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ABSTRACT
We develop a general model to estimate the throughput and good-
put between arbitrary pairs of nodes in the presence of interfer-
ence from other nodes in a wireless network. Our model is based
on measurements from the underlying network itself and is thus
more accurate than abstract models of RF propagation such as those
based on distance. The seed measurements are easy to gather, re-
quiring only O(N) measurements in anN-node networks. Com-
pared to existing measurement-based models, our model advances
the state of the art in three important ways. First, it goes beyond
pairwise interference and models interference among an arbitrary
number of senders. Second, it goes beyond broadcast transmis-
sions and models the more common case of unicast transmissions.
Third, it goes beyond homogeneous nodes and models the general
case of heterogeneous nodes with different traffic demands and dif-
ferent radio characteristics. Using simulations and measurements
from two different wireless testbeds, we show that the predictions
of our model are accurate in a wide range of scenarios.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Measurement, Performance

Keywords
Model, Wireless Interference

1. INTRODUCTION
Interference is fundamental to wireless networks. Due to the

broadcast nature of the medium, transmissions from one sender
interfere with the transmission and reception capabilities of other
nodes. Understanding and managing interference is essential to
the performance of wireless networks. For instance, it can directly
benefit channel assignment [21, 25], transmit power control [12],
routing [5, 6], transport protocols [18], and network diagnosis [4].

Unfortunately, the state of the art in estimating the impact of in-
terference is rather primitive. Much of the existing work is based
on simple, abstract models of radio propagation (e.g., the interfer-
ence range is twice the communication range). While such models
may predict the asymptotic behavior, they can be highly inaccurate
in any given network [14, 1].
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This has prompted researchers to devise models that are seeded
using measurements from the underlying network [1, 24]. These
measurements are usually collected in a simple configuration, such
as each node sending by itself. They are then used to predict the
impact of interference in more complex configurations such as mul-
tiple transmitting nodes. This is a promising direction because it
makes no assumptions about the nature of radio propagation which
has proven difficult to model in real environments.

However, the existing measurement-based models are quite lim-
ited. They do not apply to configurations that have more than two
senders or two flows, have unicast traffic, or have senders with finite
demands. The only way today to predict network behavior under
these general configurations is to actually measure it. (Indeed, most
experimental research today is forced to adopt this methodology.)

But measurement alone is insufficient because it lacks predictive
power and scalability. While it can accurately predict the perfor-
mance of the measured configuration, it cannot predict performance
for other configurations. To optimize network performance, one of-
ten needs to predict the performance of many alternative configu-
rations. Since measuring all possible configurations is not feasible,
it is necessary to develop a model to estimate network performance
under arbitrary configurations (e.g., to perform what-if analysis).

In this paper, we develop a general model of interference in het-
erogeneous multihop wireless networks with asymmetric link qual-
ity and non-binary interference relationships. Our model takes as
input traffic demand and received signal strength (RSS) between
pairs of nodes, which requires onlyO(N) measurements in anN-
node network. It then estimates the rate at which each sender will
transmit and the rate at which each receiver will successfully re-
ceive packets.

Compared to existing measurement-based models [1, 24], we ad-
vance the state of art in three important ways. First, we go beyond
the case of two senders (or flows) and model interference among
an arbitrary number of senders. This is challenging due to complex
interactions among nodes. For instance, the sending rate of nodem
depends on those of all other nodes, which in turn depend on the
sending rate ofm itself. Second, we go beyond broadcast trans-
missions and model the more common case of unicast transmis-
sions. Unicast transmissions introduce additional complexities due
to retransmissions, exponential backoff, possibly asymmetric link
qualities, and collisions with not only data packets but also ACK
packets. Third, we go beyond the case of infinite traffic demands
and model the more realistic case of finite demands. Most real net-
works have heterogeneous nodes with varying traffic demands.

Our model consists of three major components:

1. An N-node Markov model for capturing interactions among
an arbitrary number of broadcast senders.The model pro-
vides a simple yet accurate approximation to the 802.11 dis-
tributed coordination function (DCF). It is more general than
previous models (e.g., [2]) and can support multihop wireless
networks, unsaturated demands, asymmetric link quality, and
non-binary interference relationships.



2. A receiver model of packet-level loss rates.In particular, we
find that slot-level and packet-level loss rates can be quite
different depending on how losses are generated. Hidden ter-
minals can significantly increase the packet-level loss rates
well beyond the slot-level loss rates by spreading the lossy
time slots across many packets. Based on this observation,
our receiver model captures both synchronized and unsyn-
chronized packet-level collision losses.

3. Unicast sender and receiver models.We further extend the
above broadcast sender and receiver models to capture inter-
actions among unicast transmissions. We develop two major
extensions for this purpose. The first extension models the
retransmission and exponential backoff at the sender side,
and the second extension models data/data, data/ACK, and
ACK/ACK collision losses at the receiver side.

We evaluate our model using both extensive simulations and real
measurements over two different wireless testbeds. Our results
show that the model gives accurate predictions over a wide range of
scenarios for both broadcast and unicast traffic, with both saturated
and unsaturated demands, and across different number of senders.
In simulations, where accurate RF profile is available, our model’s
root mean square error (RMSE) is less than 0.05 for both through-
put and goodput predictions. In the testbeds, where the RF profile
is empirically measured and subject to measurement noise and bias
due to lost packets, our model’s RMSE is less than 0.12. While our
model is more general, we find that its accuracy is higher than the
state-of-art model that considers the special case of two broadcast
senders with infinite demands [24].
Paper organization: The rest of the paper is organized as follows.
In Section 2, we review the background of IEEE 802.11. In Sec-
tion 3, we give an overview of our interference model. We present
broadcast models in Section 4, and unicast models in Section 5. In
Section 6, we describe how to obtain model inputs. We evaluate
our model using simulations in Section 7 and using testbed exper-
iments in Section 8. We discuss the related work in Section 9 and
conclude in Section 10.

2. BACKGROUND ON 802.11
The IEEE 802.11 standard [22] specifies two types of coordi-

nation functions for stations to access the wireless medium: dis-
tributed coordination function (DCF) and point coordination func-
tion (PCF). In this paper, we focus on DCF, which is much more
widely used than PCF. DCF is based on CSMA/CA. Before trans-
mission, a station first checks to see if the medium is available
by using virtual carrier-sensing and physical carrier-sensing. The
medium is considered busy if either carrier-sensing indicates so.
Virtual carrier-sensing considers the medium to be idle if the Net-
work Allocation Vector (NAV) is zero, otherwise it considers the
medium to be busy. Only when NAV is zero, physical carrier-
sensing is performed. A station determines the channel to be idle
when the total energy received at a node is less than the CCA (clear-
channel assessment) threshold. In this case, a station may begin
transmission using the following rule. If the medium has been
idle for longer than a distributed inter-frame spacing time (DIFS)
period, transmission can begin immediately. Otherwise, a station
that has data to send first waits for DIFS and then waits for a ran-
dom backoff interval uniformly chosen between[0,CWmin], where
CWmin is the minimum contention window. If at any time during
the period above the medium is sensed busy, the station freezes
its counter and the countdown resumes only after the medium be-
comes idle again for DIFS. When the counter decrements to zero,
the node transmits the packet. In the case of unicast, if the re-
ceiver successfully receives the packet, it waits for a short inter-
frame spacing time (SIFS) and then transmits an ACK frame. If the

Model inputs: measured
Rmn RSS from nodem to n
Bn Background interference atn
dmn Traffic demand fromm to n

Model inputs: radio-dependant constants
βm CCA threshold ofm
γn Radio sensitivity ofn
δn SINR threshold ofn
Wn Thermal noise ofn

Model outputs
tmn Normalized throughput: rate of traffic sent bym to n
gmn Normalized goodput: rate of traffic received byn from m
Lmn Packet loss rate fromm to n

Other variables
Si Subset of nodes that are transmitting in statei
πi Probability that the network is in statei
M Matrix of transition probabilities among states

C(m|Si) Probability that channel is clear atm in statei
Q(m) Probability thatmhas data to send when backoff counter = 0

OH(m) Average overhead from DIFS, SIFS, and ACK at senderm
CW(m) Average contention window ofm
Tµ(m) Average packet transmission time form

Table 1: A summary of key notations.

sender does not receive an ACK, it doubles its contention window
to reduce its access rate. When the contention window reaches its
maximum value, it stays at that value until a transmission succeeds,
in which case the contention window is reset toCWmin.

