium is clean counter= 0 A m has data
10 iterations in our evaluation). = Pr[medium is cledr

We assume the following radio behavior. A transmittede- x Pr[counter= 0| medium is cledr
termines the channel is “clear” when the total energy it receives is

below the CCA (clear-channel assessment) thresHid, A re- x Pr[m has datamedium is clean counter= 0]

ceivern correctly decodes a transmission from a semderheni) —Cc(m§) x 1 x Q(m) @)

its signal strength is at least radio sensitiviy, andii) the signal CW(m) +OH(m) ’

to interference-plus-noise ratio (SINR) is at least the SINR thresh- . . ) )

old, 3n. We denote the thermal noise experienceciiagWh. The ~ WhereC(mlS) is the probability fomm's medium to be clear while

values offm, Y, 8n, andWh are constant but radio-dependent. in statei, which we will cqmpute below.OH(m) (for overhe_ac_i)
The key notations used in this paper are summarized in Table 1.denotes the extra clear time slots that ned@eeds to wait in

We explain each term when it is first encountered. addition toCW(m), the average contention window. For broad-

cast transmissions, we ha@V(m) = i andOH(m) = %
4. BROADCAST TRAFFIC whereTpgs is the DIFS duration andi; is the duration of a time

slot. Q(m) is the probability thaim has data to send given that

the medium is clear and the backoff counter is zero. For saturated

demandsQ(m) = 1. We deriveQ(m) for unsaturated demands in
Section 4.1.2.

4.1 Sender Model . . For the staying idle probability, we sjo(m|S) = 1—Py1(M|S).

The goal of the broadcast sender model is to estimate how much computePyo(m|S) andPy1(mS ), assume that both transmis-
each sender can transmit given traffic demand. The classic Bianchigjon and idle times are exponentially distributed. (We relax this as-
model [2] and its extension.g, [20]) model the behavior of g, mption in Section 4.1.1.) La],(m) bem's average packet trans-
802.11 DCF by constructing a dlscr.ete. Markov chain. To make the ission time, computed based nrs packet size and transmission
model tractable, all packet transmissions are assumed to be syn;aie andTg o denote the duration of a time slot. We have:

chronizedj.e., there are no partially overlapping transmissions. In

a general multihop wireless network, however, partially overlap- P1o(M[S) = Telot/ Tu(m) 3)
ping transmissions can be common because not all nodes can car- Piy(ml§) = 1—Pro(M[S) = 1 - Tsiot/ Tu(mM) 4)
rier sense each other. Thus, these models do not directly apply.

We develop a gener&l-node broadcast sender model based on  Computing the clear probability C(m|S): We haveC(m|S) =

Markov chains. We present it incrementally. First, we present pr{| o < By}, wherelpg is the total interference an in statei
the model for saturated traffic demands with variable packet sizes. andfm is the CCA thresholdl ;s is the sum of constant thermal

Then, we extend it to handle fixed packet sizes and unsaturated de'noiseV\/,n, the background interferend@m, and interference due

mands in Sections 4.1.1 and 4.1.2. Finally, we describe techniques;y yata transmissions by nodesSn(except form itself). Thus,

to enhance the scalability of the model in Section 4.1.3. lnjs = Wi+ Bm+ Sscs) mj Rem- TO estimate this sum, we model

_ Ata high level, we construct a Markov chain where each state gach term as a lognormal random variable — our testbed measure-
| represents a set of nodes (denoteds)ythat are transmitting si- ment results (omitted for lack of space) suggest that the lognormal

multaneously in a time slot. GiveN senders, the Markov chain  gistribution fits the measured RSSI well. The standard approach for
has 4 Poss'b_'? states_(whlch We prune in S(_actlon 4.1.3). We de- analyzing the sum of lognormal random variables is to approximate

rive the transition matrisl for the Markov chain based on 802.11 {0 Sum itself by a lognormal random variable [7, 26]. Following

DCF and use it to compute the stationary probabififyof each Fenton [7], we find a lognormal random variable that matches the
state. The throughput of nodeis then simplytm = ¥ jjmeg Tt. mean and the variance bfs.

Deriving the transition matrix M: In this section, we assume that Formally, assuming thdsm (Vs € §) and By, are all indepen-
nodes send variable-length packets with exponential distribution, dent, we haveE|lyg] =Wm+Bm+ Y scs\ {m} Rsm andVar(lyg] =
and that the state transitions of different nodes are independent.Bvar+z RV Lete? be a lognormal random variable with
We relax these assumptions in Section 4.1.1. Under the indepen-_ " Sei\{m} sm 71 wiet/2
dence assumption, we can focus on computing the transition prob-Z ~ N(K,0%). Tr;e first two moments af” areE[e”] = e**"/2and
abilities of an individual node, sayn. This involves computing E[e?Z] = e2+29° Equating the first two moments of andlys
four transition p.)robabllltle_s for every st_ate (a) staying _IrP idle gives: 0?2 _ E['m\a]f and e2#+20% _ E“%‘S] _ Vaf[|m|s] N
mode, Pyo(m|S); (b) entering transmission modBy1(m|S); (c) 5 .

exiting transmission mod@,0(m|S); and (d) staying in transmis-  (Ellmis])*. Therefore, we have:

sion mode P11(m|S). The probabilityM(i, j) for the network to

In this section, we present our model for broadcast traffic. Ex-
tensions to handle unicast traffic are presented in the next section.

transition from stateto j is: H=2logE[lyg] - % |OgE[|r2n\s] (5)
M0, 1) = [megngPoo(mS)x 0® = logE[1,5] — 210gE[Iys ] (6)
[Trmesns Por(miS) = We can then approxima®m|S) as:
s P1o(M§) x _
[Mreses C(MIS) ~ Pr{e? < Bm} = Pr{Z < logBm} = ® ['0987'“”} ,
HmeSﬂSj Pll(m|s)a (1) 0

*le .
whereSdenotes the complement of a given Set where®[x] = \/%[ffm e duis the standard normal CDF.



