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ARGOS: Automatically Extracting Repeating
Objects From Multimedia Streams

Cormac Herley, Member, IEEE

Abstract—Many media streams consist of distinct objects that
repeat. For example, broadcast television and radio signals contain
advertisements, call sign jingles, songs, and even whole programs
that repeat. The problem we address is to explicitly identify the
underlying structure in repetitive streams and de-construct them
into their component objects. Our algorithm exploits dimension re-
duction techniques on the audio portion of a multimedia stream to
make search and buffering feasible. Our architecture assumes no
a priori knowledge of the streams, and does not require that the
repeating objects (ROs) be known. Everything the system needs,
including the position and duration of the ROs, is learned on the
fly. We demonstrate that it is perfectly feasible to identify in real-
time ROs that occur days or even weeks apart in audio or video
streams. Both the compute and buffering requirements are com-
fortably within reach for a basic desktop computer. We outline
the algorithms, enumerate several applications and present results
from real broadcast streams.

Index Terms—Audio fingerprint, low-dimension representation,
multimedia, repeats, segmentation.

I. INTRODUCTION

RATHER than having infinite innovation many media
streams are quite repetitive. They contain objects that

recur with essentially no change. Advertisements on broadcast
radio and television stations, and songs or video on music
channels are some of the obvious examples. Other examples
are station call-signs and jingles, signature tunes of particular
television programs, news footage of noteworthy events (e.g., a
clip from a State of the Union speech in the U.S. will typically
air many times in the days following the speech) and even entire
radio or television programs (e.g., many NPR member stations
broadcast syndicated programs more than once). These objects
can vary from a few seconds in length to several hours. The
gaps between successive copies of the same object can be as
little as a few minutes or as great as weeks or even months. The
objects may repeat in a very regular fashion (e.g., the signature
tune of a news program occurring at defined times throughout
the day) or with no apparent regularity (e.g., particular songs
occurring in a radio broadcast at the discretion of the disk
jockeys or playlist generators). Some objects may be repeated
very frequently for a short period of time and then are seldom
seen again (e.g., a clip of a current newsworthy event) others
may be repeated over the spans of years (e.g., signature tunes
of serial programs). Since there is such diversity in the length
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of repeating objects (ROs), and the frequency and regularity of
their recurrence few useful generalizations about them can be
drawn.

Much work has been reported on identifying, segmenting, and
classifying particular classes of objects. For example, in applica-
tions such as television news summarization progress has been
made in distinguishing between news-anchor scenes, live report
scenes, weather reports, and so on [14], [22].

An interesting approach by Lienhart et al. [17] is to detect
a known set of commercials. That is, given a library of, say,

commercials (i.e., short sequences of frames that can be
expected to recur in a stream) they calculate a fingerprint,
which is a function of this sequence of frames. This fingerprint,
which they base on the Color Coherence Vector [19], can be
compared to detect recurrence of the already known commer-
cials. However, the authors of [17] point out that any fingerprint
which is tolerant of channel deformations has low dimension
and discriminates well between different commercials will
suffice. They also point out that the arrival of new, previously
unknown commercials may be inferred, when, for example, an
unknown 30-s sequence of frames occurs between two known
commercials. Like [17], we will examine possible candidates
for fingerprints. Unlike [17] however, we will not assume that
a library of known ROs is available or make any assumptions
about the duration or nature of new ROs as they appear in the
stream. Another interesting approach along these lines is [16],
which explores an efficient method to search for known objects
in long streams or libraries. Both [17] and [16] have in common
with our work that they are explicitly interested in very long
sequences (i.e., days or weeks); the point of difference is that
they take the set of sought objects to be known.

Considerable effort has addressed the question of identifying
objects based on a set of features. In [8], for example, the au-
thors describe a system to track multimedia content based on
video features, while [18] uses a system of audio and visual
cues. The authors of [1] report considerable success in distin-
guishing commercials from normal content by using an efficient
vector based on the evolving color information. Many of the
approaches to stream analysis make use of the growing body
of work on audio analysis, querying and retrieval. See, for ex-
ample, the object extraction work of [20], [24] and the simi-
larity detection work of [2], [11]. Many of the approaches cus-
tomizing multimedia streams have in common that they seek
particular features of certain classes of objects [14], [22]. Video
commercials are often preceded by two blank frames for ex-
ample. Alternatively, they often work with a library of known
objects [17]. An interesting example of searching for unknown
ROs in a music stream is [10] though the authors there work
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on MIDI data rather than a raw audio format. The literature on
text string searching has numerous approaches [3], [23] that can
serve as analogies for our work. Recent work in the database
community [15] on finding matches in unbounded streams is
also related, but lacks the media component. Searching multi-
media databases is discussed in [6].

The Scene Transition Graph developed by Yeung et al. [25]
identifies related scenes in a stream. Distinct scenes are iden-
tified by detecting shot boundaries and building a graph based
on scene similarities. In [25], related scenes are clustered (e.g.,
closeups of the same person in a dialog scene). This differs from
our work in that we are interested only in identifying segments
of streams that are identical (other than channel deformations).
Another interesting approach to building multimedia ontologies
is [12].

A point of contrast between our work and many previous ap-
proaches is that we propose explicit detection of repeating seg-
ments in the stream without making assumptions of the nature
of the objects. For example, we will not need to assume that any
of the objects we seek have different audio or video character-
istics from the nonrepeating portions of the stream, and we will
only assume that ROs have some minimum length (e.g., they
are at least 30 s in length). We will not need to assume the ex-
istence of a library of already labeled or recognized objects, but
rather will learn the repeat patterns on the fly. For fear of misun-
derstanding we emphasize that we seek only objects that repeat,
and not “objects” in the sense that it is sometimes used in the lit-
erature: for example, a well-defined 30-s commercial that plays
only once would never be found by ARGOS.