3. OVERVIEW OF OUR MODEL
Our model takes traffic demands and RF profile as input and out-

puts the estimated sending and receiving rates for each node. Such
a model is a powerful tool for performing what-if analysis and fa-
cilitating network optimization and diagnosis. More specifically,
consider a network withN nodes. The inputs to the model are:i)
traffic demand from each senderm to each receivern, and ii) RF
profile, which refers to the received signal strength (RSS) between
every pair of nodes, denoted asRmn. The outputs are:i) normalized
throughputtmn, i.e., the fraction of time whenm is sending traffic to
n (including header overhead and retransmissions),ii) normalized
goodputgmn, i.e., the fraction of time whenn is receiving useful
data fromm (excluding header overhead and duplicate traffic), and
iii ) the packet loss rateLmn.

In this paper, we focus onone-hoptraffic demands, which means
that traffic is only sent over one hop and not routed further. Ifn can-
not hear fromm, its receiving rate is zero. Modeling network per-
formance under one-hop traffic demands is an important and neces-
sary step towards estimating end-to-end throughput over multihop
paths, which we plan to investigate in the future.

Our model operates as follow. First, we measure the RF profile
of the network by letting each sender broadcast in turn and having
the other nodes measure received RSSI values and loss rates. From
these measurements, we recover pairwise RSS (Rmn) and back-
ground interference (Bn) due to external sources other than nodes in
the modeled network (Section 6). While we use custom traffic for
our experiments, it may be feasible to perform these measurements
using normal application traffic.

Then, we apply oursender modelto estimate the amount of traf-
fic sent by each sender under the given demand and ourreceiver
modelto estimate the amount of traffic successfully received. Our
key contributions lie in the generality and accuracy of the sender
and receiver models. They apply to both broadcast and unicast
transmissions for an arbitrary number of senders, with and with-
out saturated traffic demands. For saturated broadcast demands,
our model can directly estimate throughput and goodput by com-
puting the stationary probabilities of a Markov model. For unicast
demands or unsaturated broadcast demands, the transition matrix
of the Markov model itself involves additional unknown variables



to be estimated. As a result, the stationary probabilities cannot
be directly solved. We solve the problem by applying aniterative
framework, where we first initialize the unknown variables in the
transition matrix and then compute stationary probabilities, which
are then used to update the transition matrix. Our results show that
the iteration framework is effective and converges quickly (within
10 iterations in our evaluation).

We assume the following radio behavior. A transmitterm de-
termines the channel is “clear” when the total energy it receives is
below the CCA (clear-channel assessment) threshold,βm. A re-
ceivern correctly decodes a transmission from a senderm wheni)
its signal strength is at least radio sensitivity,γn; andii) the signal
to interference-plus-noise ratio (SINR) is at least the SINR thresh-
old, δn. We denote the thermal noise experienced byn asWn. The
values ofβm, γn, δn, andWn are constant but radio-dependent.

The key notations used in this paper are summarized in Table 1.
We explain each term when it is first encountered.

4. BROADCAST TRAFFIC
In this section, we present our model for broadcast traffic. Ex-

tensions to handle unicast traffic are presented in the next section.

4.1 Sender Model
The goal of the broadcast sender model is to estimate how much

each sender can transmit given traffic demand. The classic Bianchi
model [2] and its extensions (e.g., [20]) model the behavior of
802.11 DCF by constructing a discrete Markov chain. To make the
model tractable, all packet transmissions are assumed to be syn-
chronized,i.e., there are no partially overlapping transmissions. In
a general multihop wireless network, however, partially overlap-
ping transmissions can be common because not all nodes can car-
rier sense each other. Thus, these models do not directly apply.

We develop a generalN-node broadcast sender model based on
Markov chains. We present it incrementally. First, we present
the model for saturated traffic demands with variable packet sizes.
Then, we extend it to handle fixed packet sizes and unsaturated de-
mands in Sections 4.1.1 and 4.1.2. Finally, we describe techniques
to enhance the scalability of the model in Section 4.1.3.

At a high level, we construct a Markov chain where each state
i represents a set of nodes (denoted bySi) that are transmitting si-
multaneously in a time slot. GivenN senders, the Markov chain
has 2N possible states (which we prune in Section 4.1.3). We de-
rive the transition matrixM for the Markov chain based on 802.11
DCF and use it to compute the stationary probabilityπi of each
state. The throughput of nodem is then simplytm = ∑i|m∈Si

πi .

Deriving the transition matrix M: In this section, we assume that
nodes send variable-length packets with exponential distribution,
and that the state transitions of different nodes are independent.
We relax these assumptions in Section 4.1.1. Under the indepen-
dence assumption, we can focus on computing the transition prob-
abilities of an individual node, saym. This involves computing
four transition probabilities for every statei: (a) staying in idle
mode,P00(m|Si); (b) entering transmission mode,P01(m|Si); (c)
exiting transmission mode,P10(m|Si); and (d) staying in transmis-
sion mode,P11(m|Si). The probabilityM(i, j) for the network to
transition from statei to j is:

M(i, j) = ∏m∈Si∩Sj
P00(m|Si)×

∏m∈Si∩Sj
P01(m|Si)×

∏m∈Si∩Sj
P10(m|Si)×

∏m∈Si∩Sj
P11(m|Si), (1)

whereSdenotes the complement of a given setS.

We compute the four per-node probabilities based on 802.11
DCF. A node can begin transmission when the following three con-
ditions are satisfied:i) its random backoff counter reaches 0;ii) the
medium is clear; andiii ) the node has data to transmit. Therefore:

P01(m|Si) = Pr[medium is clear∧counter= 0∧m has data]

= Pr[medium is clear]

×Pr[counter= 0|medium is clear]

×Pr[mhas data|medium is clear∧counter= 0]

= C(m|Si)×
1

CW(m)+OH(m)
×Q(m), (2)

whereC(m|Si) is the probability form’s medium to be clear while
in statei, which we will compute below.OH(m) (for overhead)
denotes the extra clear time slots that nodem needs to wait in
addition toCW(m), the average contention window. For broad-
cast transmissions, we haveCW(m) = CWmin

2 andOH(m) = TDIFS
Tslot

,
whereTDIFS is the DIFS duration andTslot is the duration of a time
slot. Q(m) is the probability thatm has data to send given that
the medium is clear and the backoff counter is zero. For saturated
demands,Q(m) = 1. We deriveQ(m) for unsaturated demands in
Section 4.1.2.