Computing stationary probabilities 15: Having derived the tran-
sition matrixM, we can compute the stationary probabilitiedy
solving the following system of linear equations:

S xMGL ) =1 (¥]) )
ym=1 ®

where (7) comes from the property that the stationary probabilities

whereQP™®V(m) is the value of)(m) in the previous iterationgap(m)
is the average time gap between two consecutive transmissions from
m, andT,(m) is the average packet transmission timerof

Equation (9) captures the relationship betw€¢m) and them's
sending rate in the previous iteration. Equation (10) ensures that
the total amount of traffic sent by does not exceed its demand
dm. We then comput®"¥(m) as the largest possib@(m) value
that satisfies all three constraints (9), (10) and (11). This gives:

of the current and next states are equal, and (8) normalizes the sum

of the stationary probabilities to 1. Whew is sparsejt can be
efficiently solved in Matlab usintsqr[23]. Section 4.1.3 describes
how to makeM sparse to enhance scalability.

4.1.1 Handling Similar Packet Sizes

prev

dm 1— tm
1— dm tr[?]rev

Q"¥(m) = min {1, ()

} . (12

At this point, we could directly us@"®¥(m) as our estimate of

The previous section assumes variable packet sizes and indepen®(M) for the next iteration. For quick convergence, we apply a
dent transition probabilities for various nodes. But when all nodes rélaxation procedure that is commonly used in equilibrium compu-

use similar packet sizes, the independence assumption no IongeF

holds. Specifically, given two nodes within carrier sense range

ation [15]. Specifically, we set the ne@(m) to be a linear com-
bination of Q""(m) and QP"®V(m): Q(m) = a x Q"™"(m) + (1 —

from each other, unless their random backoff counters both reach®) x Q”'(m). Our evaluation uses = 0.9, though we find that

0 together, one node will start transmitting earlier and the other

node will sense the carrier and defer to the earlier node [22]. As a

result, overlapping transmissions from the two nodes will have al-
most identical start times. With similar packet sizes, such transmis-
sions will also end at similar times. Such synchronization clearly
violates the independence assumption.

To handle such scenarios, we construsyachronization graph
Gsyn(S) for each staté as follows. Two nodesn,n € § are con-
nected ingsyn(S) if and only if C(m|{n}) < 0.1 andC(n|{m}) <
0.1, whereC(s|{t}) is the clear probability at nodewhen node
t alone is transmitting. We find all the connected components in
Gsyn(S) and define each component asyachronization group

We then make two adjustments to the transition probabilities
M(i, j) to account for the synchronization effect. First, if there exist
two nodesm andn in the same synchronization group @yn(S)

such thatm € Sj andn € Sj, thenM(i, j) = 0. This is because all

the model converges quickly for a wide rangeoof

4.1.3 Enhancing Scalability

The general sender model, as presented earlier, reqlista@s
and N x 2N state transitions foK senders. To enhance scalability,
we use two techniques that prune the states and transitions. First,
we prune all those states that involve too many synchronized trans-
missions, which should occur with low probability. Specifically,
given staté and the correspondir, we eliminate if the number
of edges in the corresponding synchronization grggin(S) ex-
ceeds a given threshold, which is set to 1 in our evaluation. Second,
we prune all those state transitions whose transition probabilities
are too low. Specifically, we reset the transition probabNiti, )
to 0 if it falls below a threshold, which is set to 0.001 in our evalu-
ation. For example, under common 802.11 settings, we can elimi-
nate transitions that involve 2 synchronization groups exiting the

nodes in a synchronization group must exit the transmission mode transmission mode together. By pruning unlikely transitions, we

together. Second, the probability for all nodes in a synchronization
group G to exit the transmission mode together(&jo/Ty). In

contrast, under the independent transmission model, the probabil-

ity is [Mmea(Tsiot/ Tu(M)) = (Ts|ot/Tp)|G|, which is much smaller
when|G| > 2. Here|G| is the number of nodes i8.

4.1.2 Handling Unsaturated Demands

The main challenge in handling unsaturated demands is estimat-

ing Q(m), which is the probability thain has data to send when its
backoff counter is 0 and the channel is cleamatWith saturated
demandsQ(m) has a constant value of 1, but with unsaturated de-
mands it must be computed to ensure that the traffic demdépds
are not exceeded. Computigm) is difficult due to strong inter-
dependency among nodes. Specificalljgm) depends on how of-
ten the channel is clear at which depends on the amount of traffic
generated by other nodes and thus tieualues, which in turn de-
pends on the traffic generated imandQ(m).

We develop an iterative algorithm to comp@e The algorithm
initializes Q to 1 for all senders. In each iteration, the algorithm
first derives the transition matrid based on the ol@ values and
comgutes the stationary probabilitigsand the achieved through-
putth ' = Times T6. It then update® based on their values in the
previous iteration. For this, we use the following relationships:

QP"Y(m) x Tu(m)

prev

QP Ty(m) + Tgap(m) tm ©)
Q(m) x Tyu(m)

Q(m) x Tu(m) + Tgap(mM) dn (10)

Qm < 1 (11)

can reduce the number of non-zero entriedlinthus improving

the efficiency of sparse linear solvers sucltsagin computing the
stationary probabilities. The combination of these two techniques
is highly effective. For example, consider 10 senders inxa55
grid topology, where any two direct horizontal, vertical, or diago-
nal neighbors can hear each other. Without pruning, the transition
matrix has 1024 states and more than a million transitions. After
pruning, it has only 370 states and 1736 transitions.