In the next section, we show how repeats may be identified in
a stream using a scheme that is conceptually simple, but requires
considerable compute and memory resources. In Section III, we
show that using low-dimension representations of the audio por-
tion of the stream we can hugely reduce the computational com-
plexity. Furthermore, by segmenting the objects we can form a
library of objects as they are found and remove the need to buffer
large amounts of the stream. Combining these improvements
greatly reduces the computation and buffering required. In Sec-
tion IV, we give an architecture of the system and in Section V
we show the results of object detection and extraction performed
on real broadcast radio and television streams. Numerous appli-
cations are enabled by the ability to decompose a stream into
its component objects, most obviously the ability to customize
a stream and make a library of objects for later viewing. A pre-
liminary version of this work was reported in [9]. We call the
system Automatic RepeatinG Object Segmentation (ARGOS),
that also being the name of the dog who recognized Ulysses on
his return, even though more than 20 years had passed.

A. Applications

Before demonstrating that a system capable of extracting re-
peat objects from streams can operate in real-time on a con-
sumer level PC, it may be worthwhile to mention applications
to motivate the work.

• Commercial skipping: in Section IV we give an architec-
ture that allows skipping of objects in real-time

• Building libraries of objects for later viewing: the archi-
tecture of Section IV allows a user to automatically ac-
quire copies of all of the ROs in a stream. Examples are
shown in Figs. 7–10.

• Customization: streams can be adapted in real-time to user
preferences by removing unwanted content and replacing
with preferred content.

• De-noising: as more copies of an object are received,
channel noise can be attenuated by de-noising techniques
[21].

• Querying and Indexing: the library of ROs that is gener-
ated by our algorithm can be queried to determine if par-
ticular streams obtain particular objects.

• Compression and archiving: the library of ROs that is gen-
erated by our algorithm forms a dictionary that can be
used to compress the stream efficiently. Since objects keep
repeating, there is no need to compress each copy of each
RO every time it appears.

• Gathering statistics of object play frequencies on streams:
once we know how to decompose streams into their com-
ponent objects reliably it is simple to then track the distri-
butions of play frequencies. Examples on two FM radio
streams are shown in Figs. 8 and 7 and on two broad-
cast television streams in Figs. 9 and 10. An application
of these statistics to playlist generation is given in [26].

• Broadcast monitoring: since our algorithm builds a li-
brary of ROs and determines when they played, it is easy
to verify, for example, that particular commercials played
at particular times.

We elaborate on two of these applications.
1) Customization and Adaptation: Any stream that is made

up of ROs can be customized if real-time identification of the
objects is possible. The received stream can be delayed and
altered so that the viewed stream corresponds closely to
the desires and preferences. The algorithms and architecture we
outline in this paper shows how this can be achieved in real-time
with basic computing resources.

• Parents might wish to delete objects that they deem
unsuitable for their children. For example, on a channel
which plays music videos, parents might wish to prevent
certain videos being played. A complete library of the
ROs on the channel can be built as described in Section V.
Each of the videos can be quickly viewed in turn and
tagged as permitted or not. Of course, objects can not be
tagged until they have repeated. However, as we show
in Section V, many streams are extremely repetitive; in
particular, for the FM and video music stations analyzed
in Figs. 7, 8, and 10, almost all ROs had been found in
a matter of five days or so, while those ROs continue to
play for weeks or months before they drop from fashion.
The ARGOS system can be used as a parental control
to collect objects before they are seen by children. That
ARGOS will have seen an object twice does not mean
that the child has.

• Listeners and viewers might wish to store copies of fa-
vorite objects, or delete objects they do not like. For ex-
ample, a listener to a Jazz radio station might alter the mix
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of music played by specifying that some objects are never
to be played, or by decreasing the frequency of play. Ex-
actly such a scenario is described in Section IV and Fig. 6.

• Broadcasters might wish to substitute commercials suit-
able for local markets or tuned to the preferences of the
viewer.

The method of associating an action with an object can vary.
For example, in the parental control application a suitable UI
might be as simple as a button to enable a parent while viewing
an object to indicate that all future occurrences are to be deleted.
Commercial substitution could be accomplished by the broad-
caster associating a substitution action with an object based on
the viewer’s location and/or preferences.

2) Gathering Statistics: The ability to recognize ROs allows
us to build a statistical picture of the composition of a stream.
Basic examples are shown in Figs. 7 and 8, but various other
statistics on the streams can be gathered. We can compile his-
tograms of relative frequencies of objects, and compile a “Top
10” lists of the most popular objects.

II. SEARCHING FOR UNKNOWN REPEATING OBJECTS

A. Model of Multimedia Streams

Without loss of generality,we will model our media stream
, as containing embedded ROs for

. The objects are played with relative frequencies determined
by the probabilities , and have lengths . That is, the
stream is constructed by choosing an object from the library, and
the th object has independent probability of being chosen
when a decision is made. For generality, we will also assume
that only a fraction of the stream consists of ROs; for example,

would imply that one tenth of the stream was nonre-
peating content that separated ROs from each other. This model
is sufficiently general to capture the behavior of real streams
reasonably accurately, as we shall see from the experiments on
real streams in Section IV.

The stream can be one dimensional such as audio, or multi-di-
mensional such as a combined audio and video stream. We fur-
ther assume that objects are generally nonoverlapping, so the
stream is created by concatenating objects rather than superim-
posing them. An example of such a stream might be written

where the symbol denotes concatenation of objects, and
denotes a nonrepeating segment of duration seconds. Clearly,
if an object is repeated at times and in the stream,
we will have

(1)

We would like to clarify at the outset that for a multidimen-
sional stream, following (1) an object repeats only if it repeats
along all dimensions. That is if, for video, the same visual con-
tent is replayed, but with different audio accompaniment this is
not a RO. For example, if on a bilingual TV broadcast, a 30-s
commercial occurs with video content unchanged, but some-
times with audio in English and sometimes in Spanish, this will

TABLE I
DEFINITION OF TERMS USED

be regarded as two separate ROs rather than one. Similarly, if
the audio repeats but the video is different this is not regarded
as a RO. The stream received by the user will of course undergo
channel deformations, which we model by additive noise

We assume that . Thus, objects undergo relatively
minor copy-to-copy variation; i.e., successive repeats of an ob-
ject in a stream separated by time will obviously experience dif-
ferent channel deformations, but the noise is small relative to the
signal

(2)

For convenience, the definition of terms used in this paper is
given in Table I.