For the staying idle probability, we setP00(m|Si)= 1−P01(m|Si).
To computeP10(m|Si) andP11(m|Si), assume that both transmis-

sion and idle times are exponentially distributed. (We relax this as-
sumption in Section 4.1.1.) LetTµ(m) bem’s average packet trans-
mission time, computed based onm’s packet size and transmission
rate, andTslot denote the duration of a time slot. We have:

P10(m|Si) = Tslot/Tµ(m) (3)

P11(m|Si) = 1−P10(m|Si) = 1−Tslot/Tµ(m) (4)

Computing the clear probability C(m|Si): We haveC(m|Si) =
Pr{Im|Si

≤ βm}, whereIm|Si
is the total interference atm in statei

andβm is the CCA threshold.Im|Si
is the sum of constant thermal

noiseWm, the background interferenceBm, and interference due
to data transmissions by nodes inSi (except form itself). Thus,
Im|Si

= Wm+Bm+ ∑s∈Si\{m} Rsm. To estimate this sum, we model
each term as a lognormal random variable — our testbed measure-
ment results (omitted for lack of space) suggest that the lognormal
distribution fits the measured RSSI well. The standard approach for
analyzing the sum of lognormal random variables is to approximate
the sum itself by a lognormal random variable [7, 26]. Following
Fenton [7], we find a lognormal random variable that matches the
mean and the variance ofIm|Si

.
Formally, assuming thatRsm (∀s∈ Si) andBm are all indepen-

dent, we have:E[Im|Si
] =Wm+B̄m+∑s∈Si\{m} R̄sm, andVar[Im|Si

] =

B
var
m +∑s∈Si\{m}R

var
sm. Let eZ be a lognormal random variable with

Z∼N(µ,σ2). The first two moments ofeZ areE[eZ] = e
µ+σ2/2 and

E[e2Z] = e
2µ+2σ2

. Equating the first two moments ofe
Z andIm|Si

gives: e
µ+σ2/2 = E[Im|Si

], and e
2µ+2σ2

= E[I2
m|Si

] = Var[Im|Si
] +

(E[Im|Si
])2. Therefore, we have:

µ= 2logE[Im|Si
]− 1

2
logE[I2

m|Si
] (5)

σ2 = logE[I2
m|Si

]−2logE[Im|Si
] (6)

We can then approximateC(m|Si) as:

C(m|Si) ≈ Pr{eZ ≤ βm} = Pr{Z ≤ logβm} = Φ
[

logβm−µ
σ

]

,

whereΦ[x] = 1√
2π

R x
−∞ e

−u2

2 du is the standard normal CDF.



Computing stationary probabilities πi : Having derived the tran-
sition matrixM, we can compute the stationary probabilitiesπi by
solving the following system of linear equations:

∑iπi ×M(i, j) = π j (∀ j) (7)

∑iπi = 1 (8)

where (7) comes from the property that the stationary probabilities
of the current and next states are equal, and (8) normalizes the sum
of the stationary probabilities to 1. WhenM is sparse,π can be
efficiently solved in Matlab usinglsqr [23]. Section 4.1.3 describes
how to makeM sparse to enhance scalability.

4.1.1 Handling Similar Packet Sizes
The previous section assumes variable packet sizes and indepen-

dent transition probabilities for various nodes. But when all nodes
use similar packet sizes, the independence assumption no longer
holds. Specifically, given two nodes within carrier sense range
from each other, unless their random backoff counters both reach
0 together, one node will start transmitting earlier and the other
node will sense the carrier and defer to the earlier node [22]. As a
result, overlapping transmissions from the two nodes will have al-
most identical start times. With similar packet sizes, such transmis-
sions will also end at similar times. Such synchronization clearly
violates the independence assumption.

To handle such scenarios, we construct asynchronization graph
Gsyn(Si) for each statei as follows. Two nodesm,n ∈ Si are con-
nected inGsyn(Si) if and only if C(m|{n}) < 0.1 andC(n|{m}) <
0.1, whereC(s|{t}) is the clear probability at nodes when node
t alone is transmitting. We find all the connected components in
Gsyn(Si) and define each component as asynchronization group.

We then make two adjustments to the transition probabilities
M(i, j) to account for the synchronization effect. First, if there exist
two nodesm andn in the same synchronization group ofGsyn(Si)

such thatm∈ Sj andn∈ Sj , thenM(i, j) = 0. This is because all
nodes in a synchronization group must exit the transmission mode
together. Second, the probability for all nodes in a synchronization
group G to exit the transmission mode together is(Tslot/Tµ). In
contrast, under the independent transmission model, the probabil-

ity is ∏m∈G(Tslot/Tµ(m)) =
(

Tslot/Tµ
)|G|, which is much smaller

when|G| ≥ 2. Here|G| is the number of nodes inG.

4.1.2 Handling Unsaturated Demands
The main challenge in handling unsaturated demands is estimat-

ing Q(m), which is the probability thatmhas data to send when its
backoff counter is 0 and the channel is clear atm. With saturated
demands,Q(m) has a constant value of 1, but with unsaturated de-
mands it must be computed to ensure that the traffic demandsdm
are not exceeded. ComputingQ(m) is difficult due to strong inter-
dependency among nodes. Specifically,Q(m) depends on how of-
ten the channel is clear atm, which depends on the amount of traffic
generated by other nodes and thus theirQ values, which in turn de-
pends on the traffic generated bymandQ(m).

We develop an iterative algorithm to computeQ. The algorithm
initializes Q to 1 for all senders. In each iteration, the algorithm
first derives the transition matrixM based on the oldQ values and
computes the stationary probabilitiesπi and the achieved through-
put tprev

m = ∑i:m∈Si
πi . It then updatesQ based on their values in the

previous iteration. For this, we use the following relationships:

Qprev(m)×Tµ(m)

Qprev×Tµ(m)+Tgap(m)
= tprev

m (9)

Q(m)×Tµ(m)

Q(m)×Tµ(m)+Tgap(m)
≤ dm (10)

Q(m) ≤ 1 (11)

whereQprev(m) is the value ofQ(m) in the previous iteration,Tgap(m)
is the average time gap between two consecutive transmissions from
m, andTµ(m) is the average packet transmission time ofm.

Equation (9) captures the relationship betweenQ(m) and them’s
sending rate in the previous iteration. Equation (10) ensures that
the total amount of traffic sent bym does not exceed its demand
dm. We then computeQnew(m) as the largest possibleQ(m) value
that satisfies all three constraints (9), (10) and (11). This gives:

Qnew(m) = min

{

1, Qprev(m)
dm

1−dm

1− tprev
m

tprev
m

}

. (12)

At this point, we could directly useQnew(m) as our estimate of
Q(m) for the next iteration. For quick convergence, we apply a
relaxation procedure that is commonly used in equilibrium compu-
tation [15]. Specifically, we set the newQ(m) to be a linear com-
bination ofQnew(m) andQprev(m): Q(m) = α×Qnew(m) + (1−
α)×Qprev(m). Our evaluation usesα = 0.9, though we find that
the model converges quickly for a wide range ofα.

4.1.3 Enhancing Scalability
The general sender model, as presented earlier, requires 2N states

and 2N ×2N state transitions forN senders. To enhance scalability,
we use two techniques that prune the states and transitions. First,
we prune all those states that involve too many synchronized trans-
missions, which should occur with low probability. Specifically,
given statei and the correspondingSi , we eliminatei if the number
of edges in the corresponding synchronization graphGsyn(Si) ex-
ceeds a given threshold, which is set to 1 in our evaluation. Second,
we prune all those state transitions whose transition probabilities
are too low. Specifically, we reset the transition probabilityM(i, j)
to 0 if it falls below a threshold, which is set to 0.001 in our evalu-
ation. For example, under common 802.11 settings, we can elimi-
nate transitions that involve≥ 2 synchronization groups exiting the
transmission mode together. By pruning unlikely transitions, we
can reduce the number of non-zero entries inM, thus improving
the efficiency of sparse linear solvers such aslsqr in computing the
stationary probabilities. The combination of these two techniques
is highly effective. For example, consider 10 senders in a 5× 5
grid topology, where any two direct horizontal, vertical, or diago-
nal neighbors can hear each other. Without pruning, the transition
matrix has 1024 states and more than a million transitions. After
pruning, it has only 370 states and 1736 transitions.