4.2 Receiver Model

We now present our receiver model for broadcast traffic. Our
goal is to estimate the goodpgn (i.e., the receiving rate). We
havegmn=n X tm x (1 —Lmn) , whereLmp is the packet loss rate

_ Tpayload :
from mto n, andn = Toayioad Theader Toreame represents the fraction

of packet transmission time for the payload (excluding header and
preamble overhead).

A key challenge in estimatingmy, is how to translate slot-level
loss rates (derived from ogtot-levelMarkov chain) to packet loss
rates. Our experiments show that slot-level loss ratesthe frac-
tion of time slots in which loss occurs) can be quite different from
packet loss rates. For example, when loss comes from hidden ter-
minals, where senders do not sense each other and cause collisions,
a packet is usually corrupted partially. In this case, the packet loss
rate can be significantly higher than slot-level loss rate. Consider
transmission of 10 packets, which contain altogether 1000 time
slots. Even if only around 10% slots (100 slots) are lossy, they
can cause a packet loss rate as high as 100% if these lossy slots are
distributed across all packets. Below we first analyze the slot-level
loss rates and then convert them into packet loss rates.



4.2.1 Estimating Slot-Level Loss Probabilities Under the above assumptions, the slot-level loss rate for the fore-
We first estimate the slot-level loss rate from broadcast sender ~ground traffic should be equal to the fraction of time that the back-

to receivemin statei (M€ S). Letlyyg =Wh+Bn+ Stes) (m} Rn ground traffic is in ON periods. That is:

be the total interference at receiver Note that we allowt = n T

becausen andm may be transmitting at the same time. At the slot S U—— (17)
level, a loss occurs whenever the SINR falls belyand/or the Ton+ Toft

RSS falls belowy,. Let fyng = Pr{,if‘“T; < dn} be the slot-level

loss rate caused by low SINR in statd et {55 = Pr{Rmnn < Yn} be
the slot-level loss rate caused by low RSS.

10"

AssumingT on = Ty, the above equation yiel@S = =T
A packet is successfully received if it starts in a background OFF
period and the rest of this background OFF period lasts at least

Computing /mys: Similar to Section 4.1, we approximaligys = the packet transmission time. With exponentially distributed back-
Wh+Bn+ 3 tes)\ {m} Rn With a single moment-matching lognormal - ground OFF periods, we have:

random variable?, whereZ ~ N(y,62). Since the ratio of two

independent lognormal random variabRg, ande? is also a log- _jasyn Toff _ Tu
. / l1-Lmn = == xexp|-=— (18)
normal random variable, lef = B, wherez’ ~ N(if,02). We Ton+ Toff Toff
havep! = E[lo —panda’? =Varllo 02. Thus: asyn
H = EllogRm] ~u 109Rm - -G x exp{‘ 167'2’;“4 (19)
—tmn

Rmn o7 logdn —
bng = Pr{ s < 5“}” Prie® <&} = q:{ o 13) where the first term on the right hand side of Equation (18) is the
probability that the packet transmission starts in a background OFF
period and the second term is the probability that the rest of this

i ISS . S
Computing EmdS' There are two ways to compufﬁds. When background OFF period lasts for at ledst

the distribution ofRyp is known, we can directly compu@aS =

Pr{Rmn < ¥n}. In practice Rmn has to be estimated and is subject to

estimation error. To minimize error, we observe that when there is 5. UNICAST TRAFFIC

only a single sender and no external interference, all losses are due In this section, we extend our broadcast models to handle unicast

to low RSS. Specifically, + (1_é:§ss)Tu(m)/Ts|m gives the packet  traffic. There are two key differences between unicast and broad-

loss rate (assuming independent slot-level loss within a packet). g?ﬁsérgﬁpﬁrr?ésesr'ﬁziséagn dLheetge;éj deitric?rlwi?’ ;2&&;32?#;%% r:ﬁ(tjri(x

Thus we can directly use the measured packet loss rate under trans- _ . . - i po-

missions from a single senderto estimate’’ss . nential backoff. _O_n the_ receiver side, there are additional losses
mn§ due to ACKs colliding with both data and other ACKs. We present

4.2.2 Computing Packet Loss Probabilities, the sender side extensions followed by the receiver side extensions.

Packet losses can be broadly divided into three categories. First,5.1 Extensions to Sender Model

packet losses can stem from low RSS. Second, packet Iogses €an The transition matrix for the sender, in particul@w(m), OH(m)

stem from qolhsmn with paqkets from the same synchronization andQ(m) in Equation (2) are different for unicast traffic.

group. In this case, the fraction of lost packets is close to the frac- e .

tion of lost slots. Third, packet losses can stem from collisions with Computing CW(m): We deriveCW(m) from packet loss ratemn

asynchronous transmissiored, from hidden terminals). In this ~ across all receivers as follows. LetH(L) be the average con-

case, the packet loss rate can be much higher than the slot-levefention window under packet loss rdteandRMAX be the maxi-

loss rate. Let!s3, LY andL2Y"denote the probabilities for these ~ MUM number of retransmissions. Then we have:

three types of packet losses, respectively. Assuming independence RMAX i ) k_
among them, the combined packet loss rate is: H(L) = Min{ (CWnin + 12)2 1.CWnax} | i (20)
Ln=1—(1—LIS) x (1— L) x (1—Lew (14) k=0
A sender may transmit to more than one receiver, each with
Computing L'SS: We estimatd."S as 1— (1 — £135)T(m)/Tset, Note a different loss rate. We estimeal/TV(m) as the weighted aver-
that when measured packet loss rate from a single semigeavail- age over all receivers, where the weights are based on the total
able, we can directly use it 4553 without converting it tof'sS. transmissions to the receivers. For simplicity, we approximate the