B. Determining Repeats by Correlations

We now address the problem of finding the ROs in a stream
constructed as above. First, observe that it is simple to verify
that an object at also occurs at . This can be done, for ex-
ample, by taking the time correlation of windowed sections of
the stream centered at and . Let the window be defined
by

otherwise.

Denote a windowed block of the received stream

(3)

We expect that if and contain the same object, there
should be a strong peak in their correlation along time. We de-
fine the time correlation as

(4)
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There are many way of treating the boundary issues that arise
when correlating finite blocks such as we do here (see, for ex-
ample, [21]). Also, note that readers should not confuse the time
correlation of a section of a video stream with the full multidi-
mensional cross-correlation. is a function of only one
variable, while the cross-correlation of an audio-visual stream
would be three dimensional. If and contain the same
object, we expect to be larger than if they do
not. We now show under what conditions this is so.

If the block length is greater than the average object length
, a block containing an RO will have the form

(5)

where and are the portions of the stream preceding
and following the object. These may of course themselves be
portions of other ROs or nonrepeating content. When we time
correlate with another block

(6)

we require that

(7)

That is, the peak of the correlation when (the two blocks
contain the same object) should be larger than any value when

(the two blocks do not contain the same object).
Recall that the received stream is corrupted by noise so

that two instances of an object will differ slightly. Normal-
izing, and taking the time correlation

(8)

Here, and . We
have assumed that the noise is uncorrelated with the signal (i.e.,

) and is stationary (i.e., ). Intuitively,
(8) makes sense: the peak of the correlation is slightly less than
1 due to noise. The worse the SNR, the further (8) will fall below
1.

When is the correlation of unrelated signals.
From (8), we know that the correlation of blocks containing
the same object is close to 1. If the blocks were orthogonal,
it would be 0. For unrelated signals, we expect something in
between. Let us define the worst case correlation between length

nonmatching signals as

(9)

We will discuss in Section III-B how to estimate . Then, since
our length blocks are longer than

(10)

Putting (8) and (10) into (7), we get that to reliably distinguish
between a match (where ) and no match (where ), we
require

(11)

This establishes that a relation between the appropriate block
length, the length of ROs, the SNR, and the worst-case time
correlation of different objects. To take a concrete example, as-
sume that we seek objects of average length 180 s in length
on an audio broadcast where the reception SNR is 20 dB (i.e.,

). We will estimate in Section III-B,
but for now assume . Then (11) gives that we can detect
matches so long as . To make detection reliable
and robust, we might build in a factor of two margin for error.
In other words choosing a block length of less than 4.5 times
the length of the average RO will give reliable detection. Thus,
a very simple routine for determining equality of segments is:

• ;
• if ApproxEqual(i,j)==true else

false.

We have chosen the threshold to be here. We defer until
Section III-A a more systematic choice.

C. Searching for Unknown Repeating Objects

If we sought only a single known object it would be an easy
matter to spot recurrences: we would just constantly compare
the known object with every incoming block. Seeking known
objects (much as is done in [17] and [16]) would require com-
paring each incoming block against the known objects. This
would require comparisons per incoming block on average.
Thus, the complexity of determining whether known objects are
present in a stream is directly related to the size of the database
of sought objects.

The case where the objects are unknown is more
complex, since we must learn first what the objects
are, and then find all of their recurrences. A first ap-
proach is at time to break the stream into blocks

; that
is we have blocks of length with overlap of stretching
into the past. Clearly, any RO of length or less will be
completely contained in one of the blocks. For example, if an
RO begins at , then it is completely contained in , where

and .
Allowing the number of blocks we compare to grow without

bound (which happens as ) is impractical, since this
would require both infinite computation and that an infinite
stream be stored. Instead, we search a finite distance of length

into the past. This gives the following simple algorithm
which searches blocks in the range .

1. searchBu�er(bj)

2. For i = j � 1 to j � 2N in steps of �1. If

(approxEqual(bi;bj) == true) {found := true;

goto 3}.

3. End.
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The complexity of the algorithm is determined by the
calls to ApproxEqual(). So clearly, a buffer of duration can
be searched in realtime only if calls to ApproxEqual() can be
computed in time . To consider a concrete example, suppose
we have a finite amount of computing power available which is
capable of performing five calls to ApproxEqual() per second,
and our blocks are apart. The longest buffer we
could search would then be approximately 11 hours in dura-
tion. This might be a problem in that ROs that repeat with pe-
riod greater than 11 hours might never be found. We next show
that so long as the stream is constructed by choosing objects at
random, as modeled in Section II-A, even ROs that repeat with
average period larger than will be found eventually.

D. Analysis of Probability of Objects Repeating in the Buffer

For an object to be found by searchBuffer(), it must appear
twice in the length buffer. Since objects have average dura-
tion , the average time between repeat copies of object will
be . So all objects for which have a
good chance of occurring twice in the buffer. We now show that
the probability that two copies of an object appear in the buffer
increases significantly as the buffer evolves.

At any given time there will be ROs in
the buffer. Call the probability that two copies
of object have been in the buffer simultaneously at least once
by time (and thus the object has been found by routine search-
Buffer()). Clearly, at , when the buffer first fills,

We now wish to know how evolves for in-
creasing . Since this is a cumulative probability it can only in-
crease. Recall that in time one new object enters the buffer,
and another drops out. The increase brought about is

In words, in the interval it takes a new object to enter
the buffer, the probability that object has appeared at least
twice increases by the probability that: the buffer previously
contained only one copy, and the incoming object is the th,
and the outgoing object is not the th. In Fig. 1, we graph
how evolves for various scenarios. Using

(i.e., one day) and and
we show for , 0.0027, and 0.0009.
Objects with these probabilities would have average repeat in-
tervals of 8 h, one day, and three days, respectively. As
can be seen from Fig. 1, even objects that occur on average with

Fig. 1. Probability that two or more copies simultaneously appear in a one
day buffer for objects with various probabilities p . Observe that even an object
which repeats on average every E=rp = 3 days has a 50% probability of
being detected after 10 days.

intervals larger than the searched buffer have high likelihood of
being detected if we wait long enough.