4.2 Receiver Model
We now present our receiver model for broadcast traffic. Our

goal is to estimate the goodputgmn (i.e., the receiving rate). We
havegmn = η× tm× (1−Lmn) , whereLmn is the packet loss rate

from m to n, andη =
Tpayload

Tpayload+Theader+Tpreamble
represents the fraction

of packet transmission time for the payload (excluding header and
preamble overhead).

A key challenge in estimatingLmn is how to translate slot-level
loss rates (derived from ourslot-levelMarkov chain) to packet loss
rates. Our experiments show that slot-level loss rates (i.e., the frac-
tion of time slots in which loss occurs) can be quite different from
packet loss rates. For example, when loss comes from hidden ter-
minals, where senders do not sense each other and cause collisions,
a packet is usually corrupted partially. In this case, the packet loss
rate can be significantly higher than slot-level loss rate. Consider
transmission of 10 packets, which contain altogether 1000 time
slots. Even if only around 10% slots (100 slots) are lossy, they
can cause a packet loss rate as high as 100% if these lossy slots are
distributed across all packets. Below we first analyze the slot-level
loss rates and then convert them into packet loss rates.



4.2.1 Estimating Slot-Level Loss Probabilities
We first estimate the slot-level loss rate from broadcast senderm

to receivern in statei (m∈Si). Let Imn|Si
=Wn+Bn+∑t∈Si\{m} Rtn

be the total interference at receivern. Note that we allowt = n
becausen andm may be transmitting at the same time. At the slot
level, a loss occurs whenever the SINR falls belowδn and/or the
RSS falls belowγn. Let ℓmn|Si

= Pr{ Rmn
Imn|Si

< δn} be the slot-level

loss rate caused by low SINR in statei. Let ℓrss
mn= Pr{Rmn< γn} be

the slot-level loss rate caused by low RSS.

Computing ℓmn|Si
: Similar to Section 4.1, we approximateImn|Si

=
Wn+Bn+∑t∈Si\{m} Rtn with a single moment-matching lognormal

random variableeZ, whereZ ∼ N(µ,σ2). Since the ratio of two
independent lognormal random variablesRmn ande

Z is also a log-
normal random variable, leteZ′

= Rmn
e

Z , whereZ′ ∼ N(µ′,σ′2). We
haveµ′ = E[logRmn]−µ andσ′2 = Var[logRmn]+σ2. Thus:

ℓmn|Si
= Pr

{

Rmn

Imn|Si

< δn

}

≈Pr{eZ′
< δn}= Φ

[

logδn−µ′

σ′

]

(13)

Computing ℓrss
mn|Si

: There are two ways to computeℓrss
mn|Si

. When

the distribution ofRmn is known, we can directly computeℓrss
mn|Si

=

Pr{Rmn< γn}. In practice,Rmn has to be estimated and is subject to
estimation error. To minimize error, we observe that when there is
only a single sender and no external interference, all losses are due
to low RSS. Specifically, 1− (1− ℓrss

mn|Si
)Tµ(m)/Tslot gives the packet

loss rate (assuming independent slot-level loss within a packet).
Thus we can directly use the measured packet loss rate under trans-
missions from a single senderm to estimateℓrss

mn|Si
.

4.2.2 Computing Packet Loss ProbabilitiesLmn

Packet losses can be broadly divided into three categories. First,
packet losses can stem from low RSS. Second, packet losses can
stem from collision with packets from the same synchronization
group. In this case, the fraction of lost packets is close to the frac-
tion of lost slots. Third, packet losses can stem from collisions with
asynchronous transmissions (e.g., from hidden terminals). In this
case, the packet loss rate can be much higher than the slot-level
loss rate. LetLrss

mn, Lsyn
mn, andLasyn

mn denote the probabilities for these
three types of packet losses, respectively. Assuming independence
among them, the combined packet loss rate is:

Lmn = 1− (1−Lrss
mn)× (1−Lsyn

mn)× (1−Lasyn
mn ) (14)

Computing Lrss
mn: We estimateLrss

mn as 1− (1− ℓrss
mn)

Tµ(m)/Tslot. Note
that when measured packet loss rate from a single senderm is avail-
able, we can directly use it asLrss

mn without converting it toℓrss
mn.

Computing Lsyn
mn and Lasyn

mn : Let SS(m) be the set of all those states
whose synchronization graph has at least one edge involvingm:

SS(m)
△
= {i | m∈ Si ∧G (Si) has an edge involvingm} (15)

Let the synchronous and asynchronous slot-level loss rates be:

ℓ
syn
mn =

∑i∈SS(m) πiℓmn|Si

∑i:m∈Si
πi

, and ℓ
asyn
mn =

∑i 6∈SS(m) πiℓmn|Si

∑i:m∈Si
πi

(16)

To estimateLsyn
mn from ℓ

syn
mn, we simply setLsyn

mn = ℓ
syn
mn.

To estimateLasyn
mn from ℓ

asyn
mn , we assume that packet losses are

generated by collision of foreground traffic (fromm to n) and back-
ground traffic that arrive independently. We further model back-
ground traffic as an ON/OFF process with exponentially distributed
ON and OFF periods. LetTon andToff denote the average dura-
tions of the two periods, respectively.

Under the above assumptions, the slot-level loss rate for the fore-
ground traffic should be equal to the fraction of time that the back-
ground traffic is in ON periods. That is:

Ton

Ton+Toff
= ℓ

asyn
mn (17)

AssumingTon = Tµ, the above equation yieldsToff = 1−ℓ
asyn
mn

ℓ
asyn
mn

Tµ.
A packet is successfully received if it starts in a background OFF

period and the rest of this background OFF period lasts at least
the packet transmission time. With exponentially distributed back-
ground OFF periods, we have:

1−Lasyn
mn =

Toff

Ton+Toff
×exp

[

− Tµ

Toff

]

(18)

= (1− ℓ
asyn
mn )×exp

[

− ℓ
asyn
mn

1− ℓ
asyn
mn

]

(19)

where the first term on the right hand side of Equation (18) is the
probability that the packet transmission starts in a background OFF
period and the second term is the probability that the rest of this
background OFF period lasts for at leastTµ.

5. UNICAST TRAFFIC
In this section, we extend our broadcast models to handle unicast

traffic. There are two key differences between unicast and broad-
cast transmissions. On the sender side, the transition matrixM is
different under unicast due to additional ACK overhead and expo-
nential backoff. On the receiver side, there are additional losses
due to ACKs colliding with both data and other ACKs. We present
the sender side extensions followed by the receiver side extensions.

5.1 Extensions to Sender Model
The transition matrix for the sender, in particular,CW(m), OH(m)

andQ(m) in Equation (2) are different for unicast traffic.