: Gunxd
weight as%, whereGm, denotes the expected number of

transmissions (including the first transmission) for each data packet
sent fromm to n. Assuming independent packet loss€g, =

Computing Lyjy and Liny™* Let S§m) be the set of all those states
whose synchronization graph has at least one edge invating

RMAX| k .
SSm) £ {i [me S A G (S) has an edge involving}  (15) 2k=0 "~ Lmn Therefore:
Let the synchronous and asynchronous slot-level loss rates be: CW(m) — z H (L) x zG(r;n deEn 1)
mr mr
syn  Yiesgm) Tilmns asyn  2igsgm) Tilmns " '
Emn = T e = and Zmn = B (16) o
2iimes T 2iimes T Computing OH(m): Unicast involves additional overhead from
yn syn syn __ ,syn SIFS and ACK. LefTgjrs and Tack denote the duration for SIFS

To estimate_2n from /320, we simply setmn = fmn- . .
To estimatel Y™ from (24" we assume that packet losses are and ACK. The average overhead for unicast transmissions from
_ Tors+Tsiest(1-Lmn) Tack

generated by collision of foreground traffic (framto n) and back- mto nis: OH(mn) = T . We then compute
ground traffic that arrive independently. We further model back- OH(m) as the the weighted average®@F (m, n) over alln:

ground traffic as an ON/OFF process with exponentially distributed q

ON and OFF periods. LeTo, andTes denote the average dura- OH(m) = 2 OH(m,n) x Gmn X dmn 22)

tions of the two periods, respectively. £ S+ Gmr X dmr




Computing Q(m): For saturated unicast deman@gm) = 1. For strategies described in Section 4.1.3, we need not consider having
unsaturated unicast demands, we can up@éte) in the same way two groups stop transmitting at the same time (because the transi-
as in Section 4.1.2. The only adjustment we need is to account for tion probability would become too small).

retransmission byn. This can be achieved by simply changing the For a givenG, the probability foiG to be the first group that stops

right hand side of Equation (10) frod, to 5+ Gmr X mr. transmitting in state is M@LI'(G) _ M (G) wherei’(G) is the
C ting throughput tmn: With the newCW(m), OH d TAaM@) T MG ,
omputing throughput tmn: With the newCW(m), OH(m), an resulted state aftd® stops transmission in staie The combined
Q(m), we can compute the transition mathikand stationary prob- loss rate for C2 and C3 can then be computed as:
abilities g for unicast traffic. We can then compute the throughput
from mto n astmp = tm x ;g*”mfg'gﬁ,wheretmzzi;mes . corca M(i,i"(G)) c2 M(i,i"(Gm)) c3
| . fns=| 2 Tomgi) s s @9
5.2 Extensions to Receiver Model GG
Consider noden sending data to node Similar to broadcast, Assuming independence between C1 and C2/C3, the combined

we decompose unicast packet loss ta#g into three components:  slot-level loss rate in stafecan be computed as:
(a) LIS —losses due to low RSS, (b — losses due to collision of o coica
synchronized transmissions, and (&" - losses due to collision lns =1 (1= lng) x (1= 6006 (24)
with asynchronous transmissions. Assuminﬁg independence among o ) )
them, we havetmn=1— (1—LS) x (1— L) x (1—Lad". The only remaining task is to analyRc(m,n|S). The main

The key extensions that we make are: (i) extefi to include challenge is thatn may have multiple receivers and RSS from dif-
RSS induced losses for both data and ACK packets, and (ii) extendferent receivers are different. To address this, for each semeler
lmnis o include SINR induced slot-level loss due to collision be- compute the weighted average of interference that its receivers gen-
tween ACK/data, data/ACK, ACK/ACK (in addition to data/data), €rate, where the weights are based on the traffic demands and deliv-
which can then be used to compufdl andL2Y"in the same way €'Y probabilities to the receivers. Specifically, we approximate the

as in Section 4.2.2. Below we describe these extensions in detail. distribution ofRaci(m, n|S) using a log-normal distribution, whose
meanR,ck(mM, n|S) and variancR¥3 (m,n|S) are computed as:

Estimating Linn: Let 5 = P{Rmn < yn} and 55 = P{Rnm < ack
Ym}. The combined RSS-induced loss on data and ACK is then _ G k=
Rack(mn|§) = {7 X x R } 25
Les=1—(1— fﬁﬁ)Tu(m)/Tslot x(1— ELSrTS])TACK(n)/Ts\m ack( 1S) Z ¢ Amr Prrls m (25)
whereTack (n) is the duration of an ACK sent hy. RY(mn|S) = z { Omr y p%Crl\(s % R}/gr} (26)
Estimating {yng: We consider the following three cases of low = [ 2r dmr