E. Summary

We saw in Section II-B that determining that two segments of
a media stream are the same is simple. Applying this approach
by brute force to every segment allows us to find all the objects
that appear more than once in a buffer. For very common ob-
jects it is clear that they are likely to appear twice or more in
a sufficiently long buffer. In Section II-D, we saw that for less
common objects time is on our side also: they have increasing
probability of appearing at least twice as the buffer evolves.

However, this approach is impractical for a number of rea-
sons.

• Calculating time correlations of audio or video segments
is expensive.

• The longest buffer it is feasible to search in realtime may
not be long enough to contain many ROs.

• Long buffers of media streams consume much memory
(one day of uncompressed 44.1-kHz stereo audio con-
suming 15.2 GB and one day of NTSC quality video con-
suming about 70 GB).

The main approaches to improve the efficiency of this algo-
rithm are as follows.

1) Reduce the complexity of each call to ApproxEqual()
2) Reduce the number of calls to ApproxEqual().

The sorting and searching literature [3] will be of some assis-
tance with 2), and we will examine this in Section III-D. Some
techniques that are particular to media can help with 1), and we
will examine them in Section III-A. We will also show that we
can eliminate the need to buffer long stretches of the full-rate
stream.

III. REDUCING THE COMPLEXITY OF DETERMINING REPEATS

Clearly, as we have just seen, determining that two segments
of a stream are the same can be done by computing time cor-
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Fig. 2. Two different copies of the same object captured at different times from an FM radio broadcast. The graph is � (b (t)) versus time sampled at 11
samples/s. The center portions of the two copies approximately coincide, while the beginning and end portions do not. The similarity of the segments is evident,
even though we are using a very low-dimension representation.

relations. However, calculating time correlations on video data,
or even audio at 44.1 k samples per second is computationally
expensive. Both video and audio contain much redundancy that
does not help decide similarity. However, results from various
other fields indicate that objects can be deemed the same by
examining only low-dimension versions rather than the objects
themselves. The Pattern Recognition literature [5] has numerous
approaches to dimension reduction of large data sets. The data-
base community has long observed that it suffices to compare
the hashes of records to determine equality [4], [7].

A. Low-Dimension Representations of Audio

Since an object in a media streams repeats only if both audio
and video repeat, we restrict attention to low-dimension rep-
resentations for audio objects. For an RO to occur in a video
stream, it is necessary, though not sufficient, that an RO occur
in the associated audio component of the stream. Once a match
has been found in the audio, it is simple to verify whether or not
the video also repeats. Recall that verifying a repeat is much less
expensive than searching for repeats. Hence, there is no need to
involve the video data in the search for ROs, though of course it
will be involved in the verification.

We saw in (11) that reliable determination of whether two
blocks and contained a matching object depended
on the SNR, the lengths of the block and the ROs ( and
respectively), and the worst-case correlation between non-
matching objects . Instead of calculating the correlation
between full-rate audio blocks, let us examine using a low-di-
mension representation. Suppose we split and
into their projections onto lower dimensional subspaces (for
example, particular frequency bands). Thus

(12)

Here, is the projection of onto the th sub-
space (we’ll examine shortly choosing good subspace decom-
positions). Of course is itself a representation of the
stream in the vicinity of , but it can often be sampled at a much
lower rate since the subspace has lower dimension than the orig-
inal space. For example, if the subspaces are frequency bands, a
signal that lives in a band a few hundred Hertz wide obviously
need not be sampled at the same rate as the 44.1-kHz original.

Now repeat the analysis on the correlations in Section II-B,
but now use these projections , . The idea is that
we may be able to determine a match by examining correlations
of only a single low-dimension projection of the audio, rather
than the full-rate audio. Substituting for and
for in the calculations of Section II-B, we get that the corre-
lations of can be used so long as

(13)

where , . Compare with
(11). If the noise is uniformly spaced across all projections (as
will be the case if it is white), we have

, and the righthand side of (13) is almost unchanged
from that of (11). Thus, if we can find a projection such
that is small, reliable determination of equality is possible
using correlations of this projection instead of correlation of
the full-rate stream. We replace the examination of
in routine ApproxEqual() in Section II-B with examination of

. We use as threshold a point halfway between
the worst-case auto and cross time correlations

(14)
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TABLE II
WORST CASE CORRELATIONS BETWEEN BLOCKS WITH NO MATCHING

OBJECTS. CORRELATIONS FOR THE WHOLE STREAM AND THE BARK BANDS

� ; � � �� ARE SHOWN

A commonly used tool for audio analysis is to split the
audio into critical bands [13] (sometimes known as Bark
bands). These split the signal into 25 bands with band centers
at {100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480,
1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700,
9500, 12000, 15500, 22 200} Hz. These are narrow frequency
selective channels, and can of course be sampled at a much
lower frequency than the overall audio signal. In fact, we take
the energy of each bark band, lowpass filter it, and then down
sample. We call these waveforms for .
The sampling rate appropriate for each of these bands differs
with frequency width, but we experimentally examined bands

sampled at a rate of 11 samples per second. By
way of example in Fig. 2 we show and for
two sections of audio. Each segment represents slightly greater
than 10 min of audio. They are different copies of the same
object recorded from an FM radio station at different times. As
can be seen in the center portion, both copies are approximately
equal, while at the beginning and end they differ.

B. Results: Evaluating as an Alternative to Full Rate

1) Comparing the Detection Rate of With the Full-Rate
Stream: From (13), we know that the ability of to de-
termine whether two blocks and contain the same
object depends critically on . To evaluate this, we performed
the following experiment. We choose 100 blocks for

each 360 s long at random positions in an
audio stream. The blocks form a representative collection of
segments, meaning that there are songs, commercials, and
speech in roughly the proportions that they contribute to the
makeup of the stream. None of the blocks contain the same
object. Calculating for each of 4, 5, 6, 7, 8, we
then evaluated

(15)

We also estimated , as defined in (9), using the same collection
of segments. The results are shown in Table II. As can be seen

in all cases. Thus, time correlations of any of the is
slightly less good than using the full signal. However, from (13),
we see that any of them still allows for reliable discrimination.
For example, if ,
i.e., the SNR in subspace is an order or magnitude worse than
that of the signal, the worst of the examined still allow re-
liable detection so long as . On this basis, we selected

as the projection to use in our work, having the lowest mea-

sured value of . We should emphasize that we make no claims
of optimality for . We point out many other low-dimen-
sion representations that have been explored [16], [17], [20],
[24] and several of these might serve as well or better. For de-
termining equality of multimedia objects the Color Coherence
Vector used (for video) in [17], [19] the fingerprint algorithms
used in [2], [11], the audio measures of [20], [24] and the simi-
larity measures of [16] are among functions that could be used
as alternatives to the Bark spectra that we will use. In fact, [17]
explicitly points out that any representation which is tolerant
of channel deformations, has low dimension, and discriminates
well between different objects will suffice. We choose as
an example that has all of these properties. Since the broadcast
channel gives a faithful reproduction of the signal it follow that

is tolerant of channel deformations (since it is a subspace).
That has low dimension follows from the fact that it is the
low pass filtered version of the signal projection on a narrow fre-
quency band; we verified that it discriminates between different
objects in Table II.