Computing CW(m): We deriveCW(m) from packet loss rateLmn
across all receiversn as follows. LetH(L) be the average con-
tention window under packet loss rateL, andRMAX be the maxi-
mum number of retransmissions. Then we have:

H(L) =
RMAX

∑
k=0

min{(CWmin +1)2k−1,CWmax}
2

Lk (20)

A sender may transmit to more than one receiver, each with
a different loss rate. We estimateCW(m) as the weighted aver-
age over all receivers, where the weights are based on the total
transmissions to the receivers. For simplicity, we approximate the
weight as Gmn×dmn

∑r Gmr×dmr
, whereGmn denotes the expected number of

transmissions (including the first transmission) for each data packet
sent fromm to n. Assuming independent packet losses,Gmn =
∑RMAX

k=0 Lk
mn. Therefore:

CW(m) = ∑
n

[

H(Lmn)×
Gmn×dmn

∑r Gmr×dmr

]

(21)

Computing OH(m): Unicast involves additional overhead from
SIFS and ACK. LetTSIFS andTACK denote the duration for SIFS
and ACK. The average overhead for unicast transmissions from

m to n is: OH(m,n) =
TDIFS+TSIFS+(1−Lmn)TACK

Tslot
. We then compute

OH(m) as the the weighted average ofOH(m,n) over alln:

OH(m) = ∑
n

[

OH(m,n)× Gmn×dmn

∑r Gmr×dmr

]

(22)



Computing Q(m): For saturated unicast demands,Q(m) = 1. For
unsaturated unicast demands, we can updateQ(m) in the same way
as in Section 4.1.2. The only adjustment we need is to account for
retransmission bym. This can be achieved by simply changing the
right hand side of Equation (10) fromdm to ∑r Gmr×dmr.
Computing throughput tmn: With the newCW(m), OH(m), and
Q(m), we can compute the transition matrixM and stationary prob-
abilitiesπi for unicast traffic. We can then compute the throughput
from m to n astmn = tm× Gmn×dmn

∑r Gmr×dmr
, wheretm = ∑i:m∈Si

πi .

5.2 Extensions to Receiver Model
Consider nodem sending data to noden. Similar to broadcast,

we decompose unicast packet loss rateLmn into three components:
(a)Lrss

mn – losses due to low RSS, (b)Lsyn
mn – losses due to collision of

synchronized transmissions, and (c)Lasyn
mn – losses due to collision

with asynchronous transmissions. Assuming independence among
them, we have:Lmn = 1− (1−Lrss

mn)× (1−Lsyn
mn)× (1−Lasyn

mn ).
The key extensions that we make are: (i) extendLrss

mn to include
RSS induced losses for both data and ACK packets, and (ii) extend
ℓmn|S to include SINR induced slot-level loss due to collision be-
tween ACK/data, data/ACK, ACK/ACK (in addition to data/data),
which can then be used to computeLsyn

mn andLasyn
mn in the same way

as in Section 4.2.2. Below we describe these extensions in detail.
Estimating Lrss

mn: Let ℓrss
mn = Pr{Rmn < γn} and ℓrss

nm = Pr{Rnm <
γm}. The combined RSS-induced loss on data and ACK is then

Lrss
mn = 1− (1− ℓrss

mn)
Tµ(m)/Tslot × (1− ℓrss

nm)TACK(n)/Tslot

whereTACK(n) is the duration of an ACK sent byn.
Estimating ℓmn|Si

: We consider the following three cases of low
SINR induced slot-level loss:

C1: Data loss due to collision with other data.Data sent fromm
to n can get lost due to collision with data sent by other nodes
in Si \ {m}. This is identical to the broadcast case and the
slot-level loss rate isℓC1

mn|Si
= Pr{ Rmn

IC1
mn|Si

< δn}, whereIC1
mn|Si

=

Wn +Bn +∑t∈Si\{m} Rtn.

C2: Data loss due to collision with other ACKs and data.In this
case, a synchronization groupG (m 6∈ G) exits the transmis-
sion mode while all nodes inSi \G continues transmitting.
The ACKs generated by receivers of senders inG could col-
lide with data fromm to n. To quantify such effects, let ran-
dom variableRack(m,n|Si) denote the interference atn that
is caused by ACKs sent by the receiver of senderm afterm
stops transmitting in statei (which we will analyze below).
The slot-level loss rate caused by other ACKs and data is
thus: ℓC2

mn|Si
(G) = Pr{ Rmn

IC2
mn|Si

< δn}, whereIC2
mn|Si

= Wn +Bn +

∑t∈Si\(G∪{m}) Rtn+∑t∈GRack(t,n|Si) is the total interference
at n whenm is transmitting data ton.

C3: ACK loss due to collision with other ACKs and data.In
this case, the synchronization group thatm belongs to (de-
noted byGm) exits the transmission mode while all nodes
in Si \Gm continue transmitting. ACKs sent by receivers of
senders inGm \ {m} combined with data sent by nodes in
Si \Gm could collide with ACKs sent fromn to m. The re-
sulted slot-level loss rate isℓC3

mn|Si
= Pr{ Rnm

IC3
nm|Si

< δn}, where

IC3
nm|Si

=Wm+Bm+∑t∈Si\Gm
Rtm+∑t∈Gm\{m} Rack(t,m|Si) is

the total interference at sendermwhen receivern is transmit-
ting an ACK tom.

Among the above three cases, C2 (with differentG) and C3 are
mutually exclusivebecause only oneG can be the first synchro-
nization group that stops transmitting. Note that with our pruning

strategies described in Section 4.1.3, we need not consider having
two groups stop transmitting at the same time (because the transi-
tion probability would become too small).

For a givenG, the probability forG to be the first group that stops

transmitting in statei is M(i,i′(G))
∑ j 6=i M(i, j) =

M(i,i′(G))
1−M(i,i) , wherei′(G) is the

resulted state afterG stops transmission in statei. The combined
loss rate for C2 and C3 can then be computed as:

ℓC2+C3
mn|Si

=

[

∑
G:m6∈G

M(i, i′(G))

1−M(i, i)
ℓC2
mn|Si

(G)

]

+
M(i, i′(Gm))

1−M(i, i)
ℓC3
mn|Si

(23)

Assuming independence between C1 and C2/C3, the combined
slot-level loss rate in statei can be computed as:

ℓmn|Si
= 1− (1− ℓC1

mn|Si
)× (1− ℓC2+C3

mn|Si
) (24)

The only remaining task is to analyzeRack(m,n|Si). The main
challenge is thatm may have multiple receivers and RSS from dif-
ferent receivers are different. To address this, for each senderwe
compute the weighted average of interference that its receivers gen-
erate, where the weights are based on the traffic demands and deliv-
ery probabilities to the receivers. Specifically, we approximate the
distribution ofRack(m,n|Si) using a log-normal distribution, whose
meanR̄ack(m,n|Si) and varianceRvar

ack(m,n|Si) are computed as:

R̄ack(m,n|Si) = ∑
r

[

dmr

∑r ′ dmr′
× pack

mr|Si
× R̄rn

]

(25)

R
var
ack(m,n|Si) = ∑

r

[

dmr

∑r ′ dmr′
× pack

mr|Si
×R

var
rn

]

(26)

wherepack
mr|Si

denotes the probability for a transmission from sender
m to successfully trigger an ACK from its receiverr in statei. To
simplify the analysis ofpack

mr|Si
, we ignore data loss due to collision

with other ACK and only consider data loss caused by either low
RSS or collision with other data. With such simplification, we can
approximatepack

mr|Si
≈ (1− ℓC1

mn|Si
)× (1− ℓrss

mn)
Tµ(m)/Tslot.