SINR induced slot-level loss: K . .
Wherepﬁ‘frla denotes the probability for a transmission from sender
m to successfully trigger an ACK from its receivein statei. To

simplify the analysis o aCKS, we ignore data loss due to collision

C1: Data loss due to collision with other dat®ata sent fromm
toncan get lost due to collision with data sent by other nodes
in S\ {m}. This is identical to the broadcast case and the

slot-level loss rate 6L = Pr{IFC"mT; < 3}, wherel €1

mr
with other ACK and only consider data loss caused by either low

mn mns — RSS or collision with other data. With such simplification, we can
Wh+Bn + Y tes\ (m} Rin- app.roximatepr‘;‘frkS ~ (L ghe) x (1- K{ﬁﬁ)Tu@/TS'm.
C2: Data loss due to collision with other ACKs and daba this Finally, once all the loss ratélsy, are available andimn has

case, a synchronization gro@(m ¢ G) exits the transmis- ~ been computed, we can compute the goodpwnas=n X tmn x

. . . . . _ | RMAX+1 . L
sion mode while all nodes i \ G continues transmitting. ~ 1=tm whereGnn, is the average number of transmissions per

. . G 1
The ACKs generated by receivers of sender§icould col- mn | RMAXF1Y mi .
lide with data frommto n. To quantify such effects, let ran- data packet1 L ) gives the packet delivery rate (after the

. ; initial transmission andRMAX retransmissions), angl is used to
dom variableRack(m,n|S) denote the interference atthat '
is caused by ACKs sent by the receiver of sendexfter m exclude the header and preamble overhead.

stops transmitting in state(which we will analyze below). 53 Putting It Together

The slot-level loss rate caused by other ACKs and data is . ) ) . )
thus: (G2 _ (G) = Pr{ Rmn 5n), wherelC2 . =W+ B, + Unlike for broadcast traffic, there is a tight coupling between the

mn§ [ mnS sender model and receiver model for unicast traffic. Specifically,
Stes\(Gu{m}) Rin+t Ttec Rack(t,nS) is the total interference  in order to comput€W(m) andOH(m) before deriving the transi-
atn whenmis transmitting data to. tion matrixM and the stationary probabilities, the sender model
. - . requires the knowledge of packet loss ratag (as described in
C3: A(.:K loss due to CO"'S'.On \.N'th other ACKs and datén Section 5.1). Meanwhile, the receiver model needs to knpim
this case, the synchronization group thabelongs to (de-

! I . advance in order to convert slot-level loss rates into packet loss
noted byGp,) exits the transmission mode while all nodes P

in S\ Gy continue transmitting. ACKs sent by receivers of ratesLmn (as described in Section 5.2 and Section 4.2.2).
m . . _ . .
senders inGm\ {m} combined with data sent by nodes in To break such inter-dependency, we apply an iterative framework

. . to progressively refine our model. As summarized in Figure 1,
S \ Gm could collide with ACKs sent fronn to m. The re- we initially setLmn = 0. During each iteration, we first apply the

sulted slot-level loss rate i ﬁs = Pr{IEe"T:1 < 0n}, Where sender model to upda@W(m), OH(m), M andTg based orL.mn
c3 _ ; from the previous iteration. We then use the updatetid compute
lnms _V\_/m+Bm+Zt€S\Gm Rtm+2t€6m\{m_} Rac_k(t’ ms) 'S the newLmn. For unsaturated unicast demands, we also iteratively
t_he total interference at sendamwhen receivenis transmit- updateQ(m) (which are initialized to 1). For quick convergence,
ting an ACK tom. we apply the relaxation procedure in Section 4.1.2 to uptate
Among the above three cases, C2 (with differ&htand C3 are andQ(m). Convergence is reached when the relative changes in
mutually exclusivédbecause only on& can be the first synchro- Lmn and Q(m) become small enough. In our evaluation, we find
nization group that stops transmitting. Note that with our pruning that the model always converges quickly within 10 iterations.




1| initialization: Lmn = 0 (vmvn); Q(m) = 1 (vm); converged= false ware. Simulation offers a more controlled environment and allows
2| while (not converged _ , us to more comprehensively assess the accuracy of individual com-
. 1 Se“de;g’de'gie Section 5.1 and Section 4.1 ponents in our model. Many simplifying assumptions in our model
. ggrr?vrfeuttrar\wlg/i(tzz)r’l mgt(rri];k)/l l;rsérr:?é%\?(m) OFi(m) ando(m) relate to the interaction of the MAC protocol, and any inaccuracy
5 compute stationary probabilities usinQM due to these assumptions impacts the simulator results as well.
6 computeQ"®*(m) based oy, and previoug)(m) g .
Il receiver model: see Section 5.2 and Section 4.2 _ 7.1 Qualnet Modifications
7| compute packet loss rate§y’ from slot-level loss rates using We use Qualnet 3.9.5 for our evaluation. It has been shown
8 /L/ re'fxstf’[‘ngf‘(’fk gc)’r;"frgence (currently we get 0.9) to provide a relatively accurate and realistic simulation environ-
mn — - mn . . .
9 Qm =a X”(S‘neW(m) +(1—a) x Q(m) ment [27]. We make the following modifications to the Qualnet.
I test for convergence _ Correct desynchronization problem: The IEEE 802.11 standard
1(1) d‘Cor‘V”@leoE true if changes inLmn andQ(m) are small enough states that when the medium is busy at any time during a backoff
en slot, the backoff procedure must be suspended without decreasing

the value of the backoff timer. However in Qualnet, the backoff
timer is decremented by propagation delay and causes time desyn-
chronization. Such desynchronization results in an unrealistically
low collision ratio, as reported in [3] and confirmed by our results.
We fix the problem by ensuring that the backoff timer is not decre-

Figure 1: An iterative framework for modeling unicast traffic.