2) False Positive Rate Using : To test the hypothesis
that forms a good low-dimension representation of audio
we performed the following experiment. We recorded an FM
radio station for a period of seven days, and calculated for
the entire stream. We randomly selected 500 360 s segments;
some of the segments were voice, some music, some a mix-
ture of voice and music. We then formed the time correlation of
each segment with every 6-min segment from the entire stream.
When the time correlation indicated a match we examined the
two segments manually to determine whether or not they actu-
ally matched. Some of the objects had no matches (other than
the segment of their own occurrence in the stream) and others
occurred as many as 20 times. In no case was a match indicated
where data did not correspond to the same object. This suffices
to indicate that the false positive rate of using time correlations
of is very low.

3) False Negative Rate Using : Determining the false
negative rate is somewhat harder, since labeled multimedia
streams are not readily available. Most broadcast radio stations,
for example, do not publish playlists. To accomplish this we
hand parsed a 48-h section of the stream; i.e., hand labeled
every RO greater than 2 min in length. There were 282 such
objects. We randomly selected 50 objects from the first 24 h of
labeled stream, and for each of them: time correlated a 6-min
segment of centered on the object with the entire second
24 h of labeled stream. No false negatives were found in the
labeled stream. That is, in every case where our labeled stream
showed that an object repeated, our algorithm found it; none
were missed. We describe a further examination of the efficacy
of the system in Section V.

Thus, we find that is a suitable low-dimension repre-
sentation of the signal. In going from 44.1 k samples/s to 11
samples/s, we have achieved a 4000-fold reduction in the data
rate, with no meaningful loss in recognition ability.

C. Identifying the Boundaries of Found Objects

We have seen that ROs can be identified in a number of ways.
Time correlations, Audio fingerprints [2], [11], or Color Coher-
ence Vectors [17], [19] are among the approaches that work.
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Fig. 3. Example indicating how the boundaries of an object can be calculated once two or more copies have been found. The graph is � (b (t)) versus time
sampled at 11 samples/s. Overlay of the first and second instance of the object once they have been aligned. The points where the two streams diverge at the
beginning and end are the endpoints of the object.

Any of these methods will determine that the data in the stream
at locations and are approximately similar. Of course, to
carry out any action on an RO, e.g., delete it from the stream,
copy it to disk and so on, we need to know its precise endpoints.
We need to know, for example, whether it is 10 s or 3 min long
before any action can be carried out. Here we reach an impor-
tant distinction between systems where the ROs are drawn from
a library of known objects and those where the objects are un-
known, which is the case we are interested in.

• ROs from finite known library: endpoints determined
from metadata (e.g., the library contains length informa-
tion for all ROs) or inferred (e.g., commercials are known
to be 30 s or 15 s long).

• ROs not known: endpoints must be determined from the
stream.

Determining the endpoints becomes simple, however, if we
have access to the stream. Conceptually, if we align the two
portions of the waveform, we can trace backward toward the
beginning and forward toward the end to determine where the
two copies diverge, giving the boundaries of the object. Recall,
in Section III-A, we found that using the full-rate stream was
unnecessary to determine when matches occurred. In fact, in
Fig. 2, we saw that showed considerable visual similarity
between two different occurrences of the same object. In Fig. 3,
we align, normalize and overlay these two segments. As can be
seen, there is substantial (though not precise) overlap between
the two occurrences. This allows us to state with reasonable ac-
curacy that the segments coincide approximately between sam-
ples 5800 and 8300 and thus (since is sampled at 11 sam-
ples/s) the object is approximately 227 s in duration.

Assuming that we have determined that the streams at and
are approximately the same, we examine a windowed section

of centered at each of these locations

We can align the two sections of stream by calculating
where and are the locations at which

and are maximum, i.e., the peaks of the auto
and time correlations, respectively. We set

and

Since there is a match, both and should
now have the form given by (5)

where , and , are the parts of the stream that
precede and follow at the two locations in the stream
where we have determined it repeats.

These two stream segments can now be compared directly.
This has been done in Fig. 3. The boundaries of the object
can be estimated by, for example, thresholding the accumulated
difference between the waveforms as one works out from the
center. Once the normalization has been properly performed
many schemes work well. A simple approach is shown next.

1) .
2) Get average absolute sample difference

.
3) .
4) if Goto 6.
5) ; Goto 4.
6) ; .
7) if Goto 9.
8) ; Goto 7.
9) .

We give this simplistic algorithm to illustrate the method.
Greater robustness can be achieved by allowing the absolute
difference to exceed a threshold for some time before termi-
nating. Also, this algorithm works from the center out
toward the endpoints. It is worthwhile to also work from the
outside (i.e., toward for and from toward

for ) in, and combine the answers.
1) Results: To test the accuracy of our segmentation we

randomly selected 100 of the ROs from the hand-labeled 48-h
stream referred to in Section III-B. Objects were longer than
180 s on average. We exhaustively searched for all matches in
the following 48 h. Of the 100 objects, 88 had matches, and
some of them multiple matches. We first manually examined
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the stream and decided where the endpoints were1 and then
calculated the end points using our tracing algorithm. In most
cases the calculated endpoints corresponded accurately with
those determined by hand. In only six of the 88 cases was the
difference greater than 2 s.