Finally, once all the loss ratesLmn are available andtmn has
been computed, we can compute the goodput asgmn = η× tmn×
1−LRMAX+1

mn
Gmn

, whereGmn is the average number of transmissions per

data packet,(1−LRMAX+1
mn ) gives the packet delivery rate (after the

initial transmission andRMAX retransmissions), andη is used to
exclude the header and preamble overhead.

5.3 Putting It Together
Unlike for broadcast traffic, there is a tight coupling between the

sender model and receiver model for unicast traffic. Specifically,
in order to computeCW(m) andOH(m) before deriving the transi-
tion matrixM and the stationary probabilitiesπi , the sender model
requires the knowledge of packet loss ratesLmn (as described in
Section 5.1). Meanwhile, the receiver model needs to knowπi in
advance in order to convert slot-level loss rates into packet loss
ratesLmn (as described in Section 5.2 and Section 4.2.2).

To break such inter-dependency, we apply an iterative framework
to progressively refine our model. As summarized in Figure 1,
we initially setLmn = 0. During each iteration, we first apply the
sender model to updateCW(m), OH(m), M andπi based onLmn
from the previous iteration. We then use the updatedπi to compute
the newLmn. For unsaturated unicast demands, we also iteratively
updateQ(m) (which are initialized to 1). For quick convergence,
we apply the relaxation procedure in Section 4.1.2 to updateLmn
andQ(m). Convergence is reached when the relative changes in
Lmn andQ(m) become small enough. In our evaluation, we find
that the model always converges quickly within 10 iterations.



1 initialization: Lmn = 0 (∀m∀n); Q(m) = 1 (∀m); converged= false
2 while (not converged)

// sender model: see Section 5.1 and Section 4.1
3 computeCW(m), OH(m) usingLmn

4 derive transition matrixM from CW(m), OH(m) andQ(m)
5 compute stationary probabilitiesπi usingM
6 computeQnew(m) based onπi and previousQ(m)

// receiver model: see Section 5.2 and Section 4.2
7 compute packet loss ratesLnew

mn from slot-level loss rates usingπi
// relaxation for quick convergence (currently we setα = 0.9)

8 Lmn = α×Lnew
mn +(1−α)×Lmn

9 Q(m) = α×Qnew(m)+(1−α)×Q(m)
// test for convergence

10 converged= true if changes inLmn andQ(m) are small enough
11 end

Figure 1: An iterative framework for modeling unicast traffic.

6. OBTAINING MODEL INPUTS
In this section, we describe how we obtain the various inputs

to our model. To estimate pairwise RSS and the external inter-
ference at each node, namelyRmn andBn, we measure RSSI atn
when onlym is transmitting. We only requireO(N) measurements
because wireless is broadcast medium and all receivers can mea-
sure RSSI when a node transmits. From Reiset al. [24], RSSImn =
10log10(

Rmn+Bn
Wn

). For simplicity, we assumeBn = 0. (This holds
when interference from external transmitters is negligible.) We
then estimateRmn by finding a log-normal distribution that best
fits the measured RSSI. Let̄Rmn andR

′var
mn denote the mean and

variance of the best fitting log-normal distribution. The final RSS
distribution is estimated as a log normal distribution with mean of
R̄mn and variance ofR′var

mn×
Tpreamble

Tslot
. We estimate RSS variance as

R
′var
mn×

Tpreamble

Tslot
because we are interested in RSS variation in the

time scale of slots while RSSI is measured as an average over the
preamble period andR′var

mn is Tslot
Tpreamble

of the slot-level RSS variance.
As mentioned in Section 4.2.1, when the RSS distribution is

available, we can estimate Pr{Rmn< γn} immediately from the dis-
tribution. In practice, because RSSI measurements are only avail-
able on received packets, estimating the true RSS distribution is
hard. To get around the problem, we can estimate Pr{Rmn < γn}
by directly computing the loss rate (i.e., the fraction of packets that
are lost) using the RSSI measurement data.

We find that when the delivery rate is too low (e.g., below 10%),
computing the mean and variance of RSS based on RSSI measure-
ments yields significant bias because RSSI measurements are only
available on received packets. Accurately estimating the trueRmn
under such cases is an interesting subject on its own, and we leave
it as future work. In our current testbed evaluation, we consider
only the sender groups such that every node pairm andn within
the sender group has eitherLmn ≤ 90% orLmn = 100%. For fair
comparison with the UW model, in all 2-sender evaluation we do
not apply the above filtering, and compare the estimated and actual
values over all sender groups.

Our model also requires the values of a few radio-dependant con-
stants. For testbed experiments, based on our hardware, we use -95
dBm as thermal noise, 2.5 dB as SINR threshold, and -85 dBm
as CCA threshold. For simulation experiments, we use the de-
fault values in Qualnet, where the thermal noise is -92.52 dBm in
802.11a and -102.5191 dBm in 802.11b, SINR threshold is 2.5 dB,
and CCA threshold is -85 dBm in 802.11a and -93 dBm in 802.11b.

7. SIMULATOR-BASED EVALUATION
We evaluate the accuracy of our model in both simulation and

testbed settings. These two evaluation methodologies are com-
plementary. Testbed experiments allow us to quantify accuracy in
more realistic scenarios which are subject to fluctuation in the RF
environment, measurement errors, and variations across real hard-

ware. Simulation offers a more controlled environment and allows
us to more comprehensively assess the accuracy of individual com-
ponents in our model. Many simplifying assumptions in our model
relate to the interaction of the MAC protocol, and any inaccuracy
due to these assumptions impacts the simulator results as well.

7.1 Qualnet Modifications
We use Qualnet 3.9.5 for our evaluation. It has been shown

to provide a relatively accurate and realistic simulation environ-
ment [27]. We make the following modifications to the Qualnet.

Correct desynchronization problem: The IEEE 802.11 standard
states that when the medium is busy at any time during a backoff
slot, the backoff procedure must be suspended without decreasing
the value of the backoff timer. However in Qualnet, the backoff
timer is decremented by propagation delay and causes time desyn-
chronization. Such desynchronization results in an unrealistically
low collision ratio, as reported in [3] and confirmed by our results.
We fix the problem by ensuring that the backoff timer is not decre-
mented when the medium is busy at any instant within a time slot.

Disable EIFS: According to the IEEE 802.11 standard, in DCF a
frame transmission must use EIFS whenever a frame transmission
begins but does not result in the correct reception of a complete
MAC frame. However several research papers [19, 3] report that
EIFS results in unfairness, and suggests disabling EIFS by setting
EIFS duration to the same value as DIFS. Existing chipsets such as
Atheros also have a configurable EIFS duration. We use the above
method to disable EIFS, and leave modeling EIFS for future work.

Modify capture effects: In Qualnet, a receiver accepts frames with
stronger signals only when they arrive earlier than reception of
other frames. Recently, Kochutet al. [13] report that real wire-
less cards accept frames with stronger signals even if they arrive
after reception has started. Therefore, we modify Qualnet to accept
frames with stronger signals regardless of whether they arrive ear-
lier or later than reception of other frames. In contrast to modifica-
tions used in [13], we also accept frames that arrive after preamble
of the frame being received. This simplifies our model, and we plan
to explore a detailed model of capture effects in our future work.

Support SINR model: The 802.11 implementation in Qualnet
uses a Bit-Error-Rate (BER) model, where it computes SINR of the
current packet, uses the SINR to determine the BER, and then con-
verts the BER to the packet loss rate. To match Qualnet simulation,
our model needs the same BER table as in Qualnet. However Qual-
net source code does not reveal the BER table it uses for 802.11. To
ensure consistency between our model and Qualnet, we implement
the commonly used SINR model in both Qualnet and our model.
If the BER table becomes available, our model can immediately
support BER model by using BER table to map SINR to loss rate.