6. OBTAINING MODEL INPUTS

In this section, we describe how we obtain the various inputs
to our model. To estimate pairwise RSS and the external inter- ensu _ er _
ference at each node, naméty, and B, we measure RSSI at mented when the medium is busy at any instant within a time slot.

when onlymis transmitting. We only requir®(N) measurements  Disable EIFS: According to the IEEE 802.11 standard, in DCF a
because wireless is broadcast medium and all receivers can meaframe transmission must use EIFS whenever a frame transmission
sure RSSI when a node transmits. From Reisl. [24], RSShn = begins but does not result in the correct reception of a complete
10log;o( B Bn). For simplicity, we assumB, = 0. (This holds  MAC frame. However several research papers [19, 3] repott tha
when interference from external transmitters is negligible.) We EIFS results in unfairness, and suggests disabling EIFS by setting
then estimateRymy by finding a log-normal distribution that best  EIFS duration to the same value as DIFS. Existing chipsets such as
fits the measured RSSI. L&y and R’ denote the mean and  Atheros also have a configurable EIFS duration. We use the above
variance of the best fitting log-normal distribution. The final RSS method to disable EIFS, and leave modeling EIFS for future work.

distribution is estimated as a log normal distribution with mean of Modify capture effects: In Qualnet, a receiver accepts frames with

; var _, Toreambl ; ; . . h .
Rmn and variance oR', x #2725, We estimate RSS variance as  stronger signals only when they arrive earlier than reception of

RV x %e because we are interested in RSS variation in the other frames. Recently, Kochet al. [13] report that real wire-
time scale of slots while RSSI is measured as an average over theleffs cardstaccipt fr?mteij V\fll_tr? st?onger Slgn?jb evenllf tthtey arnvet
preamble period anB’\3! is TTA of the slot-level RSS variance. 21! reception has started. Therelore, we mo ify Qualne 0 accep
) A ~ Toreamble ~ .77 frames with stronger signals regardless of whether they arrive ear-
As mentioned in Section 4.2.1, when the RSS distribution is i or Jater than reception of other frames. In contrast to modifica-
available, we can estimate{fmn < yn} immediately from the dis-  tjons used in [13], we also accept frames that arrive after preamble
tribution. In practice, because RSSI measurements are only avail-f the frame being received. This simplifies our model, and we plan
able on received packets, estimating the true RSS distribution is o explore a detailed model of capture effects in our future work.
hard. To get around the problem, we can estima{gRRk < vn}

by directly computing the loss rated,, the fraction of packets that
are lost) using the RSSI measurement data.
We find that when the delivery rate is too loe.g, below 10%),

computing the mean and variance of RSS based on RSSI measure*

Support SINR model: The 802.11 implementation in Qualnet
uses a Bit-Error-Rate (BER) model, where it computes SINR of the
current packet, uses the SINR to determine the BER, and then con-
verts the BER to the packet loss rate. To match Qualnet simulation,

ments yields significant bias because RSSI measurements are onhpU" model needs the same BER table as in Qualnet. However Qual-
available on received packets. Accurately estimating theRre net source code does not reveal the BER table it uses for 802.11. To

under such cases is an interesting subject on its own, and we leavéENSUre consistency between our model and Qualnet, we implement
it as future work. In our current testbed evaluation, we consider the commonly used SINR model in both Qualnet and our model.
only the sender groups such that every node peamdn within If the BER table becomes available, our model can immediately
the sender group has eithigfn < 90% Or Lmn = 100%. For fair support BER model by using BER table to map SINR to loss rate.

comparison with the UW model, in all 2-sender evaluation we do .
not apply the above filtering, and compare the estimated and actual7'2 Evaluation Meth0d0|09y
values over all sender groups. We evaluate our model for both broadcast and unicast by vary-
Our model also requires the values of a few radio-dependant con-ing the number of simultaneous senders, the frequency band, and
stants. For testbed experiments, based on our hardware, we use -981e network topologies. We consider both saturated demands and
dBm as thermal noise, 2.5 dB as SINR threshold, and -85 dBm unsaturated demands. The demand is normalized by the physical
as CCA threshold. For simulation experiments, we use the de- layer data rate, and a sender with saturated demand has demand 1.
fault values in Qualnet, where the thermal noise is -92.52 dBm in ~ Throughout the evaluation, we use 25-node topologies. Senders
802.11a and -102.5191 dBm in 802.11b, SINR threshold is 2.5 dB, generate 1024-byte UDP packets at a constant bit rate (CBR). The
and CCA threshold is -85 dBm in 802.11a and -93 dBm in 802.11b. actual sending rate to the air may not be constant, however, due

to variable contention delay. We use the lowest MAC data rates,
7. SIMULATOR-BASED EVALUATION i.e, 6Mbps in 802.11a and 1Mbps in 802.11b. The communication

We evaluate the accuracy of our model in both simulation and ranges of 802.11a and 802.11b with the lowest data rates are 169 m
testbed settings. These two evaluation methodologies are com-and 348 m, respectively.
plementary. Testbed experiments allow us to quantify accuracy in  For each scenario, we conduct 10 random runs, where each run
more realistic scenarios which are subject to fluctuation in the RF randomly selects the senders and receivers and the demands. We
environment, measurement errors, and variations across rell har quantify the accuracy of our model by comparing with the actual
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Figure 3: 10 saturated broadcast senders using 802.11a in a  Figure 5: 10 saturated broadcast senders using 802.11a in a
5 x 5 grid topology over an 300m x 300m area. 5 x 5 grid topology in an 500m x 500m area.