Thus, the endpoint determination procedure based on exam-
ining data alone allows reasonably accurate segmentation
of objects. This implies that archiving large stretches of the orig-
inal media stream is not necessary to accurately find and extract
objects. We saw, in Section III-A, that whether two segments of
a stream matched could be determined by examining a low-di-
mension version such as . Now we see that segmenting ob-
jects can also be accomplished using a low-dimension version.

Simple though it is, the endpoint determination is key to our
ability to determine the underlying structure of a media stream.
We already saw, in Section III-A, that finding ROs was possible
in real time. Determining the endpoints makes it possible to reli-
ably determine the duration without needing a pre-existing data-
base, or needing to make assumptions of the nature of the ob-
jects, or the semantics of the stream. Thus, for the first time, we
can decompose a repetitive stream into its component objects.
Further, the fact that the endpoint detection can be done reli-
ably on a low-dimension version of the signal means that we do
not have to buffer large amounts of full-rate data. For example,
an object that recurs only twice in a week-long video stream
can be identified and accurately segmented based on a buffer of

, which consumes only 26 MB. This hugely simplifies the
requirements of the system we will use to extract the underlying
structure in our media streams; the architecture of such a system
is shown in Fig. 5.

D. Increasing the Efficiency of the Search for Repeating
Objects

The search strategy we introduced in Section II-C was es-
sentially brute force: break a buffer of the stream into blocks
and compare the current block with all past blocks in the buffer.
We’ve seen (in Section III-A) how to improve the efficiency of
the comparisons, and (in Section III-C) how to extract the ob-
jects once found. Recall, from Section II-C, that for fixed com-
putational resources our algorithm could search a finite distance
into the past. The complexity clearly grows linearly with the
length of the buffer we wish to search. We now show that by ex-
ploiting the repetitive nature of the stream we can improve the
search.

The key observation is that once an object is found, and its
endpoints identified, that segment of the buffer does not have
to be searched again, and the object can be added to a list of
known objects. Every time we find a RO, we can shorten the
length of the buffer that remains to be searched or, extend the
distance into the past that we can search. In fact, once we find
a RO, we add it to a library of objects. Subsequently, we search
this library first, and search the remainder of the buffer only if
we find no match in the library. The advantage is that after its
second appearance each RO will be in the library and will be
identified from there without having to search the buffer. As long

1Note: the endpoint is regarded as the point where the two copies of the object
diverge. For example, a 10-s news clip which is itself part of a larger 20-s clip
will count as a RO. The RO will be considered to be 10 s long, however.

Fig. 4. Improving the efficiency of searching for unknown ROs. A buffer of
length one days is assumed, for the two distributions shown. (a) Number of
calls to ApproxEqual(). Observe that the number of calls begins as the cost of
searching the buffer, but rapidly converges to the cost of searching the library.
(b) Fraction of the ROs played in a stream found. Observe that after two days
almost every RO being played has already been found.

as the library is smaller than the buffer, this improves the search,
and for repetitive streams this is the case. In addition, the library
of found ROs can be ordered by frequency of repetition, so that
most common object are checked first; this further improves the
efficiency.

This improves the efficiency of the search by an amount re-
lated to how repetitive the stream is. The most common objects
are found first, and also reduce the remaining length most. This
gives rise to the following simple variation on our first algorithm
searchBuffer().

1. .
2. .
3. For to : if

{ ; found :=
true; goto 5.}

4. For to in steps of 1:
If {
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Fig. 5. Block diagram of a system to automatically identify and extract
ROs from a media stream. The media stream enters a full-rate buffer and
is delayed before playing. A low-dimension version of the stream is sent
to a low-dimension buffer. This buffer is constantly searched for ROs using
routine searchLibraryAndBuffer(). Found objects are stored in an RO library.
Boundaries calculated by comparing two copies in the low-dimension buffer
are used to generate the boundaries in the full-rate buffer. Deletion and copying
then become simple. The full-rate buffer needs only to be longer than the
longest expected RO. The low-dimension buffer needs to span an interval long
enough to allow objects to repeat. This allows objects that occur days apart to
be found without having to buffer the full-rate stream.

; found :=
true; ; goto 5.}

5. End.

The first loop (step 3) searches the library of found objects,
while step 4 searches the buffer. The major difference is that
once an object is found we add it to the library, and the library
is always searched first.

We now analyze the improvement of this algorithm over the
brute force approach in Section II-C. If the current block con-
tains the th object, the number of calls to approxEqual() will on
average be if that object is already in the library and it will
be less than otherwise. Actually, if we sort the li-
brary of objects by frequency of occurrence and search it in that
order, the number of calls will on average be less. The average
number of objects in the library is , so it
should take

calls to approxEqual() on average to find the th object in the
library (assuming that the are sorted in descending order).
Thus, the average number of calls to approxEqual() is less than

Thus, the average number of comparisons will be upper
bounded by

(16)

As shown in Fig. 1, tends to one for increasing
time; hence, the average number of comparisons tends to de-
crease to the number required to search the library. That is, as
the RO library fills, most objects are found from the library and
the necessity of searching the buffer becomes rarer and rarer. Re-
call from Section II that the complexity of searching for known
objects was linear in the size of the library , while searching
for unknown objects was linear in the size of the buffer .
Now we have shown that, using searchLibraryAndBuffer(), the
complexity is initially proportional to , but quickly converges
to the cost of searching the library. Thus, for repetitive streams
(i.e., those for which is close to 1), the complexity of identi-
fying unknown ROs converges to the complexity of identifying
a collection of known ROs.

We take the example of a stream with composed of
objects drawn from a uniform distribution and from a
Zipf distribution. This means that the th most common object
occurs with a frequency inversely proportional to (a distribu-
tion that occurs naturally in a wide variety of contexts) [3]. We
choose and the average object is of length ,
and a buffer of length of four days. In Fig. 4(a), we show
how the average number of calls to approxEqual() as predicted
by (16) evolves over time. As can be seen, the number is high
as the entire buffer has to be searched. It drops as the RO library
fills, however, and approaches the size of the library when al-
most all objects are found from the library and the buffer seldom
needs to be searched. In the case of the uniform distribution, the
number of calls approaches since this is the average re-
quired to search the library once all objects have been found. In
Fig. 4(b), we show the fraction of the objects that comprise
the stream that have been found as a function of time. In this ex-
ample, using a buffer length of one day, most objects have been
found within two days.