7.2 Evaluation Methodology
We evaluate our model for both broadcast and unicast by vary-

ing the number of simultaneous senders, the frequency band, and
the network topologies. We consider both saturated demands and
unsaturated demands. The demand is normalized by the physical
layer data rate, and a sender with saturated demand has demand 1.

Throughout the evaluation, we use 25-node topologies. Senders
generate 1024-byte UDP packets at a constant bit rate (CBR). The
actual sending rate to the air may not be constant, however, due
to variable contention delay. We use the lowest MAC data rates,
i.e., 6Mbps in 802.11a and 1Mbps in 802.11b. The communication
ranges of 802.11a and 802.11b with the lowest data rates are 169 m
and 348 m, respectively.

For each scenario, we conduct 10 random runs, where each run
randomly selects the senders and receivers and the demands. We
quantify the accuracy of our model by comparing with the actual
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Figure 2: 2 saturated broadcast senders using 802.11a in a5×5
grid topology over an300m×300m area.
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Figure 3: 10 saturated broadcast senders using 802.11a in a
5×5 grid topology over an300m×300m area.

normalized throughput and goodput (defined in Section 3) and com-
puting the root mean square error (RMSE). RMSE is defined as
√

∑i(esti−actuali)2

P , whereP is total number of predictions. We also
study the accuracy in detail using scatter plots of actual and esti-
mated values. For clarity, in the scatter plots the data points are
plotted in the increasing order of actual values.

We consider the following scenarios below: (i) 2 broadcast senders
with saturated demands; (ii)N broadcast senders with saturated de-
mands; (iii)N broadcast senders with unsaturated demands; (iv)N
unicast senders with saturated demands; and (v)N unicast senders
with unsaturated demands.

For the first scenario, we compare our model with both Qualnet
simulation and UW model [24]. The UW model predicts the im-
pact of interference in the presence of two broadcast senders with
saturated demands. It is seeded usingO(N) measurements simi-
lar to ours – each node takes turn to broadcast packets and other
nodes log RSSIs and packet delivery rate. Each node obtains its
RSSI versus delivery rate profile using these measurements. To
predict the impact of two senders trying to send simultaneously, it
first estimates the probability with which senders defers based on
the RSSIs they receive from each other. To estimate a receiver’s
goodput from a sender, it uses the standard SINR model, while
treating transmissions from the second sender as additional inter-
ference at the receiver. Since there are no existing models for the
other scenarios, we compare our model only with the actual values
obtained in Qualnet.

7.3 Broadcast Traffic
We begin our evaluation by studying broadcast traffic, starting

with the simple case of two senders with saturated demands.

7.3.1 Two Saturated Senders
Figure 2 shows the accuracy of throughput and goodput esti-

mates of our model and the UW model. The graphs plot the actual
values obtained in Qualnet and the predictions of the two models.
The legend contains the RMSE values for the two models.

We see that both models perform well overall, though our model
is more accurate. The RMSE in our model is within 0.005 while
that of the UW model is 0.145 or more. The UW model also tends
to have highly inaccurate predictions for a few cases.
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Figure 4: 10 saturated broadcast senders using 802.11b in a
5×5 grid topology in an 500m×500m area.
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Figure 5: 10 saturated broadcast senders using 802.11a in a
5×5 grid topology in an 500m×500m area.

The error in UW model is mainly because it assumes that a
packet can be received as long as its SINR exceeds the threshold. It
ignores the other condition that RSS should exceed the radio sensi-
tivity for a packet to be received. For example, when there is only
thermal noise (-95 dBm) and RSS is above -92.5, SINR would be
above the 2.5 dB threshold. The UW model would thus predict
100% packet delivery. In reality, however, when RSS is between
-92.5 dBm and -85 dBm (the radio sensitivity value for 802.11a in
Qualnet), the delivery rate is in fact 0. Unfortunately, there is no
simple extension to the UW model to accommodate the radio sensi-
tivity constraint because the model builds RF profile directly based
on delivery rate. With the radio sensitivity constraint, there is no di-
rect translation betweenRmn and delivery rate since their relation-
ship changes fromPr{ Rmn

In+Wn
≥ δn} to Pr{Rmn≥ γn∧ Rmn

In+Wn
≥ δn}.

For a given delivery rate,Rmn is no longer unique.

7.3.2 N Saturated Senders
Next we consider the case ofN broadcast senders. Each sender

has saturated demand, as before. We evaluate our model by varying
the frequency band, network topology, and the number of senders.

Different frequency bands (802.11a and 802.11b):Figures 3
and 4 show the scatter plots of actual and predicted throughput
and goodput under 802.11a and 802.11b. In each case, there are
10 broadcast senders with infinite demands. We see that our model
is highly accurate in both cases, with less than 0.05 RMSE. The
goodput error is lower than the throughput error because many re-
ceivers have no connectivity to one or more senders, and it is easier
to predict the exact goodput for such receivers.

Different network topologies (grid and random): Figure 5 and 6
show the results for 10 broadcast senders using 802.11a in a 500m×
500m grid topology and 300m× 300m random topology, respec-
tively. In each case, the model closely tracks the actual values and
the error is around or below 0.05.

Different number of senders (2-10): Figure 7 plots throughput
and goodput RMSE as a function of the number of broadcast senders.
We see that the error tends to increase slightly with the number of
senders due to more complex interactions. Yet under all numbers
of senders, the model can keep RMSE within 0.07 for throughput
estimation and within 0.025 for goodput estimation.
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Figure 6: 10 saturated broadcast senders using 802.11a in
random topologies, where nodes are randomly placed in an
300m×300m area.
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Figure 7: RMSE under a varying number of sender.
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Figure 8: 10 unsaturated broadcast senders using 802.11a in a
5×5 grid topology over an300m×300m area.

7.3.3 N Unsaturated Senders
We now consider unsaturated senders and allow nodes to have

different traffic demands. We assign each sender a normalized de-
mand between 0.1 and 0.9 and use the corresponding inter-arrival
time for CBR traffic. Figure 8 shows the results for 10 broadcast
senders using 802.11a in a 5×5 grid topology over a 300m×300m
area. We see that the accuracy of our model for unsaturated de-
mands, which are harder to model, is high as well and comparable
to its accuracy for saturated demands.

7.4 Unicast Traffic
In this section, we turn our attention to unicast traffic and evalu-

ate how well the unicast extensions of our model perform.

N saturated senders:We start with the case ofN saturated senders.
Figure 9 shows the result for 10 unicast senders using 802.11a. As
for broadcast traffic, the predictions of our model track the actual
values closely, and the RMSE is within 0.05.

N unsaturated senders:We conclude our simulation-based evalu-
ation by studying the case of unsaturated unicast senders. As above,
we have 10 senders using 802.11a in a 5×5 grid topology. The de-
mand for each sender is assigned as for the broadcast setting in
Section 7.3.3. Figure 10 shows the prediction results for this set-
ting. Our model continues to yield accurate predictions. Not only
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Figure 9: 10 saturated unicast senders using 802.11a in a5×5
grid topology over an300m×300m area.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

T
hr

ou
gh

pu
t

Sender ID

Actual
Ours (RMSE=0.0363)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80  90  100

G
oo

dp
ut

Sender-Receiver Pair ID

Actual
Ours (RMSE=0.0296)

(a) throughput (b) goodput

Figure 10: 10 unsaturated unicast senders using 802.11a in a
5×5 grid topology over an300m×300m area.

is the net RMSE under 0.04, but we also do not have individual
instances where the predictions of our model are highly inaccurate.