normalized throughput and goodput (defined in Section 3) and com-  The error in UW model is mainly because it assumes that a
puting the root mean square error (RMSE). RMSE s defined as packet can be received as long as its SINR exceeds the threshold. It
Yi(est—actual)? i it ignores the other condition that RSS should exceed the radio sensi-
P  whereP s total number of predictions. We also tivity for a packet to be received. For example, when there is only
thermal noise (-95 dBm) and RSS is above -92.5, SINR would be
above the 2.5 dB threshold. The UW model would thus predict
%OO% packet delivery. In reality, however, when RSS is between
-92.5 dBm and -85 dBm (the radio sensitivity value for 802.11a in
Qualnet), the delivery rate is in fact 0. Unfortunately, there is no
simple extension to the UW model to accommodate the radio sensi-
tivity constraint because the model builds RF profile directly based
For the first scenario, we compare our model with both Qualnet on delivery rgte. With the radio sengitivity cons.traint, there is no di-
simulation and UW model [24]. The UW model predicts the im- rect translation betweelRn, and delivery rate since their relation-

pact of interference in the presence of two broadcast senders withship changes fror®r{ |nR+mv"vn > On} to Pr{Rmn > Yn A\ |n|imv"vn >0n}.
saturated demands. It is seeded ugbi{®\) measurements simi-  For a given delivery ratéRmn is no longer unique.

lar to ours — each node takes turn to broadcast packets and other

nodes log RSSIs and packet delivery rate. Each node obtains its 7-3-2 N Saturated Senders

RSSI versus delivery rate profile using these measurements. To Next we consider the case Nfbroadcast senders. Each sender
predict the impact of two senders trying to send simultaneously, it has saturated demand, as before. We evaluate our model by varying
first estimates the probability with which senders defers based onthe frequency band, network topology, and the number of senders.
the RSSIs they receive fr.om each other. To estimate a re(:eive.r’sDiﬁerent frequency bands (802.11a and 802.11b)Figures 3
good_put from a S(_ender, it uses the standard SINR m_o_del, V_Vh'le and 4 show the scatter plots of actual and predicted throughput
treating transmissions from the second sender as additional inter-; 4 goodput under 802.11a and 802.11b. In each case, there are
ference at the receiver. Since there are no existing models for they 4 oadcast senders with infinite demands. We see that our model
othe_r scenarios, we compare our model only with the actual values;q highly accurate in both cases, with less than 0.05 RMSE. The
obtained in Qualnet. goodput error is lower than the throughput error because many re-
7.3 Broadcast Traffic ceivers have no connectivity to one or more senders, and it is easier

. . . i . to predict the exact goodput for such receivers.
We begin our evaluation by studying broadcast traffic, starting

with the simple case of two senders with saturated demands.

study the accuracy in detail using scatter plots of actual and esti-
mated values. For clarity, in the scatter plots the data points are
plotted in the increasing order of actual values.

We consider the following scenarios below: (i) 2 broadcast sender
with saturated demands; () broadcast senders with saturated de-
mands; (iii)N broadcast senders with unsaturated demandsi\(iv)
unicast senders with saturated demands; andll (whicast senders
with unsaturated demands.

Different network topologies (grid and random): Figure 5 and 6

show the results for 10 broadcast senders using 802.11a imax500

7.3.1 Two Saturated Senders 500m grid topology and 30@ x 300m random topology, respec-
Figure 2 shows the accuracy of throughput and goodput esti- tively. In each case, the model closely tracks the actual values and

mates of our model and the UW model. The graphs plot the actual the error is around or below 0.0S.

values obtained in Qualnet and the predictions of the two models. Different number of senders (2-10): Figure 7 plots throughput

The legend contains the RMSE values for the two models. and goodput RMSE as a function of the number of broadcast senders
We see that both models perform well overall, though our model We see that the error tends to increase slightly with the number of

is more accurate. The RMSE in our model is within 0.005 while senders due to more complex interactions. Yet under all numbers

that of the UW model is 0.145 or more. The UW model also tends of senders, the model can keep RMSE within 0.07 for throughput

to have highly inaccurate predictions for a few cases. estimation and within 0.025 for goodput estimation.
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is the net RMSE under 0.04, but we also do not have individual
instances where the predictions of our model are highly inaccurate.

7.5 Summary

In this section, we used simulation to evaluate the accuracy of
our model in many diverse settings which include broadcast and
unicast traffic, unsaturated and saturated demands, and different
number of senders. We find our model’s predictions of through-
put and goodput are accurate in all the settings that we considered,
and its RMSE value is typically under 0.05. We also find that our
model, while being more general, is also more accurate than a state-
of-art model [24] for the specific case of 2 broadcast senders with
saturated demands.

8. TESTBED-BASED EVALUATION

In this section, we evaluate our model using testbed experiments.

We now consider unsaturated senders and allow nodes to haveQur goal is to quantify the accuracy of our model in real RF envi-
different traffic demands. We assign each sender a normalized defonments and with real hardware. We employ traces from two dif-
mand between 0.1 and 0.9 and use the corresponding inter-arrivafferent testoeds for this purpose. Below, we describe these testbeds

senders using 802.11a in x% grid topology over a 30@x 300m

area. We see that the accuracy of our model for unsaturated de-

8.1 Testbeds and Traces

mands, which are harder to model, is high as well and comparable The two testbeds are our own indoor wireless testbed and the

to its accuracy for saturated demands.

7.4 Unicast Traffic

In this section, we turn our attention to unicast traffic and evalu-
ate how well the unicast extensions of our model perform.

N saturated senders:We start with the case of saturated senders.