E. Summary

In Section II, we saw that searching for unknown ROs in a
stream was possible but demanding because of the following.

• Complexity of each call to approxEqual().
• Number of calls to approxEqual() required to search a

buffer for unknown objects.
• Memory required to buffer long stretches of a media

stream.

We have now solved each of these problems, making the iden-
tification of ROs not merely possible, but within reach with
modest compute and storage resources.
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Fig. 6. Evolution of the full-rate buffer. The ROs are found by searching the low-dimension buffer (not shown). (a) Objects A-G have been found and their
boundaries marked. The user is currently viewing object A. (b) User skips object A. The read pointer advances to the next object boundary. (c) User skips object
B. The read pointer advances to the next object boundary. (d) User skips object C. The read pointer advances to the next object boundary. Observe that the read
and write edges of the buffer are getting closer. (e) System inserts objects W, X, and Y between F and G.

IV. ARCHITECTURE OF A SYSTEM TO ALLOW AUTOMATIC

IDENTIFICATION AND SEGMENTATION OF REPEATING OBJECTS

Having abstracted the blocks that:

• determine whether two segments are the same object
(Section III-A);

• identify the endpoints of the object (Section III-C);

we are now in a position to illustrate the architecture of a scheme
for identifying and extracting repeats.

A block diagram of the architecture is shown in Fig. 5. An
incoming media stream is fed into a full-rate buffer be-
fore playback, so that the incoming stream is delayed by 20 min
before viewing. At the same time, a low-dimension version of
the stream is calculated and fed into a second (low
dimension) buffer, which is five days long. The first buffer is
full rate, meaning that it contains the full fidelity stream, e.g.,
44.1-kHz stereo for an audio stream, or 50 frames per second
for video. This buffer can be quite short, as we will use it only
for performing operations on objects when they have been iden-
tified and before they are played. The second buffer, containing
the low-dimension data, can represent a far longer stretch of
the stream. This buffer will be used to determine when a seg-
ment in the stream is recurring (as covered in Sections III-A and
III-D) and to identify the endpoints of the objects once found
(as covered in Section III-C). That is, once two copies of an RO

have been identified in the low-dimension buffer using searchLi-
braryAndBuffer() the boundaries are identified using getBound-
aries(). One of the copies will have just entered the buffer, the
other may be some distance in the past. Thus, the most recent
copy will also be sitting in the full-rate buffer. We use the bound-
aries to delete, copy, or perform other action on it.

Again, to use the concrete example of 16-bit stereo audio,
a full-rate 20-min buffer would consume

if the audio were uncompressed. Using for
the low-dimension representation, a week-long low-rate buffer
would consume only 26 MB. Thus, neither of these presents any
real burden for a modestly capable desktop computer, and can
generally be accomodated in RAM. To use the concrete example
of an video signal at NTSC quality, a 20-min buffer would con-
sume approximately 2.4 GB uncompressed, while the low-di-
mension representation would take 26 MB, as for the audio.

A. Binding Actions to Objects

The architecture of Fig. 5 allows identification of objects as
they repeat, and determination of their endpoints. Thus, before
an object is played in the high rate buffer, we will know whether
it is a RO, and will have identified its endpoints if it is. By
providing a suitable User Interface (UI), we can allow users to
specify actions that they wish to associate with objects as they
recur. For example:
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Fig. 7. ROs detected on a real broadcast stream. The Seattle pop radio station KYPT FM 96.5 analyzed for a period of seven days. (a) Number of unique ROs
found as a function of time. For the first day few objects are found, since repeats do not occur. After the first day many objects are found initially, but the rate
slows as fewer objects remain to be found. A total of 766 unique ROs greater than 2 min in length were found. (b) Number of times that unique ROs were played
in stream. A small number of popular objects are played very frequently and the stream is very repetitive. (c) Pie chart of the ROs greater and less than 2 min in
length and nonrepeating parts of the stream.

• keep a copy of this object;
• skip this instance of this object;
• delete all future instances of this object.

Keeping a copy is easily accomplished: using the endpoint in-
formation derived from the low-dimension buffer, we determine
the boundary points of the object in the full-rate buffer. Copying
merely involves storing the appropriate section of the full-rate
buffer to a file. Deleting involves advancing the read pointer
of the buffer to the rightmost boundary of the object playing.
An example of deletion and insertion on the full-rate buffer is
shown in Fig. 6. Of course, every time an object is deleted, the
distance between the read and write pointers of the buffer de-
creases. Deleting many objects will bring the read and write
edges of the buffer close together. The edges can be pushed fur-
ther apart by inserting objects in the buffer. These can be taken
from a library or from objects identified and copied earlier in
the stream. For example, a stream is made up of objects some
of which the user elects to skip; as he does so, the buffer starts
to get smaller, and hence the ability to continue deleting objects

will be reduced if no action is taken. To prevent this, objects that
the user has seen and not deleted are inserted to prevent the read
and write edges of the buffer from getting too close. This makes
it possible to listen to a stream indefinitely, yet while deleting
undesired objects.

V. RESULTS OF IDENTIFYING REPEATING OBJECTS

ON BROADCAST STREAMS

We implemented the algorithm above and ran on several
broadcast streams. Using a Pentium III 750-MHz PC with 512
MB of RAM, we were able to search a buffer of five days in
real time using only approximately 24% of CPU.