7.5 Summary
In this section, we used simulation to evaluate the accuracy of

our model in many diverse settings which include broadcast and
unicast traffic, unsaturated and saturated demands, and different
number of senders. We find our model’s predictions of through-
put and goodput are accurate in all the settings that we considered,
and its RMSE value is typically under 0.05. We also find that our
model, while being more general, is also more accurate than a state-
of-art model [24] for the specific case of 2 broadcast senders with
saturated demands.

8. TESTBED-BASED EVALUATION
In this section, we evaluate our model using testbed experiments.

Our goal is to quantify the accuracy of our model in real RF envi-
ronments and with real hardware. We employ traces from two dif-
ferent testbeds for this purpose. Below, we describe these testbeds
and the traces, followed by the evaluation results for each testbed.

8.1 Testbeds and Traces
The two testbeds are our own indoor wireless testbed and the

UW testbed used by Reiset al. [24]. Our testbed has 22 DELL di-
mensions 1100 PCs, located on the same floor of an office building.
Each machine has a 2.66 GHz Intel Celeron D Processor 330 with
512 MB of memory, and is equipped with 802.11 a/b/g NetGear
WAG511. Each machine runs Fedora Core Linux. We useMadwifi
as the driver for the wireless cards, and useclick to collect traces.

We collect the trace as follows. First, we let one node broadcast
1000-byte UDP packets at full speed for 1 minute and log received
packets at all the other nodes. We repeat the process until every
node in the testbed has broadcast once. We refer to this as 1-sender
trace. Applying the approach described in Section 6 to the 1-sender
trace gives us estimate of RSS between every pair of nodes and ex-
ternal interference at each node. Since there is a resident 802.11b/g
wireless network that causes strong interference, we collect traces
using only 802.11a on our testbed. Unless otherwise specified, each
node uses 30 mW transmission power.
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Figure 11: 2 saturated 802.11a broadcast senders in UW traces.

In order to evaluate the accuracy of our model, we measure the
actual sending and receiving rates under multiple senders. These
traces are only needed for obtaining “ground truth” and not re-
quired for using the model. Given a specified number of senders
k, we randomly selectk nodes and let them broadcast simultane-
ously for 1 minute. All other nodes log received packets. In the
1-minute broadcasting period, the nodes send as fast as possible for
the saturated demand experiments. For unsaturated demands, each
sender is assigned a normalized demand which is total demand di-
vided by the physical layer data rate. The normalized demand is
selected randomly between 0.1 and 0.9 and specifies the maximum
rate at which the sender can send. For each configuration,i.e., the
specified number of senders and demand type, we conduct 100 ran-
dom runs with different set ofk senders.

The UW testbed had 14-nodes inside an office building. The
traces we use are same as those used for evaluating the UW model [24].
The collection methodology is similar to the above except that these
traces contain only 2 broadcast senders with saturated demands.
We study both 802.11a and 802.11b using these traces.

8.2 The UW Testbed
We first present the results for the UW testbed in this section and

then for our testbed in the next section. Figure 11 shows scatter-
plots of predicted and actual throughput and goodput under 802.11a.
As we can see, our model closely tracks the actual throughput and
goodput. UW model has higher error in the throughput prediction.
Most mispredictions occur when the UW model incorrectly pre-
dicts that two senders defer to each other. This error is caused by
the linear interpolation heuristics to estimate delivery probability
for a hypothetical RSSI [24]. The heuristic implicitly assumes de-
livery probability is linearly proportional to RSSI, which may not
hold in reality. Interestingly, UW model has comparable accuracy
to our model in goodput prediction. A closer look reveals that for
many links that have higher throughput error, their goodput is often
close to 0 due to poor link quality. Such cases are easy to predict,
which reduces overall goodput error.
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Figure 12: 2 saturated 802.11b broadcast senders in UW traces.

Figure 12 shows the results for 802.11b. As for 802.11a, our
model has more accurate throughput prediction than the UW model,
while both models have comparable prediction errors for goodput.

8.3 Our Testbed
For our testbed, we evaluate our model by varying number of

senders and using both saturated and unsaturated demands. Fig-
ure 13, 14, 15, and 16 show scatter plots of throughput and good-
put under 2, 3, 4 and 5 senders with saturated broadcast demands.
Since the UW model is only applicable to 2 senders, we compare
with the UW model only for 2 senders. As we can see, our model
tracks the actual throughput more closely than the UW model, and
yields comparable accuracy for goodput prediction. This is also
reflected in RMSE. For 3, 4, and 5-sender cases, our model yields
estimation close to the actual rates: its RMSE is within 0.12.

Figure 17 shows the results for 3 senders with unsaturated de-
mands. As for saturated demands, our model maintains high accu-
racy: its RMSE is within 0.07.

8.4 Summary
The testbed evaluation confirms that our model works well in

real environments and using real hardware. Compared with simula-
tion, predicting testbed performance is much more challenging due
to factors such as biased and noisy measurements, as well as vari-
ation in RF condition. Despite these challenges, the results show
that our model is effective in predicting throughput and goodput.

9. RELATED WORK
Considerable research has been done in the area of modeling

wireless networks. Given space constraints, a detailed discussion is
not feasible. We thus limit ourselves to a very brief survey to place
our work in the overall context. We broadly classify the existing
work into three categories. The first category analyzes the perfor-
mance of IEEE 802.11 Distributed Coordinated Function (DCF) [2,
16, 8, 9]. While these models can estimate interference under an
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Figure 13: 2 saturated 802.11a broadcast senders in our traces.
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Figure 14: 3 saturated 802.11a broadcast senders in our traces.

arbitrary number of senders, they do not apply to networks where
not all nodes can hear each other.

The second category of work targets general network topologies
where not all nodes are within communication range [9, 24]. Be-
cause of the challenges presented by such topologies, existing mod-
els handle only restricted traffic scenarios. Garettoet al. develop
a two-flow model [9], and Reiset al. model two competing broad-
cast senders [24]. Our work falls into this category and advances
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Figure 15: 4 saturated 802.11a broadcast senders in our traces.
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Figure 16: 5 saturated 802.11a broadcast senders in our traces.

the state-of-art by going beyond pairwise interference and mod-
eling interference among an arbitrary number of senders for both
broadcast and unicast transmissions.

The third category estimates the end-to-end throughput in mul-
tihop wireless networks [10, 11, 17, 8]. Since modeling end-to-
end throughput is more difficult than one-hop throughput, to be
tractable, such models only apply to specific scenarios. In par-
ticular, they either consider asymptotic behavior of wireless net-
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Figure 17: 3 unsaturated 802.11a broadcast senders in our
traces, where each sender uses 1 mW.

works [10], or assume optimal scheduling [11, 17], or are limited
to single flow scenarios [8]. While our work focuses on one-hop
throughput, because of its generality, we believe it is relatively easy
to extend the model to predict end-to-end throughput if routing in-
formation is given. We will investigate this in the future.

10. SUMMARY
We developed a general model of wireless interference in static,

multihop networks. It advances the state of the art by (i) estimating
interference among an arbitrary number of senders, (ii) modeling
the more common case of unicast transmissions, and (iii) model-
ing the general case of heterogeneous nodes with different traffic
demands. Our model is seeded using easy-to-gatherO(N) mea-
surements in anN-node network. It is based on a Markov chain
that models in detail the interaction between different senders and
receivers. Using simulations and measurements from two wireless
testbeds, we showed that our model is accurate in a wide range of
scenarios.
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