UW testbed used by Reét al.[24]. Our testbed has 22 DELL di-
mensions 1100 PCs, located on the same floor of an office building.
Each machine has a 2.66 GHz Intel Celeron D Processor 330 with
512 MB of memory, and is equipped with 802.11 a/b/g NetGear
WAG511. Each machine runs Fedora Core Linux. WeMadwifi
as the driver for the wireless cards, and alek to collect traces.

We collect the trace as follows. First, we let one node broadcast

Figure 9 shows thg result for .10.unicast senders using 802.11a. ASlOOO-byte UDP packets at full speed for 1 minute and log received
for broadcast traffic, the predlqtloqs pf our model track the actual packets at all the other nodes. We repeat the process until every
values closely, and the RMSE is within 0.05. node in the testbed has broadcast once. We refer to this as 1-sender
N unsaturated senders:We conclude our simulation-based evalu- trace. Applying the approach described in Section 6 to the 1-sender
ation by studying the case of unsaturated unicast senders. As aboveirace gives us estimate of RSS between every pair of nodes and ex-
we have 10 senders using 802.11a inxasbgrid topology. The de- ternal interference at each node. Since there is a resident 802.11b/g
mand for each sender is assigned as for the broadcast setting irwireless network that causes strong interference, we collect traces
Section 7.3.3. Figure 10 shows the prediction results for this set- using only 802.11a on our testbed. Unless otherwise specified, each
ting. Our model continues to yield accurate predictions. Not only node uses 30 mW transmission power.
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In order to evaluate the accuracy of our model, we measure the Figure 12 shows the results for 802.11b. As for 802.11a, our
actual sending and receiving rates under multiple senders. Thesemodel has more accurate throughput prediction than the UW model,
traces are only needed for obtaining “ground truth” and not re- while both models have comparable prediction errors for goodput.
quired for using the model. Given a specified number of senders
k, we randomly seledk nodes and let them broadcast simultane- 8.3 Our Testbed
ously for 1 minute. All other nodes log received packets. In the  For our testbed, we evaluate our model by varying number of
1-minute broadcasting period, the nodes send as fast as possible fosenders and using both saturated and unsaturated demands. Fig-
the saturated demand experiments. For unsaturated demands, eaalre 13, 14, 15, and 16 show scatter plots of throughput and good-
sender is assigned a normalized demand which is total demand di-put under 2, 3, 4 and 5 senders with saturated broadcast demands.
vided by the physical layer data rate. The normalized demand is Since the UW model is only applicable to 2 senders, we compare
selected randomly between 0.1 and 0.9 and specifies the maximunmwith the UW model only for 2 senders. As we can see, our model

rate at which the sender can send. For each configuratrthe tracks the actual throughput more closely than the UW model, and
specified number of senders and demand type, we conduct 100 ranyields comparable accuracy for goodput prediction. This is also
dom runs with different set d&f senders. reflected in RMSE. For 3, 4, and 5-sender cases, our model yields

The UW testbed had 14-nodes inside an office building. The estimation close to the actual rates: its RMSE is within 0.12.
traces we use are same as those used for evaluating the UW model [24Figure 17 shows the results for 3 senders with unsaturated de-
The collection methodology is similar to the above except that these mands. As for saturated demands, our model maintains high accu-
traces contain only 2 broadcast senders with saturated demandstacy: its RMSE is within (7.
We study both 802.11a and 802.11b using these traces.

8.4 Summary

8.2 The UW Testbed The testbed evaluation confirms that our model works well in

We first present the results for the UW testbed in this section and €@l environments and using real hardware. Compared with simula-
then for our testbed in the next section. Figure 11 shows scatter-tion, predicting testbed performance is much more challenging due
plots of predicted and actual throughput and goodput under 802.11a!© factors such as biased and noisy measurements, as well as vari-
As we can see, our model closely tracks the actual throughput and@tion in RF condition. Despite these challenges, the results show
goodput. UW model has higher error in the throughput prediction. that our model is effective in predicting throughput and goodput.
Most mispredictions occur when the UW model incorrectly pre-
dicts that two senders defer to each other. This error is caused by
the linear interpolation heuristics to estimate delivery probability 9. RELATED WORK
for a hypothetical RSSI [24]. The heuristic implicitly assumes de-  Considerable research has been done in the area of modeling
livery probability is linearly proportional to RSSI, which may not  wireless networks. Given space constraints, a detailed discussion is
hold in reality. Interestingly, UW model has comparable accuracy not feasible. We thus limit ourselves to a very brief survey to place
to our model in goodput prediction. A closer look reveals that for our work in the overall context. We broadly classify the existing
many links that have higher throughput error, their goodput is often work into three categories. The first category analyzes the perfor-
close to 0 due to poor link quality. Such cases are easy to predict,mance of IEEE 802.11 Distributed Coordinated Function (DCF) [2,
which reduces overall goodput error. 16, 8, 9]. While these models can estimate interference under an
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arbitrary number of senders, they do not apply to networks where the state-of-art by going beyond pairwise interference and mod-
not all nodes can hear each other. eling interference among an arbitrary number of senders for both
The second category of work targets general network topologies broadcast and unicast transmissions.
where not all nodes are within communication range [9, 24]. Be-  The third category estimates the end-to-end throughput in mul-
cause of the challenges presented by such topologies, existing modtihop wireless networks [10, 11, 17, 8]. Since modeling end-to-
els handle only restricted traffic scenarios. Garettal. develop end throughput is more difficult than one-hop throughput, to be
a two-flow model [9], and Reist al. model two competing broad-  tractable, such models only apply to specific scenarios. In par-
cast senders [24]. Our work falls into this category and advancesticular, they either consider asymptotic behavior of wireless net-
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