A. Examining Performance Against Ground Truth

In Section III-B we examined the efficacy of , and had
promising results. To do so, we had to hand label a stream to
estimate the false negative rate of our detection algorithm. The
reason was that finding multimedia streams with accurate la-
beling information (i.e., an accurate log of the contents of the
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Fig. 8. ROs detected on a real broadcast stream. The Seattle pop radio station KNDD FM 107.7 analyzed for a period of six days. (a) Number of unique ROs
found as a function of time. Many objects are found initially, but the rate slows as fewer objects remain to be found. A total of 219 unique ROs greater than 2 min
in length were found. (b) Number of times that unique ROs were played in stream. A small number of popular objects are played very frequently and the stream
is very repetitive. (c) Pie chart of the ROs greater and less than 2 min in length and nonrepeating parts of the stream.

stream) is difficult. Most broadcast streams do not publish such
labeling. While some internet radio stations publish playlist in-
formation, we wish to test how our system performs on an over
the air broadcast stream (i.e., complete with the noise that that
implies). One radio station that does publish labeling data is
Seattle FM 90.3 KEXP. An FM receiver was connected to the
line-in of the PC. We listened to this station for a period of two
weeks using ARGOS. As listed in the logs, the station played
a total of 2762 songs during that time, of which 2211 were dis-
tinct. That is the stream during this period could be considered to
comprise objects . According to the log files,
a total of 350 objects repeated during the two-week listening
period. The ARGOS algorithm found and segmented a total of
344 objects. The maximum that the system could have found
would have been 350, since objects that do not repeat would not
be detected. This implies a false negative rate of less than 2%.
There were no false positives. This is not surprising, since, even
if the detection algorithm of Section III-A falsely registered a
match, the boundary finding algorithm of Section III-C would
find a zero-length object. Our algorithm had a sanity check to

reject objects shorter than , since such objects cannot be
reliably detected with this approach.

B. Results on Audio Streams

An FM receiver was connected to the line-in of the PC. Our
low-dimension representation was used to find repeats and de-
tect endpoints of objects once found.

Examples of the results listening to two different FM Radio
stations are given in Figs. 7 and 8. In both cases, we used

. In Fig. 7, we show the results of listening to a
Seattle pop music radio station (FM 96.5 KYPT) for seven
days. We plot the rate at which unique new objects were found,
and the distribution of play frequencies. We also give a pie
chart showing the portions of the stream that are made up of
ROs greater than 2 min, less than 2 min, and nonrepeating
content. Roughly speaking these might be taken to represent
the portion of the streams that are songs, advertisements and
talk respectively. Clearly, in Fig. 7(a), very few objects were
found in the first day. This reflects the fact that objects will not
be recognized until they repeat, and repeats do not happen
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Fig. 9. ROs detected on a real broadcast stream. The cable channel CNN Headline News analyzed for a period of 24 h. (a) Number of unique ROs found as a
function of time. For part of the first hour, few objects are found, since repeats do not occur. After this many objects are found initially, but the rate slows as fewer
objects remain to be found. A total of 766 unique ROs greater than 20 s in length were found. (b) Number of times that unique ROs were played in stream. A small
number of popular objects are played very frequently and the stream is very repetitive.

Fig. 10. ROs detected on a real broadcast stream. The cable channel MTV was listened to for a period of five days, played in a stream. A small number of popular
objects are played very frequently and the stream is very repetitive. (a) Number of unique ROs found as a function of time. Many objects are found initially, but
the rate slows as fewer objects remain to be found. A total of 276 unique ROs greater than 2 min in length were found. (b) Number of times that unique ROs were
played in stream. A small number of popular objects are played very frequently and the stream is very repetitive.

immediately. Once repeats start to occur (after one day) objects
are found rapidly at first and then tail off, with a total of 766
unique objects of length 2 min or greater being found. Fig. 7(b)
shows the play frequencies of the objects found; some objects
played almost every day while others appeared only twice in the
seven day period. In Fig. 8, we show the results from listening
to FM 107.7 KNDD for a period of six days. Comparing the re-
sults from the two stations is interesting; clearly KYPT plays a
somewhat larger collection of objects, while KNDD plays fewer
objects (a total of 219 unique objects of length 2 min or greater
were found) but plays some objects very often. The two pie
charts [Figs. 7(c) and 8(c)] show the difference in makeup of the
streams. On KYPT almost 75% of the stream consists of ROs
of length 2 min or greater (presumably music), while only 7.2%

contained no repeats (presumably talk or objects that occurred
only once and hence were not detected as repeats). For KNDD,
these fractions were 39% and 47%, respectively.

C. Results on Video Streams

A cable signal was connected to a tuner card on the PC.
Our low-dimension representation of the audio portion of the
signal was used to find repeats and detect endpoints of objects
once found. The video portion was examined only to verify that
the repeat also involved the visual portion of the signal. Those
where video did not match were rejected as not being ROs fol-
lowing our definition.

Examples of the results listening to two different cable TV
stations are given in Figs. 9 and 10. In Fig. 9, we show the results
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of viewing “CNN Headline News” for 24 h. We plot the rate at
which unique new objects were found, and the distribution of
play frequencies. This is a very repetitive channel, consisting
mostly of short news briefs and commercials. Typical ROs are
30 s in length. We used . The rate at which ROs are
found, shown in Fig. 9(a), is very different from the FM radio
examples. A large number of objects are found very quickly,
since news items repeat twice an hour; after that new ROs con-
sist only of relatively infrequent new stories, and commercials
that have not yet been seen. The profile of repeat rates, shown
in Fig. 9(b), shows that a small collection of ROs repeat many
times (presumably the news stories), while a larger collection
appears less frequently (presumably the commercials).

In Fig. 10, we show the results of viewing MTV, a musical
video station for five days. Since the objects we were interested
in have an average length of 180 s or so, we used .
Here, the profile of ROs follows that of one of the FM stations
more closely. In Fig. 10(a), we plot the rate at which unique ROs
greater than 2 min in length arrive. For the first few hours, no
ROs are found, but the rate at which they are found is almost
linear before tailing off after about four days. In Fig. 10(b), the
play frequency of the ROs is shown. Again, a combination of
objects that play many times a day (the most common played
32 times in a five-day period) and less common objects (which
played only twice) is evident.

VI. CONCLUSIONS

We have shown that identifying repeats in media streams that
are days or even weeks apart is perfectly feasible for a consumer
PC. Key to this process was the selection of a low-dimension
representation that reduced the complexity of the search, ex-
ploiting the repetitive nature of the stream, and the use of two
copies to identify the endpoints of the object. The main con-
tributions are: we show how to efficiently search for unknown
objects; we show that for repetitive streams the complexity con-
verges to that of searching for known objects; we show how to
determine the endpoints of objects; and we show that buffering
large sections of the stream is not necessary to extract even ob-
jects that recur infrequently. A number of applications are ad-
vanced.
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